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Structural disorder-induced topological phase transitions in quasicrystals
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Recently, structural disorder-induced topological phase transitions in periodic systems have attracted much
attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between structural
disorder and band topology is still unclear. In this work, we investigate the effects of structural disor-
der on a quantum spin Hall insulator phase and a higher-order topological phase in a two-dimensional
Amman-Beenker tiling quasicrystalline lattice. We demonstrate that the structural disorder can induce a topolog-
ical phase transition from a quasicrystalline normal insulator phase to an amorphous quantum spin Hall insulator
phase, which is confirmed by bulk gap closing and reopening, robust edge states, a quantized spin Bott index,
and conductance. Furthermore, the structural disorder-induced higher-order topological phase transition from
a quasicrystalline normal insulator phase to an amorphous higher-order topological phase characterized by a
quantized quadrupole moment and topological corner states is also found. More strikingly, the disorder-induced
higher-order topological insulator with eight corner states represents a distinctive topological state that eludes
realization in conventional crystalline systems. Our work extends the study of the interplay between disorder
effects and topologies to quasicrystalline and amorphous systems.

DOI: 10.1103/PhysRevB.109.195301

I. INTRODUCTION

Numerous factors can instigate topological phase transi-
tions (TPTs) [1–6], and notably, disorder-induced TPTs have
attracted significant attention. This stems from the inherent
presence of disorder to varying degrees in real materials.
Anderson-type on-site disorder, which is typically utilized to
modulate the topological properties of electronic wave func-
tions by altering the electronic chemical potential, leading to
the theoretical prediction of the topological Anderson insula-
tor as well as higher-order topological Anderson insulators in
various condensed matter systems [7–30], is widely employed
to induce TPTs. However, due to the stringent requirements
of experimental conditions, the topological Anderson insu-
lator and higher-order topological Anderson insulators have
been achieved in only one-dimensional ultracold atomic wires
[31] and simulated experiments based on photonic crys-
tals [32–34], phononic crystals [35], and the electric circuit
setup [36].
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Recently, the TPT induced by structural disorder has at-
tracted widespread attention. For instance, Li et al. proposed
a TPT induced by the structural disorder in a one-dimensional
amorphous Rydberg atom chain [37]. Later, the structural
disorder was used to induced a second-order topological
insulator phase with topological hinge states in a three-
dimensional cubical lattice [38], and a quantum spin Hall
insulator phase with topological edge states in a two-
dimensional trigonal lattice [39] was proposed. The origin
of structural disorder-induced TPTs is the renormalization
of spectral gaps associated with single-particle energy levels,
resulting in potential changes in the energy levels and spectral
gaps of electrons [39]. Therefore, the physical mechanisms
of TPTs induced by structural disorder and Anderson-type
on-site disorder are fundamentally different, with the latter
arising from many-body effects, as the fluctuation of on-site
energies is intricately linked to electron-electron interactions
[39]. From a theoretical perspective, one direct approach to
introducing structural disorder is to add a random displace-
ment of varying magnitudes to each lattice point, causing
the original lattice points to deviate from their initial po-
sitions, and is accompanied by the amorphization of the
material [38,39]. The attractiveness of TPTs induced by struc-
tural disorder can be ascribed to two main reasons. First,
amorphous structures are ubiquitous in the natural world [40].
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Second, nearly all materials can be prepared in amorphous
phases through various amorphization techniques [41–48].
Therefore, combining TPTs with structural disorder allows for
observation in experiments using a wide range of selectable
materials.

Quasicrystalline systems present new opportunities for
exploring novel topological states associated with high ro-
tational symmetry, which is forbidden in crystals, such as
the fivefold [49], eightfold [50], and 12-fold [51] rotational
symmetries. So far, the TPTs induced by Anderson-type on-
site disorder in quasicrystalline systems have been extensively
studied [29,52–56]. Furthermore, several researches have in-
vestigated TPTs induced by structural disorder in the context
of a periodic lattice framework [38,39,57]. However, it is
not yet clear whether structural disorder can induce TPTs in
quasiperiodic lattice systems.

In this paper, we investigate the structural disorder-induced
TPTs in an Ammann-Beenker tiling octagonal quasicrys-
tal. In the case of the TPT from a quasicrystalline normal
insulator phase to an amorphous quantum spin Hall insu-
lator phase, by calculating the real-space spin Bott index
[58,59], two-terminal conductance [60–62], and the prob-
ability density of the in-gap eigenstates, we find that the
topologically trivial phase changes to a topologically non-
trivial phase characterized by a nonzero spin Bott index
(Bs = 1) with a quantized conductance plateau (G = 2e2/h)
in a certain range of disorder strength. Furthermore, by cal-
culating the real-space quadrupole moment [27,28,63–66]
and the probability distribution of in-gap states, we also
identify a structural disorder-induced TPT from an initial
quasicrystalline topologically trivial phase to an amorphous
higher-order topological phase occurring in a certain range
of disorder strength with four localized gapless corner states
characterized by a quantized quadrupole moment (qxy =
0.5). Even more remarkable is the discovery of a structural
disorder-induced higher-order topological insulator phase,
characterized by eight localized gapless corner states confined
within an octagonal boundary, representing a distinctive topo-
logical state that eludes realization in conventional crystalline
systems.

The rest of this paper is organized as follows. We
introduce a quantum spin Hall insulator model and a
higher-order insulator model with structural disorder in a
two-dimensional quasicrystalline lattice and give the details
of the numerical methods in Sec. II. Then, we provide the
numerical results of studying the TPTs of the two models
in Secs. III and IV. Finally, we summarize our conclusions
in Sec. V.

II. MODELS AND METHOD

We start with a tight-binding model of a quantum spin
Hall insulator in an Ammann-Beenker tiling quasicrystalline
lattice [67–70] with square boundary conditions, as shown
in Fig. 1(a). The quasicrystal structure is formed by the
aperiodic arrangement of squares and rhombi with equal
side lengths in a two-dimensional plane. We consider the
first three nearest-neighbor hoppings, i.e., the short diago-
nal of the rhombus, the edge of the rhombus and square,
and the diagonal of the square. The model Hamiltonian is

FIG. 1. (a) Schematic diagram of the Ammann-Beenker tiling
quasicrystal containing 1005 sites. The first three nearest-neighbor
intercell bonds correspond to the short diagonal of the rhombus
tile, the edge of the square and rhombus tile, and the diagonal of
the square tile, respectively. The distance ratio of the three bonds
is r0 : r1 : r2 = 2 sin π

8 : 1 : 2 sin π

4 . (b) The Ammann-Beenker tiling
quasicrystal transforms into an amorphous structure in the presence
of structural disorder, where the strength of disorder is σ = 0.2. We
set the hopping radius as R = 1.7, ensuring the first three nearest-
neighbor hoppings in the quasicrystalline structure. To clearly depict
the quasicrystalline structure, only the second-order nearest-neighbor
bonds are illustrated in (a).

given by

H = −
∑
m �=n

l (rmn)

2
c†

m[it1(s3τ1 cos ψmn + s0τ2 sin ψmn)

+ t2s0τ3]cn +
∑

m

(M + 2t2)c†
ms0τ3cm, (1)

where c†
m = (c†

mα↑, c†
mα↓, c†

mβ↑, c†
mβ↓) represents the creation

operator of an electron on a site m. m and n denote lattice sites
running from 1 to N , and N is the total number of lattice sites.
In each site, α and β are the indices of the orbitals, and ↑ and
↓ represent the spin direction. s1,2,3 and τ1,2,3 are the Pauli
matrices acting on the spin and orbital degrees of freedom, re-
spectively. s0 and τ0 are the 2 × 2 identity matrices. t1,2 are the
hopping strengths, and M is the Dirac mass. ψmn is the polar
angle of the bond between sites m and n with respect to the
horizontal direction. l (rmn) = e1−rmn/λ is the spatial decay fac-
tor of the hopping amplitudes, with λ being the decay length,
where rmn = |rm − rn| is the distance from site m to site n.
The model Hamiltonian preserves time-reversal symmetry T ,
particle-hole symmetry P, and chiral symmetry S; therefore,
it belongs to class DIII [71,72]. Here, the symmetry operators
are T = is2τ0K , P = s3τ1K , and S = T P, respectively, where
K is the complex conjugate operator. Furthermore, when the
Hamiltonian (1) is projected onto a square lattice with ex-
clusive consideration of nearest-neighbor hopping, the model
will evolve into a quantum spin Hall insulator based on HgTe
quantum wells [73]. Without loss of generality, the spatial
decay length λ and the side length of the rhombus and square
r1 are fixed to 1, and the energy unit is set as t1 = t2 = 1.

In order to investigate TPTs in a quasicrystalline lattice
with varying degrees of structural disorder, we considered
the atomic thermal fluctuations corresponding to the typical
quenching process of a molten state. The specific approach
involves adding a displacement r at each lattice point in the
quasicrystal structure with a randomly determined magnitude
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and direction, where the magnitude follows a Gaussian distri-
bution [39,74]. The random displacement can be written as

D(r) = 1

2πσ 2
exp

(
− r2

2σ 2

)
, (2)

where the distance standard deviation σ is the intensity of
structural disorder, which is scaled in units of the edge of
the rhombus and square. In Fig. 1(b), we plot the Ammann-
Beenker tiling quasicrystal in the presence of structural
disorder with the strength of the disorder being σ = 0.2,
where the quasicrystalline structure has been converted to an
amorphous structure.

To characterize the structural disorder-induced amorphous
quantum spin Hall insulator phase, we adopt the spin Bott
index [58,59] as well as the two-terminal conductance based
on the recursive Green’s function method [75,76]. The de-
tailed steps of the numerical calculation of the spin Bott index
can be summed up as follows. First, one constructs the pro-
jector operator of the occupied states as P = ∑Nocc

i |ψi〉〈ψi|,
where ψi is the ith wave function of the Hamiltonian (1)
and Nocc is the total number of occupied states. Second, one
introduces another projector operator as Pz = Pη̂zP, where
η̂z = h̄

2 s3 is the spin operator with the Pauli matrix s3. The
eigenvalues of Pz are divided into two parts by zero energy,
in which the number of positive and negative eigenvalues are
both equal to Nocc/2. Then, a new projector operator can be
constructed as P± = ∑N/2

i |φ±
i 〉〈φ±

i |. The projected position
operators of the two spin sectors can be defined as

U± = P±ei2πX P± + (I − P±), (3)

V± = P±ei2πY P± + (I − P±), (4)

where X and Y are two diagonal matrices, Xii = xi/Lx and
Yii = yi/Ly, with (xi, yi ) being the coordinate of the ith lattice
site and Lx(y) being the size of the sample along the x (y)
direction. Finally, one can obtain the spin Bott index as

Bs = 1
2 (B+ − B−), (5)

where B± = 1
2π

Im{Tr[ln(Ṽ±Ũ±Ṽ †
±Ũ †

±)]} are the Bott indexes
of up and down spins, respectively. The case with Bs = 0
corresponds to the normal insulator phase, and Bs = 1 cor-
responds to the quantum spin Hall insulator phase. We note
that the calculation of Bs is performed in the framework of
periodic boundary conditions constructed using quasiperiodic
approximation theory [77–79].

Moreover, according to the Landauer-Büttiker-Fisher-Lee
formula [60–62], the conductance can be written as

G = e2

h
T (μ), (6)

where T (μ) = Tr[�L(μ)Gr (μ)�R(μ)Ga(μ)] is the transmis-
sion coefficient at energy μ. �L(R)(μ) = i(�r

L(R) − �a
L(R) ) is

the left (right) linewidth with the left (right) lead retarded self-
energy �r

L(R) and the left (right) lead advanced self-energy
�a

L(R). Gr(a)(μ) is the retarded (advanced) Green’s function
of the device and can be expressed as

Gr (μ) = [Ga(μ)]† = [
μ − Hd − �r

L − �r
R

]−1
, (7)

where Hd is the device Hamiltonian. For a quantum spin Hall
insulator phase, the two-terminal conductance is a quantized
number G = 2e2/h, and G = 0 corresponds to a normal insu-
lator phase.

It has been proposed that the Wilson mass term can destroy
the time-reversal symmetry of the quantum spin Hall insulator
which is described by Hamiltonian (1), so that the original
helical boundary state of the system opens the energy gap and
evolves into a higher-order corner state [50]. The mass term
can be written as

Hg = −g
∑
m �=n

l (rmn)

2
c†

ms1τ1 cos(ξψmn)cn, (8)

where g is the magnitude of the mass term, ξ is the varying
period of the mass term, and ξ = 2 (4) for square (octagonal)
samples.

To describe higher-order topological phases in an aperiodic
lattice, we will employ a topologically invariant real-space
quadrupole moment [27,28,63–66]. The form of the real-
space quadrupole moment is

qxy = 1

2π
Im ln[det(�†

occÛ�occ)
√

det(Û †)], (9)

where �occ is the eigenvectors of occupied states. Û ≡
exp[i2π X̂Ŷ /L2], where X̂ and Ŷ are the position operators
and L represents the side length of the sample. In the case
of qxy = 0.5, the system is a second-order topological phase
with topological corner states. IN addition, qxy = 0 indicates
a trivial phase. Note that the subsequent calculations of qxy in
this paper are based on periodic boundary conditions.

In addition, another suitable method for characterizing
higher-order topological phases is to use the existence of
corner states as a criterion for determination [29,36,80–82].
In the subsequent computations related to disorder-induced
higher-order topological phases, we determine the topology of
the system by computing the real-space topological invariant
qxy and determining the presence of corner states.

III. STRUCTURAL DISORDER-INDUCED FIRST-ORDER
TOPOLOGICAL PHASE

In this section, we focus on the structural disorder-induced
first-order topological insulator phase in an Ammann-Beenker
tiling quasicrystal with square boundary conditions. We have
confirmed that even in the presence of structural disorder,
symmetries such as time-reversal symmetry, particle-hole
symmetry, and chiral symmetry remain preserved.

Figure 2(a) shows the spin Bott index Bs as a function
of disorder strength σ and Dirac mass M. The color map
shows the magnitude of the spin Bott index. In the clean
limit, i.e., σ = 0, the quasicrystalline lattice hosts a normal
insulator phase characterized by Bs = 0 with the parameter
1.55 < M < 2. However, as the strength of structural disorder
increases from zero, the normal insulator phase converts to
a topological insulator phase characterized by Bs = 1. It is
noted that the TPTs are limited to the region 1.55 < M < 2.
Additionally, we observe that the critical disorder strength σc

of the TPTs increases with the growth of M.
It is well known that the process of TPT is inevitably

accompanied by the closing and reopening of the bulk energy
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FIG. 2. (a) Topological phase diagram of the Ammann-Beenker
tiling quasicrystal in (M, σ ) space obtained by calculating the real-
space topologically invariant spin Bott index Bs. The yellow color
represents the topological insulator phase corresponding to Bs = 1,
and the green color represents the normal insulator phase correspond-
ing to Bs = 0. The red dashed line represents M = 1.7. (b) Bulk
energy gap E bulk

g , spin Bott index Bs, and two-terminal conductance
G versus disorder strength σ with M = 1.7. The system with PBCs
marked by the orange line shows that the bulk energy gap has un-
dergone the process of closing and reopening. The system contains
1005 sites, and 500 disorder configurations are made.

gap, and the point where the gap closes represents the critical
point of the phase transition. In general, the energy gap of a
system with periodic boundary conditions is equal to the bulk
energy gap. However, for aperiodic systems, it is necessary
to employ quasiperiodic approximation theory to construct
periodic boundary conditions. In Fig. 2(b), we plot the bulk
energy gap versus disorder strength (marked by orange right-
pointing triangles) with M = 1.7 [marked by the red dashed
line in Fig. 2(a)]. In the clean limit, the system hosts a normal
insulator band gap with Ebulk

g ≈ 0.32. With the increasing
of disorder strength, the bulk energy gap monotonically
decreases until the critical point σ ≈ 0.04, beyond which the
bulk energy gap gradually increases. The evolution of the bulk
energy gap conforms to the process of gap closure and reopen-
ing, indicating that the system undergoes a TPT during the
process of disorder enhancement. However, we must point out
that, in our calculations, the minimum value of the bulk energy
gap is not strictly equal to zero. A reasonable explanation for
this issue is the presence of finite-size effects [83]. When a
sufficiently large sample size is chosen, the size effects can
be significantly mitigated (see Fig. 7 in Appendix A).

We also compute a line graph depicting the evolution of
the real-space topological invariant spin Bott index varying
with disorder strength [marked by blue circles in Fig. 2(b)],
which matches well the evolution process of the bulk energy
gap. It is found that the spin Bott index jumps from 0 to 1 at
σ ≈ 0.04 and then remains stable thereafter, with a platform
without any fluctuations. Thus, it is further indicated that the
topological phase transition induced by structural disorder
has occurred. Furthermore, we map a line graph showing
the variation of two-terminal conductance with changing dis-
order strength [marked by yellow left-pointing triangles in
Fig. 2(b)]. As the disorder strength reaches the phase tran-
sition critical point, the conductance gradually increases from
zero and approaches 2e2/h. Subsequently, a typical quantized
conductance plateau at G = 2e2/h emerges, providing further
evidence of the structural disorder-induced phase transition
from a normal insulator phase to a quantum spin Hall insulator
phase.

FIG. 3. (a) Energy spectrum of the normal insulator with open
boundary conditions (marked by blue circles) and periodic boundary
conditions (marked by red circles), corresponding to the situation
with σ = 0 in Fig. 2(b). (b) The probability density of the four
eigenstates which are the nearest to zero energy in (a). (c) Energy
spectrum of the topological insulator corresponding to the situation
with σ = 0.18 in Fig. 2(b). (d) The probability density of the edge
states marked by green star. To mitigate the finite-size effect, the
system size is set to contain 4061 sites, and M = 1.7. The color bar
represents the magnitude of the probability of the wave function |φ|2.

For a more intuitive presentation of the aforementioned
computational results, we plot the energy spectrum and wave
function distribution of the normal insulator phase as well
as the disorder-induced topological insulator phase in Fig. 3.
When σ = 0, the system hosts a normal insulator phase with
a large energy gap under both open boundary conditions
(marked by blue circles) and periodic boundary conditions
(marked by red dots), as shown in Fig. 3(a). The correspond-
ing values of the spin Bott index and conductance are equal to
zero. In this scenario, the wave functions are localized in the
bulk. However, when the disorder strength is set to σ = 0.18,
a series of in-gap states within the bulk energy gap emerge
[as shown in Fig. 3(c)], localized at the boundaries of the
sample [see Fig. 3(d)], indicating that the system is now in a
topological insulator phase. This computational result agrees
well with the calculated values of the spin Bott index and
two-terminal conductance. Therefore, the TPT from a normal
insulator phase to a topological insulator phase induced by
structural disorder is clearly confirmed.

IV. STRUCTURAL DISORDER-INDUCED HIGHER-ORDER
TOPOLOGICAL PHASE

In this section, we concentrate on the structural disorder-
induced higher-order topological phase in an Ammann-
Beenker tiling quasicrystal with square and octagon boundary
conditions. All calculations are based on the Hamiltonian
H = H + Hg. The introduction of the Wilson mass term
Hg breaks the time-reversal symmetry and the chiral sym-
metry of the system, while the particle-hole symmetry is
still preserved. Furthermore, we have also confirmed that
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FIG. 4. (a) Topological phase diagram of the Ammann-Beenker
tiling quasicrystal in (M, σ ) space obtained by calculating the real-
space topologically invariant quadrupole moment qxy. The yellow
color represents the higher-order topological insulator phase corre-
sponding to qxy = 0.5, and the green color represents the normal
insulator phase corresponding to qxy = 0. The red dashed line rep-
resents M = 1.7. (b) Bulk energy gap E bulk

g , marked by orange
right-pointing triangles, and quadrupole moment qxy, marked by blue
circles versus disorder strength σ with M = 1.7. The system contains
1005 sites, and 500 disorder configurations are made.

structural disorder does not lead to the breaking of particle-
hole symmetry. Therefore, the real-space quadrupole moment
can be quantized because it is protected by particle-hole
symmetry [27].

We map out the phase diagram in (M, σ ) space for the
case of square boundary conditions in Fig. 4(a), where g = 1.
The color map represents the magnitude of the real-space
quadrupole moment qxy. It is found that the system is in a
topologically trivial phase with qxy = 0 in the region where
1.55 < M < 2.2 in the clean limit. With the increase of the
disorder strength, the higher-order topological phase occurs
with qxy going from 0 to 0.5 in the region of 1.55 < M < 1.9.
The values of critical points increase monotonically with the
increase of M. The structural disorder-induced higher-order
insulator phases remain stable when the disorder strength
is less than 0.2, beyond which the higher-order topological
phases gradually break down.

In Fig. 4(b), we plot the real-space quadrupole moment
qxy versus disorder strength σ as well as the bulk energy
gap with M = 1.7 shown by the red dashed line in Fig. 4(a).
The system is a normal insulator phase in the clean limit
characterized by qxy = 0 and a bulk energy gap Ebulk

g ≈ 0.32.
With the increase of σ , in the region 0.045 < σ < 0.18, a
remarkable plateau of quantized qxy = 0.5 appears, which
indicates a second-order topological phase induced by struc-
tural disorder. Meanwhile, the bulk energy gap monotonically
decreases until the critical point σ ≈ 0.045, beyond which the
bulk energy gap gradually increases. The closure and subse-
quent reopening of the bulk energy gap further demonstrate
the structural disorder-induced topological phase. However,
as the disorder strength continues to increase, the quantized
quadrupole moment platform gradually disappears, accompa-
nied by a gradual reduction of the bulk energy gap.

To verify the aforementioned computational results of the
quadrupole moment and bulk energy gap, we plot the eigen-
spectrum and probability density of the four eigenstates which
are the nearest to zero energy in Fig. 5. It can be seen that the
system hosts a normal insulator phase with a large energy gap
under both open boundary conditions and periodic boundary
conditions, and the four eigenstates which are the nearest

FIG. 5. (a) Energy spectrum of the normal insulator with open
boundary conditions (marked by blue circles) and periodic boundary
conditions (marked by red dots), corresponding to the situation with
σ = 0 in Fig. 4(b). (b) The probability density of the four eigenstates
which are the nearest to zero energy in (a). (c) Energy spectrum of the
topological insulator corresponding to the situation with σ = 0.15 in
Fig. 4(b). (d) The probability density of the four eigenstates which
are the nearest to zero energy. The system size is set to contain 4061
sites, g = 1, and M = 1.7. The color bar represents the magnitude of
the probability of the wave function |φ|2.

to zero energy are local in the bulk, as shown in Fig. 5(a).
However, when the disorder strength is set to σ = 0.15, four
in-gap states appear, localized at the four corners of the sample
[see Figs. 5(c) and 5(d)]. These corner states are powerful
proof of a structural disorder-induced higher-order topologi-
cal insulator. Note that the four in-gap states are not strictly
degenerate to zero owing to the finite-size effect. For a sample
of finite size, the four corner states tend to overlap. In the inset
in Fig. 5(c), we plot the eigenspectrum of the open lattice
with 16 437 sites with σ = 0.15. We find that the energy
values of the four in-gap states are approximately equal to zero
energy.

In addition, we calculate the structural disorder-induced
higher-order topological phase in an Ammann-Beenker tiling
quasicrystal with an octagonal boundary. In Fig. 6, we plot the
eigenspectrum and probability density of the eight eigenstates
which are the nearest to zero energy for different disorder
strengths. In the clean limit, i.e., σ = 0, the system is in a
topologically trivial phase characterized by a trivial energy
gap under both open (marked by blue circles) and periodic
(marked by red dots) boundary conditions, with eigenstates
localized in the bulk shown in Fig. 6(b). However, when the
structural disorder strength is set to σ = 0.13, a second-order
topological phase arises with eight topological corner states
localized at the eight corners of the sample, as shown in
Fig. 6(d). We believe that the higher-order topological in-
sulator with eight corner states is a novel phase belonging
exclusively to the quasicrystalline structure. The quadrupole
moment qxy is only available to measure the bulk quadrupole
topology with square boundary conditions. A higher-order
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FIG. 6. (a) Energy spectrum of the normal insulator with open
boundary conditions (marked by blue circles) and periodic boundary
conditions (marked by red dots), where σ = 0. (b) The probability
density of the eight eigenstates which are the nearest to zero energy
in (a). (c) Energy spectrum of the higher-order topological insulator
phase with open and periodic boundary conditions, where σ = 0.13.
(d) The probability density of the eight eigenstates which are the
nearest to zero energy. The system size is set to contain 13 289 sites,
g = 1.4, and M = 1.55. The color bar represents the magnitude of
the probability of the wave function |φ|2.

topological insulator with more than four zero-energy modes
does not belong to the class of topological quadrupole insula-
tors. Thus, it does not work for octagonal samples. It is noted
that a generalized quadrupole moment has been proposed
to characterize the higher-order phase in a regular octagon
[84], and this method has been used to characterize the Weyl
semimetal phase in a three-dimensional quasicrystal [85]. We
calculate the topologically invariant generalized quadrupole
moment in an octagonal quasicrystalline lattice with structural
disorder (see Fig. 8 in Appendix B). The results depict the
phase transition induced by structural disorder from a normal
insulator to a higher-order topological insulator, which agrees
well with the distribution of the wave functions. Another
appropriate way to characterize the higher-order topologi-
cal phase is to adopt the existence of the corner states as
a working definition [29,36,80–82]. Thus, the eight corner
states, induced by structural disorder in Fig. 6(d), are strong
evidence of the emergence of the higher-order topological
insulator.

Additionally, we would like to point out that, although
we employed a relatively large lattice model in the cal-
culation of the octagonal boundary conditions, the energy
eigenvalues of the corner states still do not degenerate to
zero. We attribute this to the easier overlap of two cor-
ner states along each edge of the octagon (compared to a
square), which is inherently the finite-size effect. We speculate
that under thermodynamic limit conditions, the eight corner
states will exhibit better localization, and concurrently, their
energy eigenvalues will tend to be degenerate. In addition,
we suspect that the structural disorder-induced higher-order
topological insulator with eight corner states arises from the

rotational symmetry of the quasicrystal. Despite the local
disruption of the eightfold rotational symmetry due to struc-
tural disorder, the global symmetry is still maintained on a
statistical average [86–88]. Thus, it can be anticipated that the
symmetry, including fourfold and eightfold rotational symme-
tries, disrupted by structural disorder, is statistically restored
through ensemble averaging [84] and that the higher-order
topological insulator phase is protected by the average global
symmetry.

V. CONCLUSION

In this work, we investigated the structural disorder-
induced first-order topological phase and higher-order topo-
logical phase in an Ammann-Beenker tiling quasicrystal. The
quasicrystalline quantum spin Hall insulator is considered to
be the fundamental model. We introduced structural disorder
into the normal insulator phase which was obtained by ad-
justing parameters. Based on calculating the real-space spin
Bott index and two-terminal conductance, we found a struc-
tural disorder-induced first-order topological insulator phase
characterized by a quantized spin Bott index and quantized
conductance. Additionally, the states that emerge within the
bulk energy gap localized at the four edges of the sample
further validated our computational results. Furthermore, we
introduced the Wilson mass term to the quasicrystalline quan-
tum spin Hall insulator to obtain a higher-order topological
insulator model, and an initial state with a normal insulator
phase was achieved by modifying system parameters. Based
on calculating the real-space quadrupole moment, we found a
structural disorder-induced higher-order topological insulator
phase characterized by a quantized quadrupole moment. The
corner states localized at the vertices of the sample serve as
compelling evidence of the existence of higher-order topolog-
ical insulators.
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APPENDIX A: FINITE-SIZE ANALYSIS

In this Appendix, we plot the bulk energy gap versus the
size of the system. It has been observed that the minimum
value of the bulk energy gap decreases with increasing system
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FIG. 7. (a) The bulk energy gap as a function of disorder strength
σ for different system sizes. (b) An enlarged view corresponding to
the dashed area in (a). An average of 400 random configurations are
taken. The other parameters are the same as in Fig. 2(b).

size, as shown in Fig. 7. It can be inferred that under the con-
ditions of the thermodynamic limit, the bulk energy gap will
be closed strictly at the critical point of the phase transition.

APPENDIX B: GENERALIZED QUADRUPOLE MOMENT

In this Appendix, we plot the generalized quadrupole
moment versus the strength of structural disorder in an oc-
tagonal quasicrystalline lattice. To compute the generalized
quadrupole moment in an octagon, one needs to transform
the position coordinates of the octagonal lattice sites [84,85].
Due to the change in site positions, the position operator

FIG. 8. The generalized quadrupole moment as a function of
disorder strength for different system sizes. An average of 1000
random configurations are taken. We set M = 1.55 and g = 1.4.

should be changed accordingly. Meanwhile, the eigenvectors
of occupied states should not be changed. In Fig. 8, we plot the
generalized quadrupole moment versus the strength of struc-
tural disorder in an octagonal sample with different sample
sizes. The system is a normal insulator phase in the clean limit
characterized by qxy = 0. With increasing disorder strength,
qxy increases from 0 and approaches 0.5, indicating that the
system has undergone a phase transition from a trivial phase
to a higher-order topological nontrivial phase.
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