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Correlated phases and topological phase transition in twisted bilayer graphene
at one quantum of magnetic flux
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When the perpendicular magnetic flux per unit cell in a crystal is equal to the quantum of the magnetic flux,
�0 = h/e, we enter the “Hofstadter regime.” The large unit cell of moiré materials such as magic-angle twisted
bilayer graphene (MATBG) allows the experimental study of this regime at feasible values of the field around
20 to 30 T. In this work, we report the numerical analysis of a tight-binding model for MATBG at one quantum
of external magnetic flux, including the long-range Coulomb and on-site Hubbard interaction. We study the
correlated states for dopings of −2, 0, and 2 electrons per unit cell at the mean-field level. We find competing
insulators with Chern numbers 2 and 0 at positive doping, the stability of which is determined by the dielectric
screening, which opens up the possibility of observing a topological phase transition in this system.
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I. INTRODUCTION

Magic-angle twisted bilayer graphene (MATBG) is a two-
dimensional quantum material that exhibits a plethora of
exotic phases ranging from superconductors to fractional
Chern insulators [1–9]. It constitutes a remarkable platform
for the understanding of the many-body problem in condensed
matter and the interplay of strong interactions and topology,
and has led to the field of moiré materials [10–13].

Moreover, crystalline systems under magnetic fields are
controlled by the scale given by the magnetic flux quantum
�0 = h/e [14]. When the field is such that the magnetic
flux per unit cell is comparable to �0 (or, equivalently, the
magnetic length is comparable to the lattice constant [15]), the
different Landau levels merge into Hofstadter bands [16–19].
In typical materials, such magnetic fields are of the order of
104T, but in MATBG, the large moiré unit cell allows one to
probe the “Hofstadter regime” by accessible fields of the order
of 25 T.

In MATBG, the Landau level spectrum of the competing
correlated states has been studied for low magnetic fields
[2,3,7,8,20–22]. Also, at one magnetic flux quantum, reentrant
correlated insulators have been predicted [23] and observed
[24].

When the filling is equal to an integer number of electrons
per unit cell, correlation-induced gaps can arise, facilitated
by the large interactions compared to the bandwidth of
the flat bands. The Hartree-Fock (HF) method has proven
effective in capturing the correlated states in MATBG at
zero external field [25–30], mostly in the setting of the
Bistritzer-MacDonald continuum model [31]. We perform
self-consistent HF simulations now at one quantum of flux in
a microscopic model.
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Consistently for different values of the dielectric constant,
we observe a Chern insulator with Chern number −2 when
the doping is of −2 electrons per unit cell (denoted by
ν = −2). At charge neutrality, a spin-polarized state and a
spin-unpolarized insulator are competitive and their stability
depends on εr and the Hubbard energy U . For ν = +2, we
observe a topological phase transition from an insulator with
Chern number 2 to an intervalley coherent trivial insulator
as we increase the dielectric screening. Experimentally, the
data of Ref. [24] shows a correlated insulator and a nearby
(competitive) Chern 2 trace for ν = +2.

II. THE MODEL

Consider two graphene layers stacked on top of each other
such that the top and bottom atoms are vertically aligned. The
bottom layer is rotated by an angle −θ/2 and the top layer
by θ/2, with the center of rotation being the center of one
of the graphene hexagons. The magic angle sits between 1
and 1.1◦ [32]. We choose a twist of θ = 1.05012◦ that makes
the twisted superstructure exactly commensurate, with lattice
constant LM = 13.4 nm and 11 908 atoms in the unit cell.

We employ the Slater-Koster parametrization of the hop-
ping integral t (r) of Ref. [33] with a pz orbital per carbon
atom and spin, giving the tight-binding Hamiltonian,

H0 =
∑

ri,r j ,s

t (ri − r j )c
†
iscis, (1)

with c†
i,s being the creation operator of an electron with spin

s at position ri. Details of the geometry of MATBG and the
hopping parameters can be found in Appendix A. The Zeeman
energy reads

HZ = −gμBB

2

∑
ri

c†
i↑ci↑ − c†

i↓ci↓, (2)
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with g = 2 the gyromagnetic ratio of the electron and μB the
Bohr magneton.

The electrons interact through the double-gated Coulomb
potential,

V = 1

2

∑
ri �=r j sis j

V (ri − r j ) : c†
i,si

ci,si c
†
j,s j

c j,s j :,

V (ri − r j ) = e2

4πε0εr

∑
n

(−1)n

||ri − r j + nξ ẑ|| , (3)

which applies for the experimental setups where two metallic
plates are placed at z = ±ξ/2. We set ξ = 10 nm throughout
the paper. The dielectric constant εr accounts for the screening
due to the substrate and internal screening due to the elec-
trons. The interaction is normal ordered [34] with respect to
the ground state of two decoupled graphene layers at charge
neutrality. This choice of normal ordering is also called the
graphene subtraction scheme [26,28]. In the calculation of the
decoupled ground state, we have not included the Zeeman
splitting. The on-site Hubbard term is also considered,

HU = U
∑

ri

: c†
i↑ci↑c†

i↓ci↓ : . (4)

It can be thought of as a regularization of the Coulomb poten-
tial at r = 0.

The total Hamiltonian is then H = H0 + HZ + V + HU .
At zero flux, the point group of MATBG is D6, generated

by sixfold rotations around the z axis, C6z, and twofold rota-
tions around the y axis, C2y, leaving the origin fixed (below,
we will be addressing the rotations C3z = C2

6z and C2z = C3
6z).

The spin-orbit coupling being small, spinless time reversal T
is also a symmetry. Under magnetic flux, the time reversal T
and rotations C2y reverse the sign of the external field, and
only the combined C2yT is preserved. On the other hand, the
rotations around the z axis are preserved [35].

A. Minimal coupling to the external magnetic field

At nonzero magnetic field, the Peierls’ substitution [36]
adds a phase to the hopping elements,

t (ri − r j ) → t (ri − r j )e
iθi, j ,

θi, j = 2π

�0

∫
ri→r j

A(r′) · dr′, (5)

where �0 = h/e is the quantum of the magnetic flux, and the
line integral goes from ri to r j in a straight line if the basis
orbitals are well localized [17].

In the presence of magnetic flux, the translation operators
pick up a phase. They act on the single-particle states as [37]

T̃1 =
∑

ri

e−2π iξ2iφ−iθi,i+L1 c†
i+L1

ci,

T̃2 =
∑

ri

e2π iξ1iφ−iθi,i+L2 c†
i+L2

ci, (6)

where ξi1,2 are defined from the lattice vectors L1,2 by ri =
ξi1L1 + ξi2L2 and φ = �/�0 = BAM/�0 is the flux per moiré
unit cell in units of �0.

It can be shown that [H, T̃1] = [H, T̃2] = 0 and T̃1T̃2 =
e−2π iφ T̃2T̃1 [35], so the translational symmetries are broken
in general. However, if φ is a rational number p/q, one can
choose the set of commuting operators (T̃1, T̃ q

2 ) or (T̃ q
1 , T̃2),

and diagonalize them simultaneously with the Hamiltonian.
Translational symmetry is then recovered at rational fluxes
with a unit cell that is q times larger than at zero flux, and the
Bloch waves are generalized to magnetic waves having good
T̃1 and T̃ q

2 quantum numbers.
In the periodic Landau gauge [38], the vector potential

reads

A(r) = �

2π
[ξ1G2 − 2π∇(ξ2�ξ1 + ε�)]

= �

2π

[
−ξ2

∞∑
n=−∞

δ(ξ1 − n + ε)G1

+(ξ1 − �ξ1 + ε�)G2

]
, (7)

with G1,2 the reciprocal vectors and �...� the floor function.
In this gauge, the phases of the translation operators T̃ q

2 , T̃1

cancel and the Bloch waves have the same form as in zero flux.
The infinitesimal ε prevents ambiguities in the Peierls’ phases
if some atoms lie at integer values of ξ1. The momentum k
takes the possible values in the magnetic Brillouin zone of the
dual lattice with lattice vectors G1 and G2/q.

In our case of interest, for MATBG, the unit flux magnetic
field depends on the twist angle as B ≈ 24.048 θ (◦)2T, giving
B = 26.51T and a Zeeman splitting of μBB = 1.535meV for
θ = 1.05◦.

B. Noninteracting band structure

In Fig. 1(b), we plot the band structure of MATBG at
26.51 T along the 
MKMMM
M line. The crystal momentum
is not gauge invariant, and at nonzero flux the position of the
high-symmetry points is shifted with respect to their locations
at zero flux. We discuss this further in Appendix B.

The almost exact degeneracies along 
MKMMM are due
to the negligible scattering between the two valleys of the
monolayers of graphene, so that the valley is a good quantum
number; see Appendix F. The valley charge commutes with
C3z and C2yT and anticommutes with C2z.

Also, the Dirac cones are gapped due to the breaking of
C2zT [39]. The gap at the K points is about 5 meV. This is in
contrast to MATBG at zero flux, where the bands are very flat
with a bandwidth of about 1 meV, except only at the 
M point
[40]. The Zeeman splitting of 3.07 meV is comparable to the
bandwidth.

Regarding the topology, we have computed the action
of the rotations on the Bloch states at the high-symmetry
momenta. The C3z eigenvalues are [(ω,ω), (ω,ω)] at 
M ,
[(ω∗, ω∗), (1, 1)] at KM , and [(ω∗, ω∗), (1, 1)] at K ′

M , where
ω = e2π i/3 and the first parentheses refer to the valence bands
and the second to the conduction bands. It follows that the
valence bands have a Chern number of −1 mod 3 and the con-
duction bands of +1 mod 3 [41]. C2z acts as the Pauli x matrix
on the doublets at 
M and MM . This is due to the fact that there
is one state from each graphene valley in the doublets.
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FIG. 1. (a) The Brillouin zone of the rotated top and bottom layers. Kb(t ) = R(−)θ/2(−4π/3a, 0) are the K points of each layer. The interlayer
tunneling couples states with momenta related by the G vectors, producing the Brillouin zone of MATBG. The K and K ′ regions are very far
apart and do not couple to each other. (b) Flat bands of MATBG at one flux quantum, in turquoise. The spin-up and -down bands are split by
∼3 meV due to the Zeeman term. The band structure at B = 0 T is shown in gray for comparison. (c) Integrated Berry curvature on a 18 × 18
grid of the K valence band (left) and K conduction band (right). The Chern number is |C| = 1. The curvature of the K ′ bands is obtained from
C2z. The Berry curvatures are almost identical, with opposite sign, hinting at an emergent symmetry.

Following the theory of topological quantum chemistry
[42], we infer that the flat bands are topologically trivial and
can be Wannierized, keeping the valley symmetry manifest.
For each valley sector, the flat bands can be constructed from
two Wannier orbitals with C3z eigenvalue ω centered at the
Moiré zone corners (the AB and BA sites) and related by
C2yT . As shown in Fig. 2, the density profile of the flat bands
is centered around the AA-stacked region. This forces the
Wannier orbitals to exhibit a three-peak structure similarly to
MATBG at zero flux [43,44].

C. The irrep basis

The “irrep” basis of the flat bands is defined by the action
of the “particle-hole” operator, C2zP [23,25,45,46]. C2zP is
local in momentum space, unitary, and Hermitian, and squares
to 1. Like the valley charge, it is an emergent operator at
low energies. The implementation of both operators on the
lattice is detailed in Appendix C. Let us remark that in our
tight-binding model, this operator has a generic form in the H0

eigenbasis. Contrarily to Refs. [23,25,45,46], it is not strictly
off-diagonal in the band basis (hence the name particle hole
coined there).

In a certain limit, C2zP is the generator of a symmetry of
the model that adds to the usual valley charge conservation of

FIG. 2. Density distribution of the flat bands, for 0 and 26.5 T, in
arbitrary units. We plot the density in the bottom layer and sublattice
A, while the density in the remaining sublattices and layers can be
obtained by symmetry. It is centered in the AA region of the unit cell
in both cases, with different spreads.

MATBG; see Appendix D for a discussion of the symmetries
and their breaking.

In the irrep gauge, we have

[C2zP(k)]ηλ,η′λ′ = 〈kηλ|C2zP|kη′λ′〉 = [τx]ηη′[λ0]λλ′, (8)

with |kηλ〉 denoting a Bloch state with momentum k, valley η,
and irrep number λ (η, λ = ±1). Valley K will be associated
with η = +1, and valley K ′, or −K , with η = −1. τ0,xyz and
λ0,xyz are the identity and Pauli matrices in valley and irrep
number space, respectively. Here we omit the spin index,
keeping in mind that we construct one copy of the irrep basis
for each spin.

Actually, the singular values of the projected matrix
C2zP(k) (plotted in Appendix C) are close to, but not equal
to 1. Hence we must modify Eq. (8) to

C2zP(k)[C2zP(k)C2zP(k)†]−1/2 = τxλ0, (9)

where the inverse square root makes the matrix unitary.
We further fix the C2z phase to

〈[−k]ρ|C2z|kρ ′〉 = −[τyλy]ρρ ′ , (10)

with ρ the multi-index for valley and irrep, and [k] the mo-
mentum k translated to inside the Brillouin zone.

Finally, notice that the irrep basis is only defined up to
arbitrary transformations V (k) in both valleys,

|kηλ〉 −→ [V (k)]λλ′ |kηλ′〉,
V †([−k])λyV (k) = λy. (11)

III. HARTREE-FOCK RESULTS

We have carried out self-consistent HF simulations of
MATBG projected onto the subspace of the flat bands. We de-
scribe the HF formalism and the flat-band projection method
in Appendix E. We remind the reader at this point that there
are eight flat bands in total (two per valley per spin), and the
doping is parametrized by ν ∈ (−4, 4), where ν = 0 denotes
the charge neutrality point.
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The self-consistent state |GS〉 is characterized by the Q
matrix, defined by

[Q(k)]ρρ ′ = 2[P(k)]ρρ ′ − δρρ ′ ,

[P(k)]ρρ ′ = 〈GS|d†
kρ

dkρ ′ |GS〉, (12)

where d†
kρ

creates an electron in state |kρ〉. It has the proper-
ties Q(k) = Q(k)†, Q(k)2 = 1, and tr[Q(k)] = 2ν.

In the self-consistent loop, we restrain Q to be diagonal in
spin, so we have Q(k) = Q↑(k)P↑ + Q↓(k)P↓ (Ps is the pro-
jector onto spin s). Furthermore, if one of the spin projections
is half filled, Qs can be expressed as a linear combination of
products of Pauli matrices,

Qs(k) =
∑
α,β

As
αβ (k)λατβ, (13)

with real coefficients As
α,β (k) and

∑
αβ[As

αβ (k)]2 = 1 [and
additional constraints to satisfy Q2(k) = 1].

As stated above, the dielectric constant εr in Eq. (3) de-
pends on the external substrate and the internal screening.
Moreover, it will, in general, depend on r or, equivalently,
on the momentum transfer q. In constrained random-phase
approximation (RPA) calculations, the static dielectric func-
tion at zero magnetic field varies between about 10 and 20
[47,48]. Here we take εr as a model parameter and perform the
self-consistent simulations as a function of εr . The Hubbard
energy U can also vary between 2 and 5 eV (the value of U is
thought to be ∼4eV [49]).

The self-consistent states do not break the translational
(which is imposed) or point symmetries, but they show in-
teresting features in the spin, valley, and particle-hole spaces.
We report our findings below.

A. ν = ±2

We find gapped states at electron and hole doping for a
wide range of interaction strengths. These insulators are max-
imally spin polarized in the spin-up direction, i.e., at ν = −2
there are two spin-up filled bands and at ν = +2 there are four
spin-up and two spin-down bands. The spin polarization stems
from the dynamics of the Coulomb interaction, similarly to the
zero-field case [25,27,50], and the Zeeman term only selects
the up direction of the total spin.

The dominant order parameters are
∑

i=x,y,z As
iz(k)2 and∑

i=x,y,z As
i0(k)2, with s the half-filled spin projection. Notice

that because of the gauge ambiguity of Eq. (11), only the
above sums of squares result in gauge-invariant order param-
eters. In Fig. 3, we plot the many-body gaps as well as the
integrated quantities,

�z = 1

NM

∑
k

∑
i=x,y,z

As
iz(k)2,

�0 = 1

NM

∑
k

∑
i=x,y,z

As
i0(k)2, (14)

for different values of εr and U = 4eV. NM is the number
of unit cells or, equivalently, the number of k points in the
Brillouin zone.

or
de

r
pa
ra
m
et
er
s

ga
ps

(m
eV

)

FIG. 3. Gaps and order parameters for ν = ±2. The direct gap
is obtained for transitions between states with the same spin, and
the indirect gap is the gap in the total density of states. The order
parameters are defined in Eq. (14). U was set to 4 eV.

The solutions exhibit very weak dependence on U for
fixed εr . This is well exemplified in Fig. 4(a), where the
order parameters show negligible dependence on U . Although
there the results correspond to ν = 0, the same phenomenon
appears at ν = ±2. Finally, the Chern numbers are C = −2
for ν = −2 and C = 2 for ν = +2.

B. ν = 0

There are two fixed points of the HF numerics for ν = 0,
one of them being spin polarized (sp) and the other spin
unpolarized with the same wave function for the two spin
projections. The spin-unpolarized state exhibits intervalley
coherent (ivc) order As

0y(k), where the two valleys are in super-
position in the many-body wave function. The corresponding
integrated order parameter is defined as

�ivc = 1

NM

∑
k

As
0y(k)2. (15)

Under a transformation of the U(1) valley symmetry of an-
gle φ acting as |kηλ〉 → eiηφ |kηλ〉, the coefficients transform
as As

0y(k) → cos(2φ)As
0y(k) + sin(2φ)As

0x(k) and As
0x(k) →

cos(2φ)As
0x(k) − sin(2φ)As

0y(k), and hence the valley symme-
try is spontaneously broken in this phase.

In Fig. 4, we depict the εr − U phase diagram and the order
parameters of the ivc phase. For most of the phase diagram,
the ground state is gapped with Chern number 0, except only
when the sp state is metallic (see Appendix F).

C. Topological phase transition for ν = +2

We find an intervalley coherent solution for dielectric
constants greater than 20. In Fig. 4(b), we plot the energy
difference between the ivc insulator and the quantum Hall
state that is stable for lower screening and the main order
parameter around the transition, with U set to 2 eV. This is
a topological transition with a change in Chern number of 2.
The data can be extrapolated with a good accuracy to other
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(a) (b)

FIG. 4. (a) Competing states at charge neutrality. Left: The difference in the energy of the intervalley coherent (Eivc) and spin-polarized
(Esp) states per unit cell as a function of εr and U . A tentative phase boundary is drawn in gray. Right: The order parameters �ivc and �z (see
the text for their definitions) of the intervalley coherent (ivc) solution as a function of εr for U = 2, 3, 4, and 5 eV. The curves for different U
are almost identical and fall on top of each other. (b) The phase transition for ν = +2. Top: We plot the difference in energy per unit cell of the
self-consistent state with dominant order �0 and the ivc state to the left, and the order parameters of the ground state to the right. �z is of the
order of 0.3–0.4 in both sides of the transition. U was set to 2 eV. Bottom: The εr − U phase diagram with the dominant order parameters and
Chern numbers, showing the phase transition.

values of U , showing a critical screening ε∗
r of

1

ε∗
r

= 1

24.4
− 0.003[U (eV) − 2]. (16)

IV. DISCUSSION

In this work, we have studied the mean-field phases of
MATBG in the Hofstadter regime, at 26.5 T of external per-
pendicular magnetic field. We have used an atomistic model
for MATBG, which provides precise band structures and
wave functions. The flat bands are topologically trivial and
can be Wannierized keeping the valley symmetry manifest.
The Wannier orbitals extend to neighboring unit cells, which
forces any interacting model of the flat bands to have extended
interactions.

We focus on even fillings of −2, 0, 2 electrons per unit cell.
The order parameters of the correlated states depend on the
values of the dielectric constant εr and Hubbard energy U .
In our case, these are model parameters, but the true values
may be computed with some method that accurately treats
the screening, e.g., the GW approximation [51,52]. Another
parameter of the model is the reference state chosen as a
subtraction point to avoid double counting of the interac-
tions [28]. Several subtraction schemes have been used in
the literature for B = 0T [29,53]. Such choice may influ-
ence the results, in particular the breaking (or not) of the
C2zP-generated symmetry. Our findings reveal the existence
of multiple competing states in systems with large symmetry
groups like MATBG, and highlight the importance of carrying
an exhaustive search for symmetry-breaking patterns in the
numerics [25,54], especially in the atomistic models where
the symmetries are only emergent [55].

In Ref. [24], the authors perform transport measurements
on MATBG at one quantum of external magnetic flux. They
find a correlated insulator state for ν = +2 and a highly re-
sistive phase that extends from ν = −2 to charge neutrality.

The nature of the phase for ν = −2, 0 is elusive and cannot
be captured by our Hartree-Fock method.

We now compare our results with the experimental data
for ν = +2. Besides the correlated insulator, there is a nearby
Chern 2 trace that converges to the point (ν = +2,� =
�0) and is suppressed only very close to that point. We
speculate that the intervalley coherent state of our simulations
corresponds to the insulator observed in Ref. [24], while our
quantum Hall state is the suppressed C = 2 insulator in the
experimental phase diagram. We comment that the intervalley
coherence can be detected as a Kekule pattern on the graphene
scale in the scanning tunneling microscopy (STM) signal [56].

In light of our results, we propose that the manipulation
of the screening, either via dielectric engineering [4,47] or
by changing the metallic gate distance [57], can induce the
topological phase transition from the intervalley coherent in-
sulator to the Chern insulator. We notice that our results are
intrinsically in weak coupling, as the metallic plate distance is
set to ξ = 10 nm, whereas in Ref. [24], ξ = 20–30 nm was
used. Alternatively, manipulating the bandwidth and hence
modifying the interaction strength relative to kinetic energy,
either by hydrostatic pressure [2] or twist-angle engineering,
is another possibility for observing this phase transition.
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APPENDIX A: GEOMETRY OF MATBG
AND TIGHT-BINDING PARAMETERS

In graphene, the primitive vectors are a1 = a(1/2,
√

3/2)
and a2 = a(−1/2,

√
3/2), with a = √

3a0 and a0 = 0.142 nm
the carbon-carbon distance. Atoms at lattice points belong to
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(a) (b)

FIG. 5. (a) Top view of MATBG for a twist angle of 9.43◦. The lattice vectors L1 and L2, and the Wigner-Seitz cell are marked. The center
of the unit cell is locally AA stacked (vertical alignment of the layers), while at the corners the stacking is locally AB or BA (A atoms of one
layer on top of B atoms of the other). (b) The Brillouin zone of MATBG with the high-symmetry points 
M , KM , K ′

M , and MM labeled. The
lines 
MKM and MM
M that are considered in the band structure plots are also depicted.

sublattice A, and their nearest neighbors displaced by (a1 +
a2)/3 to sublattice B.

Consider two graphene layers stacked on top of each other,
at z = −d0/2 and z = d0/2, respectively, with d0 = 0.335 nm
the interlayer distance, such that the top and bottom atoms
are vertically aligned. The bottom layer is rotated by an angle
−θ/2, and the top layer by θ/2, with the center of rotation
being the center of one of the graphene hexagons. We choose
a value of θ that makes the twisted structure commensurate
[58]. In our case, we parametrize the angle by an integer n
such that cos(θ ) = 1 − 1/2(3n2 + 3n + 1). The unit vectors
of the superlattice are

L1 = R−θ/2[na1 + (n + 1)a2] = LM (0, 1),

L2 = Rπ/3L1 = R−θ/2[(−n − 1)a1 + (2n + 1)a2], (A1)

with Rα a rotation by angle α and LM the lattice constant. The
reciprocal vectors are given by

a0G1 = GθR−θ/2[(3n + 1)a1 + a2],

a0G2 = R−2π/3(G1)

= GθR−θ/2[−(3n + 2)a1 + (3n + 1)a2], (A2)

where Gθ = 4π
3a0

(9n2 + 9n + 3)−1. The magic angle is approx-
imately given by n = 31 (1.05◦), corresponding to a Moiré
lattice constant of LM = 13.4 nm and 11908 atoms in the unit
cell.

Lattice relaxation is included via in-plane distortions fol-
lowing the model of Ref. [59]. The effect of relaxation is to
enlarge the AB and BA regions and reduce the AA regions
of the Moiré pattern (see Fig. 5), preserving all the crystal-
lographic symmetries.

We employ the Slater-Koster parametrization of the hop-
ping integral of Ref. [33], with a pz orbital per carbon atom
and spin. The hopping integral is decomposed into σ and
π -bond hoppings,

t (r) = −Vppπ (r)

[
1 −

(
r · ẑ

r

)2
]

+ Vppσ (r)

(
r · ẑ

r

)2

,

Vppπ (r) = V 0
ppπe−(r−a0 )/r0 ,

Vppσ (r) = V 0
ppσ e−(r−d0 )/r0 , (A3)

with the parameters V 0
pppπ = 2.7eV, V 0

ppσ = 0.48eV and r0 =
0.0453 nm.

APPENDIX B: THE SYMMETRY OPERATIONS
UNDER MAGNETIC FIELDS

We look for unitary operators realizing the C3z and C2z

symmetries, acting on the creation operators as

gc†
i g−1 = exp{iχg[g(ri )]}c†

g(i). (B1)

Here we use indistinctly g for the unitary operators and for the
linear transformations acting on points of the lattice. These
can always be distinguished by the context. The action on the
Hamiltonian is

gH0g−1 =
∑
i, j

t (ri − r j ) exp(iθi, j ) exp(iχg(g(ri))

− iχg(g(r j )))c
†
g(i)cg( j). (B2)

We are dealing with symmetries at zero flux, so t[g(ri) −
g(r j )] = t (ri − r j ). Then, to realize the symmetry, i.e., for
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gH0g−1 = H0, χg(r) must obey

θg−1(i),g−1( j) + χg(ri ) − χg( j) = θi, j,

2π

�0

∫ g−1(r j )

g−1(ri )
A(r′) · dr′ − 2π

�0

∫ r j

ri

A(r′) · dr′

=
∫ r j

ri

∇χg(r′) · dr′,

2π

�0
(g{A[g−1(r)]} − A(r)) = ∇χg(r). (B3)

In the periodic Landau gauge, A(r) = �
2π

[ξ1G2 −
2π∇(ξ2�ξ1 + ε�)], where ξ1 and ξ2 are defined by
r = ξ1L1 + ξ2L2. We have, for C3z,

C3z
{
A

[
C−1

3z (r)
]}

= �

2π
{−ξ2(G2 − G1) + 2π∇[(ξ2 + ξ1)�ξ2 + ε�]}, (B4)

and hence

χC3z (r) = 2π p

q

[
(ξ1 + ξ2)�ξ2+ε� + ξ2�ξ1+ε� − ξ1ξ2 − ξ 2

2

2

]
.

(B5)

Similarly, for C2z, we get

C2z
{
A

[
C−1

2z (r)
]} = �

2π
[ξ1G2 + 2π∇(ξ2�−ξ1 + ε�)], (B6)

and hence

χC2z (r) = 2π p

q
(ξ2�ξ1 + ε� + ξ2�−ξ1 + ε�). (B7)

Above, we have used the facts that for orthogonal transfor-
mations g and scalar functions f (r) and h(r) = f [g−1(r)], we
have ∇h|r = g(∇ f |g−1(r) ), and that for a function of ξ1 and ξ2,
we have 2π∇ f = ∂ f

∂ξ1
G1 + ∂ f

∂ξ2
G2. The functions χC3z and χC2z

have the following periodicity properties:

χC3z (r + qL2) = χC3z (r) + π pq mod 2π,

χC3z (r + L1) = χC3z (r) + 2π p

q
�ξ2 + ε�,

χC2z (r + qL2) = χC2z (r) mod 2π,

χC2z (r + L1) = χC2z (r). (B8)

We are interested in p = q = 1, so we can write

eiχC3z (r) = e−iG2·r/2eiχC3z
(r)

,

eiχC2z (r) = eiχC2z
(r)

, (B9)

where barred phases are periodic in the moiré unit cell. As we
will see now, the phases eiχC3z (r) and eiχC2z (r) modify the trans-
formations of the Bloch waves, redefining the high-symmetry
points in flux.

The Bloch waves are written

c†
k,i = 1√

NM

∑
l

eik·(Rl +δi )c†
l,i, (B10)

with k belonging to the moiré Brillouin zone, and here c†
l,i

creates an electron at position Rl + δi, where Rl is a lattice
vector and δi belongs to the Wigner-Seitz cell. Under C3z, c†

k,i
transforms as

C3zc
†
k,i(C3z )−1

= 1√
NM

∑
l

ei[C3z (k)−G2/2]·C3z (Rl +δi )eiχC3z
[C3z (δi )]c†

C3z (l,i).

(B11)

Here, c†
C3z (l,i) creates an electron at position C3z(Rl + δi). We

see that C3z sends momentum k to C3z(k) − G2/2. Via the em-
bedding relation c†

k+G,i = eiG·δi c†
k,i for G, a reciprocal lattice

vector, the threefold rotation in flux acts in the momenta as
follows:

k
C3z−→ C3z(k) − G2/2

∼ C3z[k − (G1 + G2)/2] + (G1 + G2)/2. (B12)

Also, given that χC2z (r) is periodic mod 2π on the unit cell,
the momentum transforms like in zero flux,

k
C2z−→ C2z(k) ∼ C2z[k − (G1 + G2)/2] + (G1 + G2)/2.

(B13)

The center of rotations has shifted from 
M = 0 to (G1 +
G2)/2 at one magnetic flux quantum.

Now we look for the operator realizing C2y. The procedure
is the same, but, in this case, C2yH0(C2y)−1 should be equal to
H0, but with the sign of the magnetic field reversed. Hence,
χC2y (r) must obey

2π

�0

(
C2y

{
A

[
C−1

2y (r)
]} + A(r)

) = ∇χC2y (r). (B14)

We obtain, for χC2y (r),

χC2y (r) = 2π p

q

(
− ξ2�ξ1 + ε� + ξ2�ξ1 + ξ2 + ε� − ξ 2

2

2

)
,

(B15)

which obeys the properties

χC2y (r + qL2) = χC2y (r) − π pq mod 2π,

χC2y (r + L1) = χC2y (r). (B16)

Proceeding similarly to above, we get that under C2y, the
momentum transforms as

k
C2y−→ C2y(k) − G2/2

∼ C2y[k − (G1 + G2)/2] + (G1 + G2)/2. (B17)

For the time-reversal operator T , the magnetic field should
also be reversed, and it is trivial to see that the action is the
same as for the zero flux case. T is an antiunitary operator
satisfying T c†

i T −1 = c†
i , and transforming the momentum as

k
T−→ −k ∼ −[k − (G1 + G2)/2] + (G1 + G2)/2. (B18)

It is important to notice here that when considering the
combined operators C2

2y = T 2 = 1,C2yT , T C2y, the second
operator acts on the system with the reversed magnetic flux
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(a) (b)

FIG. 6. (a) Triangular loops that compute the valley charge. (b) Singular values of the C2zP operator projected onto the flat bands. The
properties C2zP(k)† = C2zP(k) and {τz,C2zP(k)} = 0 force them to be degenerate in pairs, so we show the two distinct ones. Unitary matrices
have singular values equal to 1.

because the first application changes the sign of the field. As
a consequence, when C2y is the last operator, one must reverse
the C2y phase, χC2y → −χC2y .

In conclusion, the action of symmetry operators under
one magnetic flux quantum effectively shifts the Brillouin
zone by (G1 + G2)/2, redefining the high-symmetry points
to 
 = (G1 + G2)/2, MM = G1/2 KM = (1/6)G1 + (5/6)G2,
and K ′

M = (5/6)G1 + (1/6)G2.

APPENDIX C: VALLEY CHARGE AND C2zP
OPERATOR ON THE LATTICE

We wish to find an operator τz implementing the valley
charge on the lattice, such that 〈τz〉 = +1 on states near the
K point of graphene and −1 near the K ′ point. We adopt a
slight generalization of the valley operator of Ref. [60],

τz = i

3
√

3

∑
l

⎛
⎝∑

�
e−iθ�

(1),
�

(2) c†�
(1)c

�
(2)

+ e−iθ�
(2),

�
(3) c†�

(2)c
�

(3) + e−iθ�
(3),

�
(1) c†�

(3)c
�

(1)

−
∑
�

e−iθ�(1),�(2) c†
�(1)c�(2) + e−iθ�(2),�(3) c†

�(2)c�(3)

+e−iθ�(3),�(1) c†
�(3)c�(1)

⎞
⎠ + H.c. (C1)

The sums are over upside-down triangles of sublattice A
atoms, and triangles of sublattice B, and l denotes the sum
over the two layers. We draw an example of each kind of
triangle in Fig. 6. The phases are the Peierls’ phases defined
in the main text. It can be shown that valley K states have
〈τz〉 = +1 + O(a/LM ) and valley K ′ states have 〈τz〉 = −1 +
O(a/LM ). Diagonalization of the τz matrix in the flat bands,
〈kρ|τz|kρ ′〉, outputs a valley-polarized basis.

On the other hand, a general wave function can be written
in first quantized notation (here we omit the spin),

|ψ〉 =
∑

ri

ψ (ri)|ri〉 =
∑
ησ l

∑
ri∈σ l

eiηKl ·ri f ψ

ησ l (ri)|ri〉, (C2)

where the f envelopes depend on layer l = top (t), bottom (b),
and sublattice σ = A, B, and the valley phases are rapidly os-
cillating. Kt = R−θ/2(−4π/3a, 0) and Kb = Rθ/2(−4π/3a, 0)
are depicted in Fig. 1(a). In the continuum model, the f
functions are promoted to smooth functions of r.

The particle-hole operator C2zP is defined in the continuum
wave functions, interchanging the valley, sublattice, and layer,

f C2zP(ψ )
ησ l (r) = ηsl f ψ

−ησ̄ l̄
(r), (C3)

with sl = 1(−1) for l = t (b), and σ̄ and l̄ denote the opposite
sublattice and layer to σ and l . Notice that it is a local operator,
so it will not change the momentum of a Bloch state.

On the lattice, C2zP has to be effectively defined as follows.
In a valley-polarized basis, we obtain the envelope functions
by removing the corresponding valley phases. Afterwards, we
perform a smooth interpolation of the data fησ l (ri), with ri

the positions of the atoms at sublattice σ and layer l . Finally,
the smooth functions are sampled at the points of the opposite
sublattice and layer, and the new valley phase is incorporated.
In Fig. 7 we show an example of the envelope functions before
and after this procedure. As a note, the envelope functions
have a discontinuity at ξ1 = integer in the periodic Lan-
dau gauge, and some care is needed when performing the
interpolations.

The projected operator in the flat bands, [C2zP(k)]ρρ ′ =
〈kρ|C2zP|kρ ′〉, is then constructed in the basis of choice. We
have checked that the particular basis is irrelevant, and the ma-
trix elements of C2zP(k) in a new basis computed via unitary
conjugation of the first and via interpolation in the new basis
are essentially identical. We also checked that the properties
C2zP(k)† = C2zP(k) and {τz,C2zP(k)} = 0 are preserved by
our procedure, with matrix elements of the τz-commuting or
anti-Hermitian parts always less than 10−5.
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FIG. 7. The envelope function of valley K , sublattice A, bottom layer of a Bloch state to the left, and the envelope function of valley K ′,
sublattice B, top layer of the C2zP transformed state to the right. Notice the discontinuity at the cell edge due to the periodic Landau gauge.

APPENDIX D: SYMMETRY OF THE MODEL

Consider a general matrix element of the Coulomb interaction between states |i〉 (i = a, b, c, d) with valleys ηi,

Vabcd = 1

2

∑
σi ,li
σ j ,l j

∑
ri∈σi li

r j ∈σ j l j

ei(ηd −ηa )Kli ·ri+(ηc−ηb)Kl j ·r jV (ri − r j ) f a
ηaσi li (ri)

∗ f b
ηbσ j l j

(r j )
∗ f c

ηcσ j l j
(r j ) f d

ηd σi li (ri). (D1)

If we have something other than ηa = ηd and ηb = ηc, then the rapidly oscillating phases will interfere in the sum over ri, j and
the matrix element vanishes. Putting in the spins si, we have

Vabcd ∝ δηa,ηd δηb,ηcδsa,sd δsb,sc . (D2)

This general form of the interaction enjoys a U(1) × SU(2) × SU(2) symmetry. The U(1) is the valley charge conservation
symmetry, acting as |kηλ〉 → eiηφ |kηλ〉, and the two SU(2) correspond to independent spin rotations in each valley.

Furthermore, the states |i′〉 = C2zP|i〉 produce the matrix element

Va′b′c′d ′ = 1

2

∑
σi ,li
σ j ,l j

∑
ri∈σi li

r j ∈σ j l j

V (ri − r j ) f a
ηaσ̄i l̄i

(ri)
∗ f b

ηbσ̄ j l̄ j
(r j )

∗ f c
ηcσ̄ j l̄ j

(r j ) f d
ηd σ̄i l̄i

(ri ), (D3)

where σ̄ and l̄ denote the opposite sublattice and layer to σ and l . Replacing each ri, r j by r̄i, r̄ j with approximately the same
x and y coordinates (or, less strictly, approximately the same x and y coordinates differences) but on opposite sublattices and
layers, we get

Va′b′c′d ′ = 1

2

∑
σ̄i ,l̄i
σ̄ j ,l̄ j

∑
r̄i∈σ̄i l̄i

r̄ j ∈σ̄ j l̄ j

V (r̄i − r̄ j ) f a
ηaσ̄i l̄i

(r̄i)
∗ f b

ηbσ̄ j l̄ j
(r̄ j )

∗ f c
ηcσ̄ j l̄ j

(r̄ j ) f d
ηd σ̄i l̄i

(r̄ j ) = Vabcd . (D4)

We have established that Vabcd = Va′b′c′d ′ . To conclude that the particle-hole operator generates a continuous symmetry, we
need [C2zP,V ] = 0, which is equivalent to ∑

abcd

Va′bbcd − Vabcd ′ + Vab′cd − Vabc′d = 0. (D5)

To show that
∑

abcd Va′bcd − Vabcd ′ = 0, divide the basis vectors into two sets S, S′ such that S′ = C2zP(S) and the union of S and
S′ is the complete basis. Then,

∑
abcd

Va′bcd − Vabcd ′ =
∑
ad

( ∑
bc∈S

Va′bcd +
∑
bc∈S′

Va′bcd −
∑
bc∈S

Vabcd ′ −
∑
bc∈S′

Vabcd ′

)

=
∑
ad

( ∑
bc∈S

Va′bcd −
∑
bc∈S′

Vabcd ′ +
∑
bc∈S′

Va′bcd −
∑
bc∈S

Vabcd ′

)

=
∑
ad

( ∑
bc∈S

Va′bcd −
∑
bc∈S

Va′bcd +
∑
bc∈S′

Va′bcd −
∑
bc∈S′

Va′bcd

)
= 0, (D6)
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= −2, = 5 = −2, = 25 = 0, = 7.5 = +2, = 15

FIG. 8. Kinetic, Hubbard, and Coulomb energies of exp(iφSx0)|GS〉 with respect to the energies of the ground state |GS〉 for several
selected parameters. Notice that the Coulomb energies have been multiplied by εr . U = 4eV in all cases. Clearly, the approximate symmetry
of the flat bands is broken by the Fermi sea electrons.

where we have used Vabcd = Va′b′c′d ′ , |a′′〉 = |a〉 and∑
a,b∈S′ Oa′b′ = ∑

a,b∈S Oab. The identity
∑

abcd Vab′cd −
Vabc′d = 0 follows the same way, and we conclude that C2zP
generates another U(1) symmetry of the Coulomb interaction.
With the total charge conservation, the symmetry group
is U(4). It has 16 generators Si j (i, j = 0, x, y, z), with the
following form in the irrep basis:

Si j =
∑

k

[λ0τis j]ρρ ′ c†
kρ

c†
kρ ′ , (D7)

where the index ρ includes valley, irrep, and spin, and s0,x,y,z

denote the identity and Pauli matrices in spin space.
In the total system, however, this large U(4) symmetry is

broken by several terms. First of all, the matrix elements with
ηa = −ηd = −ηb = ηc are small but nonzero, breaking the
SU(2) × SU(2) down to the global SU(2) of spin. One can
show, similarly to before, that HU respects the U(1) valley
and C2zP-generated symmetries, but breaks SU(2) × SU(2).
This kind of valley-exchanging interactions has been termed
intervalley Hund’s couplings [25,61,62].

Also, the kinetic energy breaks C2zP and the Zeeman
energy preserves only the spin rotations around the z axis.
Finally, notice that there is an intrinsic breaking of C2zP due

to the lattice [see the approximations we made to arrive at
Eq. (D4)] as well as the flat-band projection [as discussed
around Eq. (9)]. The U(1) valley symmetry is preserved in
the total system to a great accuracy.

All of these contributions are comparatively small with re-
spect to the symmetry-preserving part of the Coulomb energy,
leading to the picture of the U(4) ferromagnets in MATBG
[20,21,23,25,50,63,64]. However, the interactions with the
Fermi sea strongly break the U(1) subgroup generated by
C2zP. The electrons in the flat bands interact among them-
selves and with the mean field produced by the correlation
matrix, 〈FS|c†

isc js|FS〉 - 〈0|c†
isc js|0〉, where |FS〉 is the state

at ν = −4 of occupied remote bands and |0〉 the reference
state of the normal-order subtraction (see Appendix E for the
details of the normal-ordering and flat-band projection). In
Fig. 8, we plot the energies of the states, exp(iφSx0)|GS〉, cor-
responding to C2zP rotations of several selected ground states.
We plot the total kinetic, Hubbard, and Coulomb energies and
the Coulomb energy restricted to the interactions of flat-band
electrons. Clearly, the kinetic, Hubbard, and Coulomb flat-
band physics are approximately symmetric, but the Fermi sea
potential strongly breaks the symmetry.

APPENDIX E: THE HARTREE-FOCK METHOD AND FLAT-BAND PROJECTION

Consider the normal-ordered interaction of Eqs. (3) and (4),

V + HU = 1

2

∑
ri,r j sis j

V (ri − r j ) : c†
i,si

ci,si c
†
j,s j

c j,s j : +U
∑

i

: c†
i↑cri↑c†

i↓ci↓ : . (E1)

The choice of the normal ordering with respect to the ground state of graphene at charge neutrality is necessary to avoid
double counting the interaction [25,28]. This is, we assume that the hopping integrals t (r) are already renormalized by the
interactions with the deep Fermi sea of graphene. After expanding the normal-ordered product [34] and performing the Hartree-
Fock decoupling, the Hamiltonian reads

VHF + HUHF =
∑

ri,r j ,si,s j

V (ri − r j )c
†
isi

cisi (〈c†
js j

c js j 〉 − 〈c†
js j

c js j 〉0) −
∑

ri,r j ,s

V (ri − r j )c
†
isc js(〈c†

isc js〉 − 〈c†
isc js〉0)∗

+ U
∑

ri

c†
i↑ci↑(〈c†

i↓ci↓〉 − 〈c†
i↓ci↓〉0) + U

∑
ri

c†
i↓ci↓(〈c†

i↑ci↑〉 − 〈c†
i↑ci↑〉0) + const, (E2)
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(a) (b) (c)

FIG. 9. Competing states for ν = 0. (a) Band structure of the spin-polarized (sp) phase for εr = 17.5, U = 3 eV (left) and the intervalley
coherent phase for εr = 10, U = 4 eV (right). (b) Density of states at the Fermi level and spin-down population of the sp phase as a function
of εr and U . The red line is the tentative phase transition line, the sp phase being stable to the right. (c) Intervalley coherent order parameter in
the ivc phase for εr = 10, U = 4 eV.

with 〈·〉0 denoting the expectation value in the ground state of graphene at charge neutrality, and 〈·〉 the expectation value in the
particular state of our Hartree-Fock decoupling. In our implementation, we restrict the wave function to be a direct product of
spin-up and -down electrons, such that 〈c†

i↑c j↓〉 = 0 for all ri, r j .
In the projected limit, we assume that the remote bands are filled and the relevant physics takes place in the flat bands. In this

spirit, we compute the mean-field interaction restricted to the subspace of the flat bands,

[VHF,p(k, k′) + HUHF,p(k, k′)]ρρ ′ = (〈FS| ⊗ 〈kρ|)(VHF + HUHF)(|FS〉 ⊗ |k′ρ ′〉), (E3)

with |FS〉 ⊗ |kρ〉 denoting the direct product of the state with the filled remote bands and the state with momentum k and
multi-index ρ. We further assume translational symmetry that makes the mean-field Hamiltonian block diagonal in momentum
space, VHF,p(k, k′) + HUHF,p(k, k′) = [VHF,p(k) + HUHF,p(k)]δk,k′ .

The self-consistent method starts by proposing an ansatz for the ground state at any given filling, computing the mean-field
Hamiltonian, and performing the flat-band projection. Next, we solve the projected mean-field Hamiltonian,

HHF,p(k, k′) = [H0,p(k) + VHF,p(k) + HUHF,p(k)]δk,k′ , (E4)

with H0,p(k)δk,k′ the projected kinetic energy operator. The ground state of this Hamiltonian is then a new ansatz for the self-
consistent ground state and the process is repeated until convergence is reached.

(a)

(d) (e)

(b) (c)

FIG. 10. Band structures and main order parameter distributions in the ground state for several selected interaction strengths. (a) εr = 10,
U = 4 eV, ν = +2. (b) εr = 20, U = 2 eV, ν = +2. (c) εr = 30, U = 2 eV, ν = +2. (d) εr = 10, U = 4 eV, ν = −2. (e) εr = 20, U = 4 eV,
ν = −2.
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= −2, = 10, = 4 = −2, = 20, = 4 = 0, = 10, = 4

= +2, = 10, = 4 = +2, = 20, = 2 = +2, = 30, = 2

FIG. 11. Berry curvatures. For several selected states, we obtain the non-Abelian Berry curvature from the projector onto the occupied flat
bands. We plot the trace of the Berry curvature integrated on the parallelograms defined by the 12 × 12 grid in the Brillouin zone. For ν = 0,
we show the Berry curvature of one spin species (they are equal for both spins). The Chern numbers reported in the main text are reproduced
after summing over the Brillouin zone.

The energy of the self-consistent state is

〈H〉 = 〈V 〉 + 〈HU 〉 + 〈H0〉

= 1

2

∑
ri,r j ,si,s j

V (ri − r j )(〈c†
isi

cisi〉 − 〈c†
isi

cisi〉0)(〈c†
js j

c js j 〉 − 〈c†
js j

c js j 〉0) − 1

2

∑
ri,r j ,s

V (ri − r j )||〈c†
isc js〉 − 〈c†

isc js〉0||2

+ U
∑

ri

(〈c†
i↑ci↑〉 − 〈c†

i↑ci↑〉0)(〈c†
i↓ci↓〉 − 〈c†

i↓ci↓〉0) +
∑
ri,r j s

t (ri − r j )e
iθi, j 〈c†

isc js〉. (E5)

The Coulomb interaction is split into the Hartree or direct and Fock or exchange terms, with the plus and minus signs in front,
respectively.

APPENDIX F: ADDITIONAL PLOTS OF THE
HARTREE-FOCK SIMULATIONS

In Fig. 9 we show additional results for both the intervalley
coherent and spin polarized phases at ν = 0. In Fig. 10 we
show band structures and order parameter distributions of
several selected states, for ν = ±2. Finally, in Fig. 11 we plot
the Berry curvature distributions of several ground states.

A salient feature of the band structures is the degeneracy
along the 
MKMMM line, which is then lifted along the MM
M

line. This can be explained by the crystallographic and U(1)
valley symmetries.

First, let us remind the reader that the symmetries C2z

and C2yT act as C2z(kx, ky ) = (−kx,−ky ) and C2yT (kx, ky) =

(kx,−ky ). As such, C2z interchanges the valleys and C2yT
preserves the valleys; see Fig. 1(a). The symmetry C3z also
preserves the valleys.

Now, the line 
MKM is invariant under C3zC2zC2yT [see
Fig. 5(b)], but this transformation changes the valley, so there
will be two degenerate states with different valleys along this
line. Also, the line KMMM is invariant under C2zC2yT and
the same argument applies. For the line MM
M , it is not
possible to make such construction and the degeneracy is not
enforced.

Notice that the valley symmetry appears when we assign a
valley charge to the eigenstates. If U (1)v is broken, like it is
spontaneously in the ivc phase, the degeneracy is lifted; see
Fig. 9(a).
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