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We consider two-dimensional (2d) quantum many-body systems with long-range orders, where the only
gapless excitations in the spectrum are Goldstone modes of spontaneously broken continuous symmetries. To
understand the interplay between classical long-range order of local order parameters and quantum order of
long-range entanglement in the ground states, we study the topological point defects and textures of order
parameters in such systems. We show that the universal properties of point defects and textures are determined by
the remnant symmetry enriched topological order in the symmetry-breaking ground states with a nonfluctuating
order parameter, and provide a classification for their properties based on the inflation-restriction exact sequence.
We highlight a few phenomena revealed by our theory framework. First, in the absence of intrinsic topological
orders, we show a connection between the symmetry properties of point defects and textures to deconfined
quantum criticality. Second, when the symmetry-breaking ground state has intrinsic topological orders, we show
that the point defects can permute different anyons when braided around. They can also obey projective fusion
rules in the sense that multiple vortices can fuse into an Abelian anyon, a phenomenon for which we coin “defect
fractionalization.” Finally, we provide a formula to compute the fractional statistics and fractional quantum
numbers carried by textures (skyrmions) in Abelian topological orders.
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I. INTRODUCTION

One of the most successful theories in condensed matter
physics is the Landau’s theory of phases and phase transi-
tions [1-4]: phases are distinguished by their symmetries,
and phase transitions are described by symmetry breaking.
An ordered phase with broken symmetry is identified through
the formation of off-diagonal long-range order and is char-
acterized by a local order parameter. While the spontaneous
breaking of a continuous symmetry leads to Goldstone modes
[5,6] which are gapless excitations in the system, a class of
gapped topological excitations—defects and textures—may
also be present in an ordered phase as a consequence of the
nontrivial topology of the order parameter space [7]. This
classical topology can lead to very rich physics. For example,
the topological defects have their own dynamics and may
also lead to phase transitions at finite temperatures [8—10].
Topological defects and textures also commonly appear in soft
matters [11,12] and ultracold atoms [13,14].

Since the discovery of topological insulators [15,16],
recent developments in topological phases of quantum mat-
ters [17-19] has led to a new topological paradigm in
quantum condensed matter physics, which revealed a deep
connection between symmetry and topology in quantum
many-body systems [20]. In particular, gapped quantum liq-
uids that preserve all symmetries of the system, including
topological insulators as a special case, known as symmetry
protected and enriched topological (SPT and SET) phases,
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including topological insulators as a special case, have been
extensively studied, and completely classified and character-
ized in many cases. The topology arising from these quantum
phases of matter, which we term quantum topology, can give
rise to many novel physical phenomena, such as fractional
statistics of anyon excitations in topological orders, and sym-
metry protected anomalous surface states in SPT phases.
Historically, the recently developed topological paradigm
is often treated as a counterpart to the old Landau paradigm
of spontaneous symmetry breaking (SSB), where phases of
matter are characterized by their unbroken symmetries that
are preserved by their ground states. In other words, two
regimes have been investigated rather thoroughly: (i) topo-
logical ground states that preserve the full symmetry of the
system, in the topological paradigm and (ii) topologically triv-
ial ground states that spontaneously break some symmetries
of the system, in the Landau paradigm. Much less attention
has been paid to a third scenario which goes beyond both
the topological paradigm and Landau paradigm, i.e., when
SSB coexists with a topologically nontrivial ground state.
Note that a topological ground state is characterized by the
pattern of many-body entanglement therein, which is quantum
in its nature, while a Landau-type long-range order associ-
ated with SSB is classical in its nature, fully described by a
classical Ginzburg-Landau free energy. In this sense, one can
say that the old Landau paradigm is described by classical
orders, while the recent topological paradigm is described
by quantum orders in the ground state. In comparison, the
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aforementioned third scenario is described by the coexistence
and interplay of classical and quantum orders. In solid state
materials, there are many novel examples that belong to this
scenario, such as quantum anomalous Hall insulators [21]
that spontaneously break time reversal symmetry, quantum
Hall ferromagnets [22] that spontaneously break SO(3) spin
rotational symmetries, and magnetic fragmentation in spin ice
[23,24] that spontaneously break time reversal and crystalline
symmetries. The lack of a general theory and abundance of
experimental candidates for the third scenario motivated us to
theoretically investigate the interplay of classical and quantum
orders in the third scenario, where a topological ground state
coexist with long-range orders associated with SSB.

In this manuscript, focusing on two spatial dimensions
(2d), we address a specific question under this theme: what are
the universal properties of topological defects and textures of
the local order parameters, in a long-range order that coexists
with topological ground states? Previously, this question has
been studied mostly in noninteracting fermions [22,25-34],
and in special cases for interacting systems with intrinsic
topological orders [35]. In this work, we establish a generic
theoretical framework that classifies and characterizes the
point defects and textures in a 2d SET phase with coexisting
long-range orders. In particular, using this theory framework,
our work filled two gaps.

(i) What new properties of defects and textures can arise
from the interplay of classical and quantum orders? To be spe-
cific, previous works has discussed non-Abelian point defects,
such as Majorana zero modes at the vortex core of topo-
logical superconductors [36], and dislocations that permute
anyons in instrinsic topological orders [37]. In this work, we
reveal a new phenomenon coined “defect fractionalization”
(see Sec. V A), where multiple point defects can fuse into an
Abelian anyon in a SET phase.

(ii)) How are the properties of defects and textures of the
long-range order related to and determined by the coexisting
topological ground state? One well-known example is the chi-
ral p, + ip, superconductors, whose superconducting vortex
host a single Majorana zero mode [36]. In spite of various
examples, a generic map between the bulk topology (of the
many-body ground state) and the defect/texture properties
is still unknown. Our work filled this gap (see Sec. III),
by explicitly constructing such a map that shows how the
topological ground state (2d SET in our case) determines
the properties of its defects and textures of the coexisting
long-range order. This map further allows us to obtain a clas-
sification of universal properties regarding point defects and
textures in a 2d SET with existing long-range orders.

One theme of the present work is to establish a concrete
connection between classical topology and quantum topol-
ogy. We will be mainly focusing on topological point defects
and smooth textures (i.e., skyrmions) in two-spatial dimen-
sions and their interplay with SPT or SET phases. More
precisely, when the full symmetry group G spontaneously
breaks down to a subgroup H, consider a symmetry-breaking
ground state where the order parameters are not fluctuating
and fixed in a classical minimum of the free energy. Since
the only gapless excitations in our systems are the Goldstone
modes, these symmetry-breaking states must be the ground
state of a gapped Hamiltonian that preserves H. In two spatial

(@ (b)

FIG. 1. (a) Different anyons of the 2d topological order can be
permuted when braided around the topological point defects (i.e.,
vortices) of broken continuous symmetries. In this case, the vor-
tices exhibit topological degeneracy similar to non-Abelian anyons.
(b) Defect fractionalization: vortices of broken symmetries in sym-
metry enriched topological orders can fuse into Abelian anyons.

dimensions, they are either H-SPT phases in the absence
of intrinsic topological orders, or more generally H-SET
phases. We intend to understand how these H-SPT or H-SET
ground states (‘“quantum topology”) affect universal proper-
ties of topological defects and textures of the order parameters
(“classical topology™) in the associated long-range order.

It turns out the crucial connection between classical and
quantum topology can be established generally by a map (a
“connecting homomorphism” [35]) from topological defects
and textures of the order parameters to (extrinsic) symmetry
defects [38—41] in an H-SPT or H-SET phase. We use this
map, and the classification of H-SPT and H-SET phases, to
obtain a classification and characterization of the universal
properties belonging to topological defects and textures in a
long-range ordered quantum system.

We first consider the (conceptually simpler) situation in
the absence of intrinsic topological orders, where each ground
state with fixed nonfluctuating order parameters is an H-SPT
phase. We identify two phenomena originated from the inter-
play between classical and quantum topology: thanks to the
H-SPT ground state of the long-range order, the point defects
of order parameters can carry a projective representation of
the remnant symmetry H, while topological textures of the
order parameters (i.e., skyrmions) can carry a nontrivial quan-
tum number of the remnant symmetry H. This provides a
new angle into a large family of Landau-forbidden quantum
phase transitions: i.e., the deconfined quantum critical points
(DQCPs) [42-45].

Next we consider a more general situation, where each
ground state with nonfluctuating order parameters is an H-
SET phase with bulk anyon excitations [39,40,46—48]. First,
we reveal two exotic phenomena associated with point de-
fects: (1) different types of anyons can be permuted after they
are braided around a point defect see the Fig. 1(a), (2) multiple
point defects, when combined together to form a trivial point
defect, can instead fuse into an Abelian anyon, a phenomenon
for which we coin “defect fractionalization.” see the Fig. 1(b).
Then, in the case of smooth textures of order parameters,
i.e., skyrmions in 2d, we develop a general field theory that
couples a topological ordered system to a collinear magnetic
order parameter via a topological term in the Lagrangian.
Applying this to Abelian topological orders, we obtain the
formula for the fractional statistics and fractional quantum
numbers of skyrmions in the system.
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TABLE 1. Main results of this work: topological defects and textures as a consequence of symmetry breaking G — H in presence of
quantum orders that preserve the residual symmetry H. The quantum order can either have or not have intrinsic topological orders.

Symmetry
breaking
excitations

Quantum
order

Topological defect Classified by 7,(G/H)

Topological texture Classified by 7, (G/H)

H-symmetry enriched intrinsic
topological order (Data: Anyons
C, symmetry-H permutation p,
symmetry-H fractionalization

H2(H, C))

Data: C, p, ’H,f,(m(G/H), C) Phenomenon: 1.
(1) Nontrivial Defect permutation (Sec. VC 1)
* Data: p

» Example: dislocation in Wen plaquette
(45°-rotated toric code) 2.

(2) Nontrivial Defect fusion (Sec. V C2)

* Data: H%(EI(G/H), C)

* Example 1: Pair superfluids with

Data: G = SO(3), H = U(1)s:, TQFT
Phenomenon: Textures can carry nontrivial
self-statistics (Sec. VI)

* Example: Skyrmion in FQHE can have
nontrivial self statistics angle (topological
spin) characterized by the K matrix of the
Abelian Chern-Simons theory (Sec. VI)

anyon-permuting vortices (Sec. [V D 1])
» Example 2: Biaxial nematic order in toric

code (Secs. VD2 and VD 3)

» Example 3: dislocation in toric code

(Sec. VD4).
H-symmetry protected
topological phases without
intrinsic topological order Data:

H(H,U(1))

HYB, H*(K, U(1)))

(Sec. IVB 1)

Data: G=AxK,H=B x K,

Phenomenon: symmetry defect carries
projective representation of H (Sec. IV B)
Example: vortices in pair superfluid

Data: G = SO(3) x K, H = U(1)s: x K,
HU(Z, H'(K, U(1)))

Phenomenon: symmetry texture carries linear
representation (quantum number) of H

(Sec. IVC)

Example:

* Skyrmions in QSHE (Sec. IVC 1)

* Neel order in spin-1/2 square lattice
(Sec.IVC2)

Another interest of this work comes from the technical
side. It has been known for long (and fairly familiar among
condensed matter physicists) that classical topological defects
are mathematically described by homotopy groups in alge-
braic topology [49,50]. This mathematical object is rather
intuitive as it admits a real space picture: it models the topo-
logical defects as maps from real space (or spacetime) to
the space of parameters (such as the order parameter space
which is of interest to this work) and classifies them up to
continuous deformation. On the other hand, the theory of
symmetry defects and symmetry fractionalization are rather
new in condensed matter physics [38-40,46,51], and the main
mathematical tool employed are various homology, cohomol-
ogy theories and category theories. While homology theory
also stems from homotopy theory in algebraic topology, it has
developed into an independent subject, whose application in
physics is far more rich and profound. Even from this tech-
nical point of view, it would be a great pleasure—and would
bring great mathematical insight to the physical problem un-
der consideration—to see how these mathematical objects can
be united in the treatment of classical topology and quantum
topology.

This paper is organized as follows. In Sec. II, we de-
scribe a theoretical framework, which crucially connects the
point defects and textures of the order parameters of the
broken symmetries to the symmetry defects of the preserved
symmetries. This connection allows us to classify and char-
acterize the universal properties of point defects and textures
using the topological properties of the ground states. The

setup, the connection and these universal properties are con-
cisely summarized in Table I. In Sec. III, we continue our
theoretical framework by exploring the connection between
classical topology and quantum topology, where we provide
more mathematical details on group cohomology classifica-
tion for point defects and textures in SPT and SET phases.
The key word there are the so-called “inflation map” that
appears in a five-term exact sequence for group cohomology,
whose physical meaning will be investigated in great detail.
Next we apply this framework to demonstrate universal prop-
erties of point defects and textures in 2d quantum orders. In
Sec. IV, we focus on the simplest cases in the absence of
intrinsic topological orders, where all ground states with a
fixed order parameter configuration are SPT phases. We show
that the exotic phenomena of DQCP can be captured in a
concise manner within our framework. Next, we proceed with
general cases where the ground states are SET phases with
intrinsic topological order. In Sec. V, we classify topological
properties of point defects, highlighting two distinct phenom-
ena: non-Abelian point defects that permute anyons when
braided around, and a new phenomenon for which we coin
“defect fractionalization” where multiple point defects fuse
into Abelian anyons. In Sec. VI, we study topological textures
(i.e., skyrmions) in 2d SET phases, in particular, we compute
the fractional statistics and quantum numbers of skyrmions.
Finally we summarizes our main results and look into future
directions in Sec. VIIL. Clarification on the notations and a
self-contained introduction to the mathematical tools can be
found in the Appendixes.
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FIG. 2. Dislocation in the toric code/Wen plaquette model. The
spin-1/2 living on the vertices forming a square lattice. The dark
(light) plaquette denotes the € (m) excitations. A dislocation, as a
line defect, denoted by the orange line, can permute the anyons.

A. A simple example of defect permuting anyons

Before diving into the general theory of topological defects
and textures in quantum orders, let’s first consider a simple
example: dislocations in the toric code model (also known as
the Wen plaquette model) [37,52]. The dislocation converts a
€ anyon to a m anyon and vice versa, illustrating one of the
essential principles of topological defects in a topological or-
der which we call nontrivial defect permutation. To explicitly
show this effect, we use the setup by Wen [53], where the spin
degrees of freedom live on the vertices of the square lattice,
and the Hamiltonian reads

H=— Z XiZivsXivsr9Zivs- (D

ievertices

An e (m) excitation corresponds to a four-spin term for the
dark (light) plaquette having eigenvalue —1. A dislocation
introduces a pentagon plaquette operator to the Hamiltonian
that commutes with the original plaquette terms; however,
its existence violates the alternating rule for the light and
dark operators, and upon transporting an € along the dark
plaquettes around the dislocation one is forced to end up with
an m excitation on a light plaquette, see Fig. 2.

To better understand how this nontrivial permutation is
physically achieved, we examine the realization of toric code
order in topological superconductor bilayers [54,55]. A pair of
p+ ipand p — ip superconductors realize Ising topological
orders with opposite chiralities; as decoupled layers, the sys-
tem contains the fermions i and v, and non-Abelian vortices
o1 and o, of layers 1 and 2 (associated with Majorana zero
modes), respectively. The anyon-permuting translation opera-
tion is implemented by combining the usual spatial translation
and the fermion parity operator of only the p — ip (or p 4 ip)
part. After condensing the interlayer-bound pair of fermions
(Y1, ¥n), while anyons (o1, 1), (o1, ¥2), (1, 02), (Y1, 02) are
confined, the other anyons fall into four different superselction

sectors 1, ¢, e, m:

(1, 1), (Y1, ¥n) = 1,
(1, ¥2), (¥1,2) — e,
(o1,00)~>€+m, )

satisfying the standard fusion rules of toric code. Note that
after condensation, the confined vortices o, permute the
anyons € <> m. Crucially, in this construction, a lattice dis-
location binds a single Majorana zero mode o, [25-27,54],
ensuring that when an e particle encircles the dislocation, it
changes its anyon type to m. This is a canonical example that
a topological defect in symmetry enriched topological orders
can permute anyons.

II. GENERAL FRAMEWORK

We consider the ground state of a 2d quantum many-body
system, which exhibits a long-range order associated with
spontaneous symmetry breaking. To be precise, the symmetry
group G of the Hamiltonian spontaneously breaks down to
a subgroup H that is preserved in an ordered ground state.
Moreover, we assume that the possible Goldstone modes,
from spontaneously broken continuous symmetries, are the
only gapless excitations in the bulk of the system. In other
words, the ground state with a fixed nonzero order param-
eter O(F) = (O(F)) # 0, is a gapped symmetric phase that
preserves the remnant symmetry H. In the rest part of the
paper, for simplicity, we assume the classical gapless Gold-
stone modes do not affect the topological data of the remnant
gapped quantum phases that we are interested in. In two spa-
tial dimensions, this means the ground state is an H-symmetry
enriched topological order. The question we are answering is,
what are the universal properties of topological defects and
textures in the order parameters therein, when the symmetry-
breaking ground state is a topological state enriched by the
remnant symmetry H?

To address this question, we need to consider topological
defects and textures as excitations in a symmetry-breaking
ground state. They turn out to be connected to a special
type of excitations known as extrinsic symmetry defects (or
twist defects) in symmetry enriched topological (SET) phases.
This correspondence allows us classify universal properties
of topological defects and textures in ordered media with a
nontrivial ground state topology. The key mathematical tool
to establish this connection is the long exact sequence of
homotopy groups for topological defects and textures. In this
section, we outline this connection between classical topology
of the order parameters and quantum topology of the entan-
gled ground states, and then utilize this connection to classify
point defects and textures in following sections.

A. Homotopy theory of topological defects
and textures: a brief review

First we briefly review the homotopy theory of topological
defects and textures in the order parameters [7]. Mathemati-
cally, the long-range order of spontaneous symmetry breaking
is described by a local order parameter

O()e M =G/H, 3)
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TABLE II. Homotopy group for topological defect/texture in
dimensiond = 1, 2, and 3.

d=1 d=2 d=3
) point defect line defect surface defect
) texture point defect line defect
b12) texture point defect
3 texture

i.e., the order parameter is valued on the (left) coset space of
G modulo H, where the full symmetry G of the Hamiltonian
is spontaneously broken down to a subgroup H in a ground
state with a fixed order parameter configuration. In particular,
the remnant symmetry H is the subgroup of G which keeps
the order parameter {O(7)} invariant:

H = {h € GIhOFh™" = O(h¥)}. )

Given the order parameter manifold M = G/H, in d spatial
dimensions, one can consider an order parameter configura-
tion with point (line, surface etc.) defects, where the order
parameter O(7) is a smooth function of spatial coordinate
7 except for singularities on isolated points (lines, surfaces,
etc.). Most generally, a (d — D — 1)-dimensional defect (i.e.,
a defect of codimension D + 1) is described by a continuous
map:

FeS? - O0@F) e M=G/H 3)

of order parameters on a submanifold enclosing the defect.
The inequivalent classes of (d — D — 1)-dimensional defects
in d spatial dimensions is hence classified by the homotopy
group np(G/H) [7] for d > D + 1. Below we list a few de-
fects in low dimensions:

(i) zero-dimensional point defects are classified by
ws—1(G/H) ford > 1;

(ii) one-dimensional line defects
w4—2(G/H) ford > 2;

(iii) two-dimensional defects are classified by 7;_3(G/H)
ford > 3.

In addition to defect configurations where the order param-
eter O(7) becomes singular somewhere in space, homotopy
theory also classifies textures of the order parameter configu-
rations which are smooth everywhere. They are classified by
the following continuous map:

are classified by

FeS!— O0F) e M=G/H (6)

where we compactify the d-dimensional real space to S¢. As
a result, topologically inequivalent textures in d dimensions
are classified by the homotopy group 7;(G/H). Similarly one
can also consider spacetime textures, classified by homotopy
group my+1(G/H) where the (d + 1)-dimensional spacetime
is compactified to S¢*!. Homotopy group for topological
defect/texture in d = 1,2,3 dimension can be found in
Table II.

In this work, we shall restrict ourselves to two spatial di-
mensions (d = 2), where different types of topological defects
and textures are classified by the following homotopy groups.

il

Dig.m) /WH‘

CH ;Hg_l
Cu

FIG. 3. The equivalence between a domain wall between two
phases Cy and C; . and the boundary of a 2d phase [Eq. (9)].

Ho—1°

(i) Domain walls with codimension 1, where order pa-
rameters are smooth everywhere except for along a line, are
classified by 7o(G/H);

(i1) Point defects (i.e., vortices) with codimension 2, where
order parameters are smooth everywhere except for one point,
are classified by 7;(G/H);

(iii) Textures where order parameters are smooth every-
where, are classified by 7>(G/H). A well-known example is a
skyrmion in a 2 + 1D O(3) nonlinear sigma model (NLSM),
as will be discussed in detail later.

The main goal of this work is to establish a connection
between topological defects and textures of the symmetry-
breaking order parameters, and the underlying topological
ground states. The main mathematical tool that reveals this
connection is the long exact sequence of homotopy groups

[71:
- —> 1y, (H) — 7,(G) — 7,(G/H)
— 1 (H) — 7,-1(G) —> -+ . @)

Here, “exact” means that for each term G in the sequence

NLG62E 0, the kernel of the outgoing map ¢, ker(q) =
{m € Glg(m) = 0} is equal to the image of the incoming
map p, im(p) = f(N): im(p) = ker(g). We noticed that the
general idea of mapping topological defects and textures
to symmetry defects through “connecting homomorphism”
m(G/H) — my—1(H) have been pointed out in Refs. [35,56].

B. Domain walls

In 2d, a gapped phase that preserves remnant symmetry
H is generally an H-SET phase, whose anyon excitations are
described by a unitary modular tensor category C [37,39,40].
We use Cy to label such an H-SET phase. The domain wall
in two spatial dimension is a line defect characterized by
mo(G/H). In a gapped system whose symmetry group G of
the Hamiltonian is spontaneously broken, a generic domain
wall D, py is labeled by a remnant subgroup H < G and a
group element g ¢ H, such that it separates a left domain that
preserves symmetry subgroup H, and a right domain that pre-
serves subgroup gHg~', as shown in Fig. 3. We can label the
H-SET phase on the left domain as Cy, and the (gHg™!)-SET
phase on the right domain would be

UllrU; " = Copy 1 ®)

where we use U, to label the action of broken symmetry
element g on the H-SET phase on the left domain. Note
that the right domain and the left domain may not share the
same topological order C, e.g., in the case of a time reversal
domain wall with g =T, the left and right domains have
opposite chiralities and hence C’ = C, where C is defined as
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(a)

FIG. 4. Illustration of the fundamental group m; of the group
manifold. (a) m;(G) captures the winding in G-space. (b) 7,(G/H)
captures the winding in G/H space. Note that the open line in (a) may
be considered as closed loop in (b) as those points are identified in
G/H space.

the time reversal counterpart of topological order C. In this
setup, using the folding trick, it is clear that the domain wall
Dy 1) between left domain Cy and right domain Cl, ., can be
mapped to the boundary of a 2d topological phase:

(C X C_/)Hg = CH X C_;ng*I (9)

where we denote the remnant unbroken symmetry of the do-
main wall configuration as

H,=HN(gHg")={he Hlg 'hgc H} (10)

Therefore the universal properties of domain walls D, p) is
captured by boundary excitations of a 2d topological phase
described by (9), as illustrated in Fig. 3.

The physics of boundary excitations in a 2d topological
order is in fact a subject extensively studied in the literature
[57-65]. In light of the above physical picture that maps a
domain wall to a boundary, we will not attempt to classify
topological properties of domain walls in SET phases in this
manuscript. From now on we shall discuss only the point
defects and textures in two spatial dimensions.

C. Point defects

In two spatial dimensions, point defects are classified by
the fundamental group 7{(G/H). Two representative exam-
ples of point defects in 2d are the following.

(1) In a system of interacting spinless bosons whose ground
state is an m-boson condensate, the boson number conser-
vation symmetry G = U(1) is spontaneously broken down
to a H = Z, subgroup. The vortices of such an m-boson
condensate are classified by m;(G/H) = 7 (U(1)) = Z. In

particular, the fundamental vortex with unit winding number
v = 1 is equivalent to a 27t /m flux by a gauge transformation.

(2) For interacting ions that form a crystalline lattice in
two dimensions, the continuous translation symmetry G = R?
is spontaneously broken down to a discrete subgroup H =
7. The associated point defects, i.e., dislocations, are clas-
sified by 7;(G/H) = Z?, characterized by a Burgers vector
b = byd + bydy, where (b, by) € Z* and &, are the two
primitive lattice vectors. Physically, we can consider a close
loop on a translation-invariant lattice. If a particle follows
exactly the same path of the loop, which now encloses a
dislocation, the particle will not return to the starting point
after finishing the path. Instead, the final position differs from
the initial position by the Burgers vector b of the dislocation
enclosed by the path.

Both examples belong to the general case where a con-
nected topological (continuous) group G is broken down to
a discrete subgroup H. We assume H to be a normal subgroup
of G (i.e., H<1G), so that the whole point defect configuration
of order parameters preserves symmetry H. Applying the
long exact sequence Eq. (7) to the n = 1 case, we obtain the
following short exact sequence:

i m(H) =0 5 1(G) = 1 (G/H)

L agHY=H 5 70(G) =0 —> - -

(1)

where p is known as the connecting homomorphism between
the topological point defects and symmetry defect. The group
m1(G) and 1 (G/H) are illustrated in Fig. 4.

This short exact sequence of groups can be understood
as follows: using the exactness of the sequence, it is clear
that 7 is an injective map, hence m;(G) is a normal sub-
group of m(G/H). The connecting homomorphism p is a
surjective map so H is isomorphic to the quotient group
m1(G/H)/m(G). Such a short exact sequence defines a group
extension problem, and here we say that 7;(G/H) is a group
extension of the group 7;(G) by H.

Physically, the surjective map g in the short exact se-
quence (11) connects topological point defects classified by
m1(G/H), to symmetry defects associated with elements of
the remnant symmetry group H in the symmetry-breaking
ground state, which is generally an H-SET phase. Note
that the classification and characterization of H-SET phases
[39—41] is in fact built upon an algebraic theory of h-defects
for h € H, which has been extensively studied previously. The
above group extension allows us to map each point defect
classified by m(G/H) to an h-defect associated with the
group element & € H, therefore allowing us to characterize the

TABLE III. Defect fractionalization classes from Eq. (18), for the toric code with coexisting long-range orders, where the fully symmetry
G is spontaneously broken down to a subgroup H. Different H symmetry actions on the anyons are also considered.

No. G H H-Action HL{H,A) — HLUw(G/H)LA) — HymG)LAY —  HMHA - Hu(G/H) A
1 U(l) 2 Trivial e x7h S 78 x I S zsxzd S zexId > 0
2 U(l) 2 Nontrivial 0 > ZExINZE S Z5 N 0 - 0
3 503) D, Trvial (23)°x ()" 5 () x(2)" >  zexzd B 2)° x ()" 5 (23)°x (z)"
4  SO(3) D, Nontrivial zs 5 Vi3 35 Vi3 = z; 2 Vi3
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TABLE IV. Table adapted and improved from Ref. [117]. Phase, order parameter manifold, standard spinor, and the first (;; ), second (72)
and third (;r3) homotopy groups for scalar and spinor BEC. Here FM, P, UN, and BN stand for ferromagnetic, polar, uniaxial nematic and biaxial
nematic, respectively. The D4 and T are the fourth dihedral group and the tetrahedral group, respectively. The subscripts f, ¢ and (f, ¢) show
that the symmetry is about spin, gauge and the combined spin and gauge. We denote a vortex as Z x; (K)g,4 in spinor BECs, where group K is
constructed based on the composite symmetry between the gauge symmetry ¢ and the hyperfine spin symmetry F. Foranyn,m e Z, g, g € K,
(n, 8) € Z x;, (K),4 satisfies that (n, g) - m, ) = (n+m+h(g-g),g- &), where map h: K x K — Z is defined such that 4(g, &) = 0 when
0+6" <2mandh(g, g)=1when6 + 0" > 2r. K* is defined as f(K) := K* by the map f : U(1) x SO(3) — U(1) x SU(2).

System Phase G H M (M) (M)
Tons Crystal R? VA [UQ )]d VA 0
Isotropic magnets FM SO@3) u() s? 0 Z
Liquid crystal UN SO(3) Dy RP? 7 Z
Liquid crystal BN SO@3) D, SO@3)/D, Qs 0
Spin-0 bosons n-boson BEC U(l) Z, U(l) Z 0
Spin-1 bosons FM U(1) x SO@3) U(l) SO(3) Z 0
Spin-2 bosons cyclic U(1) x SO(3) T U() x SO@Q3))/T Z xT 0
Spin-2 bosons UN U(1) x SO3) (Z,) x SO(2) U(1) x 8?/(Z>) 7 X 7 Z
Spin-2 bosons BN U(1) x SO@3) (Dy) (U@) x SO3))/Dy) Z x;, (D}) 0
Spin-2 bosons nematic U(1) x SO(5) (Z,) x SO4) U) x $Y/(Z>) 7 X, (Zy) 0
SHe-A dipole-free S? x SO(3) Z, 5?2 x SO(3)/(Zy) Zy4 Z
‘He-A dipole-locked 0(3)=S03) x Z, Zy SO(3) Zn 0

topological properties of point defects. In the two examples
mentioned above: (1) Since 7;(G = U(1)) # 0, a vorticity-v
vortex in an m-boson condensate is mapped to a 2w v/m flux
of the remnant Z,, symmetry, and hence the map p is surjective
but not injective. (2) Since 71(G = R9) = 0, the dislocations
are in one to one correspondence with translation symmetry
defects, and hence the map p is bijective.

Below we shall apply this idea to two different families of
symmetry-breaking phases.

(1) When a symmetry-breaking ground state has no intrin-
sic topological order, it is described by an H-SPT phase. The
point defects can carry linear or projective representations of
the remnant symmetry H, a phenomenon closely related to
deconfined quantum critical points (DQCP). We discuss point
defects of this family in Sec. IV.

(ii)) When there are intrinsic topological orders in a
symmetry-breaking ground state, it is generally an H-SET
phase. In this case, the point defects can be non-Abelian
defects that permute anyons, or they can exhibit exotic fusion
rules. We classify and discuss point defects of this family in
Sec. V. Several examples are listed in Table III.

D. Textures

The most familiar example of a topological texture in two
spatial dimension is a skyrmion. When a ferromagnetic order
breaks the G = SO(3) spin rotational symmetry to a uniaxial
spin rotation subgroup H = U(1), the order parameter man-
ifold is a 2-sphere M = G/H = S? with nontrivial textures
classified by 75(S?) = Z. In fact, as summarized in Table IV,
most familiar realizations of topological textures in 2d are
essentially classified by 7,(S?) = Z, and we shall focus on
skyrmions as 2d textures in the manuscript.

In the case of skyrmions, the long exact sequence (7) re-
duces to the short exact sequence

5 (SOB3)) = 0 = m(SH) = Z - m(U(1)) = Z
— 1(SOB) =Z» 2 () =0 —> .- (12)

This short exact sequence indicates that the connecting
homomorphism i is an injective map from skyrmions la-
beled by m2(S?) = Z to fluxes labeled by 7 (U(1)) = Z.
More precisely, the group of U(1) fluxes 7 (U(1)) = Z is
a central extension of the skyrmion group m,(S%) = Z, with
the center being the group of point defects 7;(SO(3)) =
11(SUR)/Zy) = L,

Physically, it is known that the Z, point defect is noth-
ing but a 2w vortex for the SO(3) spins [66,67]. In other
words, the spin of a particle is rotated around one (any) axis
by 2m after circling around the nontrivial point defect in
m1(SO3)) = Z,. Eq. (12) defines a map from the element
a € my(5?) to b e m;(U(1)) and then to the trivial element
in 7;(SO(3)) = Z,. Since the nontrivial element for that Z,
point defect is a 27 vortex for spins, the trivial element of
7, should correspond to a 47 vortex. Therefore, in Eq. (12), a
skyrmion with winding number v € Z is mapped to a 47 v flux
of the U(1) spin rotations, i.e., 2v € m;(U(1)) = Z [35,68].

The map in (12) points to the nature of skyrmions in a
ferromagnetic topological order where SO(3) spin rotational
symmetry is spontaneously broken down to a U(1) subgroup,
as the topological properties of each v =1 skyrmion can
be extracted from those of 47 v flux/defect of the unbroken
U(1) symmetry. We shall follow this approach to identify the
fractional stastistics of skyrmions in Sec. VI.

"Note that here we have used the fact 7;(SU(m)/Z,,) = Z,, from
the following four-term exact sequence

m(SUm)) =0 L5 7,(SUm)/Z,,)
B o(Z) = Ty B 0(SUm)) = 0.

Using the exactness of the terms, one can show that f; is an isomor-
phism map, therefore 7, (SU(m)/Z,,) = Z,,.
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III. GROUP COHOMOLOGY FOR POINT DEFECTS
AND TEXTURES

A. Group cohomology for symmetry defects: a brief review

Following Refs. [39,69-71], below we give a definition for
symmetry defects in both SPT and SET orders. When the
physical system has a symmetry H with a given symmetry
action p on the quasiparticles, one can consider modifying the
system by introducing a pointlike defect t;, associated with a
group element 7 € H. When a quasiparticle is braided around
an h-symmetry defect 7, it is acted upon by the correspond-
ing symmetry action p,. Since H is a global symmetry, the
pointlike defects t;, are not finite-energy excitations and must
be extrinsically imposed by threading the symmetry flux of 4.

As group cohomology is a crucial mathematical object for
this work, we give a self-contained introduction to it from
the mathematical side in the Appendix B 2. More detailed
characterization and intuition for it from the physics side will
be given here and in later sections.

1. Symmetry protected topological (SPT) phases

We start by recalling the definition and classification of
bosonic SPT phases. An H-SPT phase is a short-range en-
tangled phase, which, in the presence of symmetry H, cannot
be continuously connected to a trivial product state without
closing the energy gap. In a system of interacting bosons in
d spatial dimensions, different H-SPT phases are classified
by the (d + 1)-th group cohomology HATV(H, U()) [72].
The cohomology group H¢*!(H, U(1)) is an Abelian group,
whose identity element labels the topologically trivial phase (a
featureless product state), and the addition of group elements
is implemented by stacking different SPT phases.

When symmetry G is spontaneously broken down to H
in a given ground state, a long-range ordered ground state
with fixed order parameters is an H-preserving short-range
entangled phase,” which are H-SPT phases classified by the
group cohomology H3(H, U(1)) [72].

We consider a 2d SPT phase protected by a symmetry
group H = B x K, which is a direct product of two groups B
and K. The Kiinneth formula indicates that the classification
of H-SPT phases can be written as a direct product [72]:

d+1
HHY(B x K, U(1)) = ]i[Hl'(B, HU(K,UD))). (13)
i=0
In the d = 2 case which is the interest of this manuscript, we
have
H3(B x K, U(1)) = H*(B, U(1)) x H*(B, H' (K, U(1)))
x H' (B, H*(K, U(1))) x H3 (K, U(1)),
(14)

where each term has its own physical meaning. Clearly the
first term H3(B, U(1)) classifies the SPT phases protected

2We use the definition of Ref. [72] for short-range entangled phase,
which is different from Kitaev’s definition [37]. Therefore we do
not consider invertible phases such as topological superconductor in
class D [73] and Ej states of d = 2 interacting bosons [37,74].

only by the subgroup B, while the last term H3(K, U(1))
classifies SPT phases protected only by the subgroup K.

In this work, we are particularly interested in the mixed
anomaly of symmetry B and K, which assigns quantum
numbers or projective representations of subgroup K to B
symmetry defects. The mixed anomaly is captured by the
second and third terms in the Kiinneth expansion (14), as
suggested by the “decorated domain wall” picture of the SPT
phases [75].

(i) The second term H' (B, H>(K, U(1))) assigns a projec-
tive representation [w] € H?(K, U(1)) to any symmetry defect
ag associated with g € B. As discussed in Sec. IIC, in the
exact sequence (11), the connecting homomorphism p maps
a symmetry-breaking point defect (i.e., vortex) of order pa-
rameters classified by 7;(G/H) to a symmetry defect labeled
by elements of H = B x K. If the associated symmetry defect
corresponds to an element g € B, this suggests that the point
defect of order parameters can carry a projective representa-
tion of K. This map will be discussed in detail in Sec. IIT C.

(i) For topological textures of the order parameters in
d =2, we shall focus on the case of skyrmions, where the
remnant symmetry is H = U(1) x K with B = U(1). In other
words, we consider the full symmetry G = SO(3) x K is bro-
ken down to H = U(1) x K in the collinear long-range order.
In this case, we utilize an important result from the theory of
cohomology: for any finite Abelian group M on which U(1)
and Z both act trivially,?

HAU), M) =M =HYZ,M). (15)

Mathematically, both cohomology groups classify differ-
ent linear representations {R, € M|v € Z} of the integer (Z)
group formed by the 2wv, v € Z fluxes of the remnant U(1)
symmetry with coefficients R(v) € M.

As a result, with B = U(1), we can rewrite the third term
in Kiinneth expansion (14) as

H2U), HU(K, U1)) = H'(Z, H (K, U1))).  (16)

Physically, this can be interpreted as assigning quantum
numbers (or charges) of symmetry group K, i.e., linear rep-
resentation H! (K, U(1)), to the integer fluxes of the unbroken
U(1) subgroup.

As discussed in Sec. II D, the connecting homomorphism
i in (12) maps the skyrmions labeled by v; € m,(G/H) = Z
to integer fluxes labeled by vy € m(U(1)) = Z. As a result,
we can use the SPT classification H2(U(1), H' (K, U(1)))
for each symmetry-breaking ground state to determine the K
symmetry quantum numbers assigned to each skyrmion. This
map will be discussed in detail in Sec. III D.

SHere it is important to specify that by H?(U(1), M) we are com-
puting the Borel cohomology, which is the standard cohomology
for bosonic SPT [72]. The calculation uses the relation between
Borel cohomology and simplicial cohomology H2(U(1), M) =
H?*(BU(1), M) = H*(CP*°, M) and the procedure of regarding
H*(CP>, M) as the limiting case of H*(CP", M) = M for n — oo
following Ref. [72]. On the other hand, the part H'(Z, M) = M can
be obtained in either standard group cohomology or Borel cohomol-

ogy.
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2. Symmetry enriched topological (SET) order

Consider a topological order described by a unitary mod-
ular tensor category C, enriched by symmetry H that is a
discrete group. Since the topological order preserves the un-
broken symmetry H, an SET phase can arise which in addition
to the topological order displays the phenomenon of frac-
tionalization of symmetry [39,40,46]. Here we briefly review
the physical picture of symmetry fractionalization and the
classification of SET.

For each group element 4 € H, one can associate an ex-
trinsic defect/flux t;, [39,40] in the H-symmetry enriched
topological order. A symmetry defect can be further labeled
by an anyon a € C of the topological order, with the identity
symmetry defect (i.e., the symmetry defect associated with
the identity element of the group) identified with the anyon
a itself. The symmetry defects in this sense are generalized
anyons and can have nontrivial fusion and braiding rules. In
particular, anyons may be permuted when braided around a
symmetry defect 7;,. This braiding is one way of detecting the
symmetry action p : H — Aut(C), where Aut(C) denotes the
automorphism group of the anyons. The first group cohomol-
ogy group, ’H})(H, A), defines a (possibly crossed, when p
nontrivial) homomorphism [w] where @ : H — A describes
an anyon labeling of symmetry defects that is consistent with
the symmetry action on the anyons, p. Two anyon-labeling
homomorphisms @', @” belong to the same class [w] if they
differ only by an anyon permutation described by p. Physi-
cally, H })(H , A) points to the ambiguity that an Abelian anyon
ap € A can always be attached to a symmetry defect 7 to
form a new symmetry defect 7; corresponding to the same
group element i € H.

The additional data to specify an SET phase is symmetry
fractionalization (whose physical meaning will now be speci-
fied), classified by the second group cohomology ’H/zo (H, A).
Here p denotes the symmetry action on the anyons as in-
troduced above, and A C C is the set of Abelian anyons
viewed as an Abelian group under fusion [39,40].* The el-
ements [w] € H%(H , A) are cocycle elements @ under the
equivalence relation of anyon labeling. The cocycle elements
w(g, h) € A takes as an input two group elements g, h € H
and returns an anyon. Physically, the cocycle, roughly speak-
ing, describes the outcome of fusing three defects t,, 75, and
Ty the result is a trivial defect associated to the identity
element of H as required by the “conservation law”of the
symmetry H, and the only possible outcome is an Abelian
anyon. The symmetry fractionalization data precisely refer to
the anyon outcomes after fusion. Crucially, it is inappropriate
to think of the outcome anyon as fixed since different anyons
may be identified under the equivalence relation; rather sym-
metry fractionalization refers to the inequivalent ways of
assigning defect fusion rules up to anyon relabeling.

To summarize, an H-SET phase is classified by symmetry
action p on the anyon contents, and the associated (symmetry)

4Note that in the case of SPT discussed in Sec. IIT A 1, the action of
the symmetry H on the U(1) coefficient is uniquely determined by
the symmetry H itself. Thus here and after we only specify the action
of the group cohomology for SET.

defect “fusion rule”, which encode symmetry fractionaliza-
tion data classified by ’Hf)(H, A). The defect fusion rule
’Hf, (H, A) is defined up to the a relabeling of symmetry de-
fects by Abelian anyons, specified by ’H:) (H, A). As we show
below, all these data have correspondence in a phase with
coexisting symmetry-breaking defect and topological order.

B. The inflation-restriction exact sequence

In this subsection we introduce the main mathematical tool
we will be relying on in the physical interpretation of group
cohomology, the inflation-restriction exact sequence.

Recall that the input data for group cohomology H7 (G, M)
is a group G and an Abelian group M equipped with a
G-action p : G — Aut(M), g+ p(g) (we use p(g) and p,
interchangeably). For convenience, we denote the G-action on
M by the symbol “.’, that is, for g € G and a € M, we define
p(g)(@) = g.a. Suppose N is a normal subgroup of G, and
0 := G/N the associated quotient group. Formally, we say
that G is an extension of the group Q by N that fits into the
short exact sequence

G—L>Q=G/N—=0

X, |

Aut(M)

0 N

a7

Note that here the action py : N — Aut(M) is inherited from
the action p. There is also an action pp : Q — Aut(MM), here
MV denotes the subgroup of M that are stabilized under the
action of N: MY = {a € M|n.a =aVn € N}.

Given these data, a five-term exact sequence exists [50]

0— H'(©Q, M) —> HYG, M) = H' (N, M)°

5 10, M) 5> HAG, M), (18)
this is the inflation-restriction exact sequence. Here

H'(N,M)P denotes the subgroup of H'(N,M) that are
stabilized under the action of Q in the following sense: for
[w] € H'(N, M) represented by the cocycle w,

[w] e H'(N, A? = q.(0(g"'ng)) = o(n),

for any ¢ € Q and n € N. The maps “res,” “d,,” and “inf” are
called the restriction, the transgression (or the differential),
and the inflation maps, respectively, and can be defined ex-
plicitly. A sketch of the proof of the five-term exact sequence
and further information about the maps can be found in Ap-
pendix C.

In the following, we will apply the five-term exact se-
quence to various short exact sequences of homotopy groups.
These homotopy groups describe either point defects or tex-
tures in the broken symmetry phase, and the broken symmetry
phase is either an SPT or an SET. Below we discuss each cases
separately.

19)

C. Group cohomology for point defects
1. Point defects in SPT

Consider a symmetry breaking from G=A x K to H =
B x K, where A is a continuous group and B a discrete group.
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A symmetry-breaking ground state with a fixed order parame-
ter is an H-SPT, and we focus on the mixed anomaly described
by the H#'(B, H*(K, U(1))) term in the Kiinneth formula (14).

In this case, the topological point defects of the order
parameter ¢(7) € G/H is classified by the fundamental group
m1(G/H) = m(A/B) which fits into the short exact sequence
(11). Recall from the Kiinneth decomposition (14) that the
term H'(B, H*(K, U(1))) assigns projective representations
inM := H*(K, U(1)) to the symmetry defects of B. Note that
here we consider the case of B consisting of only unitary
symmetry, therefore B acts trivially on M. By (17), now the
point defects labeled by 71 (A) and 7 (A/B) all act trivially on
M.

Then, applying the five-term exact sequence (18) gives

0 — H'(B, HX (K, U(1))) & #'(r1(A/B), HA(K, U(1)))

res

— H'(m1(A), HA(K, U(1)))
L H2(B, HAK, U(1))) 2 H2 (i (A/B), HE(K, U(1))).
(20)

The term H'(B, H>(K, U(1))) is exactly the term in the
Kiinneth decomposition (14) discussed above, which gives
classification for H-SPT phases with the mixed anomaly. The
image of injective map d, in H! (771 (A/B), H*(K, U(1))) clas-
sifies the K projective representation carried by point defects
in 71(A/B).

Since H?(B, H*(K, U(1))) is one piece out of the Kiinneth
decomposition for H*(B x K, U(1)), it physically corre-
sponds to an anomalous symmetry implementation of group
H = B x K on the surface of a three-dimensional H-SPT
phase. It can only happen on the two-dimensional surface
of a three-dimensional H-SPT phase, but not in any two-
dimensional lattice models with onsite symmetry actions.
Therefore the image of the restriction map is the same as the
kernel of the transgression map d» in the exact sequence (20).

More physics of the point defects in H-SPT phases will be
discussed in Sec. IV B.

2. Point defects in SET

We consider a continuous symmetry G spontaneously
broken down to a discrete subgroup H, where each symmetry-
breaking ground state is an H-SET phase, whose intrinsic
topological order is specified by the anyons C.

Recall from previous discussions that SET is equipped with
a symmetry action on the anyons, p : H — Aut(C) [39,40].
Suppose that the system started with a larger (continuous)
symmetry G that spontaneously broke down to a discrete
symmetry group H. The topological point defects of the order
parameter is again classified by 7(G/H) that fits into the
short exact sequence (11). Then, one can pull back the sym-
metry H-action p to obtain actions of the topological point
defects on the anyons:

m(G) —>m(G/H) —L—=H

- ’ lp @1)

Applying the five-term exact sequence (18) to Eq. (21) gives

res

0 — Hy(H, A) > Hi(m1(G/H), A) — H'(11(G), A

B2 H, A) D H (w1, (G/H), A), (22)
where the second group cohomology ’z’-l,zJ (H, A) classifies the
symmetry fractionalization in an H-SET phase [39]. Since
the second cohomology group classifies defect fusion rules
with anyon as outcome, Eqgs. (22) is a physical statement
that the symmetry fractionalization class of symmetry de-
fects may induce a nontrivial fusion rule of the topological
point defects. We coin the term defect fractionalization for
this phenomenon, in reference to the terminology “symme-
try fractionalization” for symmetry defects [39,40,46]. While
different symmetry fractionalization classes of the H-SET
phases are classified by 7—[% (H, A), different defect fraction-
alization classes are classified by the image of the map inf :
’Hf) (H, A) —> ’H%(m (G/H), A), as describe by the above se-
quence (22).

We will discuss more about point defects in H-SET phases
in Sec. V.

D. Group cohomology for textures
1. Textures in SPT

Consider the symmetry breaking from G = SO(3) x K to
H = U(1) x K. In the absence of intrinsic topological orders,
a symmetry-breaking ground state with fixed order parameters
is an H-SPT phase. Here we focus on those H-SPT phases
described by the mixed anomaly H*(B = U(1), H!(K, U(1)))
in the Kiinneth decomposition (14). Due to relation (16), the
mixed anomaly is also captured by H'(Z, H?(K, U(1))).

The topological textures of the order parameter are
skyrmions classified by m>(SO(3)/U(1)). The point defects
associated with SO(3) and U(1) are classified by 7;(SO(3))
and 7, (U(1)), respectively. Together they fit into the short
exact sequence (12). Both defects can carry quantum number
of the symmetry K, which is classified by the linear represen-
tations in M := H'(K, U(1)), which we assume to be a finite
Abelian group. Note that 771 (U(1)) = Z, 7, (SO(3)) = Z, and
72(SO(3)/U(1)) = m2(S?) = Z all act trivially on M. Apply-
ing the inflation-restriction exact sequence (18) to short exact
sequence (12) gives

0 — H' (@ (SOB)),M)={meM|m-m=1y € M}
— H'(mU), M) =M

res

B 1 mSH, M) =M

L 12 (71 (SO(3)), M) =5 12(y (U(1)), M) = 0. (23)

Physically, as discussed in Sec. IID, a point defect of
an SO(3) breaking noncollinear magnetic order classified by
m1(SO(3)) = Z, is equivalent to a 2 flux of any U(1) sub-
group of SO(3). A skyrmion with topological charge v €
71(8%) = Z, is therefore equivalent to a 47 v flux of the rem-
nant U(1) symmetry. Note that a 27 flux is nothing but the
symmetry defect of the remnant U(1) symmetry, which can
carry a linear representation (i.e., charges) of the unbroken
subgroup K due to the mixed anomaly (16) in the H-SPT
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phase. The restriction map (“res”) in exact sequence above
(23) physically states the following: if the K-symmetry charge
(or mathematically a linear representation of K) [R] e M =
H(K,U(1)) is assigned to each 2w flux, the K-symmetry
charge carried by a fundamental (v = 1) skyrmion is given
by that of a 4 flux: [R®Q R] € M.

The above sequence shows that, if M does not contain
an order-2 element, then {m € M|m-m = 1) € M} = and
hence the restriction map (“res”) is injective: i.e., the quantum
number of the symmetry K carried by the skyrmions is fully
determined by that carried by the U(1) vortices. More inter-
estingly, if M contains an order-2 element, then the restriction
map is the “multiply by 2” map, while d, is the mod 2 map. In
this case, skyrmion symmetry quantum number is twice that
of the U(1) flux. If we further allow the process of completely
breaking the SO(3) symmetry down and then restoring the
U(1) subgroup, a skyrmion may carry any quantum numbers
allowed on a U(1) flux, due to a possible projective represen-
tation carried by the SO(3) defect via the transgression map
dy.

We will discuss in more details the physics of topological
textures in H-SPT phases in Sec. IV C.

2. Textures in SET

Here we consider the spontaneous symmetry breaking
(SSB) from G = SO(3) to H = U(1), resulting in an H-SET
phase in each symmetry-breaking ground state with fixed
order parameters. More generally, we could consider an ex-
tra symmetry group K that survives the SSB as in the SPT
case discussed above. The K-symmetry charges (i.e., linear
representations) carried by skyrmions can be determined in
parallel to the H-SPT case. Here we will not discuss this
aspect, but focus on the fractional statistics of skyrmions in
the H = U(1)-SET phase, with G = SO(3) and H = U(1).

Note that due to the relation (15), we have

HA(U(1), A) = H' (m (U(1)) = Z, A),

where A is the set of all Abelian anyons, and Z = 7;(U(1))
labels the integer flux quanta of the remnant U(1) symmetry.
Since distinct U(1)-SET phases are classified by H2(U(1), A)
[39,40], the above identity (24) implies that U(1)-SETs are
fully characterized by the Abelian anyon a € A assigned to
each 27 flux (or “fluxon”[76]) in the SET phase. Based on
discussions in Sec. II D, a skyrmion with a topological charge
v € Z = m,(S?) is equivalent to a 4w v flux of the remnant
H = U(1) symmetry, and we can assign Abelian anyon a* to
such a skyrmion accordingly.

Mathematically, we apply the five-term exact sequence
(18) to the short exact sequence (12) to obtain

(24)

res

0 — Hy(Zy, A) — HY(Z, A) — H' (m12(5?), A)

L 12 (m(S03)), A) B H2(Z, A) = 0. (25)

The fractional statistics carried by a skyrmion of topological
charge v € Z is determined by the image of the restriction
map (“res”) in the exact sequence above. Physically, since
[R] € H'(Z, A) assigns an Abelian anyon a € A to each 27
flux, its image in the restriction map R € H'(m,(5?), A) im-
plies that Abelian anyon a?’ is assigned to each skyrmion

of topological charge v. This will determine the fractional
statistics of a skyrmion.

We will discuss the physics of topological textures in H-
SET phases in more detail in Sec. VI.

IV. DEFECTS AND TEXTURES IN THE ABSENCE OF
INTRINSIC TOPOLOGICAL ORDERS

A. From SPT physics of ordered ground states to deconfined
quantum critical points

In this section, we first discuss the simpler cases where
every long-range ordered ground state with fixed order param-
eters exhibits no intrinsic topological order. In other words,
when symmetry G is spontaneously broken down to H in a
given ground state, a long-range ordered ground state with
fixed order parameters (not a cat state!) is a H-preserving
short-range entangled phase.” In two spatial dimensions,
they belong to the H-symmetry protected topological (H-
SPT) phases classified by group cohomology H3(H, U(1))
[72]. What are the physical consequences if each symmetry-
breaking ground state is a nontrivial H-SPT? As will become
clear soon, this SPT physics is closely related to the physics
of deconfined quantum critical points (DQCP) [42-44].

An H-SPT phase is a short-range entangled phase, which,
in the presence of symmetry H, cannot be continuously con-
nected to a trivial product state without closing the energy
gap. In a system of interacting bosons in two spatial di-
mensions, different H-SPT phases are classified by the third
group cohomology H>(H, U(1)) [72]. The cohomology group
H3(H,U(1)) is an Abelian group, whose identity element
labels the topologically trivial phase of product states, and
the addition of group elements is implemented by stacking
different SPT phases.

A deconfined quantum critical point (DQCP) describes the
continuous phase transition between two different long-range
orders, who are not related to each other by Landau-Ginzburg-
Wilson paradigm of spontaneous symmetry breaking [42—44].
More precisely, the remnant symmetry groups Hy, H; < G of
the two long-range ordered phases do not have a subgroup
relation: in other words, H; is not a subgroup of H, and
vice versa. Therefore a DQCP is clearly beyond the Landau-
Ginzburg-Wilson paradigm and provides new mechanism to
understand direct quantum phase transitions between different
long-range orders.

For example, DQCP is believed to describe the direct tran-
sition between a Neel order and a valance bond solid (VBS) on
a square lattice [42,43]. While the Neel order spontaneously
breaks the time reversal and spin rotational symmetries, it pre-
serves the fourfold rotation symmetry C; around each lattice
site. On the other hand, the columnar VBS phase sponta-
neously breaks Cy, but preserves both time reversal and spin
rotational symmetries. Therefore a direct continuous phase
transition between these two long-range orders are incom-
patible with the Landau-Ginzburg-Wilson paradigm. There

>We use the definition of Ref. [72] for short-range entangled phase,
different from Kitaev’s definition [37]. Therefore we do not consider
invertible phases such as topological superconductor in class D [73],
or Eg states of d = 2 interacting bosons [37,74].
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are two alternative and complementary physical pictures to
understand this DQCP.

(1) The first point of view starts with the following property
of the VBS phase: each vortex of the VBS order parameter
carries a spin-1/2 [77], which forms a projective representa-
tion [w] € H*(SO(3) x ZT', U(1)) of the SO(3) spin rotation
and time reversal (T') symmetries. Therefore condensing the
VBS vortex will necessarily breaks both time reversal and
spin rotational symmetries, while restoring the crystalline Cy
symmetry. This leads to a direct transition from the columnar
VBS to the Neel order via a DQCP.

(i) The other viewpoint starts from the Neel order side,
where each fundamental skyrmion (with unit topological
charge v =1 € m,(S?) = Z) of the Neel order parameter
carries a unit C; angular momentum [78]. As a result,
condensing the skyrmion will necessarily breaks the C, crys-
talline rotation symmetry, while restoring time reversal and
spin rotational symmetries. This corresponds to a direct tran-
sition from the Neel order to the columnar VBS phase via the
DQCP [42,43].

To unify the above two pictures (i) and (ii), and to treat
VBS and Neel order parameters on an equal footing, one can
introduce a five-component order parameter 7i = (n!, ..., n%),
where the first three components (n!, n?, n®) represent the
Neel vector, while (n4, n5) serves as the columnar VBS order
parameter [77,79,80]. The interplay of the VBS and Neel
order parameters, i.e., the spin-1/2 VBS vortex and the Cy4
angular momentum of a Neel skyrmion, is captured by a (2 +
1)-dimensional Wess-Zumino-Witten (WZW) term [81,82] of
the 5-component order parameter 7 [44,79,80,83]:

2w €abcde

S =
WZW Area(S%) Jo

1

dud’G nd.na,n“dn?d,n, (26)
where we use § = (x, y,1) € S> to parametrize the spacetime
manifold S°, and u is introduced to parametrize a smooth in-
terpolation (extension) between 7i(g, u = 0) = (0,0,0,0, 1)
and 7i(g, u = 1) = i(g). While the physical system only has
a microscopic symmetry of G = C4 x SO(3), an enlarged
SO(5) symmetry that rotates the five components of 7# was
argued to emerge at the DQCP described by a NLSM with the
above WZW term [34,80].

The aforementioned two pictures for the Neel-VBS tran-
sition are both captured by the above WZW term. On the
VBS side, a classical vortex configuration for VBS order
parameters (n*, n°) reduces the topological term (26) to an
O(3) NLSM with a WZW term, physically corresponding to a
spin-1/2 at the vortex core [83]. On the Neel side, a classical
skyrmion configuration of Neel order parameters (n', n, n®)
reduces (26) to a U(1) rotor action of VBS order parameters
(n', n?), which carries a unit angular momentum of crystalline
rotation Cy.

In this work, we want to point out a connection between
the two physical pictures of DQCP, and the SPT physics of the
symmetry-breaking ground states. More precisely, in a long-
range order which spontaneously breaks symmetry G down to
a subgroup H, if a symmetry-breaking ground state belongs to
certain H-SPT phases, the condensation of topological point
defects or textures of the order parameters will lead to a
direct transition described by a DQCP. The other side of the

direct transition must spontaneously breaks H: it is generally a
long-range order with remnant symmetry H’, which is neither
a subgroup nor a supergroup of H. This observation can be
summarized in two classes.

(i) If a symmetry-breaking ground state belongs to certain
H-SPT phases, to be elaborated in Sec. IV B, a point defect
(i.e., vortex) of the order parameter O(#) € G/H can carry a
projective representation [w] € H2(H, U(1)) of the remnant
symmetry H. This is a generalization of viewpoint (i) for
Neel-VBS transition from the VBS side. Condensing the point
defects (vortices) will spontaneously breaks (a part of) sym-
metry H across the DQCP.

(i1) If a symmetry-breaking ground state belongs to certain
H-SPT phases, to be elaborated in Sec. IV C, a topological
texture (i.e., a skyrmion) of the order parameter can carry a
charge (or a linear representation [w] € H'(H, U(1))) of the
remnant symmetry H. This is a generalization of viewpoint
(i) for the Neel-VBS transition from the Neel side. Con-
densing the skyrmions will spontaneously break the remnant
symmetry H across the DQCP.

This general connection allows us to determine whether
a given long-range order is in proximity to a DQCP in the
phase (parameter) space, and to systematically construct ex-
amples of DQCPs based on the H-SPT classification for the
symmetry-breaking ground states. For the rest of this section,
we shall discuss the two classes in detail: (i) point defects
carrying a projective representation of H, in Sec. IVB and
(i1) skyrmions carrying a linear representation (i.e., quantum
numbers) of H, in Sec. IV C. We will use the mathematical
classification based on group cohomology in Sec. III, and
its related “decorated domain wall” picture [75], to eluci-
date the aforementioned connection between SPT phases in
symmetry-breaking ground states and the DQCP.

B. Point defects

Without loss of generality, let’s consider the following
situation:

G=AxK, H=BxK, H<G, Q27)

where X is the direct product of two groups, and we assume
that H is a discrete normal subgroup of a continuous group
G. In other words, the subgroup symmetry A is broken down
to B<GA while the subgroup symmetry K is preserved in the
long-range order.

The question we plan to address is the following: does a
point defect in w;(G/H = A/B) carry a projective representa-
tion of the remnant symmetry H? As discussed in Sec. I C 1,
given the mixed SPT anomaly in H'(B, H*(K,U(1))) in a
symmetry-breaking ground state with fixed order parameters,
due to exact sequence (20), the projective representation car-
ried by point defects is classified by the image of injective map
d; in H'(w(A/B), H*(K,U(1))). This gives the following
criterion for point defect bound states:

(i) When a full symmetry G = A x K is spontaneously bro-
ken down to a subgroup H = B x K, if a symmetry-breaking
ground state is an H-SPT with a mixed anomaly described
by [R] € H'(B, H*(K, U(1))), the projective representation
of subgroup K carried by the point defect in 7 (G/H) is
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specified by the image [R] € H'(;(G/H), H*(K, U(1))) of
map d; in exact sequence (20).

Physically, a point defect of the order parameters can
be mapped to a symmetry defect by the connecting homo-
morphism p in exact sequence (11). The mixed anomaly
[R] € H' (B, H*(K, U(1))) assigns a projective representation
H2(K,U(1)) to each symmetry defect b € B. This in turn
determines the projective representation assigned to a point
defect in 71 (G/H ). We note that similar physics has been dis-
cussed recently in the name of “gapless SPT” phases [84-86].

Below we discuss one example of such nature, where each
fundamental vortex with a unit winding number carries a spin-
1/2 in the pair superfluid phase.

1. Symmetry protected pair superfluid with spin-1/2 vortices

We consider a bosonic system on a two-dimensional lat-
tice, which consists of hard-core bosons {b;} and a single
spin-1/2 d.of. s; per unit site. The full symmetry of the
Hamiltonian is G = U(1) x SO(3), which is spontaneously
broken down to H = Z, x SO(3) in a pair superfluid phase.
In the notation the general discussions above, we have A =
U(1), K =B =27, and K = SO(3)°. Each hard-core boson
b; carries a unit charge but no spin (or spin-0), while each
5; carries no charge but transforms as a spin-1/2 projective
representation of SO(3) symmetry. The filling number for
bosons is p = 2 per unit cell.

In the long-range order, we consider a pair superfluid phase
where two bosons form a condensate with ((b;)%) # 0 but
(bi) = 0. To achieve the desired SPT properties, we further
require the system to preserve the following magnetic transla-
tion symmetry:

TLT7 T, = (— )X, (28)

where T, are magnetic translations along the two primi-
tive vectors d;,. In other words, the bosons experience a
m flux in each unit cell when traveling around the lattice.
A pair of bosons, carrying charge 2, only experiences 2w
flux per unit cell and can condense without breaking the
translation symmetry 7], driving the system into a trans-
lation invariant pair superfluid phase. Note that there is a
m flux and a single spin-1/2 in each unit cell. Due to
the Lieb-Schultz-Mattis theorem for SPT phases [87,88],
in the presence of the magnetic translation symmetry, any
short-range entangled ground state preserving the magnetic
translation and H = Z, x SO(3) symmetry must be a H-
SPT phase, exactly described by a mixed anomaly [R] €
HY(Zy, H*(SO(3), U(1))) < H*(H, U(1)). Physically, in a
ground state of the pair superfluid phase, each symmetry
defect of the remnant Z, (i.e., a w flux) carries a projective
representation of the remnant SO(3) symmetry (i.e., a spin-
1/2).

On the other hand, the point defect of the order pa-
rameter ((b;)*) are vortices in the pair superfluid, labeled
by an integer-valued vorticity v € Z. In particular, each
vorticity-1 vortex corresponds to a 7 flux, and hence carries

%0One can also replace K = SO(3) symmetry by a discrete time
reversal symmetry K = ZT.

a spin-1/2, exactly captured by the mixed anomaly [R] €
H(Z, H*(SO(3), U(1))), the image of map d; in exact se-
quence (20). As a result, condensing the elementary (v = £1)
vortices will drive the system into a magnetic order that
spontaneously breaks K = SO(3) symmetry, viaa DQCP. The
Neel vector (n!, n?, n*) and the superfluid order parameters
((bi)*) ~ n* + in® are described by a NLsM with an O(5)
WZW term.

C. Textures

We consider the symmetry group G = SO(3) x K to be
spontaneously broken down to a subgroup H = U(1)s: x K,
where K is a subgroup of onsite unitary symmetries. In the ab-
sence of intrinsic topological orders, the symmetry-breaking
phase can be an H-SPT phase in two spatial dimensions, clas-
sified by H3(H, U(1)). As discussed in Sec. II D, a skyrmion
of topological charge v € Z is equivalent to a 4 v flux of the
remnanat U(1) symmetry.

To understand the universal properties of skyrmions in the
H-SPT phases, again we use the Kiinneth decomposition in
(14):

H3(H, U1)=H>(U)s:, U(1)xH2(U(1)s:, H' (K, U(1)))
x H' (U, H2(K, U(1))) x H3(K, U(1)).
(29)

Note that two of the four terms indicates different topological
properties of the flux of the unbroken U(l)s: symme-
try, and hence of the skyrmions. The first term labels
the U(l)s: quantum number §? =g € H>(U(1)s:, U(1)) =
H'(U(1)s:, U(1)) = Z carried by each U(1)s: flux quantum.
The third term H' (U(1), H*(K, U(1))) in (29) vanishes when
H2(K,U(1)) is any finite Abelian group. Finally, the fourth
term labels the K-SPT phases that do not require the protec-
tion of the U(1)s: symmetry.

Due to the relation (16), the second term is equivalent
to H'(Z, M) with M = H'(K, U(1)), and hence can be un-
derstood as the linear representation (i.e., the charge) of the
unbroken subgroup K carried by each flux quantum (or 27
flux) of the U(1)s: symmetry. Now that each v = 1 skyrmion
can be viewed as a 4m flux, it carries the linear represen-
tation [R ® R] € M of unbroken subgroup K. Condensing
skyrmions with nontrivial K-symmetry charges will inevitably
break the K symmetry while restoring the SO(3) spin rota-
tional symmetry, through a DQCP.

As we are interested in the interplay between the two
subgroups U(l)s: and K of the remnant symmetry H =
U(1) x K, we will be focusing on the second term in the
Kiinneth decomposition (29). According to the discussions in
Sec. II D 1, the following statement describes the symmetry
quantum numbers of topological textures.

(i) When a full symmetry group G = SO(3) x K is spon-
taneously broken down to a subgroup H = U(1) x K, if a
symmetry-breaking ground state is an H-SPT described by
[R] e HY(Z, M) = H>(U(1), M) with M = H' (K, U(1)), the
quantum number (or linear representation) of unbroken sub-
group K assigned to each skyrmion is specified by the image
[R] € H'(m2(S%), M) of the restriction map (“res”) in the ex-
act sequence (23).
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Below we discuss two familiar examples of this type in
more details.

1. Charge-2e skyrmions in quantum spin Hall insulators

The first example we consider is a fermion system with
charge conservation K = U(1). and spin rotational symme-
try, hence a full symmetry group of G = SO(3) x U(1).. A
time-reversal-invariant collinear order parameter can spon-
taneously breaks the symmetry G down to a H = U(1l), x
U(1). subgroup, where U(1);, is the subgroup of U(1) spin
rotational symmetry along e.g., z axis:

Eiss{m —iop2 Ews‘fm i0)2
fr—e fro fL—— €771 (30)

We are interested in the case where each symmetry-
breaking ground state is a quantum spin Hall (QSH) insulator
[89-91], with a pair of helical edge states protected by the
remnant symmetry H.

It is well known that such a QSH insulator exhibits a mixed
anomaly between the U(1), and U(1), subgroups, captured by
group cohomology

H2(U);, M) = H'(Z, M) C H3(H,U(1)), (31)

where M = H'(U(1)., U(1)) labels U(1). quantum numbers
i.e., electric charges. Specifically, the quantized spin Hall
conductance o;f = e/2m [92] indicates that each 27 flux of
spin symmetry U(1); would carry a unit electric charge. As a
result, each skyrmion of topological charge v € Z = m,(S5?),
equivalent to a 4w v flux of spin rotational symmetry U(1);,
carries an electron charge of 2ve.

In particular, an elementary v = 1 skyrmion carries charge
2e, as pointed out in Ref. [68]. Condensing these elemen-
tary skyrmions hence induce a superconducting state that
spontaneously breaks the U(1). symmetry, which was re-
cently proposed to be one mechanism for superconductivity
in magic-angle twisted bilayer graphene [93].

2. Neel order in a spin-1/2 model on the square lattice

Next we discuss a familiar example related to the DQCP,
i.e., the Neel order in a spin-1/2 system on the square lattice.
Before studying the full space group symmetry, let us first
consider a simplified situation where we ignore the transla-
tions and mirror reflection: we only take into account the
onsite SO(3) spin rotational symmetry and the site-centered
fourfold crystalline rotation symmetry K = Cy4. In a collinear
Neel order, the full symmetry G = SO(3) x C4 is sponta-
neously broken down to the remnant symmetry H = U(1)g: X
Cy. In the latter H-preserving Neel ordered phase, there is
a quantized topological term of the Wen-Zee type [94,95],
which corresponds to an element in the cohomology class
H2(UD)s:, H'(K, U))) € H3(H,U(1)) and characterizes
the mixed anomaly between C, rotation and U(1)g: spin ro-
tational symmetries. Physically, this cohomology class and
associated Wen-Zee term in the continuum field theory im-
plies that each U(1)s: flux quantum (i.e., 27 flux) carries a
Cy4 eigenvalue of i (i.e., a unit angular momentum). As a
result, each skyrmion (equivalent to 27 flux of U(1)s: for a
spin-1/2 system, see Sec. VIC) also carries a Cy eigenvalue
of i [78], and condensing the skyrmions (which restores the

SO(3) spin rotational symmetry) will necessarily break Cy
crystalline rotational symmetry, as is the case of the valence
bond solids on the square lattice [43,78].

Next, we include the translations and consider the full
space group symmetry of the square lattice. The full symmetry
for the paramagnetic phase is G = p4m x SO(3) x ZI', where
T is the time reversal operation and p4m is the wallpaper
group that describes the symmetry of the square lattice, gen-
erated by translations 7j, 75, site-centered rotation Cy, and
reflection M (with respect to a site-crossing mirror plane).
After the transition to Neel order, G is broken down to H =
U(1)s: % pp4m, where p,4m is the magnetic space group for
the Neel order [96], generated by magnetic translations YN}J =
T - T, and point group symmetries C; and M. Note that spin
rotation U(1)s: and the magnetic space group do not commute
with each other, hence the semidirect product. Due to this
semidirect product structure, the Kiinneth decomposition (29)
can no longer be used to calcualte the cohomology. Neverthe-
less one can show through a spectral sequence calculation that
H3(H, U(1)) contains a summand

H2(ppdm, H' (U(D)s:, U(1))) € H3(H, U(1)). (32)

One can further show that H?(pp4m, H'(U(1)s:, U(1))) =
H'(p,4m, U(1)) = Z3, where the two Z, summands label the
eigenvalues of C4 and M, respectively. Compared to the case
of K = C4 where the eigenvalues of C; are {%1, +i}, now
considering the full magnetic space group p,4m reduces the
eigenvalues of Cy4 to {1, i} due to the magnetic translations (the
C, eigenvalues £1 are identified and so are the eigenvalues
+1i). We see that the analysis in the case K = Cy above still
holds. This means that, taking into account the full lattice
symmetry, condensing the skyrmions [hence restoring the
SO(3) internal symmetry] will indeed break the C, rotation
symmetry spontaneously. Note that a similar analysis has been
carried out in Refs. [97,98].

V. POINT DEFECTS IN SYMMETRY ENRICHED
TOPOLOGICAL ORDERS

When the ground state is a SPT phase protected by the
unbroken symmetry H, we have shown previously that point
defects (or vortices) of the symmetry-breaking order param-
eters can carry a projective representation of the unbroken
symmetry. Below we discuss the more general situation,
i.e., two-dimensional intrinsic topological orders with sponta-
neously broken symmetries, where each symmetry-breaking
ground state is a H-symmetry enriched topological (H-SET)
phase. As discussed previously in Sec. III C, due to the short
exact sequence (11) that maps a topological point defect (an
element of 7, (G/H)) to a symmetry defect (an element of H),
one can derive universal properties of point defects from those
of symmetry defects, which were extensively studied in the
context of SET phases [39,40,46]. We found that when topo-
logical orders coexist with spontaneous symmetry breaking,
due to the presence of anyons which obey fractional statistics,
two classes of new phenomena can occur.

(1) Point defects can permute anyons in the topological
order when braided around. In other words, after traveling
around a point defect, one anyon of a certain type can be trans-
muted into an anyon of a different type. In these cases, the
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point defect (vortex) is mapped into a non-Abelian symmetry
defect (or twist defect) [31,39-41,99,100].

(2) Multiple point defects can fuse into Abelian anyons,
which we coin “defect fractionalization” for reasons that we
describe below in details.

A. Defect fractionalization phenomenon

Importantly, the topological point defects may obey a non-
trivial fusion rule: upon annihilating with each other, these
topological defects may leave behind Abelian anyons, similar
to the symmetry defects in SET phase.

We have named this phenomenon defect fractionaliza-
tion in Sec. IIIC2. Here we stress that the understanding
of defect fractionalization parallels that of symmetry frac-
tionalization [39,46]: for SSB G — H, different defect
fractionalization classes in the broken symmetry phase should
correspond to equivalence classes [w] € 7—[%(711 (G/H), A),
meaning that for g, h € m;(G/H), the group element w(g, )
in H%(m (G/H), A) denotes the residual anyons after fusing
the defects g, 7 and (gh)~".

In the simplest case of m1(G) = 0, we have 7;(G/H) =
H from (11), namely, there is a one-to-one correspondence
between the topological point defects (or vortices) of the or-
der parameter ¢(7) € m1(G/H) and the (extrinsic) symmetry
defects t,, h € H. In this case p is an isomorphism, hence
p = p. As a result, there is a one-to-one correspondence be-
tween defect fractionalization described by ’H% (m1(G/H), A),
and symmetry fractionalization described by 7—[% (H, A), ie.,
p* =inf is a bijective map in exact sequence (22). One
such example is lattice dislocations, where G = R x R and
H = 7, where dislocations with a Burgers vector b = byd; +
b,d, corresponds to symmetry defect of translation operation
T'T), where @, , are the two primitive translation vectors of
the two-dimensional lattice. In Sec. VD4, we compute and
explicitly demonstrate the nontrivial fusion rules of disloca-
tions in the toric code.

B. Defect fractionalization versus symmetry fractionalization

It is tempting to conclude that defect fractionaliza-
tion in the general case of m;(G)# 0 is classified by
’H%(m(G/H ), A). However, as we shall show in explicit
model calculations, ’H%(m(G/H ), A) contains elements that
are redundant, and the physical ones are classified by the
subgroup which is the image of the inflation map p* = inf
in the exact sequence (22)

im(p*) C H3(m1(G/H), A), (33)

namely, the classes of symmetry fractionalization that sur-
vives the inflation map. When m;(G) =0 is trivial, the
inflation map becomes an isomorphism, and correctly repro-
duces the classification mentioned above.

We claim in the above that in the general case when
m1(G) # 0, the classification for defect fractionalization is
fully determined by specifying the inflation map p*. The
inflation map p* sends the cohomology of the quotient
group [in our case, H = m(G/H)/m1(G)] to that of the
group extension [in our case, 1(G/H)]. Physically, it sim-
ply sends any symmetry fractionalization class [w]—cocycle

elements w(h, h,) =a,a € A, hy, h, € H—to defect frac-
tionalization class [p*(w)] by sending symmetry i € H to
any defect ¢(¥) € 71(G/H) that maps to & under p. Here,
however, what is nontrivial is that such a class [w] may be
trivialized under the map p*: the defect fusion rule inherited
from w can be continuously deformed to the one that fuses to
no anyons. This happens whenever the map p* has a nontrivial
kernel—that is, ker(p*) := {[w]|p*([w]) = 0} # 0.

At this point, the exact sequence (22) is introduced as
a mathematical computational tool, whose physical mean-
ing is yet to be specified. We now try to understand the
physical meaning of each piece and the exactness among
them. To achieve this, recall from Sec. IIIA2 that ele-
ments of ’H:,(H , A) describes the “anyon-labeling rule” for
the extrinsic symmetry defects t,, # € H. The topological
defects ¢(¥) € m;(G/H) inherits a similar defect “anyon-
labeling rule” consistent with their actions on the anyons,
classified by ’H})(m(G/H), A). Such a heritage is easy to
understand since the symmetry H is intact after the SSB
G — H. However, one can imagine the alternative, indirect,
physical process in which the symmetry G is completely
broken down (to {1}), and then restored to H. We will
call this the indirect SSB process G — {1} — H from now
on (note here the arrows are written in a physical sense,
not in a mathematical sense). In this scenario, the relevant
defect “anyon-labeling rule” is that for the topological de-
fects ¥ (7) € m1(G), classified by H'(m(G), A), but when
restoring H, only those “anyon-labeling rules” for m{(G)
that are invariant under the action of H makes sense after
H is restored. Here the invariance is defined in the sense
of Eq. (19). Intuitively, both the defect g € 71(G) and the
anyon a € A may transform nontrivially under H, but the
defect—anyon composite must transform covariantly under H,
implying that the “anyon-labeling rules” for 7| (G) is invariant
under H.

Together with the physical meaning of ’Hf](H, A) and
"H%(m(G/H ), A) as symmetry fractionalization and defect
fractionalization, respectively, that have been introduced be-
fore, we are now in a position to understand the exactness
of the sequence (22). As mentioned before, to know im(p*)
it suffices to known ker(p*). The exactness ker(p*) = im(d;)
states that, after the indirect SSB process G — {1} — H, for
any resulting defect (now object in 7{(G/H)), the only pos-
sible “defect fusion rule” compatible with its “anyon-labeling
rule” is the trivial one. The exactness at 7! (7, (G), A)¥ states
that, if a “defect fusion rule” can be realized in both the
direct SSB process G — H and the indirect process G —
{1} — H, the only possible “defect fusion rule” compatible
with its “anyon-labeling rule” is the trivial one. The exact-
ness at H})(nl(G/H ), A) states that the topological defect
“anyon-labeling rule” that originates from a symmetry defect
“anyon-labeling rule” cannot be realized at the end of the
indirect SSB process G — {1} — H. Finally, the exactness
at ’H}O(H , A) states that every symmetry defect “anyon-
labeling rule” can be realized in the topological defects
of 71 (G/H).

We note that the five-term exact sequence (22) is a
corollary of spectral sequences. We will be using spectral se-
quences in the calculation of cohomology groups (especially
those with nontrivial action on the anyons) and an elementary
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introduction can be found in Appendix C. We present one
quite useful statement about this map:

Theorem V.1. Given Eq. (22). If 7(G/H) is of a semi-
direct product form m;(G/H) = m1(G) x H, then d, =0,
hence px is injective. Consequently, the symmetry fraction-
alization classes are in one-to-one correspondence with the
defect fractionalization classes.

This statement is powerful in that it works regardless of the
action p (trivial or nontrivial alike).

In Table III, we give examples of the Z, topological
order (toric code) enriched by two different symmetries:
(1) G=UQ), H=2,, and (2) G=S0O3) and H =D, =
{1,X,Y,Z}, with A = Z§ x ZT. For each example we con-
sider the cases of trivial and nontrivial H-actions. All these
examples lie outside the application of Theorem V.1.7

C. Two examples

Below we will use two primary examples to demon-
strate the aforementioned properties of point defects in SET
phases: i.e., (1) point defects can permute different anyons
when braided around. (2) Point defects can fuse into Abelian
anyons, coined defect fractionalization. The two representa-
tive examples we consider are

(i) Toric codes with a coexisting pair superfluid order,
where the G = U(1) symmetry is spontaneously broken down
to a H = Z, subgroup. In this example, the point defects are
vortices classified by fundamental group 7,(G/H) = Z, la-
beled by integer-valued vorticity v € Z. A microscopic model
of such will be constructed in Sec. VD 1.

(i) Toric codes with a coexisting biaxial nematic order,
where the spin rotational symmetry SO(3) is spontaneously
broken down to a H = D, ~ Z3 subgroup. In this example,
the point defects are classified by a non-Abelian fundamen-
tal group m(G/H) =~ Qg, the quaternion group [7]. Two
microscopic models of such will be constructed later: for
anyon-permuting vortices in Sec. VD 2, and for defect frac-
tionalization in Sec. VD 3.

1. Non-Abelian point defects that permute anyons

The simplest case of such nature is example (1), i.e., toric
code with the pair superfluid order, where G = U(1) spin
rotational symmetry is broken down to an H = Z, Ising sym-
metry. The resulting symmetry enriched topological phases
can be obtained by gauging the fermion parity in fermionic
nonchiral topological superconductors with an Ising symme-
try [101,102]. In this case, there is an m € Zg classification,
where each Ising symmetry defect can permute € and m
anyons in the toric code for m =1 mod 2, while while the
Ising symmetry fractionalization happens for m = 2 mod 4.
Now that any v = odd vortex is mapped into the Ising symme-
try defect by (11), we conclude that each v = odd vortex can

7G =N x Q if and only if the short exact sequence 0 — N —
G5 O — 0 splits, i.e., there is a homomorphism j : 0 — G s.t. the
composed map p o j is the identity map on Q. This is not the case for

. 2
either0 > Z > Z7Z — 7, > 0or 0 — D, — Qg — Z,. In fact, Qg
does not admit a semi-direct product structure.

permute e and m anyons, if the pair superfluid ground state is
a Z,-SET phase with m = 1 mod 2. As shown in Table III 2,
in this case with a nontrivial H-action on anyons, both the
symmetry fractionalization class and the defect fractionaliza-
tion class are trivial. A microscopic model of this example is
constructed in Sec. VD 1.

Next we consider example (2), i.e., a biaxial nematic toric
code phase with G =SO@3) and H =D, ={1,X,Y,Z} =
ZZZ. The associated homotopy groups are m(G) = Z, and
m1(G/H) = Qg; the latter is the non-Abelian quaternion
group. The H-action can be nontrivial in a H-enriched toric
code: e.g., the generator X in H = Z x ZJ permutes the e
and m particles while Y does not. This is the only nontrivial
H -action possible up to isomorphism. This also means that the
last group element, Z = XY, permutes € and m particles as
well. We construct a microscopic lattice model for this phase
in Sec. VD 2.

The five-term exact sequence (22) for this case is given in
Table III4. Interestingly, we find that in this case the defect
fractionalization is not inherited from the symmetry defect
(see the last map in Table III 3, which is a zero map). Thus
according to our classification, although the symmetry defect
fractionalization class is nontrivial, H%(H, A) = Z5 in this
case, there is no nontrivial fractionalization for the topological
point defect.

2. Nontrivial fusion rules of fractionalized defects

Previously we have shown that a nontrivial H-action on
anyons leads to a trivial defect fractionalization class in both
examples. In fact, in a toric code with a pair superfluid order,
when the H-action is trivial, even with a nontrivial symme-
try fractionalization class Hizd(H =7, A)=7Z§ x ZT, the
defect fractionalization class is still trivial, as shown in Ta-
ble III 1.

As we show below, example (2), i.e., the toric code with
a biaxial nematic order, can realize a nontrivial defect frac-
tionalization class if the H-action is trivial on anyons. Again
consider the case G =SO3) and H =D, = Zzz, this time
with trivial H-action p = id on the anyons. The five-term ex-
act sequence is given in Table III, where the surjective map on
the right allows us to extend the sequence to a six-term exact
sequence by appending “— 0” to the right-hand side. We see
that defect fractionalizations are fully determined by symme-
try fractionalizations. This is the only case with a nontrivial
topological defect fractionalization among those considered in
Table III. Only a subgroup (Z3)® C H*(D,, Z$) survives the
inflation map p*. Denote the three nontrivial cocycles of this
(Z%)e as w;23. They can be distinguished by the following
values

01X, X)=1, oY,Y)=1, (XY, XY)=e¢e,
wX.X)=1, w»l,Y)=e, XY XY)=1,
o3(X,X)=e, w3(¥,Y)=1, w(XY,XY)=1; (34)

the cocycle [wy] € H*(Da, ZS) with w4(X, X) = wy(Y,Y) =
w4(XY, XY) = e does not survive the p* map and becomes a
coboundary in H?(m(G/H) = Qs, Z5). The other half with
the coefficient ZT' can be analyzed in a similar manner.
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(a) (b)

3°]
D

FIG. 5. Tllustration for lattice model on square lattice. Each or-
ange kite stands for a unit cell, the blue circle stands for a Majorana,
and the red square stands for a complex fermion. (a) A toric code
with pair superfluid order, featuring anyon-permuting vortices. (b) A
toric code with biaxial nematic order.

A microscopic model of this case is constructed in
Sec. VD 3.

D. Lattice models

Our general construction of lattice models has the follow-
ing form:

H = Hro + Hssg + Hins (35)
where Hpo is a Hamiltonian for the symmetry enriched
topological order, Hssp is a Hamiltonian for the (classi-
cal) long-range order associated with spontaneous symmetry
breaking, and Hiy, describes the coupling between the topo-
logical order and the order parameters of the long-range order.

1. Pair superfluids with anyon-permuting vortices

We first construct a model for the toric code enriched by
a H = Z, symmetry, which is spontaneously broken down
from a G = U(1) group. The model (35) consists of three
parts: the Hro is responsible for the Z, topological order in
the toric code. Hssp is an XY model describing a superfluid
that spontaneously breaks G = U(1) symmetry. Meanwhile
Hi, describes the interaction/coupling between the superfluid
and the topological order.

Built on the square lattice, the Hilbert space of the model
consists of a 2° = 8 dimensional qudit (or 3 qubits) on each
site, and an extra spin-1 on each site. The site qudit can
be represented by a pair of spin-1/2 complex fermions f; |
and four Majorana fermions {yx;|1 < [ < 4} [see Fig. 5(a)],
satisfying the following constraint of an even fermion parity
on each site i in the lattice A [see Fig. 5(a)]:

D ks =1, YieA  (36)

Similar to the Kitaev honeycomb model, this can be viewed
as a Z, gauge constraint (Gauss’s law) on each vertex/site. In
terms of these fermions, Hypo writes

Hro =Y iXiwapXiiGn Y tofisfio

{i.J) o=1.
Z Piijkp)-

—> boflofio = Em 37)
i,o (i,j.k.p)

We define f’<,', jkp as the Zp flux on each square
plaquette ~ with  vertices i, j,k, p: Py jkp = XiiGj)
XJ.1Gi) X j.1GK) Xk (k) Xk.1Gkep) X p.d(pk) Xp.(piy Xi 1Gipys ~ Where  the
Majorana label I(i, j) on NN link (i, j) is defined as:
1G,i+%)=1, I(,i—%)=3, I(i,i+9) =2, I(i,i—P) =
4. If E,, > |t,|, [Ls|, the plaquette term f’g jkpy favors zero
flux in each square plaquette in the ground state, rather than
the m flux state favored in the fermion hopping model at half
filling [103].

The Hamiltonian for the spin-1’s S; takes the form of the
Bose Hubbard model [104]:

A

Assp = — Y [1S7S7 +1,(S7 (57 +Hel — Y SE.
(i J) i

(38)

Quantum Monte Carlo simulations revealed that it favors
a pair superfluid ground state with an order parameter
((Sf)z) # 0 in a finite parameter range, e.g., for t,/t > g.
when p = 0 (g, & 2.5 on the triangular lattice) [104].

Finally the coupling term between the Z, gauge theory and
the link spins have the following form:

Hipg = — Z X0 X1 (STST e MBIV f 4 f 4
(.J)

+ A UL+ He) = Ao ) (ST fiy

+H.c.).

Clearly the full Hamiltonian (35) preserves a G = U(1)s: spin
rotational symmetry: S;” — e'St, fir > e fis, fi] —
fiys Xiz = xis- In the pair superfluid phase with ((S;)?) #
0, the G = U(1)gs: spin rotational symmetry is broken down to
a H = Z, subgroup generated by S} — =S, fi, = —fi .
Note that the parity ZZ of spin-1/2 fermions is always pre-
served:

(1Y = ()i firthifis, (39)

In the pair superfluid phase with (S;S7) # 0 and (S]) =0,
the f; fermions enter a p 4 ip topological superconducting
phase, while the f| fermions form a p — i p topological super-
conductor. A fundamental v = 1 vortex of the pair superfluid
will translate into a vorticity-1 vortex in the p 4+ ip super-
conductor of f}’s, hence trapping a single Majorana zero
mode at the vortex core. Therefore an odd-vorticity vortex
of the pair superfluid permutes e and m sectors in the Z,
toric code.

2. Biaxial nematics with anyon-permuting vortices

Another Hamiltonian of the form (35) can also give rise
to a biaxial nematic phase with Z, toric code topological
order, which spontaneously breaks the SO(3) spin rotational
symmetry down to a D, = (Z,)? subgroup. Similarly we build
our Hilbert space out of fermionic partons: four complex
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fermions of one s (f;) and three p (f ) orbitals, and four
Majoranas {x;|1 < i < 4}. The Majoranas and f; fermions are
spinless, while f, , . form a vector (spin-1) representation of
the G = SO(3) spin rotational symmetry. Again there is a Z,

gauge constraint for fermion parity on each site of the square
lattice [see Fig. 5(b)]:

g 5 .
(D P eocliliy o xsxa =1, Vie Ao (40)

The topologically ordered Hamiltonian writes

Hro = —E, Z P iy — Z Wil fis + 1 Z fiofia

(i,):k.p) i

a=x,y,z

+ Z iXidG. ) XiiGa) | Ase” B L fis — tfi fis + Z (Ape' D fia —tpfi fia) + He 41

(i)

It preserves SO(3) symmetry with a ground state with zero
flux in each square plaquette, where the f; fermions form
a p — ip superconductor and each flavor of f; . fermions
forms a p + i p superconductor.

In addition to the 2° = 32-dimensional qudit described by
partons, the physical Hilbert space contains another spin-1 S;
on each site. The nematic order parameter is given by the
following 3 x 3 matrix

Qup = (S/S0), a,b=x,y,z (42)

The topological order couples with the spin-1’s in the fol-
lowing way:

B =—1 > fl fisSESY. (43)

i,a,b

Once the spin-1 Hamiltonian Hssp [§i] [105-107] favors a
biaxial nematic ground state with

(2 a)/2
0= —q2—q1/2 , (44)
q1

the G = SO(3) spin rotational symmetry is spontaneously
broken down to a H = D, group, generated by m rotation
along the X and y axis.

In the limit of gy = 0 and J|g2| > |t,l, |upl, the f; and f,
fermions are driven into a strong-pairing atomic superconduc-
tor, giving rise to a Z; toric code ground state, with a p+ ip
superconductor of f,’s and a p — ip superconductor of f;’s.
Since f, is odd under a 7 rotation along either x or y axis,
both the £io, and %ioy vortices can trap a single Majorana
zero mode of f, and hence permute e and m anyons.

We note that the SO(3) symmetric phase with Q,), =0
in this example is an Abelian Z, topological order with the
following K matrix [108]: K = 4. It describes the v = 2 state
in Kitaev’s 16-fold way [37], where each elementary anyon
of statistical angle ® = i carries spin-1/2 (hence a “spinon”),
and each fermion {f,|la = s, x, y, z} is a bound state of two
such spinons.

3. Biaxial nematics with defect fractionalization

As discussed previously, when the point defects (or vor-
tices) do not permute anyons in a biaxial nematic order with
H = D, symmetry that is broken down from G = SO(3), they

a=x,y,z

(

can exhibit defect fractionalization phenomenon captured by
the group cohomology H?(m(G/H) = Qs, A). A model for
this phenomenon in the Z, topological order (toric code) can
be constructed in a similar way as the biaxial nematic order
with anyon-permuting vortices in the previous section.

Again we consider an s orbital (f;) and three p orbitals
(fx,y.z) of complex fermions [see Fig. 5(b)], coupled to a Z,
gauge field implemented by spinless Majorana fermions. The
p orbitals f; . transform as a spin-1 representation of the
G = SO(3) symmetry. Now we require f; and f, fermions to
each form a p + i p superconductor, while f, and f; fermions
each forms a p — i p superconductor. In this case, since f
fermions are both odd under the Z = ¢!™% spin rotation, the
+io, vortices will each trap a ¢/™" symmetry defect. In
such a D, symmetry enriched topological order, the symmetry
fractionalization class [102] [w] € H?(D», A) is characterized
by

oX, X)=w,Y)=1, w(Z Z)=c¢, (45)

where X = ¢!™", Y =™, Z =™ are m rotations
along x, y, z axes, respectively. As a result, the associated
fractionalization class [Q] € H?(Qg, A) for the vortices is

characterized by
Q(ioy, io;)  w(Z,Z)

Q(ioy, ioy)  oX,X)

Qio., i0))  oZ,7)
Tey)

(46)

" Q(ioy, ioy)

Physically this means fusing two io, vortices differ from
fusing two io, vortices by a fermion € in the toric code.

One can also arrange f;,; fermions each in a p + i p super-
conductor and f; ; fermions each in a p — i p superconductor,

to achieve
wZ,Z2)=wl,Y)=1, oX,X)=c¢ 47

or arrange f, . fermions each in a p + i p superconductor and
fy,s fermions each in a p — i p superconductor, to achieve

w(Z,2) =X, X)=1, ol,Y)=ec. (48)

4. Fusion rules of dislocations in the toric code

The  defect fractionalization is  captured by
HZ(JT](G/H), A), as we discussed in Sec. V A. Consider
the fusion of dislocations with trivial action in toric code.
Here we choose G=R xR and H =7 x Z, such that
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m1(G/H) =7 x Z captures the dislocation defects in two
spatial dimension. The toric code topological order has
(Abelian) anyon content A = Z§ x Z7'. Since the symmetry
fractionalization is of a product form ”Hizd(m(G/H ). Z§ %
Z5) = Hi(m (G/H), Z8) x H2 (i (G/H), ZT),  without
loss of generality below we only consider the magnetic anyon
sector which has nontrivial defect fractionalization labeled by
H (w1 (G/H), Z5) = HZ(Z2, ) = Z». In the following,
we will show such a nontrivial defect fractionalization via
fusing four dislocations in a lattice model.

The Hamiltonian for toric code on a square lattice is

given by
ﬁTC =—An ZAp — A, ZBU’
p v

where A, = [],.,Z for the product of all bonds associated
to plaquette p and B, = [[,., X; for the product of all bonds
associated to vertex v. Here X = o,, Z = o, are Pauli matri-
ces. The symmetry operator for translation of one unit cell
along x (y) direction is defined as T (7;). The symmetry frac-
tionalization of translation symmetries H = Z* x Z" can be
understood as follows [46]. Consider an eigenstate |y) of
Hrc, where a single e particle is created on top of the ground
state (assuming the other e particle is at infinity), if it carries
the trivial element of the projective representation (i.e., the lin-
ear representation) of 1 (Z*, ), wehave T, ' o T, o Ty o
T, |¥) = + ). This is, e.g., the case when A,, > 0 [46]. On
the other hand, if it carries the nontrivial projective represen-
tation of the Hyy(Z*, Z5"), we have T, o T, o Ty o Ty |§/) =
—|¥). The fact T,' o T,7" o Ty o T, |§/) = — |/) means that
each plaquette has an m flux, or equivalently traps one m par-
ticle. This is the case when A,, < 0. Generally, the translation
symmetry fractionalization class is given by

ol T,)
o(T,, Ty)

(49)

€A, (50)

where a = 1, m in the two scenarios with different sign of
A, (both with A, > 0) as discussed above. As discussed in
Sec. VA, if 7;(G) =0 as in this case, due to short exact
sequence (11), there is a one-to-one correspondence between
symmetry defects as elements of H and point defects as el-
ements of 7,(G/H) >~ H. Therefore the above cohomology
data of symmetry defects directly translate into cohomology
data of point defects of order parameters:

o(ts, Tp)o(t_z, T—5) =a € A, 51

where we use T to label the dislocation (i.e., the point defect

of translation symmetries) with Burgers vector b. Physically,
it means the four dislocations must fuse into an Abelian anyon
a:

Wy X Wy X 0_z X w_5 =a € A, (52)

where a can be considered as the “background anyon” in
each unit cell in a translational-invariant topological order
[109]. Below, we demonstrate the fusion rule (52) for four
dislocations, by an explicitly calculation of the anyon a in the
toric code on the square lattice.

We consider four pairs of dislocations (A4,A"),
(B,B), (C,C"), (D, D), as shown in Fig. 7(b). As mentioned

(a) (b)

© | o 3] @ ol 3

FIG. 6. (a) Illustration of the model Hamiltonian Eq. (49) with-
out any defects. (b) A single dislocation, with the blue arrow denote
the Burger vector. (c) A pair of dislocations A and A’. (d) Moving the
dislocation A rightward for one unit cell.

earlier, here we focus on distinguishing a =1 vs. a=m
(captured by H?(H, Z") = Z»), which can be detected by
a Wilson loop of e type. Such a Wilson loop (red lines)
W, =[] o, in Fig. 7(b) probes the parity of the number of
m particles within it. A similar calculation for the m-type
Wilson loop can fully determine the background anyon a in
fusion rule (52).

Our strategy is to use finite step local unitary operations
to move the four inner dislocations A, B, C, D into the Wilson
loop, so that the Wilson loop W, in Fig. 7(b) can detect their
fusion outcome a = 1 vs. a = m. To do so, we first define the
following unitary operations for Z components:

Ur+(V)Zy,0—6,Upi (V) = Zy—,—&, vZo—t,,0-21—2,» (532)
Uz (0)Zo,010,U; " (0) = Zovvei+0,Zoveyvveita, s (53D)

Ur+ (V)Zy -6, Up} (V) = Zyv—t,—6,Zv—t,.0-21—2,» (53¢)

Ut (0)Zy.042.Us” (V) = Zuvyecse Zosioviecre, (53d)

where v labels the vertex, and é, (&,) stands for unit vector
along the X (9) direction. The symmetry operations have been
shown in Fig. 8(a). Note that these operations can be written
in terms of two-qubit unitary gates. For example, the Ur+(v)
operation in Eq. (53a) is nothing but the two-qubit swap gate:

1+ sz,v—@x 1-200-¢, Xy vte,-

(54)

For the vertex v =1, Ur+(v) moves the dislocation A in
Fig. 6(c) rightward by one lattice constant X, and arrives at
the Fig. 6(d).

Similarly, for the X components, we have:

U+ (v) = U (v) =

Urs (0)Xo,0-0, Ul (0) = Xosv-o,-6 Xoww-s, (55)
Ur-(Xo,046, U (V) = Xy o0, Xo04e,, (55)
Uz (0)Xo,0-6,Ur (V) = Xo-6,-2, Xow-s,, (55€)
Ur- (V)X 042, UT:,I(v) = Xo,vte,+6,Xv,042, (55d)

195165-19



WANG, LIU, AND LU

PHYSICAL REVIEW B 109, 195165 (2024)
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FIG. 7. Fusion of four dislocation defects. (a) Fundamental operations for defect movements. (b) Toric code with eight dislocation defects.
The shaded part is the area that we are interested in. (c) Right move the dislocation A for one lattice constants. (d) Left move dislocation B for
three lattice constants. (e) Move dislocation D upwards for three lattice constants. (f) Move dislocation C downward for two lattice constants.

(g) Connect two bonds, see Fig. 8(b). (h) Add one bond, see Fig. 8(c).

Now, let us consider the following symmetry actions for
the lattice defined in Fig. 7(b): Step 1, move the dislocation
A to the right, as shown in Fig. 7(c). The correspond-
ing symmetry action reads: Uy = Ur+(vy). Step 2, move
the dislocation B to the left, as shown in Fig. 7(d). The
corresponding symmetry action will be applying Ur- three
times: U, = Ur- (v4)Ur- (v3)Ur- (v2). Step 3, move the dislo-
cation D upwards, as shown in Fig. 7(e). The corresponding
symmetry action will be acting Ur+ for three times: U; =
UTV+(U7)UTy+ (ve)Ur+(vs). Step 4, move the dislocation C
downwards, as shown in Fig. 7(f). The corresponding sym-
metry action will be acting U~ twice: Uy = Ur- (vg)UT; (vg).
The Hamiltonian for Figs. 7(b) and 7(f) are actually related by
finite step unitary operations U = UyUsU,U; .

We note that not all plaquettes within the Wilson loop in
Fig. 7(f) are squares. We have shown the part associated with
nonsquare plaquettes and noncross vertex in Fig. 8(a). The
Hamiltonian for Fig. 8(a) reads

Hz; =- ZhZ12Z13ZanllzZl9Zlm - lezlﬁzl7zllzzlll
- XZ3XZ4X15X111 - A”JZXlHXllz - X112X17X18X19

- X12X113X13 - X19X114X110' (56)
To fuse all the defects, we have to introduce two additional
local operations. First, we need to merge line /;; and [, to
get the orange line /;5, as shown in Fig. 8(b). This can be
done by taking the coupling constant Ajj 1, of X;; X, term
to infinity, then redefining X5 = X;; = X2 and Z;5 = Z11Z)»

FIG. 8. Merging line /;; and /;, in (a) to one line /;5 (orange) in
(b) and adding a line /;4 (blue) in (c).

in the strong coupling limit. The Hamiltonian for Fig. 8(b):

H, lim H,

Ay 12—>00
—Z 21,212,520, L1y — 212121, 2
- X13X14X15X115 - X115X17X18Xl9

— X5, X1, X1, — X1, X1, X1, 57

The second step is to add the blue line /;¢ in Fig. 8(c). The
Hamiltonian for Fig. 8(c) reads

H, = —27,2,71,21,, — Z1,Z1,, 21,21, — ZisZ1,Z1, Zi,s
- X13X14X15X115 - X115X17X/8Xl9

- XlzXlquzle - XIQXIMXIIOXIIG' (58)

One way to justify adding qubit /¢ in the last step is to see that
in the hjg — oo limit of a large Zeeman term —h6Xj¢, the
low-energy effective Hamiltonian of H/ above reduces back
to Hy.

Note that in all steps discussed above, the gap of the
full Hamiltonian never closes. More precisely, we have
constructed a smooth path of gapped Hamiltonians which
connects the initial Hamiltonian Hy in Fig. 7(b), and the final
Hamiltonian H/ in Fig. 7(h). In other words, the movement of
the four dislocations into Wilson loop W, are implemented by
a local unitary quantum circuit of finite depth [110].

However, after moving the four dislocations into the Wil-
son loop W,, one finds that the number of the plaquettes
inside the Wilson loop changed from 9 to 10. In the case of
a nontrivial translation fractionalization class, with a = m in
(50) and realized by A,, < 0, there is one m particle per unit
cell (or plaquette), Therefore after moving the four disloca-
tions into the Wilson loop, the Wilson loop now encloses one
extra m particle. This means the fusion outcome of the four
dislocations is nothing but an a = m anyon. On the other hand,
if the translation symmetry fractionalization class is trivial
with a = 11in (50), e.g., realized in the original toric code with
A, > 0, the background anyon per unit cell (or plaquette) is
trivial. Therefore moving the 4 dislocations into the Wilson
loop does not bring in extra anyons inside the Wilson loop. As
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aresult, the fusion outcome of the 4 dislocations in (52) is also
trivial, with a = 1. Therefore we have proved in the context
of the toric code model that the fusion rule of the dislocations
in Eq. (52) is determined by the translation fractionalization
class (50).

VI. SKYRMIONS IN SYMMETRY ENRICHED
TOPOLOGICAL ORDERS

A. Field theory of the skyrmions in two-dimensional
topological orders

After discussing the point defects in topological orders
with coexisting symmetry breaking, in this section, we discuss
smooth textures of symmetry-breaking order parameters in a
topological order. We shall restrict ourselves to skyrmions,
e.g., in a ferromagnet where SO(3) spin rotation symmetry
is spontaneously broken down to a U(1)s: subgroup. We shall
discuss in detail the universal physical properties of skyrmions
following the group cohomology results in Sec. III D 2.

Consider a skyrmion in ferromagnetic topological orders,
where G = SO(3) spin rotational symmetry is spontaneously
broken down to a H = U(1)s: subgroup. As discussed in
Sec. III D 2, due to the short exact sequence (25), a skyrmion
of topological charge v € Z = m,(G/H) is equivalent to 4w v
flux of the remnant U(1)s: symmetry. Therefore we can write
down a field theory for the ferromagnetic topological order.
Note that the skyrmion 3-current [111-113] should be treated
in the same way as the 47 flux 3-current:

1 0,A
o — _ _uviz . - - i OV A
Jskyrmion = 8r € - (0p7E X 0371) <> € _47_[ )

(59)

where unit vector 7 is the ferromagnetic order parameter, and
A, is the vector potential for the conserved U(1)s: symmetry.
Now that the ferromagnetic topological order has a conserved
spin S¢ associated with the remnant U(1)s: symmetry, we can
rewrite its conserved S° current using a dual gauge field a,,
such that

Ep.vk
2w

Since the spin current couples with external vector potential
A, minimally, the full Lagrangian density of the ferromag-
netic topological order can be written as follows:

Js: = 0@ (60)

UVA
L[, au] = ET.O.[au] - gAu dvay — Zau‘,slf(ymion T+
HUVA E/J,vA
= ‘CT.O.[a,U.] - ?Auava}\ - a,

< @ X B+ AP+, 6D
where L7 ¢ [a, ] describes the intrinsic topological order using
the dual gauge field. Integrating out the dual gauge field a,,
can yield an effective action Lg[7i] for the ferromagnetic
order parameter 7. In particular, as we will show below, for
a generic topological order, this can induce a Hopf term for
the ferromagnetic vector 7, giving rise to fractional statistics
of the skyrmions [22,83,114].

Finally we point out a universal relation connecting the
statistical angle (or topological spin) and U(l)s: quantum

number® of a skyrmion. The skyrmion as a spatial texture of
order parameter 7i(x, y, t) is classified by the second homotopy
group m,(G/H = §?) = Z. A standard realization of a single
skyrmion of topological charge v € Z, of size R and located
at the origin, has the following form:

n(7,t) = (sin f(r) cos(v), sin f(r) sin(ve), cos f(r)), (62)

where we introduced the polar coordinate 7 = (x,y) =
r(cos ¢, sin ¢) and a smooth function f(r) satisfying f(0) =
0 and f(r > R) = &. Clearly such a skyrmion texture is in-
variant under a combined spatial rotation (around origin) by
angle 6 and spin rotation (along Z axis) by angle v8. Therefore
the statistical angle ®,, € U(1) of a charge-v skyrmion must
be related to its U(1)s: quantum number Q, in the following
manner:

0, = eZnVin. (63)

B. Abelian topological orders

To explicitly write down the field theory (61) and to obtain
universal properties of skyrmions, in this section we focus on
the case of an Abelian topological order, which are classified
and described by Abelian Chern-Simons theory with a K
matrix [108].

Suppose the underlying system has an Abelian topological
order, characterized by the matrix K and a spin vector q
associated with the remnant U(1)s: symmetry. In particular,
the dual gauge field for the conserved U(1l)s: 3-current is

written as
_ I
a, = qlau .
I

From (61), the Lagrangian density for the system reads

(64)

1 A I J I 6/)“))\ I g
— nv _ —
L= . € Kuaﬂ aya)L qa, o 0,A;, 2q1au,‘]skyrmi0n’

(65)

where the extra 2 in the coefficient of last term denotes the 47
flux carried by each skyrmion instead of ordinary 2, as we
have discussed in Sec. III D 2.

Integrating out aL, we obtain the spin Hall conductance
associated with A, field [108]:

oy =q'K'q. (66)

Meanwhile, a skyrmion with topological charge v € Z corre-
sponds to an Abelian anyon labeled by the vector 1, = 2vq.
The U(1)s: (spin) quantum number carried by a texture of
winding number v reads

0, =1"K'q=2vq"K!q mod I, (67)

8Strictly speaking, since the U(1)s: symmetry is broken by the
skyrmion configuration, the U(1)s: quantum number Q is not well
defined. More precisely, different local perturbations can change this
quantum number by an integer. However, the fractional part of Q is
a universal number, and it shows up in the universal relation (63).
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and its self-statistics (unit of afL flux) reads
®, = eianKfll _ e4ﬂiU2qTK71q (68)
v — - .

Indeed they obey the universal relation (63).

C. Half-integer spins with SU(2) symmetry

Lastly we clarify one subtle difference between G = SO(3)
in systems with integer spins, as discussed previously, and
G = SU(2) in systems with half-integer spins.

For a bosonic or fermionic system with half-integer spins,
the full symmetry group is G = SU(2) rather than the previ-
ously discussed SO(3) case. Since 71(SU(2)) = 0, now the
skyrmions as elements of 7, (SU(2)/U(1)) = Z and fluxes as
elements of ;(U(1)) = Z have a one-to-one correspondence
realized by bijective map f below:

1(SUR)) = 0 — 12(8%) L 7, (U) = 71(SUQ)) = 0.
(69)

More precisely, a skyrmion of winding number v is now
mapped to a 2v flux (i.e., v flux quanta) of the unbroken
H = U(1)s: subgroup. The effective theory for an Abelian
topological order with an odd K matrix reads:

L= ek d adl —qd oA, — g I
= i 17a,0a; —qa, o7 A~ 14, kyrmion*

(70)

Similar to the case for integer spins, a skyrmion of topological
charge v, now labeled by vector 1, = vq, carries U(1)s: quan-
tum number Q, = vq" K~'q mod 1 and self statistical angle
0, = einuquK“q.

For example, in the quantum Hall ferromagnet in the low-
est Landau level [22] with K =1, q =1, a v = | skyrmion
becomes a fermion with ®,_; = —1 [83]. An alternative way
to understand this problem is to gauge the fermion parity
symmetry Z' to map it to a bosonic topological order with
G =S0(3), H = U(1) as discussed previously. In this case,
the quantum Hall ferromagnet in the lowest Landau level
[22] corresponds to a U(1)4 Chern-Simons theory with K =
4, q =1 after gauging the fermion parity, where a v =1
skyrmion is again a fermion with ®,_; = —1.

VII. CONCLUDING REMARKS

In summary, we described a theoretical framework which
classifies point defects and textures in two dimensional quan-
tum phases, where the full symmetry G is spontaneously
broken down to a subgroup H of remnant symmetries,
so that each symmetry-breaking ground state with a fixed
(nonfluctuating) order parameter is an H-symmetry enriched
topological (H-SET) state. Using the long exact sequence
of homotopy groups that maps the point defects and tex-
tures of order parameters to symmetry defects in the H-SET
phase (see Sec. II), we obtain a group cohomology clas-
sification for the point defects and textures (see Sec. III),
which is induced from the group cohomology classification
of H-SET phases (including the H-SPT phases as a special
case).

Using this general framework and the group cohomology
classification, we address their physical consequences focus-
ing on three aspects. In Sec. IV, we studied point defects and
textures of order parameters in H-SPT phases, and reveal their
connection to deconfined quantum critical points (DQCPs).
In Sec. V, we studied point defects of order parameters in
H-SET phases, showing that they can (1) permute anyons
when braided around, and (2) fuse into Abelian anyons, a
phenomenon we coined “defect fractionalization.” In Sec. VI
we studied textures of order parameters in H-SET phases,
establishing their field theory descriptions and the fractional
statistics obeyed by the skyrmions.

This work aims to understand the interplay between classi-
cal long-range orders of local order parameters, and quantum
orders of long-range entanglement in the ground state [20].
It serves as a first step towards a complete classification
and characterization of quantum phases with both classical
and quantum orders. While we focused on point defects and
textures in two-dimensional bosonic systems in this work,
three natural extensions are: (i) to understand domain walls of
discrete symmetry breakings; (ii) to study fermionic systems
with long-range orders; and (iii) to go beyond two spatial
dimensions. For example, in three dimensions, the coexis-
tence of long-range orders and quantum spin liquids (known
as “magnetic moment fragmentation”) has been proposed in
quantum spin ice compounds [115,116].

In our study of the symmetry breaking in SET phases
in Sec. V, we focused on examples of Abelian topological
orders, where we used an underlying toric code topological
order throughout the analysis. This choice is made for simplic-
ity and for the purpose of explicit lattice model construction in
Sec. V D. We believe the toric code suffices for illustrating the
general principle that we laid out using an algebraic means. It
is interesting to identify a non-Abelian system which harbors
the nontrivial point defects and textures discussed in our for-
malism.

As discussed in Sec. IIC-IID, in this work, we focused
on the case where the long exact sequence (7) of homotopy
groups cuts off into short exact sequences: (11) for point
defects and (12) for textures (skyrmions) in two spatial di-
mensions. The consequent short exact sequence allowed us
to obtain a compact classification for universal properties of
point defects and textures based on group cohomology in
Sec. III. While many physical systems fall into this case,
in a most generic situation, both nontrivial topological point
defects and textures exist, with possible nontrivial interplay
between them [117]. To establish a mathematical classifica-
tion for the generic case goes beyond the current work, and
we leave it for future developments.

Now that we have studied point defects and smooth
textures of order parameters associated with SSB from
G to H, condensing such point defects (i.e., vortices)
or textures (skyrmions) is expected to restore the broken
symmetries. However, as we have shown in this work,
point defects can carry a projective representation of the
remnant symmetry H, and textures can carry fractional
statistics and fractional quantum numbers. As a result, the
defect/texture condensation transition may spontaneously
break other symmetries and/or alter the topological order in
the ground state. This will lead to a family of quantum phase
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transitions beyond the Landau paradigm [43,62,118]. For
example, condensing a skyrmion obeying bosonic self statis-
tics but nontrivial mutual statistics with other anyons can
restore SO(3) symmetry, leading to a paramagnetic ground
state with a different topological order than the ferromag-
netic phase. We leave these novel phase transitions as future
projects.

Finally, note that in two spatial dimensions, point defects
of the order parameters in our framework can be mapped to a
one-parameter family of gapped H-SET Hamiltonians, while
a smooth texture of order parameters in our framework can be
mapped to a two-parameter family of gapped H-SET Hamil-
tonians [37]. Therefore our classification of point defects and
textures in H-SET phases also serves as a first step towards the
classification and construction of adiabatic pumping cycles in
SET phases [119-121]. We also leave these developments to
future works.
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APPENDIX A: NOTE ON NOTATION

Many Abelian groups are defined in this work. When an
Abelian group represents (the fusion of) Abelian anyons we
will often denote by blackboard bold symbol, e.g., Z,. Quite
often we use subscript to detail the anyon types, e.g., Z$5
denotes the (fusion) group of the trivial anyon 1 and the
“electric” particle €. We also denote the homotopy group and
the cohomology group blackboard bold symbol. On the other
hand, when an Abelian group appears as a group of symmetry
operations we will often denote with the usual symbol, e.g.,
Z, and Z,. Sometimes a group is indicated by its generators,
for example, for the Abelian group generated by the twofold
element 4 all the following notations are equivalent: Z, =
73 = {1, h} = (h).

Several types of products appear in this work. Since quite
often we are dealing with finite Abelian groups, we do not
distinguish direct product and direct sum, for example, Z, x
Z, and Z» @ Z,, and Z% all mean the same object. Note these
are different from tensor product of groups. As an example,
we have Z, ® Z, = 7 # Z5.

For the group cohomology H*(G, A), G can either act
trivially or nontrivially on the coefficient .A. Quite often when
the action is nontrivial it is specified explicitly in some way
(either stated in words or using symbols): for example in
Eq. (C12) the Abelian group Zf generated by an order-two
element /& acts nontrivially on the anyons .4, and we remind
this action by the subscript / in the notation H}. As another

example, in the five-term exact sequence, all the cohomology
groups with possible nontrivial actions (p : H — Aut(A)),
0 : 7 (G/H) — Aut(A))) are manifest by the subscripts,
whereas the term H' (7, (G), A) without subscript (or with the
subscript “id””) means 71 (G) acts trivially on A.

APPENDIX B: A SHORT INTRODUCTION TO HOMOTOPY
AND GROUP COHOMOLOGY

1. Homotopy group and spontaneous symmetry breaking

In this section, we give a brief introduction to homotopy
theory based on Ref. [7]. Homotopy theory provides the nat-
ural language for the description and classification of defects
in a large class of ordered system. Consider the ground state
of a quantum many-body system, which exhibits a long-range
order associated with spontaneous symmetry breaking. To be
precise, we consider the symmetry group G of the Hamilto-
nian to spontaneously break down to a subgroup H that is
preserved by an ordered ground state. Mathematically, the
long-range order of spontaneous symmetry breaking is de-
scribed by a local order parameter living on the manifold M

[7]:

O(F) e M =G/H, (B1)

which is the (left) coset space of G modulo H, where the
full symmetry G of the Hamiltonian is spontaneously broken
down to a subgroup H in the ground state. In particular, the
remnant symmetry H is the subgroup of G which keeps the
order parameter {O(#)} invariant:

H = {h € GlhOh™' = 0). (B2)

The order parameter manifold is therefore given by the coset
space M = G/H. Topological defects of codimension D + 1
in an ordered media is generally classified by the homotopy
group p(G/H). In particular, in two spatial dimensions, the
different types of topological defects are classified by the
following homotopy groups.

(1) Domain walls where order parameters vanish along a
line, with codimension 1, classified by mo(G/H).

(ii) Point defects where order parameters vanish at a point,
with codimension 2, classified by 7 (G/H ).

(iii) Smooth textures where order parameters are finite
everywhere, classified by 7, (G/H).

The following long exact sequence of fibration is a useful
tool to compute these homotopy groups [7]:

c > my(H) — 1,(G) — m,(G/H)
— M1 (H) — 1,-1(G) —> -+ (B3)
2. Theory of group cohomology

Here we give a short introduction to group cohomology
[47]. The concept of spectral sequence will be given in the
next subsection.

a. Cochain, cocycle and coboundary

The input data for group cohomology is a group G (Abelian
or non-Abelian) and an Abelian group A equipped with an
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action of G: G x A — A, g x a+> g.a. Equivalently, the G
action on A defines a map p : G — Aut(A) from G to the
automorphism group of A. Consider n-argument functions
(g1, g2, , &n) € A that maps an n tuple of group elements
in G to the Abelian group A

w:GxGx---xG— A.
—_—

n times

(B4)

Such a group function is called an n-cochain. The set of all
n-cochains, which we denote by C"(G, A), forms an Abelian
group under group multiplication in A

s &n)-
(BS)

here we define the identity n-cochain to be the trivial group
function whose value is always the identity in A. One can
define amap 9 : C"(G, A) — C(G, A), w —~ dw by

(w1 - @2)(g1, - ,8) =wi1(g1, -+, 8n) w281,

3(,()(g1,"' 7gn+1)
_1yn+l
=g (g, gl - 07 (g1, gn)
X 1_[60(_1)’(81,"' 2 8i—158i " 8i+1> &i+2, " 5 &ntl),
(B6)

where the symbol g;. (g2, - - - , g,+1) denotes the action of
the group element g; on the function w, inherited from the
action of G on A.

J

H(G, A) =

ZY(G, A) _{d:G— Ald(id) = 0,d(gh) = g.d(h) +d(g) Vg, h € G}

One can check that (1) 32w := 8(dw) = I, where I denotes
the identity (n + 2)-cochain, (2) for two n-cochains, w, w»,
(w1 - w2) = (dwy) - (wy).

An n-cochain w(gy, --- , g,) is called an n-cocycle if and
only if it is mapped to the trivial elemenet under the map 9,
i.e., dw = I. The set of all n-cocycles, denoted by Z"(G, A) is
a subgroup of C"(G, A).

Since 9> maps every cochain to the trivial one, any (n —
1)-cochain c(gy, -, gn—1), defines an n-cocycle dc. If an
n-cocycle b can be represented as b = dc for some c €
C" (G, A), b is called an n-coboundary. The set of all n-
coboundaries is a subgroup of Z"(G, A), which we denote
by B"(G, A). Two n-cocycles w;, w, are equivalent (denoted
by w; ~ w,) if and only if they differ by an n-coboundary:
w1 = wy - b, where b € B"(G, A).

The nth cohomology group of a group G with coefficients
in A, H"(G, A), is formed by the equivalence classes in
Z"(G, A) (i.e., up to B"(G, A)). More precisely, we have

Z"(G, A)

MO A=, 2y

(B7)

Here the subscript p in the cohomology group is a reminder
of the group action p : G — Aut(A).

For concreteness, we give the expression for the first and
second group cohomology:

B'(G, A)
(G, A)

_ ZXG, A)
" BX(G, A)

(B8)

{dy : G — Aldy(g) = g.a — a for some a € A}

_Ho:Gx G —> Alo(l, g1) = (g1, 1) =0, 0(g1, 82) + ©(8182, 83) = g1-0(82, g3) + (g1, 8283), V&1, 82, &3 € G}

{w:GxG— Alw(gr, g) = g1.d(g2) — d(g1g2) +d(g,) for some d : G — A with d(1) = 0}

We note that the Abelian group A can be either finite (such
as 7Z,), discrete infinite (such as Z) or continuous (such as
U(1)). The group G can also in principle be finite, discrete
or continuous (the continuous case may be treated with addi-
tional caution), and in this work we will mostly work with a
discrete group G.

Finially, note that one can directly search for all the so-
lutions to Egs. (B8) and (B9) by implementing them in a
computer program, and this is the method we used for comput-
ing the cohomology of dihedral and quaternion groups. This
method is quite elementary, brutal force in nature, but works
well for any finite group G with small order and finite Abelian
group A, and can provides the most complete data.

b. Kiinneth formula

When the group G acts trivially on the coefficient 4, a
useful decomposition formula for H"(G, A) exists for those
G that have a direct product form G = G| x G, namely, the

(B9)

(

Kiinneth formula:

H'(G. A) =Y HNG H'H(Ga. A)), (B10)

k=0

this says that the nth cohomology group of G can be obtained
from the cohomology groups of G| and G, in lower degree,
but in a “nested” fashion. Note that here we allow the coeffi-
cient A to be either U(1), which appears in the classification
of bosonic SPT (in d = n — 1 spatial dimensions), or a finite
Abelian group, which appears in symmetry fractionalization
of SET (n = 2).

In the case of SPT phases with a U(1) coefficient, this
formula implies that SPT phases with G symmetry in d spatial
dimension can be constructed from SPT phases with G| sym-
metry and G, symmetry in lower dimensions. Specifically, the
k = 0 term in the formula reads:

HYUG1, HTT(G,, U(1))) = HTH(G,, U(1)),  (B11)
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physically, this means that some SPT phases with symmetry G
in d dimension are identified with SPT phases with a subgroup
symmetry G, in d dimension. The k = n term admits a similar
meaning for the subgroup Gj.

In the special case of A = Z,, the summands in the Kiin-
neth formula can be further decomposed into tensor product
of groups, and we have [50]

Hiy(Gr x G, Zo) = @) (HL(G1, Z2) @ Hy(Ga, Zo)).
ptq=n

(B12)

The Kiinneth formula (B10) can be proved using the theory of
spectral sequence, which we briefly introduce in Appendix C.

3. Calculation of group cohomology: examples

Using the definition of group cohomology, for A = (Z,)"
a product of m copies of Z, and G = Z} an Abelian group
generated by an order-two element 4, we have [50]

H (Z), A) = A" )(hA—A), forn>1, (B13)

The (generally nontrivial) action of Zé’ on A is reflected in
the following symbols: 4.4 denotes the image of the action
of h on A, and A" denotes the elements of A that are left
invariant under the action of 4. Below we calculate the group
cohomology that mentioned in the main text.

a. H*(Z,, Z%), trivial action

Let’s first consider the case m = 2 in Eq. (B13). We can
interpret A = Z§ x Z4' as the toric code topological order,
where e and m stand for charge and flux component, respec-
tively. The elements in A are 1 = (0,0), e = (1,0), m =
(0,1) and & = (1, 1). In the case of trivial action, & does
not permute € and M, we have the invariant subgroup of A
under & as A" = A and the denominator above is trivial, so
the right-hand side is just A = Z§ x ZJ.

b. H*(Z,, 72), nontrivial action
Similar to the case in Sec. B 3 a, if & permutes € and m, then
the invariant element of A reads A" = Z§ = {1, &}. The de-
nominator h.4 — A = {h.a—ala e A} = {1, e} = Z,. Thus
in this case the right-hand side of Eq. (B13) is trivial.

c. H2(Z%, 72), trivial action

As another example, we consider H2(D,, A) with D, =
Z3 x Z% and A = Z$ x Z5. In the case of trivial action, we
have H(D», A) = H*(D2, Z§) x H*(D,, Z5). The calcula-
tion of ’Hizd (D, Z) for trivial action can be derived from the
Kiinneth formula Eq. (B12) with G; = Z, and G, = Z,. With
above, we shall see:

Hizd(Dz’ Lry)=Zn® (Zy QL) DLy = Zg.
Thus we have HZ(Dy, Z§ x Z5) = (Z3)° x (Z3)™.

(B14)

d. H*(Z3, Z2%), nontrivial action

Compared to the trivial action discussed in Appendix B 3 c,
in the case of nontrivial action, D, = Zf X Zé’, where h per-
mutes € and m while g does not permute € and m.

A direct computation using definition (B9) gives

Hi(Dr =275 x 2, A= 75 x 1Y) = Z>. (B15)

A more technical calculation using spectral sequence can be
found in Appendix C.

e. H*(Qs, Z2), trivial action

Let us first define the elements of the quaternion group QOs.
Denote X := ioc* and Y = io”, then any element of Qg can be
written in the standard form X*YY,x =0, 1,2, 3,y = 0, 1. For
gi = X*YY i=1 and 2, the multiplication in standard form
is
— X" +xz+2y|xz+2y|yzyy1+y272y1yz’

8182 (B16)

where the exponent of X, x; + x, + 2y;x; + 2y;y,, is defined
in the mod 4 sense.

Since the action of Qg on the coefficient A = Z§ x ZT
is trivial, the cohomology H*(Qs, Z3) is the product of two
copies of H*(Qs, Z), labeled by € and m. A direct computa-
tion using the definition (B9) gives

HA(Qs, Lo) = 23, H*(0s. Z3) = Z5.

The explicit cocycles can be found in Table V. Importantly,
one finds

(B17)

o(X?, X% =0, (B18)

which is independent of the coboundary values, and
that o(X,X)=®+Q+by), 0w, Y)=Q+b, and o
(XY,XY)=0b, where b, e Z, labels the different
coboundaries and only &, Q € Z, label different cocycles in
‘H2(D,, Z»). This shows that the following are topological
invariants of H2(Qg, Z,) (with trivial action):

oX,X) w,Y)

) _ ) g (B19)
w(¥,Y) (XY, XY)

’

A more technical calculation using spectral sequence is
outlined in Appendix C.

f. HV*(Qs, Z%), nontrivial action

We denote A=7Z5xZT={1,e,m,e}. and Qg =
{£1, +io*, £io”, +ic?}. We assume that the nontrivial
action comes from *ic*, tioc®: e+ m,m— e, while £1
and +io” have trivial action on A. This is the only consistent
way of having nontrivial action (any other nontrivial action is
isomorphic to this one).

First we calculate 7!(Qs, Z3) using the definition (BS).

We solve for B'(G, A): it is known that B'(G, A) =
A/ AC, from which we get B'(Qg, A) = A/(e) = Z,. Then,
we solve for Z!'(G, A): the goal is to find all the crossed ho-
momorphism f : (x,y) — A defined by f(x,y) :=d(g) for
g = XYY subject to group, such that

SO +x2 4+ 2y1x2 + 2y1y2, y1 + Y2 — 2y1)2)
+x1.f(x2,¥2) + f(x1,y1) =0,

where we abused the notation x;.f(xp,y2) := g1.f(x2, y2).
The crossed homomorphism f(x,y) is entirely determined
by the group generator, i.e., the values of f(1,0) and
f(0,1) in A. Naively, there are 16 choices. However, it is

(B20)
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TABLE V. The cocycle element w(g:, g2) for H*(Qs, Z,) = Z3 with trivial action. The horizontal (vertical) group elements are for g,
(g1). The ordered pair denotes the charge in Z$ x ZT', where ey, e,, ..., e7, Q, ® € Z,. Only Q, ® € Z, classify the cohomology, i.e., 2 =
® = 0 denotes the trivial cocycle element of H?(Qs, Z,) = Z3 while (2, ®) = (1, 0), (0, 1), (1, 1) denote the nontrivial cocycle element of
H*(Qs, Z,) = Z3. The other 7 Z, parameters, by, by, . .., by, exhaust all the possible coboundary functions in B%*(Qs, Z,), which we record
here for the search of topological invariants.

w(gr,g8) 1 X X? X3 Y XY X%y X3y

1 0 0 0 0 0 0 0 0

X 0 O+ Q+ by b1 + by + b3 O+ QL+ by + b3 Q+b1+b4+b5 <D+b1+b5+b6 Q+ by +bs+ by O+ by + by + by
X2 0 b1+ by + b3 0 b1+ by + b3 by + by + be by + bs + by by + by + bg by + bs + by
X3 0 @+Q+bi+by bi+by+b; 4+ Q+ by Q+b3+bys+by ®+b3s+bs+bs Q+by+bs+bs ®+b3+bs+by
Y 0 O+Q+b1+bs+b7 by+bs+bs ®+ QL+ b3+ bs+bs Q+ by O + by + by + bs Q + by + bg D + b3 + by + by
XY 0 by + b4 + bs by + bs + by b3 + bs + bg b3 + by + bs by by + bs + bg bs + by
XZY 0 ¢‘+Q+b1+b5+b5 b2+b4+b6 ¢‘+Q+b3+b6+b7 Q+b4+b6 <D+b3+b5+b6 Q—i—bz <I>+b1+b6+b7
X3 0 by + be + b7 by + bs + by b3 + by + by by + by + by bs + by b3 + b + b7 by

easy to see that f(0,1) =e is forbidden: if f(0,1)=e, We can write down explicit cocycles, see Table VI. Impor-
then setting (x1,y1,x2,y2) = (1,0,0,1), the condition tantly, we find a topological invariant

(B20) becomes  f(1,1)+m+ f(1,0) =1.  Further

using f(1,1) = £(1,0)+ £(0,1) = f(1,0)+ e, we have wX?, X?) = (2. Q), (B23)
e+ m+2f(1,0) =1, which is forbidden, so f(0,1)=e  where Q € Zj labels the cohomology class.

is forbidden. Similarly, using (xi,y1,x2,y2) =(1,0,1,0) A more technical calculation for 2(Qs, A) using spectral
one can show that f(1,0) = e is forbidden. By symmetry, sequence is given in Appendix C.

f(1,0) =m and £(0, 1) = m are also forbidden, so the only
possible crossed homomorphisms are Z;(G, A) = {f : G —
Al (f(1,0), £(0,1)) = (0,0), (0, ¢), (¢, 0), or (e, &)} = Z3,
so that

APPENDIX C: SPECTRAL SEQUENCE
AND GROUP COHOMOLOGY

. 1. The LHS spectral sequence
H (Qs, A) = L. (B21) . o
Consider the setup given in Eq. (17), namely, a group G,

We next compute H%(Qsg, A) using the definition (B9). its normal subgroup N, the quotient group Q := G/N, and an

Without providing detail we state the result Abelian group A with G action.
5 . The Lyndon-Holchschild-Serre (LHS) spectral sequence
H(Qs. A) = Z5. (B22)  isa computational tool to build the group cohomology of

TABLE VL. The cocycle element w(g, g2) for H*(Qs, Z$ x Z5') = Z5, with nontrivial action. The horizontal (vertical) group elements
are for g, (g1). The ordered pair denotes the charge in Z§ x Z7, where ey, e, ..., e7,my, my, ..., m;, Q € Z,. Only Q € Z, classifies the
cohomology, i.e., 2 = 0 (R = 1) denotes the trivial (nontrivial) cocycle element of H2(Qs, 75 x Z3') = Z5. The other 14 Z, parameters,
e, e, ...,e;,my,m,...,ms, exhaust all the possible coboundary functions in B*(Qs, Z§ x Z7), which we record here for the search of
topological invariants.

(g1, 82) 1 X X? X3

1 (0,0) (0,0) (0,0) (0,0)

X 0,0) (Q+er +ex+my, e +m +my) (Q+ ey +e3+my, ex+my +m3) (e1 +ms, e3 +my)

X2 (0,0) (e1 + e+ e3, Q+my +my +m3) (Q,Q) (Q+e1 + e +e3,my +my +m3)
X3 0,0) (e3 +my, e; +m3) (e1 +e3 +my, Q+er +my +m3) (ex +e3 +m3, L+ e3 +my +m3)
Y 0,0) (e1 +es +e7,my + my + my) (e2 + e4 + e, my + my + mg) (e3 + eq + €5, m3 + my + ms)
XY (0,0) (es +es +my, e; + my + ms) (es +e7+my, Q+ e +ms +my) (es + ec +m3, Q + e3 + ms + mg)
Xy ©0,0) (e1 +es+es, Q+my +ms+mg) (QL+ex+es+es, Q+my+my+mg) (Q+e3+es+er,my +mg+my)
X3y 0,0) (Q+ec+e7+my, e +mg+my) (Q+es+e7+my, ex +ms +my) (eq4 + €7 + m3, e3 + my + my)
(g1, &) Y XY X%y X3y

1 (0,0) (0,0) (0,0) (0,0)

X (e +es +my, Q4 eq +my + ms) (e1 + e + ms, es + my + mg) (e1 + e7 + mg, e + my + my) (e +es+my, Q+e7 +my +my)
x? (ex + es + e, my + mg + mg) Q+er+es+er,my+ms+m) (QL+ex+es+ec, Q+my+my+mg) (ex+es+e7, Q2+ my+ms +my)
X3 (2+e3+er+my,ea+my+m) (+e3+eq+ms,es +my +my) (e3 + es + mg, eg + m3 + ms) (e3 + €6 +mz, e7 +m3 + mg)
Y (Q+ e, Q+m) (e1 +eq +es5, Q+my +my + ms) (e4 + €6, my + mg) (2 +e3+eq+e7,m3 +my +my)
XY (e3 + es + my, es + mz + ms) (e +es +ms, Q + es + my + ms) (e; +es +mg, QL+ eg +m + ms) (es +m7, e7 + ms)

X%y (e4 + e, my + mg) (e3 + es5 + eg, m3 + ms + mg) (ez,my) (e1 + es + e7, my + mg + m7)
X3y (e + e7 + my, eq + my + my) (e7 + ms, es + my) (Q+ ez + e7 + mg, eg + m3 + my) (Q+e+e7+my,e7+my+my)
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G out of those of N and Q. It associates with the group
extension (17) a three-dimensional array of Abelian groups
EP? p,q,n > 0.1t is conventional to call the third argument
n a page, and for each page n we have a two-dimensional
(semi-infinite) array

q=3| E¥ E® EF E}
q=2| EM EM EX E}*? )
g=1| E} E EMOEY
g=01| EM EX EN E?
E;' | p=0 p=1 p=2 p=3
the second page (n = 2) has a concrete form:
EY? = HP(Q, HI(N, A)), (C2)

where the cohomology of Q has coefficients H*(N, A); im-
plicit in this is a predefined action of Q on H*(N, A), which
is inherited from the action of G on A. Here we give the
explicit form of this action: for [w] € H4(N, A) where o is
a d-cochain (i.e., a d-argument function N x --- N — A), the
action of Q on w is defined by

1

- nd):zq.(a)(q_lnlq, q ngq,... !

naq)),
(C3)

forany g € Q, ny, ..., ng € N. This explicit definition allows
us to calculate the second page using elementary methods.
The higher pages (whose definition will be given below) gen-
erally do not have a simple expression, but they are subgroups
of the second page: E;Y C E5?, n = 3,4, ... Note that here
we only consider the case where G is a discrete group, Q is
finite, and that all cohomology groups of N and Q considered
here are also finite. In this case, the nth cohomology group of
G is given by the direct sum on the n = oo page:

H'(G, A= P EL,

pa=n

(q.)(ng, ny, .. . q-

(C4)

note that the action of G on the coefficient .4 can be either
trivial or nontrivial.

The remaining task concerns how to go from the second
page to the n = oo page. This is done using the differential
maps d}"?. These are predefined maps that comes with a LHS
spectral sequence:

dbi:EP? — Eptmamtl o op geZ,  (C5)

with the understanding that E/;? = 0 whenever p < 0 or g <
0. The entries in the (m + 1)th page are defined as the homol-
ogy of those in the mth page:

’ ker(dh?)

EM = homology(E?) = W’ (C6)
as special examples, we have
ker(d"z)

E}? = —im(d;1’3) = ker(dzl’z),

30 _ ker(d; ") _ B 7
P im(dyt)  im(dy)
2 2

the differential maps on a generic page n are complicated.
Here we write down the explicit formulas for two d, maps
that already fulfills our purpose:’

(do.1(F))q1, ¢2) = f((1(g1g2)) " 1(g1)(g2)),

(di 1(@)(q1, g2, ¢3) = (@(g:)(U(q192)) " 1(q)1(q2)).
(C8)

Here 91, 92,93 € Q7 f € ZI(N’ A)a w € Zl(Qr Hl(Nv -A))’
and /: Q — G is a lifting, which is any function Q — G
(not necessarily a homomorphism) that satisfies p o [(q) = ¢
for any g € Q and that I(1p) = 1 for the identity elements
of 1o € Q and 15 € G (see [50], P497). To make sense of
Eq. (C8), we must have that dy(f) € H*(Q, AV) is a 2-
cocycle and that d; ;(f) € H3(Q, AV) is a 3-cocycle. These
can be proved using the definition of group cohomology by
elementary computation.

Due to the increasing span of the differential maps as one
goes to higher pages, it is easy to see that the entries in the
lower left corner of the spectral sequence (i.e., those with
small p and g) will be unmodified at some point when going
to the next page. When this happens, we say that this entry is
“stabilized.” When all the entries in a page is stabilized, we
say this page is “stabilized” or it “collapses” (to the infinity
page). One can either check that

0,0 __ 10,0 1,0 _ 1,0

EZ _Eoo’ E2 _Eoo’

0,1 _ 10,1 1,1 _ 1,1 2,1 _ 2,1 2,0 _ 12,0
EY' =EY, By =EL, EP' =EZ', EJ°=E2,
0,2 0,2

E)? =E2, ... (C9)

And this shows that the calculation of the first and the second
group cohomology stops at finite pages

0, 0 _ 0,1 1,0
HYG, A =ES @EL =E)' o E)°,
H* (G, A) =EY ®EL' ® EX°

=E 0L ©F". (C10)

The LHS spectral sequence is not only a powerful com-
putational tool for group cohomology, but many results
introduced in the previous sections are special cases of it. First
of all, the Kiinneth formula (B10) is nothing but a special
case of Eq. (C4) with ER? = EI*9. This is indeed the case
when G = G; x G acts trivially on the coefficient A, where
one can show that all the differential maps df*? for n > 2
vanishes. Second, a corollary of the LHS spectral sequence
is the five-term exact sequence [50]

0,1
0— E"°" - H' (G, A — EM Z, E;° — HX(G, A),
(C11)

which is exactly Eq. (18) in the main text.

2. Application of the LHS spectral sequence

In the following, we apply the LHS spectral sequence to
the calculation of certain cohomology groups that we referred

9We thank Bill Jacob for providing the explicit form of the dy ; and
dy ; maps.
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to in the main text. While the nth cohomology can always be
obtained using the definition (B7), or more explicitly, (B9) for
the second group cohomology case [see the comment below
(B9)], the spectral sequence calculation provides a detailed
structure of the cohomology group.

a. H*(Z3, %), nontrivial action

Recall that D, = Z§ X Zé’, where i permutes € and m
while g does not permute € and m. We define the normal
subgroup to be N = Z%, so we have 0 — Z — Z§ x ZI —
{Z4, 7 — 0 and using the results from Appendix B 3 b for
the nontrivial action case, we see that all the 7—[”21(25', A) is
trivial. This means that the only nontrivial places the spectral
sequence Eq. (C1) is the ¢ = 0 row, where A" = {1, ¢} = Z5.
Then using the example for the trivial action case in Ap-
pendix B 3 ¢, we see that the g = 0 row has Z§ forall p > 1.
From Eq. (C4), we have

Hi(Dy =25 x Z}, A=175 x ZY) = Z§ forn > 1.
(C12)

If instead both & and g acts nontrivially by permuting the e
and m particles, we would get the same result (C12) by using
a redefined decomposition of D.

b. ‘H*(Qs, Z3), trivial action

The spectral sequence calculation is detailed in the text-
book [122] (P128-129), which we outline here. The spectral
sequence makes use of the fact that

We have H"(Zy, Z.,) = 7, for all n. The action of Q := Z, on
H"(Zy, Z) is trivial (since the Aut(Z,) is trivial), meaning
that EJ*Y = Z, for all p, g > 0. The cohomology is not yet
determined, and one must analyze the E3 and E, pages of the
spectral sequence using the differential maps. Without going
into further detail, we give the final result: H>(Qg, Z,) = Z%.

c. H*(Qs, Z3), nontrivial action

Note that we have two short exact sequences for Qg: one is
Eq. (C13), and the other one is

O—)Dz—)Qg—)Zz—)O, (C14)

note that the latter, Eq. (C14), is the one obtained from the
short exact sequence of homotopy groups in Eq. (11). These
two short exact sequences define two separate LHS spectral
sequences from which H2(Qs, Z%) can be obtained. Now let
us calculate these two spectral sequences.

LHS spectral sequence associated with Eq. (C13). We use
the notations given in the previous section. We further denote
N = {%1, £ic*} = Z4, and the quotient group Q = Qg/N =
{N,ic”N} := {1, g}, where g = N is the generator of Q. Using
the standard notation above (see Ref. [50]), we now have

NA=A, NA={0), DA=175 A% =175

so that we have H*'~' (N, A) = A/(e) and H>*(N, A) = (g),
where we use (¢) and Z; interchangeably.

Now, we need to examine the effect of Q as in H"*(N, A)<2.
By definition [see Eq. (C3)], for a cocycle f(n)=a in

H' (N, A), the restriction to H'(N, A)? are the cocycles
f s.t. q.f(g"'nq) = f(n), up to coboundary, and for H" with
n > 2 a similar criterion can be defined. Here, we do have
H' (N, A)° = H' (N, A) = A/(e) = Z, and H*(N, AP =
H2(N, A) = () = Z,.

This allows us to write the E, page of the spectral se-
quence:

q=2 Lo
dy? =0
qg=1 Zo Lo T
\%M\*wo (1)
q=0 A Zs Zs Zs
p=0 p=1 p=2 p=3

Similar to the case of H2(Qs, Z3) with trivial action, here
we also have E"? = Z, for all p, g > 0; but we must now
determine the content of the three differential maps, dg ’2, dg’l,
and dzl’l. First of all, using the property of the Z Qg resolution
we know that dy* = 0 (see [122], P129).

Next, using the result H'(Qs, A)=Z, as given in
Eq. (B21), we see that the map dg’l is surjective. we can also
explicitly compute the dg U and dzl" maps using Eq. (C8). In
our context, things are simplified because the only nontrivial
value is when ¢g; = ¢» = g3 = ¢. For any lifting [ : Q — G,

we have 1(g1)l(q2) = (I(g))*> = —1 and l(q1q2) = 1(¢?) =
[(1p) = 15, meaning that

d&N (g, @) = f(=1) = (e),

(@ @)@, 4.0 = @@)(-D=(e).  (CI6)

This means that dg’l( f) is a nontrivial cocycle in Z%(Q, (g))
and dzl" (w) is anontrivial cocycle in Z3(0, (g)), thus dg" and
d21’1 are nontrivial. This means that, in going to the third page
of the spectral sequence E}"?, we get

q=2 73

g=1 0 0

q=0| A  H{q) () =2y 0 0

EY? | p=0 p=1 p=2 p=3
(C17)

where all the entries explicitly written here stabilize to the oo
page. From this we reproduce H3,,. 1;,-(Qs, Z3) = Z§ which
was given in Eq. (B22).

We see that the result differs from the trivial action case,
for which ’Hizd(Qg, Z%) = Z%. In terms of the spectral se-
quence, it is on the third-page E* that the difference emerges.
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Importantly, the spectral sequence also tells us that the result
Z5 comes from Eg 2 = H2(N, A)2, which in our context is
H2 (1 (G), ).

LHS spectral sequence associated with Eq. (C14).

Here we write the spectral sequence associated to
Eq. (C14). In principle there is no reason to expect that this
spectral sequence will be identical to the spectral sequence
associated with Eq. (C13). However, using the intermediate

step H'(H, H(m1(G), A) = H'(H, A) =75 = (« : H —
(m1(G) — Z5)) with H := D, it turns out that the entries as
explicitly shown in Egs. (C15) and (C17) are all isomorphic
(and are stabilized), and for this spectral sequence [associated
to Eq. (C14)], we also have dy> = 0, d>' # 0 and d,"' # 0,
so we get the same result (B22). This explicitly shows that
H2(Qg, A) = Z is inherited from the cohomology of its sub-

group 7 (G): H*(Qs, A) = Ej* = H2(m1(G), ).
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