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Coupling strongly correlated electron systems to a tunable electronic reservoir
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We study the effect of coupling an electronic reservoir to a Hubbard model and to a dimer Hubbard model. This
is motivated by recent experiments on the effect of illumination on the insulator-metal transition in a vanadium
oxides and photoconductive cadmium sulfide heterostructure. We model the system as an electronic reservoir
hybridized to the correlated system. We assume that the light intensity controls the hybridization coupling
strength. We find that the light intensity acts similarly as the temperature in the weak interaction regime. This
is consistent with the role played by electronic reservoirs in out-of-equilibrium systems. In contrast, qualitative
differences appear at strong coupling. We show that modeling the V2O3 compound with a Hubbard model, our
results describe qualitatively well the observed illumination-driven suppression of the insulator-metal transition.
In contrast, in the DHM results fail to capture the mild suppression observed in the case of VO2. This indicates
that the lattice may play an important role in this case.
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I. INTRODUCTION

Mott insulator materials are interesting for neuromorphic
devices, such as artificial spiking neurons [1–3]. The sev-
eral orders-of-magnitude changes of the resistivity across the
metal-to-insulator-transition (MIT) of Mott insulators can be
exploited in artificial neuromorphic devices to recreate the
all-or-nothing excitation of an action potential [2–6]. Further-
more, there are several ways to control the Mott MIT, namely
by changing doping, pressure, electric field, etc. [7–19]. A
particularly interesting possibility, in the context of neuromor-
phic applications, is to control the transition by illumination
with light in hybrid thin-film structures where one changes
the coupling between the Mott material and its environment
[17,20,21].

In recent years, the study of phenomena that emerge from
the control of the coupling between a system to a reservoir
is attracting significant attention. In experiments, changing
the environment coupling can lead, for instance, to line-width
broadening [22], decoherence, and a finite lifetime of states
[23]. Moreover, it can allow tailoring desired states, like en-
tangled [24], antiferromagnetically (AFM) ordered [25], Bose
condensed [26], etc. While this has been so far considered
mostly in the context of cold atoms, it is also potentially
relevant for electronic properties of solid state systems, in-
cluding strongly correlated ones. For instance, an important
case is that of systems with metal-insulator transitions that
are driven out of equilibrium. In those cases, it has been
recognized that coupling to an electronic reservoir is an es-
sential physical ingredient to achieve a steady state in a static
electric field-driven Hubbard model (HM) [27–32]. Hence, it
is an important question to consider the systematic effect that
the coupling to an electronic reservoir may have on a given
strongly correlated system.

In addition to the previous motivation, the effect of a
(semi)metallic reservoir coupled to a strongly correlated sys-
tem is also relevant for heterostructures. Indeed, the ability
to grow multilayers including high quality strongly correlated
oxides, prompted the interest in understanding the fate of the
Mott metal-insulator transition in metal and semimetal/Mott-
insulator hybrid systems [33].

For example, in the study of heterostructures of a
metal/AFM-Mott model, a suppression of AFM structure fac-
tor is observed in the AFM-Mott layer due to its proximity to
the metal [34,35]. However, it was also reported that the effect
of an additional conduction band in the periodic Anderson
model can lead to stabilization of the AF order [36–38] in the
system. Furthermore, in the heterostructure of a paramagnetic
(PM) metal and a PM-Mott insulator, the metal state may
penetrate into the Mott insulator side [39–41].

A particularly interesting type of Mott insulator materi-
als are the vanadium oxides VO2 and V2O3, which have
temperature-driven MITs [42].

In a recent experiment, the effects on the MIT was studied
in the heterostructure of vanadium oxide and the photocon-
ductive semiconductor cadmium sulfide (CdS), for various
levels of illumination [17]. Interestingly, both VO2 and V2O3

showed a suppression of MIT with the power of light illu-
minated on CdS. However, the modulation of the MITs in
VO2 and V2O3 were dramatically different. The illumination
quickly suppressed the TMIT of V2O3, driving it down toward
zero temperature. While it only had a minor suppression effect
on TMIT of VO2, shifting it down by just a few degrees.

The present study is motivated by those experiments. We
aim to understand the suppression of TMIT in vanadium ox-
ides/CdS heterostructures in the presence of light. To that
goal, we need to model both the effect of the CdS and also
the MITs in V2O3 and VO2. In the case of V2O3, the MIT
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occurs between an AFM insulator to a PM metallic state. In
this initial study, for the sake of simplicity, we shall follow the
recent study [43] to model the transition. In that paper, it was
shown that the single-band HM treated within DMFT was able
to capture nontrivial features of the T-driven MIT with AFM
symmetry breaking at half-filling, such as the anomalous en-
hancement of the negative magnetoresistance. On the other
hand, the MIT in the case of VO2 is qualitatively different,
since it is nonmagnetic. Moreover, the Mott insulator phase
of VO2 is monoclinic, where pairs of V atoms are dimerized,
presumably forming “dynamical singlets” [44]. Fortunately,
in this case we can also count on a simple model that captures
basic nontrivial features of the MIT, which we can adopt in
this initial study. This is the dimer Hubbard model (DHM),
which is an extension of the Hubbard model where each unit
cell contains a dimer. It was recently shown that the DMFT
solution of the model exhibits a T-driven first-order nonmag-
netic MIT at half-filling, where the ground state is a dimerized
Mott insulator with dynamical singlets [45–48]. Hence, in
this initial study we shall adopt these two simple models as
zero-order approximation to describe the MITs of V2O3 and
VO2 in the presence of a tunable hybridization.

One of our main results is that the reservoir may qualita-
tively act as a temperature and can may suppress the TMIT in
agreement with the experimental observations on V2O3. How-
ever, the comparison with observations in VO2 there seems
to remain some significant quantitative differences. We shall
argue later on that this may point to a relevant role played
by the lattice degree of freedom that are not included in our
model [49].

This paper is organized as follows: In Sec. II we describe
the model and the numerical approaches. Then, in Sec. III
we shall describe the results. Firstly, we discuss the system-
atic effect of T and � on the AFM phase and the MIT of
the single-band HM. Secondly, we shall describe the effects
of those parameters for the interaction-driven PM insulator-
metal transition in both the HM and the DHM. While the
former is not directly relevant to the physics of the vanadates,
we find it useful to include that study as a reference case,
since it is the most widely studied MIT within DMFT. In the
last Sec. V, we discuss the comparison of our findings with
experimental results, including the possible origin of some
standing discrepancies.

II. MODELS AND METHOD

Our task is to model the hybridization effect of CdS, which
is a good photoconductive semiconductor [50,51]. In dark it
is highly insulating, i.e., more than the Mott insulator states
in the vanadium oxides. However, when illuminated by light
it creates a substantial amount of electron-hole pairs and, in
consequence, shows a drop in the resistivity. Nevertheless,
CdS never has truly metallic character but remains a semi-
conductor, i.e., does not have metallic conduction. Therefore,
we propose to model the CdS as a set of electronic reservoirs
that are locally coupled with the V sites. In other words, we
consider that the excited electron-hole pairs are described as
incoherent metallic states that locally hybridize with those of
the vanadium oxides. Since the vanadate thin films are of
the order of 10 nm, we shall also assume that the electric

conduction is dominated by the physics of the interface,
which we model as a layer of HM or DHM hybridized
with electronic reservoirs at each lattice site. As increasing
the light intensity on the CdS one can tune the number of
(photo)carriers, we model this effect through the strength of
the hybridization parameter � = γ 2ρ(EF ). γ is a geometrical
parameter independent of the light intensity as it describes
the hybridization hopping amplitude between the sites that
represent the CdS and the vanadium oxide layers, respectively.
On the other hand, ρ(EF ) represents the density of states of the
CdS, which increases with light intensity. However, the de-
tailed dependence of ρ(EF ) and the intensity of illumination,
that is experimentally controlled by the power on the LED
light, is not trivial. Therefore, here, for the sake of definite-
ness and simplicity, we assume that the control parameter �

(through the effect of ρ) is proportional to the power of the
LED.

Before going into the technical details of the model, we
may consider one additional aspect about the validity of the
description of CdS by an electronic bath. Unlike electrons in
a metal, the carriers in CdS are in a steady state but out-of-
equilibrium. This is because they are continuously created as
particle-hole pairs and recombining. Since we shall be adopt-
ing DMFT as methodology, which maps the lattice models
into associated Kondo-like quantum-impurity problems [52].
Hence, a valid question is whether those carrier will be able
to provide “Kondo screening” to the quantum impurity. To
address this issue we should consider the relevant timescales.
The ordinary Kondo-screening time can be estimated from
the inverse of the typical Kondo temperature, TK 10 K, i.e.,
τK 10−12 sec. However, this is not the relevant timescale, be-
cause within DMFT the Kondo scale corresponds to the width
of the metallic quasiparticle peak at the Fermi energy. Unless
very close to a metal-insulator transition critical point where
there may be substantial mass enhancements, this effective
Fermi energy scale can be estimated as ε∗ 0.1 eV. This value
is appropriate for vanadates and corresponds to τscr 10−14 sec,
i.e., a much shorter timescale than for the ordinary Kondo
impurity screening. The timescale τscr should be compared to
the recombination time τrec of the excited electron-hole pairs.
One may naively expect that this time is set by the inverse of
the semiconducting gap, which in the case of CdS is 2.4 eV,
hence, τrec 10−15 sec. Therefore, τrec < τscr, so a priori the
recombination would happen too fast to provide screening.
However, this is not quite the case. The recombination time
in CdS has been measured (see, for instance, [53]) with re-
ported values of τrec 10−9 sec, i.e., much longer than the naive
estimate. In fact, the case is that τrec � τscr, which indicates
that the approximation made in our model seems qualitatively
safe.

A. Hubbard model (HM)

The Hamiltonian of the single-band HM coupled with an
incoherent electronic reservoir reads as

Ĥ = − t
∑

〈i, j〉,σ
(ĉ†

iσ ĉ jσ + H.c)

+ U
∑

i

n̂i↑n̂i↓ − μ
∑
i,σ

ĉ†
iσ ĉi,σ +

∑
i,σ

Ĥiσ
c , (1)
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FIG. 1. Schematic experimental setup for CdS/VnO2n−1 het-
erostructures with light on CdS where n = 2 corresponds to
CdS/V2O3 and n = ∞ corresponds to CdS/VO2. Schematic repre-
sentation of HM (top right) and DHM (bottom right) with electronic
reservoir connected to each site of the lattice. t is the hopping ampli-
tude of an electron between nearest-neighbor sites. γ is the hopping
amplitude of an electron between the site and the electronic reservoir.
t⊥ is the hopping amplitude of an electron between dimer sites.

where ĉ†
iσ and ĉiσ are respectively the fermionic creation

and annihilation operators at the ith site of the lattice and
n̂iσ = ĉ†

iσ ĉiσ is the number operator. Here t is the hopping
amplitude of an electron between nearest-neighbor sites, U
is the on-site repulsion energy if two electrons (of opposite
spins) occupy the site, and μ is the chemical potential of the
system, controlling filling. We fixed μ at U/2 for the half-
filled case. Last term of the Hamiltonian,

∑
σ Ĥiσ

c , represents
the coupling of an electronic reservoir with ith site of the
lattice. Details about this coupling term are given in the later
part of this section. The top-left panel of Fig. 1 displays a
schematic representation of HM with the electronic reservoir
connected to each site of the lattice.

We solve this model using DMFT with a semicircular den-
sity of states, D(ε) = 2

πD2

√
(D2 − ε2) with half band width

D = 1. DMFT provides the exact solution of the model
[43,52] on the Bethe lattice. We solve the impurity prob-
lem of DMFT using hybridization expansion-continuous-time
quantum Monte Carlo (HYB-CTQMC) [54–56]. We solve the
model both with and without AFM symmetry. We present the
result of the HYB-CTQMC in Sec. III.

B. Dimer Hubbard model (DHM)

An interesting extension of single-band HM is the DHM
[57]. This schematic model was shown to capture some key
qualitative features of the temperature-driven MIT transition
of VO2 [45,46,48]. The DHM Hamiltonian, coupled with an
incoherent electronic reservoir reads,

Ĥ = − t
∑

〈i, j〉,σ,α

(ĉ†
iασ ĉ jασ + H.c)+

+ t⊥
∑
i,σ

(ĉ†
i1σ ĉi2σ + H.c.)+

+ U
∑
i,α

n̂iα↑ n̂iα↓ − μ
∑
i,α,σ

n̂iασ +
∑
i,α,σ

Ĥiασ
c , (2)

where the index i and j denote the lattice cells, α = 1, 2 de-
notes the dimer sites within a given cell and σ labels the spin.
The hopping t and t⊥ correspond to the amplitudes between

nearest-neighbor lattice cells and between dimer sites, respec-
tively. The last term of the Hamiltonian,

∑
σ Ĥiσα

c , represent
the electronic reservoir coupled to ith lattice cell’s dimer site
α. Note that we use an independent electronic reservoir for
each site of the dimer as can be seen in the schematic represen-
tation of the model in the bottom-right panel of Fig. 1. Details
about the electronic reservoir are given later in this section.
The local Green’s function of the lattice becomes diagonal
in the bond (B) and antibond (AB) basis, where the creation
operator in the B and AB basis is related to the site basis by
the following equation:

ĉ†
iAB/Bσ = ĉ†

i1σ ± ĉ†
i2σ√

2
. (3)

Therefore, we find it practical to solve the model on this basis.

C. Electronic reservoirs

The Hamiltonian of the electronic reservoir coupled to each
lattice site of the models (HM or DHM) reads∑

σ

Ĥiσ
c =

∑
k,σ

εkâ†
ikσ

âikσ + γ
∑
l,σ

(â†
ilσ ĉiσ + H.c.) (4)

where ĉiσ denotes the fermionic operator at site i for the HM
(or similarly, adding a label α, at the ith cell’s α site for DHM)
and âilσ is the fermionic operator for reservoir’s electron. εl

are the reservoir’s electron energy levels. For simplicity, we
assume that the reservoir’s electrons hybridize with the lattice
fermions with constant amplitude γ . We can integrate out the
noninteracting reservoir’s electrons, and their effect appears as
an additional effective hybridization for the c fermions at each
impurity site, which remains fixed in the DMFT calculation.
This effective hybridization due to the reservoir’s electrons
reads as


� (ωn) =
∑

l

γ 2

iωn − εl
=

∫
dερl (ε)

γ 2

iωn − ε
. (5)

For simplicity, we adopt a semicircular density of states for
the reservoir electrons, ρl (ε) = 2

πD′2
√

(D′2 − ε2), so the above
integration takes the closed form


� (ωn) = − 2D′i�

ωn + sig(ωn)
√

ω2
n + D′2 (6)

where � = γ 2/D′ controls the strength of the effect of hy-
bridization with a reservoir. For convenience, we choose half
the bandwidth of the electronic reservoir D′ = 1.0.

D. Details on the DMFT method

We describe here how the hybridization of the associated
impurity problem is modified by the presence of the reser-
voirs.

In the case of the HM we shall consider both solutions with
and without AFM symmetry. The effect of the reservoir within
DMFT is most clearly observed through the self-consistency
condition of the associated quantum impurity problem [52].
The total hybridization function reads


σ (ω) = t2Gloc,σ̄ (ω) + 
� (ω) (7)
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where we observe that the reservoir is simply added to the
quantum single-site environment. For further details on the
DMFT method and self-consistent equations for the AFM-
HM see Refs. [43,52].

In the case of the DHM, we consider the AB/B basis, hence
the total hybridization entering the DMFT self-consistency
equation becomes


AB/Bσ (ω) = t2Gloc,AB/Bσ (ω) + 
� (ω). (8)

For further details on the DMFT self-consistent equations for
the DHM see Refs. [45,48,58].

As model parameters, we adopt in the case of the HM
t = 0.5 (since we already set D = 1), and we fix on-site local
repulsion U = 1.7, which was found adequate to describe
the AFM-PM MIT in V2O3 [43]. For the DHM we also
adopt t = 0.5, and then fix t⊥ = 0.3 and the on-site local
repulsion U = 2.2, as where already shown to be adequate
to qualitatively describe the PM MIT in VO2 [45,48]. In
addition, we shall also consider for both models and for the
sake of obtaining a full qualitative picture of the behavior, a
large value of U = 4. This sets the systems well into their
Mott insulator states, so the MIT actually would become an
“insulator-insulator” transition. However, as we shall see, the
presence of the reservoirs will change this naif expectation.

The DMFT calculation with the HYB-CTQMC impurity
solver produces data in Matsubara frequency. However, to
obtain the behavior of the density of state (DOS) and the DC
resistivity, one requires real-frequency data. Therefore, we use
the maximum entropy method to get the analytical contin-
ued Green’s function [56,59]. From the Green’s function in
real frequency, one can then calculate the local DOS [A(ω)],
which reads

A(ω) = − 1

π
Im G(ω+). (9)

For the HM we shall show the total DOS, i.e., the av-
erage of the two spin projections, AHM(ω) = 1

2

∑
σ Aσ (ω).

Whereas, for the DHM, the total DOS results from the av-
erage of spin and B/AB-symmetry projections, ADHM(ω) =
1
4

∑
σ (AB,σ (ω) + AAB,σ (ω)). Expressions for the conductiv-

ity of the HM and the DHM are given in the Appendices.

III. RESULTS AND DISCUSSION

A. Hubbard model with antiferromagnetic symmetry

We begin with the MIT in the single-band HM model
case, which occurs in the presence of antiferromagnetism. In
the absence of an electronic bath, the low-temperature state
is an AFM insulator, and there is a U -dependent TN where
magnetization goes to zero, and the gap closes, and one has the
T -driven MIT. The presence of an AFM state is signaled by
the staggered magnetization (ms = |n↑ − n↓|) order parame-
ter.

Figure 2 shows how ms continuously goes to zero as a
function of T for U = 1.7 and for U = 4.0, when �=0. In-
terestingly, similarly as the effect of T , we observe that � can
also suppress the AFM ordering in HM at both low and high
U , when T is fixed at a small value. One may be tempted to
conclude that � behaves qualitatively as T . However, the sys-
tematic results shown in Fig. 3 shows otherwise. They display

FIG. 2. [(a),(b)] The variation of the staggered magnetization as
a function of T and �, respectively, for HM at U = 1.7; [(c),(d)]
the same at U = 4.0. We observe that both thermal fluctuations and
� can suppress the AFM order, seemingly playing a qualitatively
similar role [T = 0.01 in (b) and (d)].

the variation of Néel’s temperature (TN ) and, similarly the �N

that signals the critical � value that drives the magnetization to
zero, as a function of U . The data reveals that the dependence
is qualitatively different. In the absence of reservoirs, TN has
the well-known nonmonotonous dependence on U [52,60,61].
For small U , TN increases with increasing U , as the AFM gap
increases with both ms and U . While at large U , TN changes its
behavior and decreases with increasing U , since the magnetic
exchange coupling decreases as ∼t2/U . For the case of � at
low T we observe that for low values of interaction U , it seems
to produce an effect similar to T , as was expected from the
results of Fig. 2. However, in stark contrast, we observe that
at larger values of U , the critical �N increases monotonously

FIG. 3. (a) T -U phase diagram for � = 0.0 and (b) �-U phase
diagram for T = 0.01 of the half-filled HM with AFM symmetry. M,
I, and B label metal, insulator, and bad metal, respectively. Dashed
lines approximately denote the phase boundaries.
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FIG. 4. Comparison of the evolution of the total (i.e., spin aver-
aged) local DOS as a function of T at fixed � = 0.0 (a) and of � at
fixed T = 0.01 (b), at interaction U = 1.7, for the AFM-HM across
the AFM to PM. The line colors correspond to the spots along the ms

curve of Fig. 2.

with the interaction strength. This means that the reservoir is
no longer as effective in suppressing the magnetism.

The physics driving the suppression of ms with increasing
in � is qualitatively different from the thermal disorder in-
duced by T . It can be attributed to the Kondo screening of
magnetic moment at each site of HM due to the electronic
reservoir. This can be most clearly seen if, for a moment, we
set the hopping t of the HM to zero, and we obtain a col-
lection of single Anderson impurity models (AIM), at every
site. The bath of the AIM is controlled by the strength of �.
Thus, the local moment of the lattice sites are induced by U ,
but screened by � through the Kondo effect. Therefore, with
increasing U , one needs a larger �N to screen mS and suppress
the magnetic order.

To gain a deeper understanding of the observed contrast
between similar behaviors of �N and TN at small U but dif-
ferent at large U , we study the evolution of the local DOS.
We have selected specific points across the T - and �-driven
transitions indicated by the color spots in Fig. 2. The panels
(a) and (b) of Fig. 4 display the variation of the local DOS
with T and �, respectively, for U = 1.7. We recall that the
DOS looks symmetric because we are showing the total DOS,
which is the sum of the up and down spin components, since
we are mostly interested in its qualitative evolution. At small
T , the HM has AFM order and, consequently, the DOS has
a gap at the Fermi energy. As one increases T , ms decreases,
and the gap gradually decreases and fills up. For large enough
T , T � 0.09, ms vanishes and the DOS develops a prominent
quasi-particle peak at Fermi energy. This is the familiar Kondo
peak that develops in the associated impurity problem [52].
A qualitatively similar behavior is observed in the variation
of DOS as one increases � while keeping T fixed. However,
some quantitative differences are apparent. For instance, the
Hubbard sidebands are not so well resolved as the system
becomes metallic. This can be understood from the fact that
the metallic quasiparticle peak is the manifestation of the
Kondo peak in the associated impurity problem. In contrast to
the previous � = 0 case, now, the finite value of � implies that
there is a nonrenormalizable component of the impurity bath,
which does not change under the self-consistency condition
7. This “wide” hybridization increases as � increases, driving
the width of the Kondo peak larger and larger. Hence, the

FIG. 5. Comparison of the evolution of the total (i.e., spin aver-
aged) local DOS as a function of T at fixed � = 0.0 (a) and of � at
fixed T = 0.01 (b), at interaction U = 4.0, for the AFM-HM across
the AFM to PM. The line colors correspond to the spots along the ms

curve of Fig. 2.

quasiparticle peak is wider, taking significant spectral weight
from the Hubbard band components.

In contrast, at large U = 4.0, the evolution of the local
DOS with increasing T and � differs qualitatively from the
low U case. The DOS shown in the panel (a) of Fig. 5
hardly changes as T is increased, even though the system
undergoes an AFM to PM transition [62,63]. In this case,
therefore, instead of an insulator-to-metal transition we have a
insulator-to-insulator one. At this large U , the charge degrees
of freedom are frozen, which is signaled by the large Mott gap
that can be observed. Hence, only the spin degrees of freedom
respond to increasing T , which leads to the suppression of
the (antiferro)magnetic polarization, but does not affect the
charge gap in the DOS, as typical in the Heisenberg regime.

In contrast, the evolution as a function of � for low T =
0.01 is qualitatively different. We observe that in this case,
the local DOS results do reveal an insulator-metal transition.
Nevertheless, this transition is also qualitatively different from
that of the lower U case. The main feature that emerges in
the DOS upon the increase of � is the emergence of a two
in-gap peak structure around zero frequency, within the Mott-
Hubbard band gap. We can understand these two features in
terms of the associated impurity problem. Since the state is
AF, the spin symmetry is broken into a Néel type of order
into two sublattices. Thus, at a given lattice site, the one type
of spin has a larger occupation than the opposite, and vice
versa on the neighboring site. Thus, one sublattice will have
a, say, positive magnetic moment with a higher occupation of
the spin-up electrons, while the other sublattice will have the
opposite. Thus, each associated impurities, one corresponding
at either lattice, will realize a different state. Of course, there is
up-down or particle-hole symmetry relating those two states,
due to the Néel order.

The crucial point is, nevertheless, that both impurities are
in an environment that is not fully gapped as before, but has
low-energy states due to the finite �. This can be directly seen
from the hybridization term associated to � in Eq. (8). The
consequence for this is that there will be a small Kondo peak
emerging near the Fermi energy in the solution of the associ-
ated impurity. Since we have two inequivalent impurity sites,
one for each sublattice, they lead to the two small quasiparticle
peaks that appear in the local DOS in Fig. 5. As we discussed
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before, the contribution to the effective bath associated to
� does not renormalize and remains the same for both spin
projections and for both sublattices. As � increases we see
that the strength of the Kondo peaks increases. Eventually, the
screening becomes so strong that the magnetic order collapses
as ms → 0 at �N . At that point, there is a sole quasiparticle
peak in the local DOS since the spin symmetry is restored, and
the system has gone through an insulator to strongly correlate
metal transition.

B. Hubbard and dimer Hubbard models
in the paramagnetic state

In previous sections, we have compared the effects of T
and � on the AFM-PM transition of the HM, which are
insulator-to-metal at low U and insulator-to-insulator at large
U . We observed that the effects of bath coupling can be con-
sidered qualitatively similar at low-interaction U , but become
substantially different at large U . We point out that both, the
T - and �-driven transitions, start out from an insulator state at
all U , which is gapped. While this initial study was motivated
by the experimental results on the transition in the V2O3

heterostructure, it may be interesting to complete the picture
to consider the case of the effect of � in the well-studied
paramagnetic MIT in the Hubbard model as well [52]. In fact,
as in this transition the AF order is absent, the system starts
in a correlated metal without a gap. So in this section we shall
consider the interesting question of whether � may also play
an analogous role as T does, but this time within paramagnetic
states. We shall consider two paradigmatic strongly correlated
MIT, that of the HM and the DHM one.

1. Phase diagrams

The MIT in the Hubbard model within the paramagnetic
phase is by now a well-known paradigm of a strongly cor-
related phenomena [52]. The phase diagram in the T − U
plane shows a metallic region at low U and low T , a Mott
insulator at high U and low T , and a bad metal at higher
T in the intermediate U regime. One of the most interesting
features is the existence of a coexistence region in between the
correlated metal and the Mott insulator, which gives a first-
order character to the transition. These well-known results are
shown in the phase diagram in panel (a) of Fig. 6. Following a
similar strategy as before, we compared the T -driven behavior
with that of �. The results are shown in the panel (b) of the
same figure. We strikingly observe that the behavior of the
two parameters is qualitatively similar and the main feature of
a triangular coexistence region is preserved. However, there is
a qualitative difference, as it can be observed that the tilting of
the triangular region has changed.

To gain further insight we turned to the other basic model
that we are considering in the present paper, the DHM, which
may be relevant, as a first approximation, to the experiments
in VO2 heterostructures. Indeed, the DHM also presents a
coexistence region in the T − U phase diagram within the
paramagnetic phase [45,46,48]. The phase diagram obtained
with CT-QMC simulations is shown in the panel (c) of Fig. 6.
We observe in this case that the triangular region is tilted
to the right, which is a common feature of cluster DMFT
models, and the DHM can be considered as the simplest of

FIG. 6. (a) T -U phase diagram at � = 0.0 (b) �-U phase the dia-
gram at T = 0.01 of the half-filled HM with PM symmetry. (c) T -U
phase diagram at � = 0.0 (d) �-U Phase diagram at T = 0.005 of
the DHM. In the T -U (�-U ) phase diagram, while increasing U at
a given T (�), the system goes from metal to insulator at TMIT(U)
[�MIT(U)] and while decreasing U system goes from insulator to
metal at TIMT(U) [�IMT(U)]. The triangular regions denote the co-
existence of solutions, which is consistent with the first-order nature
of the experimentally observed transitions.

those ones [48]. We explored by numerical simulations the
fate of the triangular region at the lowest T and increasing �.
The obtained phase diagram is shown in the panel (d) of the
figure. Once again, we observe the feature that the coupling to
the electronic reservoir seems to play a similar role as the T ,
as now even the triangular coexistence region shows a similar
tilt.

2. Density of states

To understand further the effect of T and � at small U and
at large U , we study the systematic changes of DOS for the
two models at small and large U . We begin with the results at
low U , which are obtained by CT-QMC plus maximal entropy
analytic continuation. In Fig. 7 we show the DOS at the small
U = 1.7 (i.e., metallic side of the transition) for the HM and
DHM. Interestingly, we observe that increasing both T and
� has a qualitatively similar effect in the DOS. They can
both control the intensity of the quasiparticle peak; however,
increasing T provokes a more significant transfer of weight
toward the Hubbard bands with respect to �.

We also explore a stronger correlated state for the DHM,
namely at U = 2.2 within the coexistence region, which is
considered relevant for the VO2 compound [48]. In this case,
we start from the insulator state within the coexistence, which
as a function of T exhibits a first-order insulator-to-metal
transition in qualitative agreement with the mentioned com-
pound. The results for the evolution of the DOS are shown in
the panel (e) of Fig. 7, where we observe the metallization
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FIG. 7. Side-by-side comparison of the evolution of DOS as a
function of T with fixed � = 0.0 [(a), (c), and (e)] and � with fixed
T [(b), (d), and (f)] in weak interaction region for PM-HM and PM-
DHM. (a) (b) and (c) (d) are for PM-HM and PM-DHM at U=1.7,
respectively. (e) (f) are for PM-DHM at U = 2.2 [64].

of the correlated insulator. In the panel (f), we report the
behavior as a function of � for the same starting state. Quite
strikingly, we observe a similar behavior. The gap is filled and
a prominent quasi-particle peak emerges at the Fermi energy,
reminiscent of Kondo physics. Nevertheless, we should also
mention that a relatively small difference seems to be present
in the evolution of the respective spectra, since at intermediate
values of � we observe two small quasiparticle peaks at the
inner edges of the Hubbard bands, which are not present (or
very subtle) in the T -driven case. Another difference is that in
the correlated metal state driven by � the Hubbard bands have
relative smaller spectral intensity as compared to the T -driven
transition, which is similar to the effect noted at smaller U .

For completeness, we also considered the large U region,
where both systems are deep in the Mott insulator phase.
We adopt the relatively large value U = 4.0. The results are
shown in Fig. 8, where we track changes in the DOS for
the two models (HM and DHM) as a function of T and �.
With increasing temperature at � = 0 on the left-hand side we

FIG. 8. Side-by-side comparison of the evolution of DOS as a
function of T [(a),(c)] and � [(b),(d)] at strong interaction U = 4.0
for HM and DHM. [(a),(b)] DOS at various T for fixed � = 0.0
and at various � for fixed T , respectively, of HM without AFM
symmetry. [(c),(d)] DOS of DHM at U = 4.0 at various T with fixed
� = 0.0 and at various � for fixed T = 0.05 respectively.

observe that the DOS hardly changes for both, HM and DHM.
Which is natural since the excitation gap at U = 4 is much
larger than T . However, in striking contrast, the respective
DOSs at low T and increasing �, shown on the right-hand
side of the figure, develop a prominent quasiparticle peak at
the Fermi energy.

The interpretation of these behavior also is rooted in the
Kondo effect. Indeed, the large value of U create a strong local
magnetic model, which at � = 0 is essentially an uncoupled
spin, which is a peculiarity of the Mott paramagnet [52].
When the coupling with the electronic bath is switched on,
the bath electrons immediately screen the local spins forming
Kondo resonances. We may note that a emergence of a Kondo
peak in a large Mott gap was reported in systems with a
narrow correlated band coupled with a wide conduction band
[65] and in the heterostructure of a metal coupled to a Mott
insulator [39,40].

Comparing Figs. 7 and 8, and consistent with the Kondo
origin of the phenomenon, we observe that the quasiparticle-
peak weight increases with � at constant U , but decreases
with increasing U at constant �. At large U , both the HM
and the DHM can be driven across an MIT by the intensity
of the coupling to the reservoir �, but not by T . We may also
point out that at large U we also observe in the DOS of the
DHM the two small edge quasiparticle peaks that develop as
the gap closes.

From the systematic study of the model done so far, with
and without magnetic order and at low and large values of U ,
we observe that there is an emergent pattern. Namely, we can

195171-7



S. BAG et al. PHYSICAL REVIEW B 109, 195171 (2024)

condense our results noting that to zero order, the effect of
T and � are qualitatively similar when the interaction U is
relatively low. One may be tempted to say that this is in the
metallic state and the reason is that the local coupling to the
incoherent electron bath plays an analogous role as thermal
scattering. This is qualitatively true; however, the argument
has even more general validity, since in the AFM insulator at
low U , both T and � also have a qualitatively similar effect.
Interestingly, in a recent paper [66] the qualitative difference
of the behavior of the AFM Hubbard model at low and large
U was investigated. The results showed that in the former
case the system is described by a Slater AFM insulator where
the bands are splitted by a gap but retain their coherent (i.e.,
quasiparticle) character. In contrast, at large U the system
is a Heisenberg AFM insulator where the (Hubbard) bands
are fully incoherent. Hence, in the low U AFM the cou-
pling with the local electron reservoirs disturb the coherent
character of the quasi-particle propagation, pretty much as T
does.

For completeness, we have constructed a full 3D T − U −
� phase diagram of the HM and DHM where the global be-
havior in parameter space may be appreciated and is presented
in the Supplementary Material.

IV. COMPARISON WITH EXPERIMENTS

We now compare our results with the experimentally ob-
served effect of light illumination on the MIT of vanadate
thin films with a deposited layer of photoconductor CDS. The
panel (a) of Fig. 9 shows the variation of resistivity (ρ) of
CdS/V2O3 as a function of T for various values of illumi-
nation intensity P (that we qualitatively identify with � see
Sec. II). The system shows a sharp resistance change across
the insulating to metal transition. Significantly, we also note
that the transition temperature decreases with increasing illu-
mination intensity. The system’s TMIT is driven down to zero
temperature for high enough light intensity. We may favorably
compare those experimental results with our calculations of
the variation of resistivity ρ(T ) in the AFM-HM coupled with
the electronic reservoir at U = 1.7 for various values of �,
that we show in the panel (b) of Fig. 9. For better comparison,
we scaled the T with Néel temperature (TN ) at � = 0, which
is 0.09. The resistivity of our model calculation also shows a
sharp decrease of resistivity across MIT, which is associated
with the AFM to PM transition. Importantly, one can also note
that transition temperature decreases with increasing �. Thus,
AFM Hubbard model coupled with an electronic reservoir
can qualitatively capture the suppression of TMIT observed in
CdS/V2O3. While the simple one-band Hubbard model may
seem a simplistic model of V2O3, and in many aspects it is,
it is worthy to note that the same model for the same value
of the parameter U was adopted to successfully account for
nontrivial large negative magnetoresistance effects observed
in thin films of the same compound [43].

We now turn to the experiments done on VO2. The panel
(c) of Fig. 9 shows the experimental resistivity of CdS/VO2

for various values of illumination intensity. The system shows
a sharp insulating to metal transition as a function of tem-
perature with sharp resistance change at TMIT. Similarly, as
before, we scale the T with the TMIT = 308 K of CdS/VO2

FIG. 9. Comparing temperature-dependent experimental resis-
tivity with theoretically calculated resistivity for various light
intensities (P) on CdS/V2O3 and CdS/VO2. (Left) Experimental
resistivity (ρ) for CdS/V2O3 (top) and CdS/VO2 (bottom) [17].
(Right) Variation of ρ of HM-AFM at U = 1.7 (top) and DHM at
U = 2.2 (bottom), as a function of T for various values of �. We
scale the T with the TMIT of CdS/V2O3 with no light on CdS, which
is 148 K.

with no light on CdS. Rather surprisingly, there is also a
reduction in TMIT upon illumination as seen in CdS/V2O3,
but the magnitude of the effect for the same light intensity is
much less sensitive. We turn to the DHM and set the parameter
as were adopted in Refs. [46,48], namely t⊥= 0.3 and U =
2.2 (near the coexistence region) at half-filling (μ = U/2)
where that model successfully accounted for some experi-
mentally observed features in VO2. The panel (d) of Fig. 9
shows the calculated resistivity ρ(T ) of the DHM coupled
with the electronic reservoir for various values of �. For better
comparison, we scaled T with the critical temperature Tc =
0.03 at � = 0.0. One can note that transition temperature
decreases with increasing � as observed for CdS/VO2 and
in the previous case. However, the effect seems too strong as
compared to the experimental findings. We have tried varying
different parameters in different regions of the phase diagram,
but did not find any better agreement.

Since the comparably simple Hubbard model has ac-
counted for V2O3 and in view of past success of the DHM
model to account for aspects of VO2, we should try to spec-
ulate on the origin of the discrepancy. One natural missing
ingredient in the model may be that the structural transi-
tion may play a significant role. VO2 has a larger structural
transition that is concurrent with the MIT than V2O3, so its
relative effect may be more significant [67]. In fact, one may
argue that since a structural transition can be understood as
due to the condensation of phonon fluctuations, therefore a
purely electronic reservoir may not be effective in driving
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the system sufficiently. Therefore the effect is still present
but in a much smaller magnitude as the MIT is always
arrested by the inability of the CdS to promote phononic
excitations.

V. CONCLUSIONS

We study the effect of the photoconductor CdS on two
strongly correlated vanadate thin films. The theoretical mod-
eling that we introduced consists of a collection of incoherent
electronic reservoirs coupled at every lattice site of a Hubbard
and a dimer Hubbard model. We note that besides the mo-
tivation to account for the experimental observations, these
models are also interesting from a fundamental physics point.
Indeed, the coupling with electronic reservoirs is a required
feature in order to describe electrons on lattices, driven out-
of-equilibrium by external electric fields. The currents that
develop produce heat that need to be evacuated via reservoirs
to allow the system to thermally equilibrate [68].

The coupling strength of those models with the electronic
reservoirs is characterized by a parameter �, which we argued
may play the similar role as the illumination power. These
models are solved using DMFT with HYB-CTQMC as an
impurity solvers.

From the systematic study we observed that � and T
played a qualitatively similar role, so long the underlying
electronic structure could be described with quasiparticles,
which is at low to moderate U , regardless whether the system
is a metal or an insulator. We trace that to the fact that the local
coupling with the reservoir produces a source of electronic
scattering, similarly as the T does.

This observation provided a natural explanation to the
dramatic suppression of the transition temperature in V2O3,
where the insulator state is due to the opening of an antiferro-
magnetic gap, i.e., of electronic origin. Hence the electronic
reservoir was efficient to suppress it. In contrast, the agree-
ment was not so successful for the VO2 experiments, which
show a significant smaller effect of reduction in the transition
temperature. We argue that this points to a prominent role of
the structural transition, which is couple to lattice vibration
degrees of freedom [49], hence the electronic reservoir is less
efficient.

It will be interesting in future work to consider the exten-
sion of our hybrid model to other strongly correlated models,
such as the double exchange model and the periodic Ander-
son model, which are relevant for other material compounds
and may open the way to new forms of control of strongly
correlated phenomena.
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FIG. 10. T -�-U phase diagram of HM at half-filling. The co-
existence region (colored region) in the T − U plane of the phase
diagram shifted toward the right as one increases � and Tc decreases
with increasing �.

APPENDIX A: DC CONDUCTIVITY

The Drude conductivity of HM on Bethe lattice was calcu-
lated using

�σHM(ω = 0) = 4
∫

dερ(ε)
∫

dω

(
−∂ f (ω)

∂ω

)
ω=0

×
(

D2 − ε2

3

)(
A↑(ε, ω)A↓(ε, ω)

+ A2
off (ε, ω)

)
(A1)

where Aσ (ε, ω) = −1
π

Im zσ̄ (ω)
zσ̄ (ω)zσ (ω)−ε2 and Aoff (ε, ω) =

−1
π

Im ε
zσ̄ (ω)zσ (ω)−ε2 with zσ (ω) = ω + μ − σ (ω) − 
� (ω).

FIG. 11. T -�-U phase diagram of DHM at half-filling. The co-
existence region (colored region) in the T − U plane of the phase
diagram shifted toward the right as one increases � and Tc decreases
with increasing �.
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D2−ε2

3 is the velocity of electron of energy ε in Bethe lattice
[69].

The DC conductivity of DHM on Bethe lattice was calcu-
lated using Eq. [47],

�σDHM(ω = 0) = 2
∫

dερ(ε)
∫

dω

(
−∂ f (ω)

∂ω

)
ω=0

×
(

D2 − ε2

3

)(
A2

AB(ε, ω) + A2
B(ε, ω)

)
(A2)

where A2
AB(ε, ω) and A2

B(ε, ω) are DOS of antibond and bond
respectively.

APPENDIX B: METAL-INSULATOR
COEXISTENCE REGIONS

We display here the metal-insulator coexistence region
in the full T − U − � phase diagram. Notice the differ-
ence in the tilting between the Hubbard (HM) (Fig. 10) and
Dimer Hubbard (DHM) (Fig. 11) models by cutting T − U
planes.

[1] J. Del Valle, J. G. Ramírez, M. J. Rozenberg, and I. K. Schuller,
Challenges in materials, and devices for resistive-switching-
based neuromorphic computing, J. Appl. Phys. 124, 211101
(2018).

[2] P. Stoliar, J. Tranchant, B. Corraze, E. Janod, M.-P. Besland, F.
Tesler, M. Rozenberg, and L. Cario, A leaky-integrate-and-fire
neuron analog realized with a Mott insulator, Adv. Funct. Mater.
27, 1604740 (2017).

[3] M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, A
scalable neuristor built with Mott memristors, Nat. Mater. 12,
114 (2013).

[4] R. Luo, X. Zhao, L. Chen, T. J. Legvold, H. Navarro, I. K.
Schuller, and D. Natelson, Spin Seebeck effect at low tem-
peratures in the nominally paramagnetic insulating state of
vanadium dioxide, Appl. Phys. Lett. 121, 102404 (2022).

[5] E. Qiu, P. Salev, L. Fratino, R. Rocco, H. Navarro, C. Adda, J.
Li, M.-H. Lee, Y. Kalcheim, M. Rozenberg, and I. K. Schuller,
Stochasticity in the synchronization of strongly coupled spiking
oscillators, Appl. Phys. Lett. 122, 094105 (2023).

[6] S. Cheng, M.-H. Lee, R. Tran, Y. Shi, X. Li, H. Navarro,
C. Adda, Q. Meng, L.-Q. Chen, R. C Dynes et al., In-
herent stochasticity during insulator–metal transition in VO2,
Proc. Natl. Acad. Sci. USA 118, e2105895118 (2021).

[7] S. Kumar, M. D. Pickett, J. P. Strachan, G. Gibson, Y. Nishi, and
R. S. Williams, Local temperature redistribution, and structural
transition during Joule-heating-driven conductance switching in
VO2, Adv. Mater. 25, 6128 (2013).

[8] S. Chen, Z. Wang, L. Fan, Y. Chen, H. Ren, H. Ji, D.
Natelson, Y. Huang, J. Jiang, and C. Zou, Sequential insulator-
metal-insulator phase transitions of VO2 triggered by hydrogen
doping, Phys. Rev. B 96, 125130 (2017).

[9] M. Yang, Y. Yang, B. Hong, L. Wang, K. Hu, Y. Dong, H. Xu,
H. Huang, J. Zhao, H. Chen et al., Suppression of structural
phase transition in VO2 by epitaxial strain in vicinity of metal-
insulator transition, Sci. Rep. 6, 1 (2016).

[10] D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A.
Muller, X. Pan, R. Ramesh, and R. Uecker, Elastic strain en-
gineering of ferroic oxides, MRS Bull. 39, 118 (2014).

[11] N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao,
A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz
et al., Control of the metal–insulator transition in vanadium
dioxide by modifying orbital occupancy, Nat. Phys. 9, 661
(2013).

[12] Y. H. Matsuda, D. Nakamura, A. Ikeda, S. Takeyama,
Y. Suga, H. Nakahara, and Y. Muraoka, Magnetic-field-

induced insulator–metal transition in W-doped VO2 at 500 T,
Nat. Commun. 11, 3591 (2020).

[13] B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R.
Lopez, Electric-field-driven phase transition in vanadium diox-
ide, Phys. Rev. B 84, 241410(R) (2011).

[14] J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and
S. S. P Parkin, Suppression of metal-insulator transition in VO2

by electric field–induced oxygen vacancy formation, Science
339, 1402 (2013).

[15] C. Wan, E. H. Horak, J. King, J. Salman, Z. Zhang, Y. Zhou,
P. Roney, B. Gundlach, S. Ramanathan, R. H. Goldsmith et al.,
Limiting optical diodes enabled by the phase transition of vana-
dium dioxide, ACS Photon. 5, 2688 (2018).

[16] K. Dong, S. Hong, Y. Deng, H. Ma, J. Li, X. Wang, J. Yeo, L.
Wang, S. Lou, K. B. Tom et al., A lithography-free, and field-
programmable photonic metacanvas, Adv. Mater. 30, 1703878
(2018).

[17] H. Navarro, J. del Valle, Y. Kalcheim, N. M. Vargas, C. Adda,
M.-H. Lee, P. Lapa, A. Rivera-Calzada, I. A Zaluzhnyy, E. Qiu
et al., A hybrid optoelectronic Mott insulator, Appl. Phys. Lett.
118, 141901 (2021).

[18] Y. Ke, S. Wang, G. Liu, M. Li, T. J. White, and Y. Long,
Vanadium dioxide: The multistimuli responsive material, and
its applications, Small 14, 1802025 (2018).

[19] A. Singer, J. G. Ramirez, I. Valmianski, D. Cela, N. Hua,
R. Kukreja, J. Wingert, O. Kovalchuk, J. M. Glownia, M.
Sikorski, M. Chollet, M. Holt, I. K. Schuller, and O. G.
Shpyrko, Nonequilibrium phase precursors during a photoex-
cited insulator-to-metal transition in V2O3, Phys. Rev. Lett. 120,
207601 (2018).

[20] H. Navarro, A. C. Basaran, F. Ajejas, L. Fratino, S. Bag, T.
D. Wang, E. Qiu, V. Rouco, I. Tenreiro, F. Torres, A. Rivera-
Calzada, J. Santamaria, M. Rozenberg, and I. K. Schuller,
Light-induced decoupling of electronic, and magnetic proper-
ties in manganites, Phys. Rev. Appl. 19, 044077 (2023).

[21] C. Adda, H. Navarro, J. Kaur, M.-H. Lee, C. Chen, M.
Rozenberg, S. P Ong, and I. K. Schuller, An optoelec-
tronic heterostructure for neuromorphic computing: CdS/V3O5,
Appl. Phys. Lett. 121, 041901 (2022).

[22] J. A Aman, Brian J. DeSalvo, F. B Dunning, T. C Killian,
S. Yoshida, and J. Burgdörfer, Trap losses induced by near-
resonant Rydberg dressing of cold atomic gases, Phys. Rev. A
93, 043425 (2016).

[23] J. Zeiher, R. Van Bijnen, P. Schauß, S. Hild, J.-y. Choi,
T. Pohl, I. Bloch, and C. Gross, Many-body interferometry

195171-10

https://doi.org/10.1063/1.5047800
https://doi.org/10.1002/adfm.201604740
https://doi.org/10.1038/nmat3510
https://doi.org/10.1063/5.0096313
https://doi.org/10.1063/5.0129205
https://doi.org/10.1073/pnas.2105895118
https://doi.org/10.1002/adma.201302046
https://doi.org/10.1103/PhysRevB.96.125130
https://doi.org/10.1038/s41598-016-0001-8
https://doi.org/10.1557/mrs.2014.1
https://doi.org/10.1038/nphys2733
https://doi.org/10.1038/s41467-020-17416-w
https://doi.org/10.1103/PhysRevB.84.241410
https://doi.org/10.1126/science.1230512
https://doi.org/10.1021/acsphotonics.8b00313
https://doi.org/10.1002/adma.201703878
https://doi.org/10.1063/5.0044066
https://doi.org/10.1002/smll.201802025
https://doi.org/10.1103/PhysRevLett.120.207601
https://doi.org/10.1103/PhysRevApplied.19.044077
https://doi.org/10.1063/5.0103650
https://doi.org/10.1103/PhysRevA.93.043425


COUPLING STRONGLY CORRELATED ELECTRON SYSTEMS … PHYSICAL REVIEW B 109, 195171 (2024)

of a Rydberg-dressed spin lattice, Nat. Phys. 12, 1095
(2016).

[24] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and
P. Zoller, Preparation of entangled states by quantum Markov
processes, Phys. Rev. A 78, 042307 (2008).

[25] J. Kaczmarczyk, H. Weimer, and M. Lemeshko, Dissipative
preparation of antiferromagnetic order in the Fermi-Hubbard
model, New J. Phys. 18, 093042 (2016).

[26] S. Diehl, A. Micheli, A. Kantian, B. Kraus, HP Büchler, and
P. Zoller, Quantum states, and phases in driven open quantum
systems with cold atoms, Nat. Phys. 4, 878 (2008).

[27] A. Amaricci, C. Weber, M. Capone, and G. Kotliar, Approach
to a stationary state in a driven Hubbard model coupled to a
thermostat, Phys. Rev. B 86, 085110 (2012).

[28] J. Li, C. Aron, G. Kotliar, and J. E. Han, Electric-field-driven
resistive switching in the dissipative Hubbard model, Phys. Rev.
Lett. 114, 226403 (2015).

[29] J. del Valle, N. M. Vargas, R. Rocco, P. Salev, Y. Kalcheim,
P. N. Lapa, C. Adda, M.-H. Lee, P. Y. Wang, L. Fratino et al.,
Spatiotemporal characterization of the field-induced insulator-
to-metal transition, Science 373, 907 (2021).

[30] J. del Valle, P. Salev, F. Tesler, N. M. Vargas, Y. Kalcheim, P.
Wang, J. Trastoy, M.-H. Lee, G. Kassabian, J. G. Ramírez et al.,
Subthreshold firing in Mott nanodevices, Nature (London) 569,
388 (2019).

[31] P. Diener, E. Janod, B. Corraze, M. Querré, C. Adda, M.
Guilloux-Viry, S. Cordier, A. Camjayi, M. Rozenberg, M. P.
Besland, and L. Cairo, How a dc electric field drives Mott
insulators out of equilibrium, Phys. Rev. Lett. 121, 016601
(2018).

[32] R. Rocco, J. del Valle, H. Navarro, P. Salev, I. K. Schuller,
and M. Rozenberg, Exponential escape rate of filamentary in-
cubation in Mott spiking neurons, Phys. Rev. Appl. 17, 024028
(2022).

[33] S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J.
Mannhart, Tunable quasi-two-dimensional electron gases in ox-
ide heterostructures, Science 313, 1942 (2006).

[34] A. Euverte, F. Hébert, S. Chiesa, R. T. Scalettar, and G. G.
Batrouni, Kondo screening, and magnetism at interfaces,
Phys. Rev. Lett. 108, 246401 (2012).

[35] M. Jiang, G. G. Batrouni, and R. T. Scalettar, Density of states,
and magnetic correlations at a metal-Mott insulator interface,
Phys. Rev. B 86, 195117 (2012).

[36] W. Hu, R. T. Scalettar, E. W. Huang, and B. Moritz, Effects of
an additional conduction band on the singlet-antiferromagnet
competition in the periodic, Anderson model, Phys. Rev. B 95,
235122 (2017).

[37] S. Sen and N. S. Vidhyadhiraja, Quantum critical Mott tran-
sitions in a bilayer Kondo insulator-metal model system,
Phys. Rev. B 93, 155136 (2016).

[38] R. Peters, Y. Tada, and N. Kawakami, Kondo effect in f -
electron superlattices, Phys. Rev. B 88, 155134 (2013).

[39] R. W. Helmes, T. A. Costi, and A. Rosch, Kondo proxim-
ity effect: How does a metal penetrate into a Mott insulator?
Phys. Rev. Lett. 101, 066802 (2008).

[40] G. Borghi, M. Fabrizio, and E. Tosatti, Strongly correlated
metal interfaces in the Gutzwiller approximation, Phys. Rev. B
81, 115134 (2010).

[41] H. Zenia, J. K Freericks, H. R Krishnamurthy, and T. Pruschke,
Appearance of fragile Fermi liquids in finite-width Mott

insulators sandwiched between metallic leads, Phys. Rev. Lett.
103, 116402 (2009).

[42] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transi-
tions, Rev. Mod. Phys. 70, 1039 (1998).

[43] J. Trastoy, A. Camjayi, J. del Valle, Y. Kalcheim, J.-P.
Crocombette, D. A. Gilbert, J. A. Borchers, J. E. Villegas, D.
Ravelosona, M. J. Rozenberg, and I. K. Schuller, Magnetic field
frustration of the metal-insulator transition in V2O3, Phys. Rev.
B 101, 245109 (2020).

[44] S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges,
Dynamical singlets, and correlation-assisted Peierls transition
in VO2, Phys. Rev. Lett. 94, 026404 (2005).

[45] O. Nájera, M. Civelli, V. Dobrosavljević, and M. J. Rozenberg,
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