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Enhanced Drude weight in a one-dimensional system of fermions with pair-hopping events

M. S. Bahovadinov ,1,2 R. O. Sharipov,3,2 B. L. Altshuler,2 and G. V. Shlyapnikov2,4,5,6

1Physics Department, National Research University Higher School of Economics, Moscow 101000, Russia
2Russian Quantum Center, Skolkovo, Moscow 143025, Russia

3Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana 1000, Slovenia
4Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia

5Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
6Van der Waals–Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

(Received 12 January 2024; revised 3 April 2024; accepted 7 May 2024; published 20 May 2024)

In one dimension density-density interactions of particles reduce their mobility and hence the Drude weight,
which controls the divergence of the optical conductivity at zero frequency, decreases. We study effects of pair-
hopping events on this result in a one-dimensional system of spinless fermions. The considered model consists of
the usual single-particle hopping and pair-hopping terms. In the absence of the density-density interactions, we
first show that a variation of the pair-hopping amplitude results in a monotonic change of the Drude weight. We
next demonstrate that weak nearest-neighbor density-density interactions increase the Drude weight, whereas in
the regime of strong interactions the Drude weight decreases as expected. Our numerical findings are supported
by bosonization results.
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I. INTRODUCTION

One of the distinguished differences of quantum-
mechanical systems from their classical counterparts is the
existence of the Aharonov-Bohm effect. A charged particle
acquires a phase when its trajectory encloses a finite magnetic
flux. The enclosed magnetic flux � is proportional to the
vector potential along the looped trajectory, and it perturbs
energy levels of the quantum-mechanical system. The mani-
festation of this effect occurs in quasi-one-dimensional (1D)
mesoscopic conducting rings of length L, where a dissipa-
tionless persistent current J ∝ D�

L is induced in response to
a magnetic flux � threading the ring [1–9]. The prefactor D
is the Drude weight of the system, which also determines the
zero-frequency divergence of the conductivity [10–13],

�[σ (ω)] = πDδ(ω) + σreg(ω). (1)

This quantity was first established by Kohn [14] to quan-
tify conducting properties of strongly correlated, many-body
systems. For conducting systems which support ballistic
transport of constituent carriers, one has D > 0, whereas for
insulating systems one has D = 0. The Drude weight is for-
mally introduced as a response of the ground-state energy to
an infinitesimal magnetic flux:

D = L
d2E0

d�2

∣∣∣∣
�→0

. (2)

In quasi-1D systems the Drude weight D and the superfluid
density (spin or charge stiffness) ρS are equal to each other at
zero temperature and can be interpreted as equivalent quanti-
ties. Quantitative estimation of the Drude weight is important
for the interpretation of experiments addressing persistent cur-
rents in mesoscopic metallic rings [5,8,9,15] and persistent
flows in setups of ultracold atoms in optical traps [16–26].

Therefore, it is important to classify effects of strong corre-
lations on the Drude weight in quantum many-body systems.
The generally accepted scenario is that repulsive interparticle
interactions always reduce particle mobility of a generic quan-
tum many-body system and, hence, they lead to a reduced
Drude weight [27–30]. However, recent studies [31,32] of
quasi-1D systems in a ladder geometry have shown unusual
effects of interparticle interactions on the Drude weight. In
ladder systems with a transverse magnetic flux, the Drude
weight increases linearly with the amplitude of repulsive inter-
actions, whereas for attractive interactions the Drude weight
decreases. Such a counterintuitive result is guaranteed by the
caused bias between back- and forward-scattering processes.
This bias results from an interplay between interparticle inter-
actions and the transverse magnetic flux.

One of the possibilities to enhance particle mobility in
lattice systems is to introduce pair hopping of particles. Re-
cently, a model with this feature was studied in 1D by Ruhman
and Altman [33]. Although the Ruhman-Altman model is
rather abstract, it got sufficient attention and the phase di-
agram of this model was recently studied numerically by
means of the density matrix renormalization group (DMRG)
method [34,35]. However, effects of pair-hopping events on
transport properties remain an open subject.

In this work we present another interesting model with an
imposed pair hopping, where the Drude weight also monoton-
ically changes when varying the system parameters. Namely,
we consider 1D spinless fermions with single-particle and pair
hoppings. Using numerical DMRG [36–39] and bosonization
of the model, we show that the Drude weight monotonically
varies with the pair-hopping amplitude J2. For positive J2

it decreases with J2, whereas for negative J2 it increases
with |J2|(linearly for |J2| � 1). We also show that an addi-
tional attractive (repulsive) nearest-neighbor density-density
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FIG. 1. (a) Schematic representation of the fermionic model (3).
For J2/|J1| < 0 on top of single-particle hoppings, pair-hopping
events are also favored, as sketched in (b).

interaction term further enhances the Drude weight in the
regime where the pair-hopping events are energetically fa-
vored (disfavored). This is in sharp contrast to the case of J2 =
0, where no renormalization of the Drude weight is achieved
at the leading order in a system with such interactions, and
higher corrections usually result in a decrease of the Drude
weight. The model of our study can be mapped onto the
J1 − J2 XY model via the Jordan-Wigner transformation [40]
and can be experimentally realized in several systems (using
three-dimensional transmon qubits on sapphire and also using
ultracold bosonic atoms in optical lattices), as suggested by
recent proposals [41,42].

The paper is organized as follows. In Sec. II we present
the fermionic model and discuss its main properties. To high-
light the key results of our work, in Sec. III we emphasize
why repulsive density-density interactions do not result in
a strong (linear in the interaction strength) renormalization
of the Drude weight in 1D systems. In Sec. IV we present
the low-energy Tomonaga-Luttinger liquid (TLL) theory of
the model, obtained by both constructive and field-theoretical
bosonization, and show strong renormalization of the Drude
weight within the TLL theory. To validate the bosonization
results we present our numerical findings of the excitation
velocity and the TLL parameter K in Sec. V. In Sec. VI we
demonstrate our numerical findings for the Drude weight in all
considered regimes. Section VII is devoted to our concluding
remarks.

II. MODEL AND SYMMETRIES

We consider a 1D system of spinless fermions with single-
particle and pair-hopping terms, defined on the zigzag ladder
of (even) L sites with periodic boundary condition [see Fig. 1].
The Hamiltonian

H = H1 + H2 (3)

contains the single-particle hopping term H1 and pair-hopping
term H2:

H1 =
∑

β=1,2

L∑
j=1

Jβ (−1)β+1

2
(c†

i ci+β + H.c.), (4)

H2 = J2

L∑
i

(c†
i ci+1c†

i+1ci+2 + H.c.), (5)

where we impose cL+1 = c1. For convenience we also intro-
duce a parameter κ = J2

|J1| and consider a half-filled ladder.
Note that the single-particle hopping term to the next-nearest-
neighboring sites and the pair-hopping term have the same
amplitude J2.

The Hamiltonian (3) is translationally invariant and con-
serves the particle number [U(1) symmetry] and parity
symmetries. If κ = 0 or κ = ∞, the system is integrable,
since one can map the model exactly onto the model of
free fermions in 1D. For κ � 1 the clean model is quasi-
integrable, possessing quasi-conserved charges, as was shown
in the recent works [43–46]. We consider only −1 < κ �
0.33, where the TLL theory serves as a valid framework of
T → 0 physics. We emphasize that the Hamiltonian (3) can be
mapped exactly via Jordan-Wigner transformation [40] onto
the XY model (s = 1/2) in the zigzag ladder [44]:

H =
∑

β=1,2

Jβ

L∑
i=1

[
Sx

i Sx
i+β + Sy

i Sy
i+β

]
. (6)

Recently, it was shown in Ref. [44] that the current model with
on-site disorder exhibits many-body localization transition
provided by the pair-hopping term (5) in the fermionic for-
mulation. A strong pair hopping also guarantees a superfluid
(SF)–Bose glass transition at finite disorder, as demonstrated
in Ref. [47].

At T = 0 one expects that for κ < 0 the SF phase is
conserved with the modified TLL parameter K > 1. Indeed,
pair hopping of fermions amplifies SF correlations, result-
ing in a slower algebraic decay of these correlations. On
the contrary, for κ > 0 one has dominating charge-density-
wave–type correlations, with K < 1. To highlight this one
can rewrite the term from (5) as a correlated hopping term
−κ (c†

i ni+1ci+2 + H.c.). Hopping of fermions along a given
leg pins fermionic density on the other leg. If κ > 0 and is
sufficiently large, then such pinning can cause spontaneous
dimerization onto the 2kF bond-order density wave [48]. This
phase transition was previously shown [47–53] to occur in the
vicinity of κc ≈ 0.33.

III. WEAK RENORMALIZATION OF THE DRUDE
WEIGHT IN 1D

In one dimension interparticle interactions do not affect the
Drude weight in Galilean invariant systems due to the decou-
pling of the center-of-mass motion from internal degrees of
freedom [31,54–56]. The presence of a lattice changes this
result only beyond the leading order. To show this, let us
consider noninteracting fermionic theories in 1D, which are
successfully described within the bosonization formalism (we
set h̄ = e = 1):

H0 = vF

2

∫
dx[(∂xφ)2 + (∂xθ )2], (7)

where vF is the Fermi velocity, and the conjugated bosonic
fields φ(x) and θ (x) satisfy commutation relations

[φ(x), ∂x′θ (x′)] = iδ(x − x′). (8)
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In the presence of short-range density-density interactions of
the form Hint = ∑

i, j Vi, j n̂in̂ j , Eq. (7) takes the form

H = vs

2

∫
dx

[
1

K
(∂xφ)2 + K (∂xθ )2

]
+ V (φ), (9)

where vs is the new excitation (sound) velocity and K is the
TLL parameter. The parameter K is smaller than unity for
generic Vi, j > 0, whereas K > 1 for attractive interactions.
Importantly, the term V (φ), which includes all nonquadratic
terms, only depends on φ and does not depend on θ . Hence,
[n̂, Hint] = 0, since the electronic density operator is also only
a function of φ. From the continuity equation ∂t n̂ = i[H, n̂] =
−∂x j one obtains the expression for the current:

j = − vF√
π

∂xθ. (10)

The current is not effected by the density-density interactions,
and the Drude weight remains equal to the noninteracting
Fermi velocity vF /π :

D = vsK

π
= vF

π
= D0. (11)

The terms in V (φ) are usually irrelevant in the renormalization
group sense and lead to the corrected parameters v∗

s and K∗.
The Drude weight also gets renormalized:

D = v∗
s K∗

π
< D0. (12)

However, it is important to emphasize that such renormal-
ization is usually weak, at most of the second order in the
perturbative expansion, and the Drude weight decreases.

An alternative way of explanation of the above fact can be
done in terms of g-ology approach: Hint causes a backscat-
tering process with amplitude g2 and the forward scattering
process with amplitude g4. The Drude weight in terms of these
amplitudes takes the following form [54]:

D = D0 + g4 − g2

2π2
. (13)

For the same reasons leading to Eq. (11), for the density-
density interactions one always finds g2 = g4, and no
renormalization of the Drude weight occurs at the leading
order.

The typical example of the described scenario occurs in
the 1D spin-1/2 XXZ model with the Ising interactions Hint =∑

i JzSz
i Sz

i+1. This model can be mapped onto the model of 1D
spinless fermions with the nearest-neighbor hopping and the
density-density interactions:

Hint =
∑

i

Jz(n̂i − 1/2)(n̂i+1 − 1/2). (14)

At |Jz| � 1, the standard bosonization procedure leads to
g2 = g4 = 4Jz and the parameters

K = vF /vs =
(

1 − 4Jz

π

)−1/2

. (15)

Thus the Drude weight is equal to D0, and it is not renor-
malized at the leading order. However, irrelevant terms
encapsulated in V (φ) result in the decrease of the Drude
weight for both repulsive (Jz > 0) and attractive (Jz < 0)

FIG. 2. Numerical DMRG results for the sound velocity vs and
the TLL parameter K (L = 128) vs κ . The inset shows the results of
the fitting procedure of Eq. (37) at κ = −1.

interactions. This can be shown using the exact form of the
parameters ve

s and Ke known from the Bethe ansatz [57]:

Ke = π

2

1

π − arccos Jz
(16)

and

vs = π

2

√
1 − J2

z

arccos Jz
. (17)

Thus, the exact Drude weight is D = ve
s Ke

π
< D0 for |Jz| < 1

[see Fig. 3(c) for the plot of the Drude weight as a function
of Jz]. What is important for our next discussions is that the
renormalization of the Drude weight for the density-density

FIG. 3. (a) DMRG (symbols) and bosonization (dashed line) re-
sults for the Drude weight D as functions of κ at −1 < κ < 0.33
and (b) the same in the vicinity of the critical κc for various system
sizes. The dashed vertical line in (b) denotes the critical κc. The
Drude weight for the 1D XXZ as a function of the Ising interaction
amplitude Jz demonstrated in (c).
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interactions in 1D is not exhibited within the framework of the
TLL theory, but only irrelevant terms lead to weak corrections.
As we show in the next sections, in the model of our study this
scenario is violated and large corrections to the Drude weight
due to the pair-hopping events already manifest themselves on
the TLL theory level. We also demonstrate numerically that
in the presence of pair-hopping density-density interactions,
which usually result in the decrease of the Drude weight,
enhance the Drude weight. We provide qualitative arguments
for these results.

IV. BOSONIZATION PROCEDURE

Constructive bosonization. We first follow a constructive
bosonization procedure to achieve an effective low-energy
theory of the model. For this the Hamiltonian (3) is rewritten
in the k space:

H̃ =
∑
k∈BZ

εkc†
kck + J2

L

∑
k1,k2,q

cos(2k1 + q)c†
k1+qck1 c†

k2−qck2 ,

(18)
with the single-particle dispersion relation

εk = −
∑

β=1,2

Jβ cos(βk). (19)

In the weak-coupling regime, |κ| � 1, one starts with a lin-
earized spectrum of the free fermionic term (4) with the
corresponding left (L) and right (R) moving branches. The
first term of (18) can be rewritten as

H̃0 = πvF

L

∑
q,τ

ρ̂τ (q)ρ̂τ (−q), (20)

with τ ∈ [L(−1), R(+1)], where the Fermi velocity is vF =
∂εk
∂k |k=kF and the density plasmons for a given branch τ ∈ L, R
are defined as

ρ̂τ (q) =
∑

k

c†
τ,k+qcτ,k. (21)

Canonical fermionic operators c(†)
k,τ

correspond to the
τ branch. The second term of Eq. (18) cannot be directly
expressed in terms of these plasmons due to the k depen-
dence of the amplitude V (k, q) = cos(2k + q). However, for
|κ| � 1 one can assume that V (k, q) ≈ V (kF , q), since the
momentum of excitations q is close to zero for the forward
scattering, and q ∼ 2kF for the backscattering processes. One
is left with the kF dependence of the scattering amplitudes
V (q ∼ 0) = cos(2kF ) and V (q ∼ 2kF ) = cos(4kF ). This is
expected, since if the density of particles (holes) exceeds half-
filling, pair-hopping events are less probable and the effects
of the corresponding term are weak, i.e., the largest contri-
bution is expected at half-filling. Within this approximation
one can rewrite the second term of Eq. (18) in terms of the
plasmonic excitations and fully bosonize the fermionic theory,
since [ρ̂τ (−q), ρ̂τ ′ (q′)] = Lqτ

2π
δτ,τ ′δq,q′ . The second term of the

Hamiltonian in terms of density plasmons can be expressed as

Hint = Hg4 + Hg2 , (22)

where

Hg4 = 1

2L

∑
q∼0

g4(ρ̂R,−qρ̂R,q + ρ̂L,−qρ̂L,q) (23)

and

Hg2 = 1

2L

∑
q∼0

g2(ρ̂R,−qρ̂L,q + ρ̂L,−qρ̂R,q ). (24)

The amplitudes g4 and g2 are given by

g4 = 8κ cos(2kF ) (25)

and

g2 = 4κ[1 − cos(2kF )]. (26)

One then follows the standard bosonization scheme [54–56]
by introducing the conjugated bosonic fields,

φ(x) = i
∑
q =0

sgn(x)√
2|q|L

(
b†

qe−iqx − bqeiqx
)
, (27)

and

θ (x) = −i
∑
q =0

1√
2|q|L

(
b†

qe−iqx − bqeiqx
)
, (28)

with [φ(x), ∂x′θ (x′)] = iδ(x − x′). As a result, the (1 + 1) di-
mensional sine-Gordon model is obtained,

H = vs

2

∫ (
1

K
(∂xφ)2 + K (∂xθ )2

)
+ gcos(βsφ), (29)

where βs = √
16π , and vs is the excitation (sound) velocity.

The cosine term originates from the 4kF umklapp scattering,
since we consider the half-filled sector of the Hilbert space.
General expressions for the TLL parameter K (κ, kF ) and the
excitation velocity vs(κ, kF ) have the following forms:

K (κ, kF ) =
√

2π + 4κ[3 cos(2kF ) − 1]

2π + 4κ[cos(2kF ) + 1]
(30)

and

vs(κ, kF ) = vF

√(
1 + 4κ cos(2kF )

π

)2

−
(

4κ sin(kF )

π

)2

.

(31)

At half-filling (kF = π
2 ) the expression for K and vs trans-

forms into

vs

vF
= K =

√
1 − 8κ

π
. (32)

For K < 1/2 the cosine term in Eq. (29) becomes relevant
in the renormalization group (RG) sense and opens a gap in
the spectrum via the Berezinskii-Kosterlitz-Thouless (BKT)
transition. From Eq. (32) we find the critical value κc = 3π

32 ≈
0.295. Recently, using DMRG the critical κc = 0.3256(2) was
obtained [47], which is in good agreement with the bosoniza-
tion result.

The expression for the Drude weight can be obtained di-
rectly using Eq. (32):

D = vsK

π
= D0 + g4 − g2

2π2
= vF

(
1

π
− 8κ

π2

)
. (33)
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Such a linear renormalization of the Drude weight is one
of the main results of this work. It is a consequence of the
broken Galilean invariance of the model. On the constructive
bosonization level, the latter is manifested as g4 = g2.

Field-theoretical bosonization. An alternative way of ex-
plaining the previous facts is to use the field-theoretical
bosonization (see Appendixes A and B for details). In the
field-theoretical bosonization, one starts with the fermionic
field expression for the hopping term:

Hint = − J2

∑
n

c†
n+1 : c†

ncn : cn−1 + H.c.

→ − J2a
∫

dx ψ†(x + a) : ψ†(x)ψ (x) : ψ (x − a)

+ H.c., (34)

where a is the lattice constant and :: denotes normal order-
ing of the fields. Decomposing the fermionic fields into the
right and left moving fields, using bosonization identity, and
neglecting oscillating terms one can obtain

Hint = −4 aJ2

π

∫
dx(∂xθ )2 −

∫
dx

aJ2

(πα)2
cos (

√
16πφ).

(35)

While the second (Umklapp) term does depend on φ(x) field,
one clearly notices that the first term depends on θ (x) field
also. This breaks the commutation relation [n̂, Hint] = 0, and
hence the Drude weight also gets strongly renormalized. This
fact accomplishes the previous conclusion of the strong Drude
renormalization obtained within the constructive bosonization
procedure. In the following sections we check these findings
numerically.

V. NUMERICAL RESULTS: CRITICAL PROPERTIES

It is important to check the validity of Eq. (32) by means of
numerical DMRG method. In this section we present details of
our numerical calculations and show our results for the sound
velocity and the TLL parameter K . For numerical convenience
we considered the model in its spin-1/2 representation (6).
We used the variational single-site DMRG algorithm to obtain
an accurate matrix product state representation of the ground
state in the half-filled sector of the Hilbert space from a
given product state. We performed a large number of sweeps
and gradually increased bond dimensions up to χ ≈ 1000 for
the largest considered system sizes. These steps guarantee
the convergence to the ground state during the RG procedure.
The largest truncation errors in the last sweepings were of the
order of ε ∼ 10−10.

Sound velocity vs. Following the standard level spec-
troscopy methods of conformal field theories [58,59], the
excitation velocity vs of the single-component TLL can be ex-
tracted from the finite-size scaling of the ground-state energy
density (using periodic boundary conditions):

εGS (L) = ε0 + πvsc

6L2
+ · · · , (36)

where ε0 is the thermodynamic value of the ground-state en-
ergy density and c is the central charge (c = 1 within the TLL
phase of our model, see Ref. [47] for details). The sufficient

number of system sizes considered in our calculations allows
us to safely perform the following fit:

εGS (L) = a0 + a1

L2
+ a2

La3
. (37)

An example of the fitting result at κ = −1 is shown in the
inset of Fig. 2. The extracted values of the excitation velocities
as functions of κ are also presented in Fig. 2 (blue circles).
The fitting procedure correctly results in vs = vF at κ = 0.
For κ < 0 the energetically favored pair-hopping events lead
to the increased values of vs, reaching vs/vF ≈ 2.5 at κ = −1.
At positive values of κ , one has dominant density-wave cor-
relations in the bulk of the system and one has vs/vF < 1. It
is important to emphasize that although there are large dis-
crepancies between the numerical DMRG and bosonization
result (solid line) at large κ , for |κ| < 0.2 the bosonization
result nicely overlaps with the numerical data. This is ex-
pected, since the bosonization of the model was performed for
κ � 1, and at large values of |κ| one has large contributions
of irrelevant terms to vs (and also to K).

TLL parameter K. The TLL parameter K was shown to
be an efficient probe to capture quantum critical points in
low-dimensional quantum systems [60–62]. It can be related
to the magnetization fluctuation of a subsystem A with length
l , FL(l ) = 〈(∑i Sz

i − ∑
i S̄z

i )2〉, where i belongs to the sub-
system A with the average magnetization

∑
i S̄z

i , and the
fluctuation behaves as [63]

FL(l ) = K

π2
ln

[
L

π
sin

(
π l

L

)]
− (−1)l b0[

L
π

sin
(

π l
L

)]2K + b1, (38)

where b0 and b1 are nonuniversal constants. From the bipartite
fluctuations FL(l ) one obtains the following expression for
K [60]:

K (L) = π2
[
FL

(
L
2 − 2

) − FL
(

L
2

)]
ln

[
cos

(
2π
L

)] . (39)

In the derivation of Eq. (39) we took into account the fact
that for κ > 0 the O(L−2K ) correction given by the second
term in Eq. (38) oscillates on alternating sites. Thus, FL( L

2 )
and F ( L

2 − 2) are a more relevant choice. The reason for
using this formula is to obtain an accurate estimation of the
TLL parameter K within the parameter space −1 < κ � 0.33.
The results of our calculations for the TLL parameter K are
presented in Fig. 2 (red squares). Remarkably, the analytical
result of bosonization (solid line) and DMRG results (red
squares for L = 128, |K (L = 128) − K (L = 96)| ∼ 10−4) are
in agreement in the parameter range |κ| < 0.25. For larger
values of |κ| the discrepancy between the two is large and
grows with κ , which arises due to irrelevant terms excluded
from our bosonization analysis.

VI. NUMERICAL RESULTS: THE DRUDE WEIGHT

The results presented in the previous section agree with
the bosonization results for vs and K at |κ| < 0.25. In this
section we show our numerical results for the Drude weight
obtained for different regimes. We first demonstrate the results
for the Drude weight as a function of κ . Although one can
obtain D = vsK

π
directly from the results of the previous cal-

culations of vs and K , to affirm the results of the calculations
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we estimated the Drude weight D using the finite-difference
equation, Eq. (2). Details of similar calculations are given in
Ref. [31]. The results are in agreement with D = vsK

π
and are

shown in Fig. 3(a) for the system sizes L = {32, 48, 64, 96}
(symbols). The dashed line represents the bosonization result.
In accordance with the bosonization result, which predicts the
linear change with κ (with the slope − 8vF

π2 ), the Drude weight
varies linearly with κ at |κ| � 1. At large values of κ the
discrepancy becomes larger and the Drude weight is larger
than the values predicted from the bosonization. It is important
to note that |D(L = 96) − D(L = 64)| ∼ 10−4 for −1 < κ <

0.3, and hence we accept D(L = 96) as the thermodynamic
value of D. As shown in Fig. 3(b), only in the vicinity
of the transition point κc = 0.3256(2) (vertical dashed line)
does the Drude weight noticeably decrease with the system
size. In the thermodynamic limit D = 0 for κ > κc, since one
enters the gapped insulating phase, the Drude weight should
vanish within this phase.

We now demonstrate interesting effects which cannot
be captured within the bosonization analysis and are only
identified numerically. As it was mentioned in Sec. III,
density-density interactions do not lead to strong renormal-
ization of the Drude weight. If one considers κ = 0 and
introduces the nearest-neighbor density-density interactions
V n̂in̂i+1, then one obtains the fermionic model dual to the
1D XXZ model discussed in Sec. III. The Drude weight in
this case can be calculated exactly and decreases from the
noninteracting value D = vF

π
for both attractive and repulsive

regimes, as shown in Fig. 3(c). At finite κ an interesting effect
is numerically observed. The Drude weight at a given κ > 0
(κ < 0) can be further enhanced, when the density-density
interaction is repulsive (attractive), as shown in Figs. 4 and 5.
It first increases with the amplitude of interactions |V | tak-
ing a maximum value and then it decreases, since large |V |
causes phase transition to the gapped phase. If one considers
negative κ , where the pair-hopping events are energetically fa-
vored, attractive density-density interactions further enhance
the Drude weight, as shown in Fig. 4 at κ = −0.8 and κ =
−1. In both cases the maximum D are reached at V/J1 ∼ −1.
Interestingly, the larger the value of |κ|, the stronger is the
effect, although in total the effect causes only ∼3% increase of
the Drude weight. The effect in this regime can be explained
as follows. For κ < 0 the pair-hopping events are dominating,
which results in a larger mobility of particles and in an in-
crease of the Drude weight. Single-particle hoppings, in turn,
occasionally destroy hopping pairs. Thus if one bounds pairs
by the attractive density-density interactions, pairs hop more
steadily and hence the Drude weight increases. On the other
hand, strong attractive interactions reduce the mobility of the
particles (the excitation velocity vs decreases with |V |), even-
tually causing phase separation at large V/J1 ∼ −2, where
vs = 0 [see Fig. 4(c)]. To support this qualitative picture
we decomposed the Drude weight D(V ) = D1(V ) + D2(V ),
where the first term corresponds to the Drude weight ob-
tained from the single-particle current I1, whereas the second
term corresponds to the Drude weight obtained from the pair
current I2:

Di = − dIi

d�
, (40)

FIG. 4. DMRG results for the Drude weight D as a function of
the nearest-neighbor attraction amplitude V at fixed κ = −0.8 (top
left panel) and κ = −1 (top right panel) for various system sizes L =
{32, 48, 64, 96}. In (c) the same data in (a) and (b) for L = 96 are
represented to show the phase separation region. Phase separation
occurs in the vicinity of V ≈ −2 and V ≈ −2.25 for κ = −0.8 and
κ = −1, respectively. Arrows show the phase separation points.

where i ∈ {1, 2}. The corresponding plots are presented in
Figs. 6(a) and 6(b) (left panel). The single-particle component
of the Drude weight D1(V ) decreases with the amplitude of
the attractive interaction, whereas the second term exhibits a
pronounced peak. These two plots demonstrate that it is only
the pair current which is responsible for the nonmonotonic
behavior observed in Fig. 4. This also supports our qualitative
arguments discussed above.

The same effect is observed for positive κ > 0, as shown
in Fig. 5 at κ = 0.1 and κ = 0.25. In the regime with κ >

0 (frustrated regime), the single-particle fermionic hopping
along the first leg of the ladder pins the electronic density
on the other leg, resulting in the decrease of total particle
mobility. Weak repulsive density-density interactions weaken
localization effects, which results in a slight increase of the
Drude weight, as shown in Fig. 5. As in the previous case,
large repulsive interactions result in the phase transition to
the charge-density-wave insulating phase. Both positive κ > 0
and V > 0 reduce the TLL parameter K until it becomes
K = 1/2 and a gap opens in the single-particle spectrum.
An alternative explanation can be given by decomposing the
total Drude weight as in the previous regime. The results are
demonstrated in Figs. 6(c) and 6(d). The persistent currents
along the legs of the zigzag ladder and along the diagonal
have opposite directions. This results in the opposite signs of
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FIG. 5. DMRG results for the normalized Drude weight D as a
function of the nearest-neighbor repulsion amplitude V at fixed κ =
0.1 (left panel) and κ = 0.25 (right panel) for various system sizes
L. Data are shown for L = 32 (black circles), L = 48 (red squares),
L = 64 (blue diamonds), and L = 96 (magenta triangles).

the decomposed Drude weights D1 and D2. The Drude weight
D1 (with negative sign) linearly decreases with the amplitude
of moderate repulsive interactions (V < 0.75) between the
neighboring sites for both values of κ > 0, as expected. On
the contrary, the Drude weight D2 weakly depends on the
amplitude of the moderate repulsive interactions (V < 0.75).
As a result, one has pronounced peak values in Fig. 5.

VII. CONCLUSIONS

To summarize, by means of the bosonization and DMRG
methods, we studied effects of the interplay between the
pair hoppings and density-density interactions on the Drude
weight in a 1D system of spinless fermions. We first con-
sidered the effects of pair hopping on the Drude weight and

FIG. 6. DMRG results at fixed L = 96 for the decomposed
Drude weights (D1 and D2) for the different regimes. The results
for κ < 0 and attractive density-density interactions are given on the
left panel (a)-(b). For the other regime the plots are given on the right
panel (c)-(d).

found that it changes monotonically when the pair-hopping
amplitude is varied. In the regime of strong pair hopping, the
Drude weight can be strongly enhanced (almost by an order
of magnitude) and hence the induced persistent currents can
have large amplitudes. We also numerically demonstrated that
density-density interactions can further enhance the Drude
weight in the presence of the pair-hopping term. This is in
sharp contrast to the interaction effect by itself, which is
always restricted to a reduction of the Drude weight. These
findings can be tested using the platforms suggested in the
recent proposals [41,42].
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APPENDIX A: FIELD-THEORETIC BOSONIZATION

In order to obtain an effective bosonic field theory of a
given fermionic model we consider the following continuous
limit:

c j −→ √
a ψ (x), x = ja, (A1)

where the lattice spacing a → 0 and the Brillouin zone is
(−π

a , π
a ] → (−∞,∞). The fermionic field operator is related

to the long-wavelength part of the original fermions.
In one dimension the Fermi sphere is reduced to Fermi

points. In the low-energy limit we can linearize the spectrum
around the Fermi points and define the right and left movers:

εR(L)(k) = ±vF (k ∓ kF ) + EF . (A2)

In order to get the low-energy effective model we expand the
fermionic fields around the Fermi points,

ψ (x) ≈ eikF xψR(x) + e−ikF xψL(x), (A3)

where the right and left fields are given by

ψR,L(x) ≡ 1√
L

∑
k

e±ikxcR,L
k , cR,L

k ≡ c±(k+kF ). (A4)

For each species of fermions we define the bosonic operators:

bR,L
q ≡

√
2π

Lq
ρR,L(−q), bR,L†

q ≡
√

2π

Lq
ρR,L (q), q > 0,

(A5)

which obey the usual bosonic commutation relations. We de-
fine the bosonic field operators by

ϕR,L(x) = ± i√
2L

∑
q>0

e±iqx

√
q

e−αq/2bR,L
q ,

φR,L(x) = ϕR,L(x) + ϕ
†
R,L(x), (A6)

where α is a large momentum cutoff. In the limit of α → 0
and L � 1 (which we will imply below), boson fields obey
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the following commutation relations:

[φR,L(x), φR,L(y)] = ± i

4
sgn(x − y). (A7)

One can show now that the density of particles can be
rewritten in terms of boson field as follows:

ρR,L(x) =: ψ
†
R,L(x)ψR,L(x) : = − 1√

π
∂xφR,L(x). (A8)

The bosonization identity reads as

ψR,L (x) = F̂R,L√
L

: e∓i
√

4πφR,L (x) : = F̂R,L√
2πα

e∓i
√

4πφR,L (x), (A9)

where the Klein factors, F̂R,L , guarantee anticommutation
relations for fermions and they commute with the bosonic
operators.

Let us define the bosonic field, which is expressed as a
sum of the left- and right-moving fields and its dual field, as
follows:

φ(x) = φR(x) + φL(x), θ (x) = φR(x) − φL(x). (A10)

The field ∂xθ (x) is a canonical momentum field conjugate
to φ(x):

[φ(x), ∂yθ (y)] = iδ(x − y). (A11)

The free fermionic part of the Hamiltonian is bosonized as
follows:

H0 = − J1

2

N∑
j=1

(
c†

j c j+1 + c†
j+1c j

)

−→ − J1

2

∫
dx[ψ†

R(x)ψR(x + a)eikF a

+ ψ
†
L (x)ψL(x + a)e−ikF a + H.c.], (A12)

where in the last equation we neglect oscillating terms. Using
the bosonization identity we get the free boson Hamiltonian:

H0 = v0

2

∫
dx [: (∂xθ )2 + (∂xφ)2 :], (A13)

where v0 = J1a.
In the presence of density-density interactions, one-

dimensional critical fermionic theories are mapped by the
bosonization procedure onto a Luttinger liquid Hamiltonian:

H =
∫

dx
vs

2

[
K (�(x))2 + 1

K
[∂xφ(x)]2

]
, (A14)

where �(x) = ∂xθ (x) is a conjugate momentum.
Notice that vs has the dimension of velocity and is a

renormalized Fermi velocity of the interacting system. The
parameter K is dimensionless Luttinger parameter: K = 1 cor-
responds to free fermions, whereas K > 1 encodes attractive
fermions and 0 < K < 1 repulsive fermions.

APPENDIX B: BOSONIZATION OF THE J1 − J2 MODEL

The pair-hopping term in the Hamiltonian of the zigzag model is given by

Hint = −J2

∑
n

c†
n+1 : c†

ncn : cn−1 + H.c. → −J2a
∫

dx ψ†(x + a) : ψ†(x)ψ (x) : ψ (x − a) + H.c. (B1)

Decomposing the fermionic fields to the right- and left-moving fields, we can rewrite the Hamiltonian in the following way:

Hint = −J2a
∫

dx

⎡
⎣ ∑

s=R,L

ψ†
s (x + a)

∑
ν=R,L

: ψ†
ν (x)ψν (x) : ψs(x − a)e−2ikF as

−
∑

s=R,L

ψ†
s (x + a)ψs(x)ψ†

−s(x)ψ−s(x − a) +
∑

s=R,L

ψ†
s (x + a)ψ−s(x − a)ψ†

s (x)ψ−s(x)

⎤
⎦ + H.c. (B2)

By exploiting the bosonization identity and neglecting oscillating terms, one obtains [52]

Hint = −4 aJ2

π

∫
dx : (∂xθ )2 : −

∫
dx

aJ2

(πα)2
cos (

√
16πφ). (B3)

Thus, the full Hamiltonian of the J1 − J2 model reads

H = v0

2

∫
dx

[
: (∂xφ)2 : +

(
1 − 8J2

πJ1

)
: (∂xθ )2 :

]
− 2g

(2πα)2

∫
dx cos (

√
16πφ). (B4)

Comparing Eq. (B4) with the Luttinger liquid Hamiltonian (A14), we obtain

K =
√

1 − 8κ

π
u = v0

√
1 − 8κ

π
. (B5)

The last term in Eq. (B4) is the umklapp scattering term with g = 2aJ2.
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