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Cavity quantum electrodynamics (QED) studies the interaction between light and matter at the single quantum
level and has played a central role in quantum science and technology. Combining the idea of cavity QED with
moiré materials, we theoretically show that strong quantum light-matter interaction provides a way to control
frustrated magnetism. Specifically, we develop a theory of moiré materials confined in a cavity consisting of
thin polar van der Waals crystals. We show that nontrivial quantum geometry of moiré flat bands leads to
electromagnetic vacuum dressing of electrons, which produces appreciable changes in single-electron energies
and manifests as long-range electron hoppings. We apply our general formulation to a twisted transition
metal dichalcogenide heterobilayer encapsulated by ultrathin hexagonal boron nitride layers and predict its
phase diagram at different twist angles and light-matter coupling strengths. Our results indicate that the cavity
confinement enables one to control magnetic frustration of moiré materials and might allow for realizing various
exotic phases such as a quantum spin liquid.
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I. INTRODUCTION

Controlling exotic phases of matter has been an ongo-
ing quest in condensed matter physics. Moiré materials are
emerging platforms for studying strongly correlated phenom-
ena, in which a long-periodic moiré pattern is formed by
two overlaid crystal layers with relative twists or different
lattice constants. Such a moiré superlattice induces recon-
struction of electronic structures and realizes nearly flat bands
at certain twist angles [1–3]. In flat-band systems, the kinetic
energy of electrons is significantly suppressed, and the effect
of electron-electron interaction becomes important [4,5]. So
far, a number of intriguing phenomena have been experimen-
tally observed in twisted bilayer graphene [6–8], including
metal-insulator transitions [9–11], flat-band superconductivity
[12–16], magnetism [17–20], and the fractional quantum Hall
effect [21–24]. Owing to rapid advances in the manipulation
of van der Waals (vdW) heterostructures [25,26], moiré ma-
terials consisting of transition metal dichalcogenides (TMDs)
have also been extensively investigated [27–39]. In particular,
the high tunability of TMDs enables one to study various
correlated phases [40–51] and might allow for realizing exotic
states such as a quantum spin liquid (QSL) [52–55].

On another front, experimental developments in cavity
quantum electrodynamics (QED) have allowed for the real-
ization of the ultrastrong coupling regime, where light-matter
interaction is comparable to elementary excitation energies
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[56–68]. Recent studies have discussed cavity confinement as
an alternative way to control the phase of matter without an
external drive in a wide variety of fields, including quantum
optics [69–74], polaritonic chemistry [75–78], and condensed
matter physics [79–90]. In particular, the possibility of con-
trolling certain material properties, such as topological aspects
[91–96], superconductivity [97–101], correlated phenomena
[102–106], and Landau polaritons [107–113], has been ex-
plored so far. On the one hand, due to the smallness of the
fine-structure constant, single-quantum ultrastrong coupling
is out of reach in a typical Fabry-Pérot cavity consisting of
metallic mirrors [114]. On the other hand, this difficulty can be
overcome by employing hybridization with matter excitations.
For instance, a recent study [115] showed that a new cavity
geometry, in which two ultrathin vdW layers form a planar
cavity, can achieve single-quantum ultrastrong couplings and
thus provides an ideal platform to explore ultrastrong coupling
physics of two-dimensional electronic materials. There, opti-
cal anisotropy in vdW layers leads to the formation of phonon
polaritons with hyperbolic dispersion [116]. The electrons are
then strongly coupled to tightly confined hyperbolic polari-
tons, where the coupling strength can be tuned simply by
changing thicknesses of vdW slabs. Given these developments
and prospects, it is natural to address whether or not cavity
confinement enables one to control correlated phases of moiré
materials.

In this paper, taking a step beyond Ref. [115], we show
that strong quantum light-matter interaction provides a way to
control many-body properties of moiré materials. Specifically,
we develop a theory of cavity moiré materials to describe
the interaction between electrons in a twisted bilayer and
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FIG. 1. (a) Schematic figure of cavity moiré materials. Electrons
in a moiré bilayer are ultrastrongly coupled to hyperbolic phonon po-
laritons confined in the cavity consisting of polar vdW crystals such
as h-BN. The bottom panel shows a moiré superlattice with lattice
constant aM formed by a bilayer with twist angle θ . (b) Ground-
state phase diagram of the cavity-confined TMD heterobilayer at
half filling plotted against θ and dimensionless light-matter coupling
strength η. Tuning η and θ , one can control various correlated phases,
such as the 120◦ antiferromagnetic (AFM) phase, the zigzag phase,
and a candidate quantum spin liquid (QSL) phase.

quantized electromagnetic fields inside a cavity [Fig. 1(a)]
and show that magnetic frustration in moiré materials can be
controlled by the cavity confinement. A key point is that, un-
like isolated flat-band systems, moiré materials are inherently
multiband systems with large interlayer contributions in ten-
sor Berry connections [117,118]. We show that this quantum
geometric effect causes vacuum-induced virtual electronic
transitions between flat bands and the other bands, leading to
the renormalization of single-electron energies in flat bands.
While such vacuum-induced modification is usually irrelevant
in conventional materials, we point out that it becomes im-
portant in moiré materials because of their extremely narrow
bandwidths.

We demonstrate that this electromagnetic vacuum dressing
allows for controlling a variety of correlated phases of moiré
materials, some of which remain elusive in current experi-
ments. Specifically, we apply our theory to a TMD moiré
heterobilayer encapsulated by ultrathin hexagonal boron ni-
tride (h-BN) slabs [Fig. 1(a)], where light-matter coupling
strength η can be tuned by varying h-BN thicknesses. At
small twist angle θ and half filling, the low-energy physics
of the flat-band electrons can be described by the spin-1/2
antiferromagnetic (AFM) Heisenberg model on the triangular
moiré lattice [28,94,119]. When placed inside the cavity, vac-
uum fluctuations appreciably renormalize the single-electron
energies and induce long-range electron hoppings. As a re-
sult, the cavity confinement enhances the spin frustration
in the Heisenberg model and allows one to control various
phases, including the 120◦ AFM phase and the zigzag phase
[Fig. 1(b)]. Notably, in the intermediate regions, one may
even realize a QSL phase of the triangular Heisenberg model,
whose nature has recently been under debate [120–125]. We
expect that these predictions are within experimental reach
owing to recent developments demonstrating ultrasmall mode
volumes of hyperbolic polaritons in nanostructured materials
[126–131].

The rest of this paper is organized as follows. In
Sec. II, we introduce the total Hamiltonian to describe moiré

FIG. 2. (a) Schematic band dispersions of monolayer WSe2 and
MoSe2. The valence band maxima of WSe2 at different valleys
with opposite spins are located in the band gap of MoSe2. The red
dashed line represents the Fermi level. (b) Moiré bands of Eq. (1)
at θ = 1.7◦. The nearly flat band with n = 0 is highlighted in red.
The right panel shows representative points on the moiré Brillouin
zone (mBZ). Parameters are (w, ψ ) = (6.6 meV, −94◦) and m∗ =
0.35me, where me is the electron mass [28].

materials confined in hyperbolic cavities. In Sec. III, we derive
the low-energy effective Hamiltonian of flat-band electrons
by performing a perturbative analysis, which is one of the
main results of this paper. Importantly, the effect of the cavity
confinement is represented by the dressing of single-electron
energies of the flat band. In Sec. IV, we examine the general
properties of the effective Hamiltonian and show that the
energy dressing of flat-band electrons enhances the long-range
couplings in real space, whose characteristic length scale can
be controlled by the light-matter coupling strength and the
twist angle of moiré materials. In Sec. V, we employ our for-
malism to analyze the spin-ground state of flat-band electrons
in WSe2/MoSe2. Our results indicate that cavity confinement
enables one to control the magnetic frustration of moiré mate-
rials and might allow for realizing various many-body phases.
Section VI summarizes the results and discusses the future di-
rections of nonperturbative analysis of cavity moiré materials.
Some technical details are discussed in the Appendixes.

II. MODEL DESCRIPTION

To be concrete, we focus on cavity confinement of the
twisted TMD heterobilayer WSe2/MoSe2, although our the-
oretical formulation can be generally applied to other moiré
materials (see Appendix A for details). Due to the spin-orbit
coupling, the valence bands of each monolayer have two band
maxima in different valleys with opposite spin degrees of
freedom [Fig. 2(a)] [28,132]. Since the valence band maxima
(VBMs) of monolayer WSe2 are located in the band gap of
MoSe2, we can analyze the bilayer in terms of the VBM
electrons in WSe2 provided that the chemical potential is
tuned near the VBMs of WSe2 [red dashed line in Fig. 2(a)]
[3,28,133].

When the TMD bilayer is twisted with small angle θ , a
triangular moiré superlattice with lattice constant aM ≈a0/θ

is formed [see Fig. 1(a)], where a0 �3.32 Å is the monolayer
lattice constant of WSe2. The effect of the moiré superlat-
tice can be described by an effective single-particle potential
�(r), which has the same periodicity as the moiré superlattice
[3,28]. The low-energy Hamiltonian of the VBM electrons
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thus reads

Ĥ0 = − p̂2

2m∗ + �(r̂), (1)

where m∗ is the effective mass in the valence band of WSe2,
and the moiré potential �(r) is given by

�(r) =
6∑

j=1

w je
ib j r. (2)

Here, b j is the reciprocal lattice vector of the moiré superlat-
tice corresponding to ( j − 1)π/3 rotation of 4π/(

√
3aM )ex.

Since �(r) is real valued and satisfies the threefold rota-
tional symmetry, the coefficients w j can be parametrized as
w j = we−i(−1) jψ .

In Fig. 2(b), we show typical band dispersions εnk of the
moiré Hamiltonian (1) in the moiré Brillouin zone (mBZ),
where one can see the nearly flat band (n=0) located above
the other bands (n�1). It is noteworthy that, due to the non-
trivial quantum geometry of the moiré flat band, the electron
momentum p̂ has nonvanishing interband matrix elements
between the flat band and the other bands below, while the
intraband matrix element of p̂ within the flat band almost
vanishes due to the band flatness [117,118]. Since electrons
couple to the dynamical electromagnetic fields with vector
potential A through p̂·A, it is these nonvanishing matrix ele-
ments that facilitate the couplings between flat-band electrons
and cavity fields, as detailed below.

The total Hamiltonian of the cavity-confined bilayer is
given by minimally coupling the vector potential operator of
cavity fields Â to the momentum operator of electrons p̂. In
the second-quantized form, the total Hamiltonian is expressed
as

Ĥ =
∑

σ

∫
d2r ψ̂†

σ r

[
− [−ih̄∇ + eÂ(r)]2

2m∗ +�(r)

]
ψ̂σ r

+
∑

q

h̄ωqâ†
qâq + Û , (3)

where we also include the Coulomb interaction Û . Here, ψ̂σ r

(ψ̂†
σ r) is the annihilation (creation) operator of electrons with

spin σ at position r, âq (â†
q) is the annihilation (creation)

operator of hyperbolic polaritons with in-plane momentum q,
and ωq is the mode frequency. The vector potential Â(r) is

Â(r) =
∑

q

Aqeq(âqeiqr + â†
qe−iqr), (4)

where Aq is the mode amplitude of the electromagnetic
component of polaritons and eq ≡q/|q| is the effective po-
larization obtained after projecting the originally transverse
three-dimensional vector field onto the two-dimensional plane
where the bilayer is located. We define the integrated dimen-
sionless coupling strength η by

η ≡
√∑

q

g2
q/ω

2
q, (5)

(a)

(b)

FIG. 3. (a) Schematic band dispersions of the moiré Hamiltonian
(1), where the flat band (n = 0) is located above the fully occupied
electronic bands. We approximate low-energy states |ψ〉 � |ψe〉 ⊗
|0〉 consisting of the product between the electromagnetic vacuum
|0〉 and an electronic state |ψe〉 with the partially filled flat band and
occupied lower bands. (b) Second-order-perturbation process that
gives the last term on the right-hand side of Eq. (11). In this process,
the electrons below the flat band and the cavity mode with in-plane
momentum q are simultaneously excited and then annihilated.

where gq is the coupling strength between electrons and each
cavity mode, defined as

gq ≡eAq

√
ωq/m∗h̄. (6)

The value of η can reach up to η ∼ 1, provided that thick-
nesses of h-BN slabs are tuned to be a few nanometers [115].
We note that the phonon loss in vdW materials can, in prin-
ciple, affect the mode amplitudes and the coupling strength
of the hyperbolic phonon polaritons. However, as described in
Appendix D, its effect is expected to be negligibly small in
hyperbolic polaritons of h-BN.

III. EFFECTIVE HAMILTONIAN OF
FLAT-BAND ELECTRONS

We are now in a position to derive the effective Hamil-
tonian of flat-band electrons. To this end, we first note that
the cavity frequency, which is an order of optical phonon fre-
quency in vdW crystals h̄ωq = 102−103 meV, is much larger
than band gaps in the twisted bilayer [see Fig. 2(b)]. There-
fore, the low-energy states of the cavity moiré Hamiltonian (3)
can be approximated by a product state |ψe〉 ⊗ |0〉, where |0〉
is the electromagnetic vacuum and |ψe〉 is an electronic state
with the partially filled flat band and occupied lower electronic
bands [see Fig. 3(a)]. We can then adiabatically eliminate
the cavity modes and include their vacuum fluctuations by
performing a perturbative analysis with respect to η.

As detailed in Appendix A, the leading contributions come
from the second-order perturbation of the paramagnetic inter-
action term

Ĥ (p)
I =

∑
σ

∫
d2r ψ̂†

σ r

[
ih̄e(∇ ·Â(r) + Â(r)·∇)

2m∗

]
ψ̂σ r (7)

= −
∑
qkσ

∑
mn

eAq

h̄

(
Gk,q

mn ·eq
)

ĉ†
mk+qσ

ĉnkσ âq + H.c., (8)
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where ĉ(†)
nkσ

is the annihilation (creation) operator of the nth-
band electrons with the Bloch wave vector k and spin σ . Also,
we introduce the multiband coefficients Gk

mn by

Gk
mn ≡ 〈umk|∇kĤ0k|unk〉, (9)

where |unk〉 is the Bloch eigenstate of Ĥ0k ≡e−ikr̂Ĥ0eikr̂ with
band index n. Using simplifications that are valid in moiré flat-
band systems, we obtain the effective Hamiltonian of cavity
moiré materials, which is one of the main results of this paper
(see Appendix A for detailed derivations):

Ĥeff =
∑
kσ

(ε0k + η2ξk)ĉ†
kσ

ĉkσ + Û , (10)

ξk ≡ m∗

2h̄2

⎛
⎝−∣∣Gk

00

∣∣2 +
∑
n�1

h̄ω0

h̄ω0 + ε0k − εnk

∣∣Gk
0n

∣∣2

⎞
⎠. (11)

Here, we abbreviate the creation (annihilation) operator of
the flat-band electrons ĉ(†)

0kσ
as ĉ(†)

kσ
. Remarkably, the ef-

fect of light-matter interactions is simply represented by the
energy dressing η2ξk characterized by the multiband coef-
ficients Gk

mn. We note that the last term on the right-hand
side of Eq. (11) originates from the second-order perturba-
tion process that simultaneously excites electrons below the
flat band and cavity modes and then annihilates them [see
Fig 3(b)]. We note that the vacuum fluctuations in the cavity
also mediate the Amperean electron-electron interaction in
general. However, since its coefficients are proportional to
(Gk,q

00 ·eq)(Gk′,q∗
00 ·eq) ≈ (∇kε0k ·eq)(∇kε0k′ ·eq), the Amperean

interaction is negligibly small compared to the Coulomb in-
teraction Û (see Appendix A).

From a quantum geometrical viewpoint, the multiband co-
efficients Gk

mn (9) can be expressed as

Gk
mn = δmn∇kεnk + i(εmk − εnk)Amn(k), (12)

with Amn(k) = i〈umk|∇unk〉 being the tensor Berry connec-
tions. In moiré materials, Amn has large interband contribu-
tions, while ∇kε0k vanishes in the flat-band limit [117,118].
Thus, the renormalization ξk in Eq. (11) is mainly attributed to
its second term originating from virtual interband transitions
induced by the vacuum fluctuations in the cavity. Also, due
to the flatness of the moiré electronic band, the dispersion
of the renormalization ξk in Eq. (10) becomes larger than
the original band dispersion ε0k. As detailed in Sec. V, this
feature of cavity moiré materials allows one to control ground-
state magnetic properties of flat-band electrons. We note that
these key multiband processes in moiré materials cannot be
captured in an oversimplified description of cavity materials,
such as the Peierls substitution of the single-band tight-
binding model.

IV. GENERAL PROPERTIES IN CAVITY
MOIRÉ MATERIALS

To reveal generic features of cavity moiré materials, in
Fig. 4(a) we show the typical bare dispersion ε0k of the nearly
flat band and the corresponding cavity renormalization ξk in
the mBZ. Interestingly, the dispersions of ε0k and ξk are oppo-
site each other; namely, ε0k (ξk) takes the largest value at the

FIG. 4. (a) Typical moiré flat-band dispersion ε0k (left panel)
and cavity renormalization ξk in Eq. (11) (right panel) in the mBZ
with θ =1.7◦ and h̄ω0 =102meV. (b) Schematic figure illustrating
the formation of the moiré flat band. (c) Band dispersion ε+k and
cavity renormalization ξk [Eqs. (14) and (15)] of the two-band Hamil-
tonian (13) plotted against k/bM with bM = 4π/(

√
3aM ), where k =0

corresponds to the edge of the mBZ as indicated in (a) and (b).

center (edge) of the mBZ. Moreover, the contributions of ξk

are tightly localized around the edge of the mBZ, which can be
translated to the emergence of long-range electron hoppings in
the real-space basis.

To understand these key features, we first note that the
coefficient h̄ω0/(h̄ω0 + ε0k − εnk) in the renormalization ξk

in Eq. (11) monotonically decreases with respect to the band
index n, and the cavity dressing ξk is mainly attributed to
electronic bands with small n. Therefore, the behavior of ε0k

and ξk can be qualitatively understood by analyzing a simple
two-band model for moiré electronic bands with n = 0, 1. In
the TMD bilayer, the original monolayer band around the
VBM is first folded into the mBZ [left panel in Fig. 4(b)]
in accordance with the change in the lattice constant from
a0 to aM . The degeneracy at the edge of the mBZ is then
lifted by the moiré potential �(r), leading to the nearly flat
moiré band [right panel in Fig. 4(b)]. We can thus describe the
energy bands near the mBZ edge by the following two-band
Hamiltonian:

H(k) = h̄vF kσ̂z + wσ̂x, (13)

where σ̂i is the Pauli matrix, k is the wave vector measured
from the edge of the mBZ, vF is the Fermi velocity at the mBZ
edge [see left panel in Fig. 4(b)], and w=|w j | is the depth of
the moiré potential in Eq. (2). Using the two-band model (13),
the energy dispersions ε±k and the cavity renormalization ξk
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can be obtained as

ε±k = ±w

√
1 +

(
h̄vF k

w

)2

, (14)

ξk = m∗v2
F

1 + ( h̄vF k
w

)2 + const. (15)

As shown in Fig. 4(c), ε+k (ξk) takes the smallest (largest)
value at the edge of the mBZ, which correctly reproduces
the qualitative features in Fig. 4(a). Also, ξk in Eq. (15) is
localized around k =0 with a width �k ∼w/(h̄vF ) ∝ θ−1 [see
Fig. 4(c)]. In real space, this leads to a long-distance hopping
whose range is proportional to θ . In general, such a long-range
contribution can generate strong magnetic frustration and is
expected to qualitatively affect the ground-state properties as
discussed below.

V. TIGHT-BINDING DESCRIPTION
AND THE SPIN MODEL

Using the Wannier basis, we can rewrite the effective
Hamiltonian (10) as the following Hubbard model on the
moiré triangular lattice:

Ĥeff =
∑
i j,σ

ti j ĉ
†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓, (16)

ti j =
∫

mBZ

vMd2k
(2π )2

(ε0k + η2ξk)eik(Ri−R j ) (17)

≡ ε̃i j + η2ξ̃i j, (18)

where ĉ(†)
iσ is the annihilation (creation) operator of the Wan-

nier orbital localized at Ri, vM is the volume of the moiré
supercell, and we simplify the Coulomb repulsion by the
on-site interaction U

∑
i n̂i↑n̂i↓ [28]. Let us represent the hop-

pings ti j to the nth nearest neighbors (NNs) by tn and neglect
the amplitudes of tn with n�4, which are sufficiently small
when θ � 2.5◦. Since the parameters satisfy tn � U [28], at
half filling, we can further simplify the Hubbard model (16)
to the triangular AFM Heisenberg model [119]:

ĤAFM =
∑

1st NN

J1ŝi ·ŝ j +
∑

2nd NN

J2ŝi ·ŝ j +
∑

3rd NN

J3ŝi ·ŝ j, (19)

where ŝi is the spin-1/2 operator at the ith site and Jn ≡
4t2

n /U . This frustrated spin model was studied in, e.g.,
Refs. [121–125], and a nonmagnetic insulating phase, which
is a candidate QSL phase, is found in the parameter region
around J2/J1 ∼0.3 and J3/J1 ∼0.15 [122].

One of our main findings is the possibility of controlling
such spin frustration using cavity confinement. Specifically,
one can tune the light-matter coupling strength η to enhance
the hopping amplitudes tn to distant sites (n=2, 3) while
suppressing the NN hopping t1 [Fig. 5(b)]. Physically, this
tunability originates from the opposite dispersions in ε0k and
ξk described above [Fig. 4(a)], which correspond to the op-
posite signs of their Fourier transforms, ε̃n and ξ̃n, which are
related to the renormalized hopping via tn = ε̃n + η2ξ̃n. We
show the corresponding η dependence of J2/J1 and J3/J1 in
Fig. 5(c), where we can see particularly large spin-coupling
ratios Jn/J1 when the NN coupling J1 becomes vanishingly
small. Making a comparison with the numerical results in the

FIG. 5. (a) First-, second-, and third-order nearest neighbors
(NNs) on the moiré triangular lattice. (b) Renormalized hopping
amplitudes tn to the nth NNs and (c) corresponding spin-coupling
ratios Ji/J1 (i = 2, 3) in the triangular AFM Heisenberg model (19)
plotted against the light-matter coupling strength at θ =1.7◦. The red
shaded areas in (c) indicate the intermediate parameter regions where
the ground state is expected to be a quantum spin liquid.

triangular AFM Heisenberg model [122], we determine the
ground-state phase diagram of the present cavity moiré system
in Fig. 1(b). The key finding is that the high tunability of η

and θ should allow for controlling various correlated phases,
including a candidate QSL phase.

VI. DISCUSSION AND CONCLUSIONS

We recall that a central feature of cavity moiré materials is
the renormalization of single-electron energies in flat bands,
which is induced by the virtual interband transitions origi-
nating from the nontrivial quantum geometry of moiré bands
[see Eqs. (11) and (12)]. While vacuum fluctuations can also
induce the Amperean electron-electron interaction [98], we
note that this contribution is negligibly small compared to the
Coulomb interaction due to the flatness of moiré bands, as
detailed in Appendix A. In contrast, a typical monolayer has
dispersive bands, and the band gap is typically much larger
than the resonance frequency of the h-BN cavity considered
here. Thus, if the monolayer is confined in vdW slabs, the
Amperean pairing term could be also relevant.

In summary, we developed a theory of moiré materials
strongly coupled to quantized electromagnetic fields inside
a cavity. We showed that the major effect of the cavity con-
finement is the renormalization of the single-electron energies
in flat bands. Physically, this originates from the nontrivial
quantum geometry of the moiré bands, which leads to virtual
interband electronic transitions induced by electromagnetic
vacuum fluctuations. The resulting long-range electronic hop-
pings allow for tuning the spin frustration in the low-energy
effective model, thus suggesting the possibility of controlling
correlated phases with quantum light-matter interaction. We
analyzed the concrete setup consisting of the TMD heterobi-
layer WSe2/MoSe2 confined in a h-BN cavity and revealed
that various phases, including a putative QSL state, can
be realized by varying the light-matter coupling strength η

[Fig. 1(b)].
Ultimately, a further nonperturbative analysis will be nec-

essary to fully assess the validity of our predictions in the
relevant interaction strength regime in Fig. 1(b) around η2 ∼
0.4; to our knowledge such a rigorous nonperturbative frame-
work for studying cavity moiré materials with the continuum
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of quantized electromagnetic modes is currently lacking. We
argue that the effect we predict, the enhancement of magnetic
frustration, is expected to be appreciable even in those strong
coupling regimes. The reason for this is that the enhance-
ment is based on a simple and general mechanism, namely,
the emergence of long-range spin interactions mediated by
the vacuum fluctuations of cavity fields; at this stage, we
do not expect any particular reason for a breakdown of this
mechanism in nonperturbative regions. In addition, it is also
important to note that the essence of controlling magnetic
phases of moiré materials is the band renormalization ξk in the
effective Hamiltonian (10), which is larger than the original
bare dispersion εk due to the band flatness. Therefore, the ef-
fect we predict becomes more appreciable in moiré materials
with flatter electronic bands, where the transition might take
place in perturbative regimes. All in all, our findings have ex-
perimental relevance in view of recent developments in moiré
materials and cavity QED, which demonstrates ultrasmall
mode volumes of hyperbolic polaritons in nanostructured
materials [126–131].

Several open questions remain for future studies. In the
present perturbation theory, we retain only the leading terms
of O(η2), while higher-order corrections might be important,
especially when η = O(1). It would be interesting to analyze
such a challenging regime on the basis of a nonperturbative
approach allowing for nonvanishing electron-photon entan-
glement [134,135]. It is also worthwhile to recall that the
cavity-mediated hoppings η2ξ̃i j in Eq. (10) become more long
range as twist angle θ is increased. Examining these large-θ
regimes of cavity moiré materials beyond the parameter re-
gion considered here merits further study [136–138]; there,
higher-order hoppings tn should be increasingly important,
and an effective Hamiltonian may exhibit stronger magnetic
frustration with which the ground-state phase diagram could
be enriched. We hope that our work stimulates further studies
in these directions.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN OF THE FLAT-BAND ELECTRONS

We here provide the detailed derivation of the effective
Hamiltonian of flat-band electrons in Eq. (10) in the main text.
Specifically, we start from the cavity moiré Hamiltonian in
Eq. (3) in the main text. For the sake of generality, we consider
the band structure shown in Fig. 6(a) as the dispersions εnk

of the bare moiré Hamiltonian Ĥ0 ≡−p̂2/2m∗ + �(r), where
the flat band (labeled by n = 0) is located between the other
electronic bands (n �= 0). As described in the main text, the
low-energy states of the cavity moiré Hamiltonian (3) can
be approximated by a product state |ψe〉 ⊗ |0〉, where |0〉 is
the electromagnetic vacuum and |ψe〉 is an electronic state
with the partially filled flat band and occupied (unoccupied)
lower (upper) bands [see Fig. 6(b)]. Accordingly, we define
the projection operator P̂ onto the manifold spanned by these
states and obtain the effective Hamiltonian in this subspace by
employing the perturbation theory with respect to the (dimen-

sionless) light-matter coupling strength η =
√∑

q g2
q/ω

2
q.

To proceed, we decompose the cavity moiré Hamiltonian
(10) as

Ĥ = Ĥ0 +
∑

q

h̄ω′
qâ†

qâq + Ĥ (p)
I + Ĥ (q)

I + Û , (A1)

ω′
q = ωq

(
1 − Nee2A2

q

m∗h̄ωq

)
= ωq

(
1 − Neg2

q

ω2
q

)
, (A2)

Ĥ (p)
I = −

∑
q

eAq

m∗

(∑
σ

∫
d2r ψ̂†

σ r
( p̂·eq)eiqr + eiqr( p̂·eq)

2
ψ̂σ r

)
âq + H.c., (A3)

Ĥ (q)
I =

∑
q1,q2

∑
σ

∫
d2r ψ̂†

σ r

e2Aq1
Aq2

2m∗ eq1
·eq2

(
âq1

âq2
ei(q1+q2 )r + H.c.

)
ψ̂σ r

+
∑

q1 �=q2

∑
σ

∫
d2r ψ̂†

σ r

e2Aq1
Aq2

2m∗ eq1
·eq2

(
â†

q1
âq2

e−i(q1−q2 )r + H.c.
)
ψ̂σ r, (A4)
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FIG. 7. Virtual processes in the second-order perturbation of the paramagnetic term Ĥ (p)
I , where a cavity mode is excited by â†

q with
(a) intraband transitions within the flat band, (b) interband transitions from the flat band to an upper band, and (c) interband transitions from a
lower band to the flat band. We approximate excitation energies in each process �E as shown in (a)–(c).

where Ĥ (p)
I is the paramagnetic term and the A2 diamagnetic term leads to the renormalized cavity frequency ω′

q and the

interaction term Ĥ (q)
I . In Eq. (A2), we define the total number of electrons by Ne = ∑

σ

∫
d2rψ̂†

σ rψ̂σ r, which is an order of V/vM ,
with V being the system size and vM being the volume of the moiré supercell. Since the coupling strength gq is proportional
to

√
1/V , the frequency renormalization in Eq. (A2) is O(V 0η2). Below, we treat the first two terms on the right-hand side of

Eq. (A1) as the unperturbed Hamiltonian and incorporate the effect of Ĥ (p)
I + Ĥ (q)

I using the perturbation theory.
Since P̂Ĥ (p)

I P̂ = P̂Ĥ (q)
I P̂ = 0, the leading terms come from the second-order perturbation of the paramagnetic term Ĥ (p)

I ,
which can be expressed in the Bloch basis as

Ĥ (p)
I = −

∑
kσ

∑
mn

∑
q

eAq

m∗ eq ·〈ψmk+qσ | p̂eiqr + eiqr p̂
2

|ψnkσ 〉ĉ†
mk+qσ

ĉnkσ âq + H.c. (A5)

= −
∑
kσ

∑
mn

∑
q

eAq

m∗ eq ·〈umk+q|
(

p̂ + h̄

(
k + q

2

))
|unk〉ĉ†

mk+qσ
ĉnkσ âq + H.c. (A6)

= −
∑
kσ

∑
mn

∑
q

eAq

h̄

(
Gk,q

mn ·eq
)

ĉ†
mk+qσ

ĉnkσ âq + H.c. (A7)

Here, we introduce the annihilation (creation) operator ĉ(†)
nkσ

corresponding to the Bloch state |ψnkσ 〉, with σ being the spin
index, and also define the multiband coefficients Gk,q

mn ≡ 〈umk+q|∇kĤk+q/2|unk〉, where |unk〉 is related to |ψnkσ 〉 via |ψnkσ 〉=
eikr̂|unk〉⊗|σ 〉, with |σ 〉 being the spin state. Figures 7(a)–7(c) show the virtual processes relevant to the second-order perturbation
of Ĥ (p)

I , which correspond to the virtual electronic transitions within the flat band, to the upper bands, and from the lower
bands, respectively. Approximating the excitation energy �E in each process as shown in Fig. 7, we get the following effective
Hamiltonian of flat-band electrons:

Ĥeff =
∑
kσ

ε0kĉ†
kσ

ĉkσ + Ĥff + Ĥfu + Ĥfl + Û , (A8)

Ĥff = −
∑
k,k′

∑
σ,σ ′

∑
q

m∗

h̄2

g2
q

ω′
q

2

(
Gk,q

00 ·eq
)(

Gk′,q∗
00 ·eq

)
ĉ†

k+qσ
ĉ†

k′−qσ ′ ĉk′σ ′ ĉkσ

−
∑
kσ

m∗

h̄2

⎛
⎝∑

q

g2
q

ω′
q

2

∣∣Gk,q
00 ·eq

∣∣2

⎞
⎠ĉ†

kσ
ĉkσ , (A9)
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Ĥfu = −
∑
kσ

m∗

h̄2

⎛
⎝∑

q

upper∑
n

g2
q

ω′
q

2

h̄ω′
q

h̄ω′
q + εnk+q − ε0k

∣∣Gk,q
n0 ·eq

∣∣2

⎞
⎠ĉ†

kσ
ĉkσ , (A10)

Ĥfl =
∑
kσ

m∗

h̄2

⎛
⎝∑

q

lower∑
n

g2
q

ω′
q

2

h̄ω′
q

h̄ω′
q + ε0k − εnk+q

∣∣Gk,q
0n ·eq

∣∣2

⎞
⎠ĉ†

kσ
ĉkσ , (A11)

where ĉ(†)
kσ

= ĉ(†)
0kσ

is the annihilation (creation) operator of the flat-band electrons and
∑upper(lower)

n denotes the summation over
the upper (lower) bands. In deriving Eqs. (A9)–(A11), we assume the relations gq = g−q and ω′

q = ω′
−q, which hold true for

uniaxial cavities, and use the following equalities:

P̂(ĉ†
0kσ

ĉnk+qσ ĉ†
n′k′+qσ ′ ĉ0k′σ ′ )P̂ = δnn′δkk′δσσ ′ ĉ†

0kσ
ĉ0kσ (n, n′ : upper bands), (A12)

P̂(ĉ†
nk+qσ

ĉ0kσ ĉ†
0k′σ ′ ĉn′k′+qσ ′ )P̂ = δnn′δkk′δσσ ′ ĉ0kσ ĉ†

0kσ
(n, n′ : lower bands). (A13)

We note that the first term on the right-hand side of Eq. (A9) is the Amperean electron-electron interaction mediated by cavity
electromagnetic fields [98]. Since the coefficients (Gk,q

00 ·eq)(Gk′,q∗
00 ·eq) ≈ (∇kε0k ·eq)(∇kε0k′ ·eq) in this term almost vanish due

to the band flatness, the Amperean interaction is negligibly small compared to the Coulomb interaction Û . Retaining up to O(η2)
terms and taking the limit q → 0 in Eq. (A8) (which does not affect the results provided in the present work, as detailed in
Appendix B), we finally obtain the effective Hamiltonian of flat-band electrons as

Ĥeff =
∑
kσ

(ε0k + η2ξk)ĉ†
kσ

ĉkσ + Û , (A14)

ξk = m∗

2h̄2

(
−∣∣Gk

00

∣∣ −
upper∑

n

h̄ω0

h̄ω0 + εnk − ε0k

∣∣Gk
n0

∣∣2 +
lower∑

n

h̄ω0

h̄ω0 + ε0k − εnk

∣∣Gk
n0

∣∣2

)
, (A15)

where we introduce Gk
mn ≡ Gk,0

mn and use the fact that
ω′

q/ωq = 1 + O(η2). Since there are no upper bands in the
setup of the TMD heterobilayer considered in the main text,
the effective Hamiltonian (A14) simplifies to Eq. (10) in the
main text. We note that the effective Hamiltonian derived
above is qualitatively different from the one obtained by using
the single-mode approximation. In the latter case, the single-
mode coupling g/ω = O(V 0) would be required to achieve the
ultrastrong coupling g2/ω2 = O(1), and thus, the renormal-
ization of the cavity frequency due to the A2 diamagnetic term
should be O(V 1). Also, we note that possible modification of
the Coulomb interaction U , which is at most O(η2), is not
included since it does not affect the discussion in the present
work, as detailed in Appendix C.

Making appropriate modifications in the moiré Hamilto-
nian (1), our procedure can also be applied to other moiré
materials, such as a TMD moiré homobilayer or twisted bi-
layer graphene. In a TMD moiré homobilayer, the moiré
Hamiltonian of spin-up electrons (or, equivalently, K-valley
electrons in the TMD monolayers) is given as [3,31]

Ĥ0↑ =
(

− ( p̂−h̄κb)2

2m∗

− ( p̂−h̄κt )2

2m∗

)
+ �̂(r), (A16)

where the 2 × 2 matrix corresponds to the two-layer degrees
of freedom and �̂(r) is a (2 × 2)-matrix-valued moiré po-
tential. Here, κt (b) denotes the distinct mBZ corner, which
originates from the K valley of the top (bottom) TMD
monolayer (see Fig. 8). The moiré Hamiltonian of spin-down
electrons Ĥ0↓ is given as the time-reversal (TR) pair of Ĥ0↑.

We note that Ĥ0↑(↓) does not have TR symmetry ( p̂, �̂(r)) →
( − p̂, �̂∗(r)), while the total moiré Hamiltonian Ĥ0↑ + Ĥ0↓
does ( p̂, �̂(r), σ ) → ( − p̂, �̂∗(r),−σ ). As a result, the hop-
ping amplitudes ti j,σ in the tight-binding description are, in
general, complex valued and satisfy ti j,−σ = t∗

i j,σ . Similarly,
in twisted bilayer graphene, the moiré Hamiltonian of spin-up
and K-valley electrons is given as [2,3]

Ĥ0↑K =
(

vF ( p̂ − h̄κb)·σ̂
vF ( p̂ − h̄κt )·σ̂

)
+ �̂(r),

(A17)

FIG. 8. Moiré Brillouin zone (mBZ) for spin-up (K valley) elec-
trons of the TMD moiré homobilayer with twist angle θ . We also
show the monolayer BZ of the top (blue) and bottom (red) TMD
layers.
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FIG. 9. (a) Cavity dressing ξk (top panel) and the ground-state phase diagram of the cavity-confined TMD heterobilayer (bottom panel)
obtained with approximation (B2). We define k1 and k2 via k = k1b1 + k2b2. (b) Cavity dressing ξk (top panels) and ground-state phase diagrams
(bottom panels) obtained without the approximation. Here, Q is the effective width of the coupling strength (B3), and bM = 4π/(

√
3aM ) is the

size of the moiré Brillouin zone.

where vF is the Fermi velocity of monolayer graphene, σ̂ =
(σ̂x, σ̂y)T , and �̂(r) is a (4 × 4)-matrix-valued moiré potential
corresponding to the layer and sublattice degrees of freedom.

APPENDIX B: ON THE VALIDITY OF THE
APPROXIMATION MADE WHEN DERIVING THE

EFFECTIVE HAMILTONIAN OF FLAT-BAND ELECTRONS

In the last step of the derivation described in Appendix A,
we neglected the q dependences of Gk,q

0n and h̄ωq/(h̄ωq +
ε0k − εnk+q) in Eqs. (A9)–(A11) but approximate them as

Ĥfu =
∑
kσ

m∗

h̄2

⎛
⎝∑

q

lower∑
n

g2
q

ω2
q

h̄ωq

h̄ωq + ε0k − εnk+q

∣∣Gk,q
0n · eq

∣∣2

⎞
⎠

×ĉ†
kσ

ĉkσ + O(η4) (B1)

�
∑
kσ

m∗

h̄2

⎛
⎝∑

q

g2
q

ω2
q

lower∑
n

h̄ω0

h̄ω0 + ε0k − εnk

∣∣Gk,0
0n · eq

∣∣2

⎞
⎠

×ĉ†
kσ

ĉkσ . (B2)

To demonstrate the validity of this approximation, we com-
pare the main results in the main text obtained with or without
making such an approximation. Below, to include the effect of
the momentum dependence of the coupling strengths gq/ωq,
we assume that g2

q/ω
2
q can be approximated by a simple Gaus-

sian function as
g2

q

ω2
q

= η2

N exp

(
− q2

2q2
c

)
, (B3)

where N is determined by the normalization condition∑
q g2

q/ω
2
q = η2. Also, we shall define the effective width Q

of the coupling strength by the condition
∑

|q|<Q g2
q/ω

2
q =

0.95η2 ⇔ Q/qc = √−2 ln 0.05.
Figure 9 shows the ground-state phase diagrams of the

cavity-confined TMD heterobilayer obtained with or without
making the above approximation. At finite Q, we can see
that ξk is slightly modified and the highly frustrated phases,
such as the zigzag phase, become a bit narrower accordingly,
These modifications are consistent with the expectation that
the cavity-mediated long-range hoppings now have an effec-
tive cutoff length scale ∼1/Q. Nevertheless, as inferred from
Fig. 9, these changes are almost negligible, and it is clear that
all the results remain qualitatively the same, which justifies
the validity of our treatment.

APPENDIX C: EFFECT OF THE MODIFICATION
OF THE COULOMB INTERACTION

We here discuss possible modification of the Coulomb
interaction due to the cavity confinement. We recall that, in
the present analysis, the only assumption about the Coulomb
interaction is that the interaction strength U is much larger
than the hopping amplitudes of tight-binding orbitals of flat-
band electrons ti. This assumption generally holds true in
moiré materials due to the band flatness. In particular, the ratio
between the magnetic interactions Ji, which determines the
magnetic phases of the moiré bilayer, is independent of the
Coulomb interaction strength U in the present analysis. Since
possible modification of the Coulomb interaction is at most
an order of O(η2) compared to the original value, as detailed
below, we conclude that it does not affect the discussion in the
present work.
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FIG. 10. (a) Dispersions ωqn of the hyperbolic phonon polaritons (top panel) and the inverse of the square root of the dimensionless
effective confinement length dqn/d , which is proportional to the coupling strength gq/ωq. Reproduced from Fig. 2 in Ref. [115]. (b) The ratio
between the imaginary part and the real part of the out-of-plane momenta κq and the phonon-polariton frequencies ωq. We plot the ratio for the
n = 1 eigenmodes [see top panel in (a)]. The parameters are the same as in Ref. [115], and we set the loss ratio as γz/�z = γt/�t = 0.01.

In moiré materials, one can estimate the strength of the
Coulomb interaction U by the matrix element

U ≡ 〈w0|Û |w0〉 =
∫

dr
∫

dr′U (r − r′)w∗
0 (r)w0(r′), (C1)

where |w0〉 is the Wannier orbital constructed from
the Bloch states of the moiré flat band and U (r) =
(e2/ε)[r−1 − (r2 + D2)−1/2] is the screened Coulomb po-
tential in moiré materials [136]. In the present setup of
cavity moiré materials, the modification of the Coulomb
interaction originates from the modification of the Bloch
states |ψ0k〉 due to the interaction with hyperbolic cavi-
ties. Within the perturbation theory, the Bloch states are
modified as

|ψ0k〉 → |ψ ′
0k〉 = |ψ0k〉|0〉 +

∑
n �=0

∑
q

1

h̄ωq + ε0k − εnk−q

eAq

h̄

× (
Gk−q,q

0n · eq
)∗|ψnk−q〉|1q〉 + O(η2),

(C2)

where |0〉 is the cavity vacuum and |1q〉 = â†
q|0〉 is the one-

phonon-polariton excited state with in-plane momentum q.
Thus, the Wannier orbital, the superposition of the Bloch
states, is modified as

|w0〉 → |w′
0〉 = |w0〉|0〉 +

∑
q

∣∣w(1)
q

〉|1q〉 + O(η2), (C3)

∣∣w(1)
q

〉 =
∫

vMd2k
(2π )2

∑
n �=0

1

h̄ωq + ε0k − εnk−q

eAq

h̄

× (
Gk−q,q

0n · eq
)∗|ψnk−q〉, (C4)

where we note that |w(1)
q 〉 is O(η). Since the second term

on the right-hand side of Eq. (C3) includes the cavity ex-
cited state |1q〉, the modification of the Coulomb interaction

becomes O(U · η2) as

U → U ′ = 〈w′
0|Û |w′

0〉
〈w′

0|w′
0〉

= 〈w0|Û |w0〉 + ∑
q

〈
w(1)

q |Û |w(1)
q

〉 + O(U · η2)

〈w0|w0〉 + ∑
q

〈
w

(1)
q

∣∣w(1)
q

〉 + O(η2)

= 〈w0|Û |w0〉 + O(U · η2), (C5)

which proves the statement above.

APPENDIX D: EFFECT OF THE POLARITON LOSS
IN THE HYPERBOLIC CAVITY

We here discuss a possible effect of the loss of the phonon
polaritons in the hyperbolic cavity. In general, the loss rate
of hyperbolic polaritons is very low compared to the optical
phonon frequency in vdW crystals h̄ωq = 102 ∼ 103meV. To
estimate the strength of the polariton loss, we first recall that
the frequency ωq (and out-of-plane momentum κq) of the
polariton mode with in-plane momentum q is determined by
the eigenequations of electromagnetic fields as [115]

q2

εz(ω)
+ κ2

εt (ω)
= ω2

ε0c2
, (D1)

tan

(
κd

2

)
= − κ

−εt (ω)
√

q2 − ω2

c2

. (D2)

Here, εt (z)(ω) is the in-plane (out-of-plane) permittivity of the
dielectric medium, and d is the thickness of the vdW slabs.
To include the effect of phonon loss in vdW materials, we can
use the complex-valued permittivities as [130]

εz(ω) = εz∞

(
1 + η2

z

�2
z − ω2 − iγzω

)
, (D3)

εt (ω) = εt∞

(
1 + η2

t

�2
t − ω2 − iγtω

)
. (D4)
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We note that an ultralow loss ratio γ /� ∼ 0.005 has been
achieved in hyperbolic vdW materials, such as h-BN [130].
As q is a real-valued variable corresponding to the in-plane
momentum between the air gap of the cavity, the out-of-plane
momentum κ and the cavity frequency ω in the solutions of
the eigenequation are complex valued, reflecting the phonon
loss in the dielectric medium.

Figure 10 shows the ratio between the imaginary part and
the real part of κq and ωq, which are obtained by solving the
eigenequations (D1) and (D2) up to the first order of γ . The

changes in κq and ωq could, in principle, affect the value of
the coupling strength; for instance, the change in κq modifies
the spatial profile of each eigenmode and its mode amplitude.
However, from the results we have obtained, we estimate
the amount of change in the coupling strength to be ∼0.5%,
which leads to only negligibly small shifts of the proposed
phase boundaries. We thus expect that the polariton loss does
not play an important role in our consideration based on the
setup consisting of hyperbolic cavity with ultralow phonon
losses.
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[115] Y. Ashida, A. İmamoğlu, and E. Demler, Phys. Rev. Lett. 130,
216901 (2023).

[116] Z. Jacob, Nat. Mater. 13, 1081 (2014).
[117] P. Törmä, S. Peotta, and B. A. Bernevig, Nat. Rev. Phys. 4, 528

(2022).
[118] G. E. Topp, C. J. Eckhardt, D. M. Kennes, M. A. Sentef, and

P. Törmä, Phys. Rev. B 104, 064306 (2021).
[119] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev.

B 37, 9753 (1988).
[120] D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, Annu.

Rev. Condens. Matter Phys. 13, 239 (2022).
[121] Z. Zhu and S. R. White, Phys. Rev. B 92, 041105(R) (2015).
[122] S.-S. Gong, W. Zheng, M. Lee, Y.-M. Lu, and D. N. Sheng,

Phys. Rev. B 100, 241111(R) (2019).
[123] S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Phys. Rev. Lett. 123,

207203 (2019).
[124] A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Phys. Rev.

X 10, 021042 (2020).
[125] M. Drescher, L. Vanderstraeten, R. Moessner, and F.

Pollmann, Phys. Rev. B 108, L220401 (2023).
[126] J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M.

Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods,
A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier,
and K. S. Novoselov, Nat. Commun. 5, 5221 (2014).

[127] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod,
M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi,
M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F.
Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov,
Science 343, 1125 (2014).

[128] A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L.
Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke,
J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and
J. D. Caldwell, Nat. Mater. 17, 134 (2018).

[129] S. Dai, W. Fang, N. Rivera, Y. Stehle, B.-Y. Jiang, J.
Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain,
P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang,
J. Kong, and D. N. Basov, Adv. Mater. 31, 1806603
(2019).

[130] E. Y. Ma, J. Hu, L. Waldecker, K. Watanabe, T.
Taniguchi, F. Liu, and T. F. Heinz, Nano Lett. 22, 8389
(2022).

[131] H. H. Sheinfux, L. Orsini, M. Jung, I. Torre, M. Ceccanti,
R. Maniyara, D. B. Ruiz, A. Hötger, R. Bertini, S. Castilla,
N. C. H. Hesp, E. Janzen, A. Holleitner, V. Pruneri, J. H.
Edgar, G. Shvets, and F. H. L. Koppens, Nat. Mater. 23, 499
(2024).

195173-13

https://doi.org/10.1038/s41586-021-03731-9
https://doi.org/10.22331/q-2020-09-28-335
https://doi.org/10.21468/SciPostPhysLectNotes.50
https://doi.org/10.1103/PhysRevResearch.3.L032021
https://doi.org/10.1103/PhysRevResearch.3.L032046
https://arxiv.org/abs/2205.05559
https://doi.org/10.1103/PhysRevX.10.041027
https://doi.org/10.1073/pnas.2105618118
https://doi.org/10.1038/s41467-018-03982-7
https://doi.org/10.1103/PhysRevB.99.235156
https://doi.org/10.1103/PhysRevLett.123.047202
https://doi.org/10.1103/PhysRevB.105.205424
https://doi.org/10.1103/PhysRevLett.123.217401
https://doi.org/10.1103/PhysRevB.104.L081408
https://doi.org/10.1103/PhysRevB.107.195104
https://doi.org/10.1126/sciadv.aau6969
https://doi.org/10.1103/PhysRevLett.122.133602
https://doi.org/10.1103/PhysRevLett.122.167002
https://doi.org/10.1103/PhysRevResearch.4.013101
https://doi.org/10.1103/PhysRevB.105.165121
https://doi.org/10.1021/acs.nanolett.1c00973
https://doi.org/10.1103/PhysRevB.99.085116
https://doi.org/10.1088/1367-2630/ab31c7
https://doi.org/10.1038/s41467-021-26076-3
https://doi.org/10.1103/PhysRevB.101.205140
https://doi.org/10.1038/s41524-023-01158-6
https://doi.org/10.1126/science.1258595
https://doi.org/10.1038/nphys3850
https://doi.org/10.1038/s41567-018-0346-y
https://doi.org/10.1103/PhysRevB.101.075301
https://doi.org/10.1126/science.abl5818
https://doi.org/10.1103/PhysRevLett.120.057401
https://doi.org/10.1103/PhysRevB.81.235303
https://doi.org/10.1002/andp.200751910-1109
https://doi.org/10.1103/PhysRevLett.130.216901
https://doi.org/10.1038/nmat4149
https://doi.org/10.1038/s42254-022-00466-y
https://doi.org/10.1103/PhysRevB.104.064306
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1146/annurev-conmatphys-031620-102024
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.100.241111
https://doi.org/10.1103/PhysRevLett.123.207203
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevB.108.L220401
https://doi.org/10.1038/ncomms6221
https://doi.org/10.1126/science.1246833
https://doi.org/10.1038/nmat5047
https://doi.org/10.1002/adma.201806603
https://doi.org/10.1021/acs.nanolett.2c02819
https://doi.org/10.1038/s41563-023-01785-w


KANTA MASUKI AND YUTO ASHIDA PHYSICAL REVIEW B 109, 195173 (2024)

[132] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[133] C. Zhang, C. Gong, Y. Nie, K.-A. Min, C. Liang, Y. J. Oh, H.
Zhang, W. Wang, S. Hong, L. Colombo, R. M. Wallace, and
K. Cho, 2D Mater. 4, 015026 (2016).

[134] Y. Wang, T. Shi, and C.-C. Chen, Phys. Rev. X 11, 041028
(2021).
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