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Relevant long-range interaction of the entanglement Hamiltonian emerges
from a short-range gapped system
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Beyond the Li-Haldane-Poilblanc conjecture, we find the entanglement Hamiltonian (EH) is actually not
closely similar to the original Hamiltonian on the virtual edge. Unexpectedly, the EH has some relevant
long-range interacting terms which hugely affect the physics. Without loss of generality, we study a spin-1/2
Heisenberg bilayer to obtain the entanglement information between the two layers through our newly developed
quantum Monte Carlo scheme, which can simulate large-scale EH. Although the entanglement spectrum carrying
the Goldstone mode seems like a Heisenberg model on a single layer, which is consistent with Li-Haldane-
Poilblanc conjecture, we demonstrate that there actually exists a finite-temperature phase transition of the EH.
The results violate the Mermin-Wagner theorem, which means there should be relevant long-range terms in the
EH. It reveals that the Li-Haldane-Poilblanc conjecture ignores necessary corrections for the EH which may lead
totally different physics.
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I. INTRODUCTION

Quantum entanglement is a powerful tool to extract and
characterize the informational, field-theoretical, and topolog-
ical properties of quantum many-body systems [1–4], which
combines the conformal field theory (CFT) and the categorical
description of the problem [5–17]. Low-lying entanglement
spectrum (ES) has been widely employed as a fingerprint of
CFT and topology in the investigation in highly entangled
quantum matter [18–36].

Besides the famous gapped phase in the spin-integer an-
tiferromagnetic Heisenberg chain as Haldane’s conjecture
[37,38], there is another well-noted Haldane’s conjecture
about the relationship between the entanglement spectrum
and edge energy spectrum. More than one decade ago, Li
and Haldane creatively pointed out the ES may be a more
precise physical quantity rather than entanglement entropy
(EE) [39]. Furthermore, they demonstrated that the general
ν = 5/2 topological states have the same low-lying ES to
identify the topology and CFT structure. In addition, they
predicted that the ES of the topological state would be very
similar to the energy spectrum of the edge state, that is, the
Li-Haldane conjecture (Haldane’s conjecture for ES). The
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ES is defined as the energy spectrum of the corresponding
entanglement Hamiltonian (EH). If a total system is separated
into subsystem A and environment Ā, then the EH of A, i.e.,
HA, can be written as HA = − ln ρA, where the ρA = TrĀ(ρ) is
the reduced density matrix (RDM) of the subsystem A.

The conjecture seems not only limited to the topological
states. Two years later, Poilblanc pointed out, via numerical
results, that the relation between the low-lying ES and edge
energy spectrum exists generally in quantum spin systems
beyond topological states [40]. Thereafter, the conjecture has
also been called as Li-Haldane-Poilblanc conjecture and ex-
tended into general cases beyond topological systems. Then,
Qi, Katsura, and Ludwig theoretically proved the general re-
lationship between ES of (2 + 1)d gapped topological states
and the spectrum on their (1 + 1)d edges exactly when the
edge is a CFT [21].

Recent studies have explored the EH in greater depth,
using a combination of field theory, numerical simulations,
and experimental data [41–56]. The correspondence between
edge and entanglement spectra has been successfully applied
to many quantum states of matter with topological properties
[28,57–59]. Previous studies on a one-dimensional (1D) sys-
tem implies the EH might not strictly be a short-range one,
but instead involves long-range interactions characterized by
exponential decay. Remarkably, these long-range interactions
appear to have little impact on the short-range entangle-
ment dynamics. The low-lying ES in these systems shows
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similarities with both the EH and the edge energy spec-
trum, leading us to consider that the long-range terms of
the entanglement Hamiltonian might be insignificant and can
potentially be ignored for an approximate analysis [44,60].

Given that the EH and the edge Hamiltonian have been
considered comparable in many contexts, it is reasonable to
expect that they share fundamental physical properties. At
a minimum, their basic features should exhibit similarities.
However, whether the seemingly useless long-range terms
are indeed irrelevant is still ignored under the conventional
wisdom.

Meanwhile, the influence of long-range interactions has
been widely studied in past decades [61–68]. It is well
known that the long-range interactions ∼ 1

rα are irrelevant
when the decaying power is large. Otherwise, the long-range
terms indeed change the intrinsic physics, e.g., violating
the Mermin-Wagner theorem [69,70] even then destroying
the Goldstone mode in continuous symmetry breaking
systems [71–75]. Thus the Mermin-Wagner theorem is a
good standard to check whether the long-range interaction is
relevant. The difficulty lies in how to extract the information
of the EH in a (2 + 1)d entangled system. It was extremely
challenging for previous numerical methods, such as exact
diagonalization (ED) and density matrix renormalization
group (DMRG) algorithms due to the limited system sizes.
We note the authors of Ref. [76] pointed out the existing
thermal phase transition for EH to question the universality
of the ES. However, the discussion in the reference is still
located in the region of Mermin-Wagner theorem and defaults
to the EH are short ranged.

Recently, two of the authors proposed a numerical scheme
by designing an nth Rényi RDM ρn

A = e−nHA within the path-
integral frame to capture the information of the entanglement
spectrum HA by treating the large n as an effective imaginary
time length βA (reciprocal of temperature). A replica partition
function of nth Rényi RDM Z (n)

A = Tr[ρn
A] = Tr[e−nHA ] was

constructed and can be simulated via quantum Monte Carlo
(QMC) [32–34,77]. More details to calculate the ES from the
QMC can be found in Ref. [77]. In that method, the n is fixed
in a large value to simulate the imaginary time evolution of the
EH. Inspired by it, we find the finite-temperature information
of EH can be obtained by the QMC if we set the n as a vari-
able. Thus the problem proposed above can now be studied.

II. MODEL

To demonstrate the relevant difference between the edge
Hamiltonian and the EH, we take a S = 1/2 antiferromagnetic
Heisenberg model on a bilayer square lattice as an example.
The Hamiltonian can be written as

H = Jin

∑

〈i j〉
(Si,1S j,1 + Si,2S j,2) + J⊥

∑

i

Si,1Si,2, (1)

where Jin denotes the intralayer interaction constant and J⊥
denotes the interlayer interaction constant. Here the Si,l is the
spin-1/2 operator at site i and layer l (l = 1, 2). Each layer is a
periodic boundary condition (PBC) square lattice with sites of
N = L × L, and 〈i j〉 represents the intralayer pair of nearest-
neighbor sites. We next define J = J⊥/Jin to reflect the relative
strength of the interaction.

TABLE I. The critical Js under different βA. The high-precision
result of critical J under βA = 1 comes directly from Ref. [78], as a
reference.

βA 1 2 3 4 5

J 2.5220(1) 8.5(5) 10.0(5) 11.5(5) 13.0(5)

The ground-state phase diagram of such a bilayer model
has been well studied in previous works: the (2 + 1)d
O(3) quantum critical point (QCP), separating the Néel
phase and interlayer dimerized phase, is found to be lo-
cated at J = 2.5220(1) from high-precision QMC simulations
[15,17,78,79], as shown in the lower part of Fig. 1(a). We
choose one layer to be the subsystem A and the other one to
be the environment Ā. Previous studies hinted that the entan-
glement Hamiltonian HA would resemble a Heisenberg model
on the square lattice following the Li-Haldane-Poilblanc con-
jecture [39,40].

Unexpectedly, we find that there exists a continuous phase
transition in the EH at the finite effective temperature TA.
The system undergoes a spontaneous symmetry breaking from
high to low temperature. The phase diagram is shown in
Fig. 1(c). Our finding suggests that the EH cannot simply be
understood as a single-layer Heisenberg model, in which the
Mermin-Wagner theorem forbids the spontaneous breaking of
continuous symmetries at a finite temperature in a short-range
interacting model. However, such a continuous phase tran-
sition can happen when the interactions become long range
[62,80,81]. Therefore, our results strongly indicate that some
important corrections between the EH and the edge Hamilto-
nian are needed necessarily.

III. METHOD

The central problem is how to simulate the nth Rényi RDM
Tr[e−nHA ] by QMC. As previous research [77] suggests, Z (n)

A
is a partition function in a replicated manifold, where the time
boundaries of region A of the n replicas are connected along
imaginary time and the time boundaries of the region A of
every replica are independent to each other (for sites in A for
each replica, the usual periodic boundary condition of β is
maintained).

We then provide a brief overview of how we applied the
simulation method proposed in Ref. [77] to our study. We start
by writing the state of the system as |αi

A, α
j
Ā
〉, in which we are

using the superscripts i, j = 0, 1, . . . , n (n = βA) to denote
the index of the replica and subscripts A and Ā to denote
the region. With the trace relationship mentioned above and
swapping the order of trace, we now have Z (n)

A = Tr[ρn
A] =

Tr[(TrĀρ)n] = TrĀ[(Trρ)n]. After expanding the inner trace,
we could get

(Trρ)n = 〈
α0

A, α0
Ā

∣∣e−βH
∣∣α1

A, α0
Ā

〉〈
α1

A, α1
Ā

∣∣e−βH
∣∣α2

A, α1
Ā

〉

× 〈
α2

A, α2
Ā

∣∣e−βH
∣∣α3

A, α2
Ā

〉

· · · 〈αi
A, αi

Ā

∣∣e−βH
∣∣αi

A, α
(i−1)
Ā

〉

· · · 〈αn
A, αn

Ā

∣∣e−βH
∣∣α0

A, αn
Ā

〉
. (2)
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(a) (b) (c)

FIG. 1. (a) The lattice of the bilayer Heisenberg model. Darker dots denote sites in the region A we are concerned with. Lighter dots denote
sites in the environment Ā. The lower part shows the quantum phase diagram of the vanilla bilayer Heisenberg model, which has a quantum
phase transition from the AFM phase to tge dimer phase, and its critical point is located at Jc = 2.522; the result comes from Refs. [78,79].
(b) An illustration of the replica manifold structure in the imaginary time of the QMC simulation. The blue line indicates the connected spin
states which are identical on the edge of the replicas. The spin states in regions A and Ā are connected differently in their own region, and follow
a different PBC. The orange arrow indicates the imaginary time to perform the MC measurement. (c) The phase diagram of the entanglement
Hamiltonian HA. The J = J⊥/Jin is the coupling ratio of the original Hamiltonian of the bilayer Heisenberg model. The TA is the effective
temperature of the entanglement Hamiltonian HA, that is, the partition function of the entanglement Hamiltonian is Z = e−HA/TA . The data of
the points in the plot are listed in Table I. The point of TA = 1 corresponds to the Jc in the lower parts of (a). The dashed line in (c) is directly
extended to J = 0 from the segment established by the points of TA = 1 and TA = 0.5.

Noticing that we already utilized the relationship that, at the
edge of two adjacent e−βH in the imaginary time of region
A, |αi

A〉 = |α(i−1)
A 〉, and the PBC of region A is maintained as

well. The whole process is also depicted as Fig. 1(b).
Therefore, the finite-temperature properties of the EH can

be extracted numerically. Here n performs the role of an ef-
fective inverse temperature βA for the EH. In this way, we can
readily make use of such an effective imaginary time βA = n
at those n = 1, 2, 3, . . . , integer points to extract the thermal
properties of the EH.

It is important to highlight that the term “temperature”
can refer to two distinct concepts in this context. The first
is the actual temperature T , related to the original Hamil-
tonian H , with T = 1/β, and the other one is the effective
temperature TA associated with the EH HA, where TA = 1/βA.
It can be seen that the effective inverse temperature βA = n for
the EH HA of the subsystem A is in the unit of 1 whereas the
β = 1/T of the total system is in the inverse unit of the phys-
ical energy scale of the original system J of the Heisenberg
model, for instance. Here we set the β to be large and allow
it to increase proportionally with the system size L to make
the system approach its ground state. When discussing the
finite-temperature phase transition of the EH HA, the “tem-
perature” here refers to the TA (1/βA). In the replica manifold
we simulate, the βA can be tuned by changing the number of
replicas n.

As mentioned above, with the expansion form of partition
function Z (n)

A , we could then construct a special geome-
try structure in the stochastic series expansion (SSE) QMC
[82–88] to measure those order parameters. All the measure-
ments here are defined in the scope of EH. As an example, for
a physical observable O defined on EH and its corresponding
partition function Z (n)

A , the expectation value 〈O〉HA is given by

〈O〉HA = Tr
[
ρn

AO
]
. (3)

Applying the relationship

e−HA = ρA = TrĀρ = TrĀ[e−βH ], (4)

one can write it as

〈O〉HA = Tr[(TrĀ[e−βH ])nO]. (5)

Note that, according to the property of trace calculation, all the
measurements about the EH should be done in the connection
of the two neighboring replicas [77,89–91]. For simplicity, the
physical observables in this work are taken on the |α0

A〉 as the
arrow points out in Fig. 1(b).

IV. RESULTS

Since we established the basic method, we then perform
the simulation with 12 independent processes. Each process
executes 5000 MC steps of warming up and the measurement
value is averaged over 20 bins, with 10 000 MC steps in each.
The result is then averaged by those 12 results.

A. Finite-temperature phase transition of the EH

First, we measure the order parameter 〈m2〉 =
〈( 1

N

∑N
i=1 φiS

z
i,1)2〉, where φi = (−1)xi+yi . Then from

the magnetization operator, we can also calculate the
corresponding second Binder ratio R2 for the order parameter
of the EH, which is defined as R2 = 〈m4〉/〈m2〉2.

Considering our method is limited to the discrete βA, we
next fix the βA and scan the continuous J to obtain better preci-
sion results. Therefore, the finite-temperature phase transition
points at fixed βA can be calculated much more accurately.
The results of the Binder ratio R2 under βA = 3 are shown
in Fig. 2(a) as an example, within the length of system size
L = 8, 16, 24, 32. From Fig. 2(a), we can locate the criti-
cal point at J = 10.0(5) under βA = 3. Then a calculation
sweeping integer βA (n) is then carried with same system
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(a) (b)

FIG. 2. The Binder ratio R2 results of different L (a) under βA = 3 sweeping J and (b) under J = 10.0 sweeping βA. The crossing point in
(a) indicates a phase transition nearing J = 10.0. The inset in (a) shows more detailed data around the crossing point, ranging from J = 8.5
to J = 11.5 and spacing with 0.05. While using J = 10.0 in (b), the crossing point locates at βA = 3 approximately, which also proves the
existence of the phase transition. All calculations are under low real temperature β = 2 × L.

size’s configurations, to show that those curves indeed cross
at βA = 3, as an additional proof. The results are plotted in
Fig. 2(b).

The finite-temperature phase transition point of the EH at
βA = 1 is the same as the QCP of the original Hamiltonian at
zero temperature. They share the same Jc ∼ 2.52. From the
quantum phase transition view, this criticality is a (2 + 1)d
O(3) class. It implies that the corresponding two-dimensional
(2D) thermal dynamical phase transition of the EH should
involve others (relevant long-range terms) to make it seem like
a (2 + 1)d criticality.

We also expand the calculation of the Binder ratio R2 to
other βAs; those results at βA = 2, 3, 4, 5 are shown as Fig. 3.
Then we could locate those βA’s corresponding critical Js and
arrange them as the table in Table I. These data points form
the phase diagram of the EH shown in Fig. 1(c).

B. Stable order of the EH at low temperature

Due to the limit of the integer βA, the finite-temperature
phase transition may not be solid enough via the above ev-
idence in the readers’ opinions. Hereby, through fixing the
βA = 3, we carefully calculate the order parameter under
different coupling ratio J and system sizes L, as shown in
Fig. 4(a) with double logarithmic axes. Here we also set the
original reciprocal-temperature β scales with system size L
where β = 2 × L, to avoid the finite-size/temperature effect.

It is obvious that the 〈m2〉 remains a finite value of J = 8
and 9. The data of J = 10 resemble a straight line under
double logarithmic axes, which is also another evidence for
the critical point consistent to the Fig. 2. These results are
also consistent with the phase diagram of the EH in Fig. 1(c):
while the coupling ratio J becomes smaller, the critical
temperature TA rises higher. The ordered phase at low
temperature of the EH is confirmed without any doubts,
which also reflects the convinced finite-temperature phase
transition of the EH. According to the symmetry anal-
ysis of the system, the EH must be constructed via
SU(2) terms to keep its continuous symmetry. All the
evidence now support this 2D phase transition of con-
tinuous symmetry breaking beyond the Mermin-Wagner
theorem, which reveals the exist of relevant long-range
terms.

C. Entanglement spectrum

The EH actually exhibits interactions that significantly
deviate from those predicted by the well-known Li-Haldane-
Poilblanc conjecture. The EH has a finite-temperature phase
transition while the edge Hamiltonian has nothing. The
remaining question becomes the following: How large is
the difference between the entanglement spectrum
and the edge energy spectrum in this case? Com-
bined with the QMC calculation of the RDM and
stochastic analytic continuation (SAC) [82,92–94],

(a) (b) (c) (d)

FIG. 3. The Binder ratio R2 results at (a) βA = 2, (b) βA = 3, (c) βA = 4, (d) βA = 5, with a wide range sweeping of J from J = 1 to
J = 20, and comparing the system size of L = 8, 16, 24, 32. These results suggest that a finite-temperature phase transition exists on EH.
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(a) (b)

FIG. 4. (a) Finite-size scaling of m2 under βA = 3, with J = 8, 9, 10, 11, 12. All curves are fitted with a third-order polynomial and
then extrapolated to nearing 0. The extrapolate shows a highly possible signal that there is a phase transition between J = 10 and J = 11.
(b) Entanglement spectrum S(k, ω) of a replicated L = 20 bilayer antiferromagnetic Heisenberg model with β = 2 × L, βA = 50 and J = 10.
The maximum values of S(k, ω) are truncated to 1.

we can obtain the entanglement spectrum using the
scheme of Refs. [77,89–91]. As shown in Fig. 4(b), the
entanglement spectrum seems still similar to a spin-wave
excitation of a short-range Heisenberg model on a square
lattice, i.e., the edge Hamiltonian. From this aspect, the
entanglement spectrum approximately resembles the edge
Hamiltonian, at least visually. That is, the relevant long-range
interaction obviously changes the property of the physical
system to induce a finite-temperature phase transition, but
it still has not hugely modified the structure of the spectra
information. It may be the main reason why such a difference
between the EH and edge Hamiltonian has not been found in
a long time.

V. CONCLUSION AND DISCUSSION

In this work, we find that, although the spectrum structures
of the entanglement Hamiltonian and the edge Hamiltonian
are almost similar, which obeys the Li-Haldane-Poilblanc
conjecture, the actual properties of the two Hamiltonians
are totally different. Taking the Heisenberg model on a bi-
layer square lattice as an example and setting one layer as
the environment, the 2D entanglement Hamiltonian contain-
ing continuous symmetry exhibits a finite-temperature phase
transition which violates the Mermin-Wagner theorem. Via
designing the path-integral manifold of QMC, we simulated
the finite-temperature property of the EH to strongly support
the above conclusion. All the evidence points to the fact
that there should be some necessary corrections with long-
range interacting terms to the EH. From the spectra analysis,
although the corrections hugely change the physical proper-
ties of the EH and make it totally different from the edge
Hamiltonian, the two Hamiltonians’ spectra are still seemly
semblable.

We note that a gapless ground state with long-range en-
tanglement may lead to a long-range EH in some analytic
arguments [95,96]. A very recent theoretical work (almost
the same time as ours) concluded a trivial gapped state (e.g.,
dimer phase) cannot hold a long-range EH [97] and the con-
clusion was demonstrated numerically in 1D systems [97,98].
In fact, our result provides an interesting counterexample in
two dimensions, thus attracting further research.
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