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Enhancement of laser pulse induced photocurrents by topological states in graphene nanoribbons

Rulin Wang ,1,* Fuzhen Bi,2,3 Wencai Lu,4 Xiao Zheng,5 and ChiYung Yam6

1Centre for Theoretical and Computational Physics, College of Physics, Qingdao University, Qingdao 266071, China
2Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

3Laboratory of Solar Energy, Shandong Energy Institute, Qingdao 266101, China
4College of Physics, Qingdao University, Qingdao 266071, China

5Department of Chemistry, Fudan University, Shanghai 200433, China
6Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China

(Received 6 November 2023; revised 9 May 2024; accepted 10 May 2024; published 22 May 2024)

Electron dynamics driven by few-cycle laser pulses has recently attracted great interest as a means to realizing
the manipulation of electron motion on the atomic timescale. Using tight-binding models and the time-dependent
nonequilibrium Green’s function (TD-NEGF) method, we investigated laser-pulse-induced electron dynamics in
armchair graphene nanoribbons (GNRs) with and without topological states. The results show that multiphoton
excitations can lead to photocurrents along the GNRs and that the corresponding transferred charges can be
enhanced by a factor of several hundreds for GNRs with topological states. This enhancement effect is due to
the topological states in the band gap of GNRs, which reduce the order of multiphoton absorption and increase
the transition probability of excitations.
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I. INTRODUCTION

Advancements in few-cycle laser-pulse generation offer
unique opportunities to study ultrafast electron dynamics in its
natural femtosecond timescale [1,2]. The control of electron
motion by laser pulses has been explored both experimen-
tally and theoretically. The manipulation of electron motion
can be realized by various implementation schemes, such as
the laser-controlled charge migration in ionized molecules
[3,4], symmetry breaking or symmetry restoration of elec-
tronic structure in molecules [5], control of electron motion
using synthesized light waveforms in dielectrics [6], and lo-
calized surface plasmon resonances in metals [7]. In these
schemes, the control of electron motion usually focuses on
the ultrafast dynamic process inside the materials. In contrast,
for photoelectric devices, the electron moving through the
devices is more important, which is the photocurrent driven
by a laser pulse. Recently, laser-pulse-induced photocurrents
were investigated in the tunneling barrier [8–12] and dielec-
tric [13–15] and semiconductor systems [16–18], and these
photocurrents can be modulated by the carrier-envelope phase
and central frequency of the laser pulses. In semiconductor
devices, laser-pulse-induced photocurrents were found to be
determined by the multiphoton excitations and to depend on
the band gap of the semiconductor [18]. Thus, the adjustment
of the band gap should be a practical, feasible way to con-
trol laser-pulse-induced photocurrents through semiconductor
devices. In this study, we investigate the effect of in-gap local-
ized states on laser-pulse-induced photocurrents and propose
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an applicable approach to enhancing photocurrents in semi-
conductor devices.

Graphene nanoribbons (GNRs) are an ideal platform
for investigating laser-pulse-induced photocurrents in semi-
conductors. Armchair GNRs exhibit a tunable band gap,
depending on the width of nanoribbons [19–21]. In bi-
layer armchair GNRs, the band gap can be continuously
adjusted with the control of a vertical electric field [22].
The band engineering of a GNR by edge modification is
another route used to control the band gap [23,24], which
was implemented experimentally using the on-surface syn-
thesis approach [25–27]. This atomic precision fabrication
technique broadens the scope of topological band engineering
to quasi-one-dimensional materials. The periodic arrangement
of topological states along the GNR backbone enables the
control of the band gap, which can be tuned by adjusting the
periodic coupling of topological states [28,29]. The coupling
includes the intracell coupling tn between two states in the
same dimer and the intercell coupling tm between two states
in neighboring dimers. For edge-extended GNR systems in-
cluding several topological states, the topological states are
usually in the band gap of the GNR backbone, and the energy
of in-gap topological states can be controlled by changing the
values of tn and tm [30]. The effect of these in-gap topological
states on real-time electron dynamics, however, has yet to be
demonstrated.

Here, we simulate laser-pulse-induced photocurrents in a
seven-carbon-atom wide armchair GNR (7-AGNR) with in-
gap localized topological states. We consider the situation
where the topological states and the area around them were
under the irradiation of few-cycle laser pulses. This part of
the system is excited into a nonequilibrium state, which is
taken as an open system. In contrast, the part away from
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the irradiation region is assumed to be in a thermodynamic
equilibrium state, which is taken as the surrounding environ-
ment of an open system and provides dissipative channels
for the nonequilibrium state [31–33]. The accurate descrip-
tion of the dissipative process is crucial in the calculation
of laser-pulse-induced photocurrents. In the framework of
the time-dependent nonequilibrium Green’s function (TD-
NEGF) method, the dissipation term is represented by the
energy-dependent spectral function �(ε). The value of spec-
tral function �(ε) varying with the energy ε is related to the
coupling between the open system and environment. The large
value of �(ε) at a specific energy point ε indicates the strong
coupling between the open system and environment, which
would lead to a small relaxation time for the nonequilibrium
state of the open system. The small value of �(ε) indicates
the weak coupling at the corresponding energy point ε, which
would lead to a large relaxation time for the nonequilib-
rium state. Thus the different values of �(ε) varying with
the energy points ε indicate the different relaxation times
of electron dynamics, so electron dynamics for each energy
point should be formulated by a separate equation of motion
[34–37]. Moreover, the large number of equations of motion
would increase computational costs, making them difficult to
implement in practical calculations. One way to reduce the
computational costs is the wide-band-limit (WBL) approach
[38,39], in which the energy dependence of �(ε) is ignored
and the value of the spectral function at the Fermi energy is
used to replace the energy-dependent spectral function �(ε).
Thus, the WBL approach is suitable for the simulation of
electron dynamics near the Fermi energy. For the simulation
of electron dynamics in the system with a band gap, such as
7-AGNR in this work, the electron dynamics away from Fermi
energy would play a dominant role in the simulation. Thus,
in this work, we adopt a Lorentzian decomposition scheme
[40,41] in which the spectral function �(ε) is fitted by a
set of Lorentzian functions, and each Lorentzian function is
related to an equation of motion for electron dynamics. Under
the premise of ensuring calculation accuracy, we reduce the
number of functions to improve the computational efficiency
of the simulation.

II. SIMULATION DETAILS

We simulate the ultrafast electron dynamics driven by the
laser pulses in the system of edge-extended 7-AGNR with
a single dimer. Figures 1(a) and 1(b) present the structure
models for the systems with the dimer n = 1 and n = 3,
respectively. These structures of edge-extended 7-AGNRs
are experimentally realized by using an on-surface synthesis
approach [29]. In our calculation, the whole system was di-
vided into two parts: an open system [the blue shaded part
in Figs. 1(a) and 1(b)] and a surrounding environment (the
other part of the system). The environment includes two semi-
infinite GNRs on the left and right of the open system. The
open system was assumed under irradiation of a laser pulse.
The laser pulse was considered linearly polarized light, and
the direction of the electric field was parallel to the GNR
direction. The time-varying electric field of the laser pulse
would lead to a nonequilibrium state inside the open system.
The surrounding environment, which was out of range of laser

(a)

(b)

n=1

n=3

1 2

FIG. 1. Schematic diagram of edge-extended 7-AGNR with the
dimer (a) n = 1 and (b) n = 3. The atoms under irradiation constitute
the open system (the blue shaded part), while the other part of the
system is the surrounding environment of the open system.

irradiation, was assumed to be in a thermal equilibrium and
provided dissipative channels for the nonequilibrium state in
the open system.

A. TD-NEGF method for an open system

The electron dynamics of the open system can be de-
scribed by the TD-NEGF method, of which the detailed
derivations can be found in Refs. [31], [40], and [41]. For the
sake of completeness and ease of presentation, we introduce
the TD-NEGF method here. The basic equation is an equa-
tion of motion (EOM) for the electron dynamics of the open
system [31]

iσ̇D(t ) = [hD(t ), σD(t )] − i
∑

α

Dα (t ), (1)

where σD(t ) and hD(t ) are the reduced single-electron density
matrix and the Hamiltonian matrix for the device (the open
system), respectively. α = L/R denotes the left electrode or
right electrode (the environment). Dα (t ) is the dissipation term
for electron dynamics of the device.

We chose the nearest-neighbor tight-binding Hamiltonian
to describe the electronic structure of the whole system, in-
cluding the device and electrodes. The Hamiltonian is given
by H = ∑

i εia
†
i ai + ∑

i j γi ja
†
i a j , where ai is the annihilation

operator for an electron on the site of the ith atom. εi is the
on-site energy and is set to zero for the equilibrium state.
In contrast, for the nonequilibrium state induced by a laser
pulse, the energy εi would vary with the electric field of pulse
and could be determined by the position of the ith atom. γi j

is the coupling strength between ith atom and its nearest-
neighbor jth atom, and the coupling at the GNRs edge has
to be increased by 12% owing to the hydrogen passivation
of the edge carbon atoms [42]. Thus, the coupling strength
for interior carbon atoms is set to the same value of graphene
system γ0 = −2.7 eV [43], and the coupling strength for edge
carbon atoms was set to γe = 1.12 γ0.
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Note that in Eq. (1), hD represents the Hamiltonian for
the device decoupled from electrodes. Moreover, the effect
of electrode α on the electron dynamics of the device is
described by the term Dα (t ), which represents the dissipative
process at the boundary of the device and the electrode, such
as the exchanges of electrons, energy, and phase information
between the device and the electrode.

The accurate description of the dissipation term Dα (t )
is essential for the simulation of electron dynamics. In the
TD-NEGF method, Dα (t ) is expanded with the Green’s func-
tions G<,>(t, t ′) and the self-energies �<,>

α (t ′, t ), as follows
[31,38]:

Dα (t ) =
∫ t

−∞
dt ′[G<(t, t ′)�>

α (t ′, t )

− G>(t, t ′)�<
α (t ′, t )] + H.c., (2)

where G<(t, t ′) and G>(t, t ′) are the lesser and greater
Green’s functions of the open system, respectively. �>

α (t ′, t )
and �<

α (t ′, t ) are the greater self-energies and lesser self-
energies, respectively, which correspond to the coupling of the
device with the electrode α.

With the time-varying electric potential �α (t ) caused by
the laser pulse, the self-energies are given by

�<
α (t ′, t ) = i

π
e−i

∫ t ′
t dτ�α (τ )

∫
dε�α (ε) fα (ε)e−iε(t ′−t ), (3)

�>
α (t ′, t ) = − i

π
e−i

∫ t ′
t dτ�α (τ )

∫
dε�α (ε)[1 − fα (ε)]e−iε(t ′−t ),

(4)

where fα (ε) is the Fermi-Dirac distribution for electrode α

and �α (ε) is spectral function, which is given by the imag-
inary part of the retarded self-energy, �α (ε) = −Im[�r

α (ε)].
In our simulation, the eletrodes consisted of two semi-infinite
GNRs, and the spectral function �α (ε) could be evaluated
using a highly convergent renormalization method [44,45].

Using the dissipation term Dα (t ) in Eq. (2) and the self-
energies in Eqs.(3) and (4), the EOM Eq. (1) for the density
matrix σD(t ) was written by EOMs for a set of variables
{σD(t ),ϕα (ε, t ),φαα′ (ε, ε′, t )} [33,34]:

iσ̇D(t ) = [hD(t ), σD(t )] −
∑

α

∫
dε[ϕα (ε, t ) − ϕ†

α (ε, t )],

(5)

iϕ̇α (ε, t ) = [hD(t ) − ε − �α (t )]ϕα (ε, t )

− 1

π
[ fα (ε) − σD(t )]�α (ε)

+
∑
α′

∫
dε′φαα′ (ε, ε′, t ), (6)

iφ̇αα′ (ε, ε′, t ) = − 1

π
[�α′ (ε′)ϕα (ε, t ) − ϕ†

α′ (ε′, t )�α (ε)]

+ [
ε′ + �α′ (t ) − ε − �α (t )

]
φαα′ (ε, ε′, t ),

(7)

where ϕα (ε, t ) and φαα′ (ε, ε′, t ) are the auxiliary density ma-
trices and the EOMs for these auxiliary density matrices aim
to obtain the dissipation term Dα (t ). In contrast, the EOMs
for the auxiliary density matrices have to be formulated for

each energy points ε, which would lead to huge computational
costs, making it practically impossible to implement in the
simulation.

To reduce the computational costs, we deconstruct the
spectral function �α (ε) and Fermi-Dirac distribution fα (ε) by
Lorentzian functions and the Padé expansion as

�α (ε) ≈
Nl∑

l=1

1

(ε − �l )2 + W 2
l

�̄αl , (8)

fα (ε) = 1

eβ(ε−μα ) + 1

≈ 1

2
+

Np∑
p=1

Rp

[
1

β(ε − μα ) − z+
p

+ 1

β(ε − μα ) − z−
p

]
,

(9)

where �l and Wl are the centers and widths of the Lorentzian
function, respectively; �̄αl refers to the coefficients deter-
mined by a least-square fit; Nl is the number of Lorentzian
functions. μα is the chemical potential of electrode α; β =
[kbT ]−1 reflects Boltzmann’s constant kb and the system tem-
perature T ; Rp and z±

p are the coefficients and singular points
determined by the Padé expansion [46], respectively; Np is the
number of Padé terms.

By inserting Eqs. (8) and (9) into Eqs. (3) and (4), and
using the residue theorem, we would turn the integral of
energy ε in Eqs. (3) and (4) into a summation for the poles
of Lorentzian and Padé functions. In this way, the vari-
ables of EOMs in Eqs. (5) to (7) would be replaced by
{σD(t ),ϕαk (t ),φαk,α′k′ (t )} [34,40]. A similar derivation of
the TD-NFGF method can be found in Ref. [47], in which
the Fermi-Dirac distribution is expended by using a partial
fraction decomposition. The computational cost and memory
requirements of the method could be reduced by transforming
the auxiliary density matrices into vectors or scalars with the
diagonalization of �α (ε) [48]. In principle, the computational
cost for the TD-NEGF method should depend on the number
of atomic levels in the open system and the total number
of the auxiliary density matrices 2Nk + 4N2

k (Nk = Nl + Np).
The small values of Nl and Np can obviously reduce the com-
putational cost, but overly small values cannot preserve the
accuracy of Lorentzian and Padé decomposition. In Sec. III A,
we discuss the numerical validation of Lorentzian and Padé
decomposition approach to obtain the appropriate values of
Nl and Np.

B. Electronic structures of edge-extended GNR systems

In this section, we examine the electronic structures of
edge-extended GNR systems. As electron dynamics in the
open system (the blue shaded part in Fig. 1) played a dom-
inant role in our simulation, we first investigate the projected
density of states (PDOS) for an open system, which was
determined by both the Hamiltonian of the open system and
the coupling to the environment. Within the NEGF method,
the effect of coupling with the environment on the PDOS of
open system is represented by the retarded self-energy �r

α (ε),
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FIG. 2. The PDOS of open system (red line) for edge-extended
GNR (a) n = 1 and (b) n = 3 comparing with the PDOS (black
line) for pristine 7-AGNR without an edge-extended structure. The
edge-extended structures would lead to in-gap topological states at
energy of ±0.38 eV (±0.15 eV) for system n = 1 (n = 3). The den-
sity distribution of topological states for systems (c) n = 1 and (d)
n = 3. The size of red circles denotes the amplitude of the density
distribution. (e) The topological gap Et varies with the length of
edge-extended structure Le for systems (n = 1–7).

and the PDOS can be given by [49]

N (ε) = − 1

π
Im{Tr[εI − hD −

∑
α

�r
α (ε)]−1}, (10)

where hD is the Hamiltonian of an open system decoupled
from the environment. The retarded self-energy includes a
real part and an imaginary part: �r

α (ε) = Rα (ε) − i�α (ε).
The imaginary part �α (ε) is a spectral function and can be
calculated using a highly convergent renormalization method
[44,45]. The real part Rα (ε) can be computed by �α (ε) via
the Kramers-Kronig relation.

Figure 2(a) plots the PDOS of open system, where the
black line denotes the simulation result for pristine 7-AGNR
without an edge-extended structure, and the band gap is
1.14 eV. The red line denotes the result for 7-AGNR with the
dimer n = 1, and it is clear that the edge-extended structure
creates two topological states in the band gap of the 7-AGNR
backbone. The in-gap states are the topologically derived
highest-occupied molecular orbital (HOMO) and lowest-
unoccupied molecular orbital (LUMO). We can see that the
gap between the topological states is Et = 0.76 eV, which
indicates that the intracell coupling is tn = Et/2 = 0.38 eV,
which is in excellent agreement with the previous simulation
result from density function theory (DFT) [29].

For the system with dimer n = 3, the topological gap re-
duces to Et = 0.31 eV, as shown in Fig. 2(b). Meanwhile,
the gap between the valence (conduction) band and HOMO
(LUMO) becomes 0.42 eV, which is larger than the topolog-
ical gap Et . The reduction of Et relies on the fact that the
intracell coupling tn would be reduced with the increase in
the length of the edge-extended structure Le. As shown in
Figs. 2(c) and 2(d), the length increases from Le = 0.71 nm
for n = 1 to Le = 1.56 nm for n = 3 (the carbon–carbon bond
length was set to 1.42 Å). The size of red circles in Figs. 2(c)
and 2(d) donates the density distribution of the topological
states (HOMO) for systems n = 1 and n = 3, respectively.
The topological state of LUMO exhibits the same density
distribution as the state of HOMO. Clearly, the topological
states are mainly distributed on the two ends of the edge-
extended structure. Thus, the increase in Le would decouple
the topological states on the two ends, leading to the reduction
of intra-cell coupling tn and topological gap Et .

To further reveal the dependence of Et on the length Le,
we calculate the PDOS for systems with (n = 1–7) to obtain
the corresponding values of Et , as shown by black points in
Fig. 2(e). We can see an exponential decay of topological gap
Et as the length Le, which can be fitted by the exponential
function Et = 1.46 eV × e−0.98Le [the red line in Fig. 2(e)].
In other words, the energy of topological states can be con-
trolled by the structural construction for edge-extended GNR
systems. The controllability of these in-gap states provides an
efficient way to develop future photoelectric devices, as the
energy gap of device dominates the process of photoexcita-
tion and the generation of photocurrents. Here, we focus on
the photocurrents induced by the few-cycle laser pulse and
investigate the effect of in-gap states on the photocurrent.

III. RESULTS AND DISCUSSIONS

A. Numerical validation of the TD-NEGF method

We then investigate the electron dynamics driven by laser
pulses for system n = 1, and the electron dynamics of open
system is described by TD-NEGF method. The Lorentzian
and Padé decomposition approaches are employed to reduce
the computational cost of simulation. For the Lorentzian de-
composition, the spectral function �α (ε) is deconstructed into
Lorentzian functions; see Eq. (8). �α (ε) is an N-by-N matrix,
and N denotes the number of atomic levels in the open system.
Each element of the matrix �α (ε) is a function varying with
energy ε, and each element is fitted separately by a set of
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FIG. 3. (a) The simulation result of PDOS with Lorentzian
decomposition (Nl = 40) compared with the result without the de-
composition. (b) The Fermi-Dirac distribution deconstructed by Padé
expansion (Np = 20) comparing with the exact result.

Lorentzian functions. It is worth noting that the number of
poles for Lorentzian functions Nl only depends on the centers
�l and widths Wl of Lorentzian functions, so all the elements
of matrix �α (ε) are fitted by a set of Lorentzian functions
with fixed centers and widths {�l ,Wl}, and each element
of the coefficient matrix �̄αl is determined separately via a
least-squares fit. The strategy of finding optimal {�l ,Wl} is
not unique, and may vary from system to system. In our
simulation, the number of Lorentzian functions was set to
Nl = 40. The centers �l were located at 40 equally spaced
energy points in the energy region [−8.0 eV, 8.0 eV], and the
widths Wl were set to the same value as the energy interval of
these spaced points. For the Padé decomposition, the Fermi-
Dirac distribution f (ε) is constructed via Eq. (9). The choice
of Np is related to the temperature of the system, as a lower
temperature requires more Padé terms. In our simulation, the
temperature is T = 300 K, and the number of Padé terms is
set to Np = 20.

The accuracy of Lorentzian and Padé decomposition is
evaluated by the calculation of PDOS and the Fermi-Dirac
distribution, respectively. The simulation results with and
without the decomposition are compared in Figs. 3(a) and
3(b). As shown clearly, the results with the decomposition
agree well with the results without the decomposition for
both Lorentzian and Padé decomposition. This verifies that the
Lorentzian and Padé decomposition is accurate in capturing
the overall features of the electronic structure, especially for
the equilibrium state. For nonequilibrium states, the accuracy
of the decomposition is evaluated by the comparison of results
of electron dynamics with a different number of Nl or with a
different number of Np.

We next consider the electron dynamics driven by a few-
cycle laser pulse for system n = 1. The laser pulse is assumed
to be linearly polarized light, and the direction of electric field
is parallel to GNRs direction. To avoid the influence of DC
component, we assume the electric field of a laser pulse to

be an AC source and given by E (t ) = −Ȧ(t ) with the vec-
tor potential A(t ) = (E0tc)/(2π ) exp[−t2/(2t2

d )] sin(2πt/tc +
ϕ). Furthermore, the tunable parameters for the waveform
of laser pulses include the carrier-envelope phase (CEP) ϕ,
period time tc, duration time td , and field amplitude E0.

In the simulation, we assume that only the device re-
gion (open system) is under irradiation of the laser pulse,
and the electrode regions (surrounding environment) are
out of the range of laser irradiation. Experimentally, this
nanometer-scale irradiation region may be realized with field
enhancement around the narrow gaps between metal nanopar-
ticles and sharp tips in colloidal gold particles [50]. The
electric field of the laser pulse would lead to an on-site ramp in
the device region. For the electrode regions, the electric field
would result in a time-varying energy shift �α (t ) for electrode
α, including the shift of energy bands and the shift of Fermi
energy μα + �α (t ). The energy shift �α (t ) is determined by
the electric field of laser pulse E (t ) and the length of the
device region LD. The center of the device region is set to the
zero point of the electric potential, so the energy shift �α (t )
for electrodes are given by �L(t ) = −�R(t ) = eE (t )LD/2. It
is worth noting that the zero point of the electric potential can
be set to an arbitrary position of the device, the change in zero
position does not affect the calculation results. The parameters
of the laser pulse are given by (ϕ = 0, tc = 20 fs, td = 0.6 tc,
E0 = 0.4 V/nm), and the time-varying electric field is de-
picted in Fig. 4(a). The transient photocurrents flowing from
the left electrode and flowing into the right electrode could be
obtained by the dissipation term IL = −Tr[DL](IR = Tr[DR]),
and the current passing through the device is calculated as
the average current I (t ) = [IL(t ) + IR(t )]/2, which is shown
in Fig. 4(b).

While this transient photocurrent on a femtosecond scale
is usually too fast to be directly measured in the experiment,
the corresponding transferred charge Qtr (t ) = ∫ t

−∞ dt ′ I (t ′)
could be used to investigate the ultrafast electron dynamics. To
validate the accuracy of Lorentzian and Padé decomposition,
we compare the simulation results of Qtr (t ) with different
numbers of Nl and Np in Figs. 4(d) and 4(e), respectively.
In Fig. 4(d), we can see the result calculated with Nl = 40
is consistent with that of Nl = 50; and in Fig. 4(e), the result
calculated with Np = 20 is consistent with that of Np = 25.
This means that the Lorentzian decomposition with Nl = 40
and Padé decomposition with Np = 20 are accurate in our
simulation. Thus, we adopt Nl = 40 and Np = 20 in the fol-
lowing calculations of this paper.

The accumulation charge inside the device region is cal-
culated by Qacc(t ) = ∫ t

−∞ dt ′ [IL(t ′) − IR(t ′)], as shown in
Fig. 5(a). We can see there is no accumulation charge in
the device region, it relies on the fact that the value of the
current flowing from the left electrode IL(t ) is the same as the
current flowing into the right electrode IR(t ) due to the spatial
symmetry of the system. Figure 5(b) plots the time evolution
of induced electron density on atom 1 and atom 2 [as marked
in Fig. 1(a)] inside the device �ni(t ) = ni(t ) − neq

i , where
ni(t ) = σ ii(t ) is the electron density of atom i at time t and neq

i
is the electron density in the equilibrium state. The deviation
of electron density from the equilibrium state indicates the
charge redistribution inside the device region. The electric
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FIG. 4. (a) Time-varying electric field of the laser pulse with
amplitude E0 = 0.4V/nm and CEP ϕ = 0. (b) The corresponding
photocurrent induced by the laser pulse. (c) The transferred charge
Qtr (t ) (time-integration of photocurrent) induced by the laser pulse.
(d) The results of Qtr (t ) computed with Lorentzian decomposition
for Nl = 40 and Nl = 50. (e) The results of Qtr (t ) computed with
Padé decomposition for Np = 20 and Np = 25. (f) The time-varying
transferred charge Qtr (t ) after the laser pulse.

potential induced by this charge redistribution is not included
in the tight-binding method used in our simulation, its effect
on the photocurrents needs further investigations.

From Fig. 4(a), we can see the duration time td confines
the laser pulse to the time region [−30 fs, 30 fs]. In this time
region, the laser pulse drives the system out of the equilibrium
state, and this region is the driven part of electron dynamics.
For the time region t > 30 fs, the system gradually returns
to the initial equilibrium state, and this region is the relax-
ation part of electron dynamics. Figures 4(c) and 4(f) show
the simulation results of Qtr (t ) during and after the pulse,
respectively. It is clear that the transferred charge is mainly
established at the driven part of electron dynamics. In the

-0.01

0.00

0.01

time (fs)
-30 0 30 60 90

-0.01

0.00

0.01

el
ec

tro
n

de
ns

ity Δn1

Δn2

(a)

(b)

Q
ac

c(t
)

FIG. 5. (a) The accumulation charge inside the device region
varying with the time. (b) The time evolution of induced electron
density on atom 1 and atom 2 [as marked in Fig. 1(a)] inside the
device.

relaxation part of electron dynamics (t > 30 fs), Qtr (t ) is
slightly oscillating around a fixed value. The frequency of
the oscillation is found to be 0.76 eV, as determined by the
topological gap of the system n = 1, as shown in Fig. 2(a). As
time goes on, the nonequilibrium state of the system dissipates
into the surrounding environment, and time-varying Qtr (t )
tends toward a stable value [see Fig. 4(f)]. This stable value is
defined as the total transferred charge Q = Qtr (∞) = 0.049 e.
Compared with the phototcurrent I (t ) varying on the fem-
tosecond scale, the total transferred charge Q is much easier to
measure in the experiment, so we focus on the dependence of
Q on the waveform of the incident laser pulses in the following
discussions.

B. Dependence of the transferred charge on the CEP
and duration time of laser pulses

We then investigate the manipulation of the transferred
charge by the CEP of laser pulses. The period time, dura-
tion time, and field amplitude of pulses were set to tc = 20
fs, td = 0.6 tc, and E0 = 0.4 V/nm, respectively. The CEP
varies from 0 to 2π . For each point of CEP, we carry out
the calculation of photocurrents for system n = 1 and obtain
the stable transferred charge Q in a long-enough time. The
simulation results, as shown by the red line in Fig. 6(a), exhibit
a sinusoidal dependence of Q on the CEP ϕ. Q only includes
a CEP-dependent component and varies around the value
Q = 0 because of the spatial symmetry of the edge-extended
7-AGNR system, and this characteristic is also found in the
simulation of the pristine 7-AGNR system [18]. However,
this phenomenon is different from that in the simulation of
laser-pulse-induced photocurrents in the dielectric system of
α-SiO2 [14] and tunneling barrier system [12] in which the
transferred charges include a CEP-independent component
owing to the spatial asymmetry of the system. For the systems
in this paper, this CEP-independent component can be in-
cluded by changing the Fermi level position of electrodes. For
example, the Fermi level of the left electrode moves by 0.1 eV,
and the Fermi level of the right electrode remains unchanged.
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FIG. 6. (a) The transferred charge Q varying with the CEP of
laser pulses (tc = 20 fs and E0 = 0.4 V/nm). The red line, green
line, and blue line show the simulation results for duration time
td = 0.6 tc, 0.9 tc, and 1.2 tc, respectively. (b) The transferred charge
varying with CEP for the case of changing the Fermi level position
of electrodes, the Fermi level of left electrode moves by 0.1 eV, and
the Fermi level of right electrode remains unchanged. (c) The electric
field of laser pulses for different CEPs with td = 0.6 tc.

The corresponding results of the transferred charge are shown
in Fig. 6(b). We can see the change in the Fermi level position
can lead to a CEP-independent component of the transferred
charge Q0 = 0.041 e.

The green line and blue line in Fig. 6(a) show the results
for the duration time td = 0.9 tc and td = 1.2 tc, respectively.
We can see Q generally reduces with an increase in td , and
this is more clear in the calculation of Qmax (the maximum
value of Q for all CEP points) varying with td , as shown in
Fig. 7(a). This result can be attributed to the fact that the
transferred charge is generated from the asymmetry of a laser-
pulse electric field. For example, take td = 0.5 tc with ϕ = 0
[see Fig. 7(d)]. The maximum positive value of the electric
field is significantly higher than the negative value, leading to
an electron transfer from one side to another side of the GNR.
With an increase in duration time, such as td = 2.0 tc, the
difference in the positive and negative parts of the electric field

FIG. 7. The max values of the transferred charge Qmax varying
with duration time td for systems (a) n = 1, (b) n = 3, and (c) without
topological states. (d) The electric field of laser pules for different td

with CEP ϕ = 0.

becomes negligible, so the transferred charges tend toward
zero.

In studies of the photoelectric conversion process under
irradiation of stable incident light, an additional driving force,
such as the built-in electric field around the p-n junction, is in-
dispensable in generating a steady photocurrent. The built-in
electric field usually involves chemical doping or a structural
change of the semiconductor devices, resulting in the fabri-
cation difficulty of photoelectric devices. In contrast, in this
study, the electric-field asymmetry of a few-cycle laser pulse
plays a similar role of a driving force without any change
in devices. This provides a possible avenue for the further
development of photoelectric devices.

To highlight the influence of topological states on the pho-
toelectric response, we also calculate Qmax varying with td for
the systems of edge-extended 7-AGNR (n = 3) and pristine
7-AGNR without topological states, as shown in Figs. 7(b)
and 7(c), respectively. For all three systems, we find that
the value of Qmax tends to zero when td is close to 1.5 tc.
Thus, in the study of laser-pulse-induced electron dynamics,
the duration time of laser pulses should be short enough
(td < 1.5 tc) to generate an obvious photoresponse. Moreover,
the in-gap topological states lead to the enhancement of the
transferred charge, and the values of Qmax for systems (n = 1
and n = 3) with topological states are much larger than the
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FIG. 8. The values of Qmax versus field amplitude E0 of laser
pulses on a log-log scale. The points of the simulation results can
be fitted by a power-exponent function Qmax ∝ Er

0 . The power in-
dexes are found to be r = 6.95, 5.82, and 4.08 for systems without
topological states, n = 1, and n = 3, respectively.

values for system without topological states. For example,
take td = 0.6 tc. The values of Qmax are 0.29 e, 0.049 e, and
0.0078 e for the systems n = 3, n = 1, and without topo-
logical states, respectively. In other words, the in-gap states
of system n = 3 (n = 1) can enhance the transferred charge
37 (six) times compared with the system without topological
states. This relies on the fact that the in-gap topological states
can reduce the energy gap in the photoexcitation process
and, consequently, enhance the intensity of the photoelectric
response. This relation between topological states and the
enhancement of photoelectric response becomes more clear
with additional calculations of the transferred charge varying
with the field amplitude of laser pulses, which is given in the
next section.

C. Dependence of the transferred charge
on the field amplitude of laser pulses

Then, we move on to examine the dependence of trans-
ferred charge on the field amplitude of laser pulses. The period
time and duration time of laser pulses are set to tc = 20 fs
and td = 0.6 tc. Here, we consider the maximum value of
transferred charge Qmax to avoid the influence of CEP ϕ.
Figure 8 plots the values of Qmax versus field amplitude E0

on a log-log scale, where the black points denote the results
for system without topological states. These values of Qmax

show a power-exponent relation to E0 and can be fitted by
the following function: Qmax ∝ Er

0 (the black line in Fig. 8).
The power index is found to be r = 6.95, which indicates that
the three-photon absorption (3PA) and four-photon absorption
(4PA) play a dominant role in the photoresponse. Similarly,
for system n = 1 (red points in Fig. 8), the power index
is found to be r = 5.82, which indicates that the 2PA and
3PA dominate the photoexcitation process. For system n = 3
(blue points in Fig. 8), the power index is r = 4.08, which

(a)

valence band

conduction band

topological  state

topological  state

4PAhigher multiphoton 3PA

higher multiphoton 3PA 2PA

higher multiphoton 2PA

(c)

(d)

(b)

FIG. 9. (a) The photoexcitation process in systems with in-gap
topological states. The relation between the energy distribution of
laser pulses and the energy gaps for the system (b) without topologi-
cal states, (c) n = 1, and (d) n = 3.

demonstrates that 2PA is the dominant photoexcitation pro-
cess in the generation of photocurrent.

We can see that the order of multiphoton excitation
is reduced for systems including in-gap topological states.
This order reduction of multiphoton absorption increases
the transition probability of photoexcitation and leads to the
enhancement of the laser-pulse-induced photocurrent. The
enhancement amplitude can increase by several hundreds of
times, such as E0 = 0.2 V/nm, and the value of Qmax (0.028 e)
for a system n = 3 is 560 times larger than the value (5 ×
10−5 e) for a system without topological states.

To understand the order reduction of multiphoton absorp-
tion, we further investigate the photoexcitation process in
systems with in-gap topological states, as shown in Fig. 9(a).
The photoexcitation process generally includes three steps:
excitation from a valence band to a topological state, ex-
citation between topological states, and excitation from a
topological state to a conduction band. The corresponding en-
ergy gaps for these excitations are denoted as Evt , Et , and Etc.
From the simulation results of PDOS in Figs. 2(a) and 2(b),
we can see that the energy gaps for system n = 1 are given by
Evt = Etc = 0.19 eV, and Et = 0.76 eV, and that the energy
gaps for system n = 3 are given by Evt = Etc = 0.42 eV and
Et = 0.31 eV.

In the multiphoton excitation process, the transition prob-
ability is limited by the larger energy gap. For simplicity, we
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only consider the largest energy gap among three excitation
steps, which is E1 = 0.76 eV (E3 = 0.42 eV) for system n = 1
(n = 3). Meanwhile, the energy gap for pristine 7-AGNR is
the band gap of system Ewo = 1.14 eV. The energy distribu-
tion of the laser pulses can be given by the Fourier transform
of the time-varying electric field and can stay the same for
different CEPs of the pulses.

The relation between the energy distribution of laser pulses
and the energy gaps for the system without topological states,
n = 1 and n = 3 are shown in Figs. 9(b), 9(c), and 9(d),
respectively. For the system without topological states [see
Fig. 9(b)], there is a significant distribution in the energy
region (Ewo/4 < E < Ewo/3) and a small distribution in the
region (Ewo/3 < E < Ewo/2), which leads to the dominant
role of 4PA and 3PA in the multiphoton excitation process. For
system n = 1 [see Fig. 9(c)], there is a significant distribution
in the region (E1/3 < E < E1/2) and a small distribution
in the region (E1/2 < E < E1), which results in the domi-
nant role of 3PA and 2PA. Similarly, for system n = 3 [see
Fig. 9(d)], the main distribution of laser pulse energy in the
region (E3/2 < E < E3) leads to the dominant role of 2PA. It
can be seen that the in-gap topological states can reduce the
energy gap in the photoexcitation process. The smaller energy
gap results in an order reduction of multiphoton absorption
and enhances the photoresponse in the generation of the
transferred charge.

IV. CONCLUSION

In summary, we investigated the laser-pulse-induced elec-
tron dynamics in 7-AGNR with and without topological states

using the TD-NEGF method. The electric-field asymmetry
of a few-cycle laser pulse drives the electron motion along
the GNRs. The corresponding transferred charge Q can be
controlled by the CEP of laser pulses. The CEP dependence
of Q disappears with an increase in the duration time of laser
pulses. Thus, in future investigations of laser-pulse-induced
photocurrents, the duration time of laser pulses should be
short enough (td < 1.5 tc) to generate an obvious photore-
sponse.

In contrast with the simulation results of pristine 7-AGNR
system, the in-gap topological states in an edge-extended
7-AGNR system can be employed to enhance the laser-pulse-
induced transferred charge. The enhancement amplitude of Q
can reach several hundreds of times for the edge-extended
7-AGNR system n = 3. This enhancement is due to the reduc-
tion of the energy gap in the photoexcitation process, which
reduces the order of multiphoton excitation and enhances the
laser-pulse-induced photocurrent. In addition, the enhance-
ment amplitude is related to the topological gap Et of the
edge-extended 7-AGNR system, and Et can be adjusted by the
length of the edge-extended structure. This provides a possible
way to develop the carbon-based photoelectric device driven
by few-cycle laser pulses.

ACKNOWLEDGMENTS

Support from the National Natural Science Foundation of
China (Grant No. 21803035) and the Natural Science Foun-
dation of Shandong province (Grant No. ZR2019BA013) is
gratefully acknowledged.

[1] F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys.
81, 163 (2009).

[2] P. Dombi, Z. Pápa, J. Vogelsang, S. V. Yalunin, M. Sivis, G.
Herink, S. Schäfer, P. Groß, C. Ropers, and C. Lienau, Strong-
field nano-optics, Rev. Mod. Phys. 92, 025003 (2020).

[3] F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De
Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios,
P. Decleva et al., Ultrafast electron dynamics in phenylalanine
initiated by attosecond pulses, Science 346, 336 (2014).

[4] P. M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L.
Horný, E. F. Penka, G. Grassi, O. I. Tolstikhin, J. Schneider,
F. Jensen et al., Measurement and laser control of attosecond
charge migration in ionized iodoacetylene, Science 350, 790
(2015).

[5] C. M. Liu, J. Manz, K. Ohmori, C. Sommer, N. Takei, J. C.
Tremblay, and Y. Zhang, Attosecond control of restoration of
electronic structure symmetry, Phys. Rev. Lett. 121, 173201
(2018).

[6] D. Hui, H. Alqattan, S. Yamada, V. Pervak, K. Yabana, and
M. T. Hassan, Attosecond electron motion control in dielectric,
Nat. Photon. 16, 33 (2022).

[7] M. Garg and K. Kern, Attosecond coherent manipulation of
electrons in tunneling microscopy, Science 367, 411 (2020).

[8] T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida,
and A. Leitenstorfer, Sub-cycle optical phase control of

nanotunnelling in the single-electron regime, Nat. Photon. 10,
667 (2016).

[9] K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida,
H. Shigekawa, and J. Takeda, Real-space coherent manipulation
of electrons in a single tunnel junction by single-cycle terahertz
electric fields, Nat. Photon. 10, 762 (2016).

[10] M. Ludwig, G. Aguirregabiria, F. Ritzkowsky, T. Rybka, D. C.
Marinica, J. Aizpurua, A. G. Borisov, A. Leitenstorfer, and D.
Brida, Sub-femtosecond electron transport in a nanoscale gap,
Nat. Phys. 16, 341 (2020).

[11] Z. Hu, Y. Kwok, G. Chen, and S. Mukamel, Carrier-envelope-
phase modulated currents in scanning tunneling microscopy,
Nano Lett. 21, 6569 (2021).

[12] R. Wang, F. Bi, W. Lu, X. Zheng, and C. Yam, Tracking
electron dynamics of single molecules in scanning tunneling
microscopy junctions with laser pulses, J. Phys. Chem. Lett. 12,
6398 (2021).

[13] A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D.
Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze,
S. Holzner et al., Optical-field-induced current in dielectrics,
Nature (London) 493, 70 (2013).

[14] L. Chen, Y. Zhang, G. Chen, and I. Franco, Stark control of
electrons along nanojunctions, Nat. Commun. 9, 2070 (2018).

[15] S. Sederberg, D. Zimin, S. Keiber, F. Siegrist, M. S. Wismer,
V. S. Yakovlev, I. Floss, C. Lemell, J. Burgdörfer, M. Schultze

195303-9

https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.92.025003
https://doi.org/10.1126/science.1254061
https://doi.org/10.1126/science.aab2160
https://doi.org/10.1103/PhysRevLett.121.173201
https://doi.org/10.1038/s41566-021-00918-4
https://doi.org/10.1126/science.aaz1098
https://doi.org/10.1038/nphoton.2016.174
https://doi.org/10.1038/nphoton.2016.205
https://doi.org/10.1038/s41567-019-0745-8
https://doi.org/10.1021/acs.nanolett.1c01900
https://doi.org/10.1021/acs.jpclett.1c01293
https://doi.org/10.1038/nature11567
https://doi.org/10.1038/s41467-018-04393-4


WANG, BI, LU, ZHENG, AND YAM PHYSICAL REVIEW B 109, 195303 (2024)

et al., Attosecond optoelectronic field measurement in solids,
Nat. Commun. 11, 430 (2020).

[16] F. Langer, Y.-P. Liu, Z. Ren, V. Flodgren, C. Guo, J. Vogelsang,
S. Mikaelsson, I. Sytcevich, J. Ahrens, A. L’Huillier et al.,
Few-cycle lightwave-driven currents in a semiconductor at high
repetition rate, Optica 7, 276 (2020).

[17] S. Sederberg, F. Kong, F. Hufnagel, C. Zhang, E. Karimi, and
P. B. Corkum, Vectorized optoelectronic control and metrology
in a semiconductor, Nat. Photon. 14, 680 (2020).

[18] R. Wang, F. Bi, W. Lu, X. Zheng, and C. Y. Yam, Theoretical
investigation of electron dynamics driven by laser pulses in
graphene nanoribbons, Phys. Rev. B 106, 125305 (2022).

[19] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie,
Quasiparticle energies and band gaps in graphene nanoribbons,
Phys. Rev. Lett. 99, 186801 (2007).

[20] H. Raza and E. C. Kan, Armchair graphene nanoribbons: Elec-
tronic structure and electric-field modulation, Phys. Rev. B 77,
245434 (2008).

[21] A. Kimouche, M. M. Ervasti, R. Drost, S. Halonen, A. Harju,
P. M. Joensuu, J. Sainio, and P. Liljeroth, Ultra-narrow metal-
lic armchair graphene nanoribbons, Nat. Commun. 6, 10177
(2015).

[22] R. Wang, F. Bi, W. Lu, and C. Yam, Tunable photoresponse
by gate modulation in bilayer graphene nanoribbon devices, J.
Phys. Chem. Lett. 10, 7719 (2019).

[23] Y.-L. Lee, F. Zhao, T. Cao, J. Ihm, and S. G. Louie, Topological
phases in cove-edged and chevron graphene nanoribbons: Geo-
metric structures, z2 invariants, and junction states, Nano Lett.
18, 7247 (2018).

[24] K.-S. Lin and M.-Y. Chou, Topological properties of gapped
graphene nanoribbons with spatial symmetries, Nano Lett. 18,
7254 (2018).

[25] Z. Chen, A. Narita, and K. Müllen, Graphene nanoribbons:
On-surface synthesis and integration into electronic devices,
Adv. Mater. 32, 2001893 (2020).

[26] J. Li, S. Sanz, N. Merino-Díez, M. Vilas-Varela, A. Garcia-
Lekue, M. Corso, D. G. de Oteyza, T. Frederiksen, D. Peña,
and J. I. Pascual, Topological phase transition in chiral graphene
nanoribbons: from edge bands to end states, Nat. Commun. 12,
5538 (2021).

[27] R. K. Houtsma, J. de la Rie, and M. Stöhr, Atomically precise
graphene nanoribbons: interplay of structural and electronic
properties, Chem. Soc. Rev. 50, 6541 (2021).

[28] D. J. Rizzo, G. Veber, T. Cao, C. Bronner, T. Chen, F. Zhao,
H. Rodriguez, S. G. Louie, M. F. Crommie, and F. R. Fischer,
Topological band engineering of graphene nanoribbons, Nature
(London) 560, 204 (2018).

[29] O. Gröning, S. Wang, X. Yao, C. A. Pignedoli, G. Borin Barin,
C. Daniels, A. Cupo, V. Meunier, X. Feng, A. Narita et al.,
Engineering of robust topological quantum phases in graphene
nanoribbons, Nature (London) 560, 209 (2018).

[30] Q. Sun, Y. Yan, X. Yao, K. Müllen, A. Narita, R. Fasel, and P.
Ruffieux, Evolution of the topological energy band in graphene
nanoribbons, J. Phys. Chem. Lett. 12, 8679 (2021).

[31] X. Zheng, F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, Time-
dependent density-functional theory for open systems, Phys.
Rev. B 75, 195127 (2007).

[32] C. Y. Yam, X. Zheng, G. H. Chen, Y. Wang, T. Frauenheim, and
T. A. Niehaus, Time-dependent versus static quantum transport

simulations beyond linear response, Phys. Rev. B 83, 245448
(2011).

[33] S. Chen, Y. Kwok, and G. Chen, Time-dependent density func-
tional theory for open systems and its applications, Acc. Chem.
Res. 51, 385 (2018).

[34] X. Zheng, G. Chen, Y. Mo, S. Koo, H. Tian, C. Yam, and
Y. Yan, Time-dependent density functional theory for quantum
transport, J. Chem. Phys. 133, 114101 (2010).

[35] Y. H. Kwok, H. Xie, C. Y. Yam, X. Zheng, and G. H. Chen,
Time-dependent density functional theory quantum transport
simulation in non-orthogonal basis, J. Chem. Phys. 139, 224111
(2013).

[36] H. Xie, F. Jiang, H. Tian, X. Zheng, Y. Kwok, S. Chen,
C. Yam, Y. Yan, and G. Chen, Time-dependent quantum trans-
port: An efficient method based on liouville-von-neumann
equation for single-electron density matrix, J. Chem. Phys. 137,
044113 (2012).

[37] R. Wang, X. Zheng, Y. Kwok, H. Xie, G. Chen, and C. Yam,
Time-dependent density functional theory for open systems
with a positivity-preserving decomposition scheme for environ-
ment spectral functions, J. Chem. Phys. 142, 144112 (2015).

[38] Y. Zhang, S. Chen, and G. H. Chen, First-principles time-
dependent quantum transport theory, Phys. Rev. B 87, 085110
(2013).

[39] F. Covito, F. Eich, R. Tuovinen, M. Sentef, and A. Rubio,
Transient charge and energy flow in the wide-band limit, J.
Chem. Theory Comput. 14, 2495 (2018).

[40] R. Wang, D. Hou, and X. Zheng, Time-dependent density-
functional theory for real-time electronic dynamics on material
surfaces, Phys. Rev. B 88, 205126 (2013).

[41] R. Wang, W. Lu, H. Xie, X. Zheng, and C. Yam, Theoretical
investigation of real-time charge dynamics in open systems
coupled to bulk materials, J. Chem. Phys. 150, 174119 (2019).

[42] Y.-W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in
graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006).

[43] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The electronic properties of graphene, Rev.
Mod. Phys. 81, 109 (2009).

[44] M. L. Sancho, J. L. Sancho, J. L. Sancho, and J. Rubio, Highly
convergent schemes for the calculation of bulk and surface
green functions, J. Phys. F: Met. Phys. 15, 851 (1985).

[45] S.-H. Ke, H. U. Baranger, and W. Yang, Electron transport
through molecules: Self-consistent and non-self-consistent ap-
proaches, Phys. Rev. B 70, 085410 (2004).

[46] J. Hu, R.-X. Xu, and Y. Yan, Communication: Padé spectrum
decomposition of fermi function and bose function, J. Chem.
Phys. 133, 101106 (2010).

[47] A. Croy and U. Saalmann, Propagation scheme for nonequilib-
rium dynamics of electron transport in nanoscale devices, Phys.
Rev. B 80, 245311 (2009).

[48] B. S. Popescu and A. Croy, Efficient auxiliary-mode approach
for time-dependent nanoelectronics, New J. Phys. 18, 093044
(2016).

[49] J. C. Cuevas and E. Scheer, Molecular Electronics: An Intro-
duction to Theory and Experiment (World Scientific, Singapore,
2010).

[50] R. Alvarez-Puebla, L. M. Liz-Marzán, and F. J. García de
Abajo, Light concentration at the nanometer scale, J. Phys.
Chem. Lett. 1, 2428 (2010).

195303-10

https://doi.org/10.1038/s41467-019-14268-x
https://doi.org/10.1364/OPTICA.389150
https://doi.org/10.1038/s41566-020-0690-1
https://doi.org/10.1103/PhysRevB.106.125305
https://doi.org/10.1103/PhysRevLett.99.186801
https://doi.org/10.1103/PhysRevB.77.245434
https://doi.org/10.1038/ncomms10177
https://doi.org/10.1021/acs.jpclett.9b03077
https://doi.org/10.1021/acs.nanolett.8b03416
https://doi.org/10.1021/acs.nanolett.8b03417
https://doi.org/10.1002/adma.202001893
https://doi.org/10.1038/s41467-021-25688-z
https://doi.org/10.1039/D0CS01541E
https://doi.org/10.1038/s41586-018-0376-8
https://doi.org/10.1038/s41586-018-0375-9
https://doi.org/10.1021/acs.jpclett.1c02541
https://doi.org/10.1103/PhysRevB.75.195127
https://doi.org/10.1103/PhysRevB.83.245448
https://doi.org/10.1021/acs.accounts.7b00382
https://doi.org/10.1063/1.3475566
https://doi.org/10.1063/1.4840655
https://doi.org/10.1063/1.4737864
https://doi.org/10.1063/1.4917172
https://doi.org/10.1103/PhysRevB.87.085110
https://doi.org/10.1021/acs.jctc.8b00077
https://doi.org/10.1103/PhysRevB.88.205126
https://doi.org/10.1063/1.5094189
https://doi.org/10.1103/PhysRevLett.97.216803
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1088/0305-4608/15/4/009
https://doi.org/10.1103/PhysRevB.70.085410
https://doi.org/10.1063/1.3484491
https://doi.org/10.1103/PhysRevB.80.245311
https://doi.org/10.1088/1367-2630/18/9/093044
https://doi.org/10.1021/jz100820m

