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Fermionic sign problem minimization by constant path integral contour shifts
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The path integral formulation of quantum mechanical problems including fermions is often affected by a
severe numerical sign problem. We show how such a sign problem can be alleviated by a judiciously chosen
constant imaginary offset to the path integral. Such integration contour deformations introduce no additional
computational cost to the Hamiltonian Monte Carlo algorithm, while its effective sample size is greatly increased.
This makes otherwise unviable simulations efficient for a wide range of parameters. Applying our method to the
Hubbard model, we find that the sign problem is significantly reduced. Furthermore, we prove that it vanishes
completely for large chemical potentials, a regime where the sign problem is expected to be particularly severe
without imaginary offsets. In addition to a numerical analysis of such optimized contour shifts, we analytically
compute the shifts corresponding to the leading and next-to-leading order corrections to the action. We find
that such simple approximations, free of significant computational cost, suffice in many cases. We present a
simulation of C60 fullerenes (buckyballs) that are successful over a wide parameter range.
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I. INTRODUCTION

The numerical sign problem is a major hindrance for the
application of stochastic methods to certain physical systems,
such as quantum chromodynamics (QCD) at finite baryon
density or electronically doped systems in strongly correlated
condensed matter. The problem refers to the extreme cost
of numerically approximating integrals arising with a highly
oscillatory integrand, such as path integrals with complex-
valued actions. Because partition functions are exponential in
the action, the numerical costs typically scale exponentially in
the spacetime volume [1], pushing many physically interest-
ing systems beyond the reach of numerical investigation.

Methods that reduce the sign problem allow us to use our
limited resources more efficiently and thus extend the range of
systems we can investigate. In cases when the offending term
in the Hamiltonian that induces the complex phase is small,
one can rely on simple reweighting. For small systems or
ground-state properties, one can forgo stochastic simulations
and instead use direct methods, such as tensor networks [2].
The complex Langevin method is another popular method to
fight the sign problem, but a lot of technology is required to
guarantee it converges to the right distribution [3,4]. Each of
these methods have their own limitations, by no means fully
solving the sign problem.

Here, we focus on contour deformation to alleviate the
sign problem. One transforms the integration domain of the
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path integral into a more favorable manifold in the high-
dimensional complex space where the sign oscillations are
reduced [4–15]. Such deformations are formally allowed if
one does not cross any singularities of the integrand and
one preserves the homology class of the integral. There exist
manifolds, so-called Lefschetz thimbles, where the complex
phase remains fixed. In theories where one thimble dominates,
the sign problem is solved since the constant complex phase
on the thimble can be factored outside of the path integral.
Even when multiple thimbles contribute, each with a different
but constant phase, the sign problem is not eliminated, but
is expected to be improved. While the locations of these
thimbles are not known a priori, they can be found by integrat-
ing holomorphic flow equations. Unfortunately, the numerical
determination of the complete set of contributing thimbles is
quite costly: Mapping out their full constellation is just as
difficult as the original sign problem.

As the goal in this paper is to alleviate the sign problem
(as opposed to eliminating it), a natural question arises: Given
finite computational resources, which contour deformations
are most efficient for the problem at hand at alleviating the
sign problem sufficiently, meaning that observables can be
extracted in a statistically meaningful and reliable manner?
In previous studies of the Hubbard model [13,16], we trained
neural networks (NNs) on flowed configurations to parame-
terize an integration manifold called a learnifold [11,17]. This
deformation worked very well at alleviating the sign problem
for various doped Hubbard systems. We provided physical
results of a doped Hubbard model for carbon nanosystems
up to 18 ion sites [13]. However, this method still comes at

2469-9950/2024/109(19)/195158(19) 195158-1 ©2024 American Physical Society

https://orcid.org/0000-0003-1318-5289
https://orcid.org/0000-0003-1082-1374
https://orcid.org/0000-0002-1119-8978
https://orcid.org/0000-0001-7641-8030
https://orcid.org/0000-0002-7313-4750
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.195158&domain=pdf&date_stamp=2024-05-20
https://doi.org/10.1103/PhysRevB.109.195158


CHRISTOPH GÄNTGEN et al. PHYSICAL REVIEW B 109, 195158 (2024)

the cost of generating flowed training data and training a NN.
Here, we study the simplest imaginable deformation: shifting
the integration manifold by a global imaginary constant offset.
We find that optimizing the offset substantially reduces the
computational demands and often yields a contour deforma-
tion of equal potency.

A constant offset induces no Jacobian, keeping the method
simple. Further, a constant offset does not require modifi-
cation of the Monte Carlo algorithm, nor does it require
generation of training data and training of NNs. In Ref. [17],
for example, it was shown for the Thirring model that a cal-
culation on the tangent plane, a constant offset that intersects
the classical saddle point of the main Lefschetz thimble, is
sufficient at alleviating the sign problem. We have also used
this deformation as a comparison with our NNs in previous
publications [13,16]. For the Hubbard model, however, we
find that, for certain values of the chemical potential, the tan-
gent plane does not meaningfully alleviate the sign problem.
We will show how to incorporate quantum corrections to the
saddle point, thereby obtaining a better constant shift that
corresponds to the effective action obtained by inclusion of
one-particle irreducible (1PI) terms. Even then, there are cases
where we resort to numerical optimization of the imaginary
offset.

In condensed matter physics, the choice of basis and
discretization will impact the sign problem. We study the
fermionic Hubbard model in the particle-hole basis with ex-
ponential discretization of the fermion matrix and continuous
auxiliary fields. Well-known alternatives are the spin basis and
a hybrid of spin and particle-hole bases as well as discrete
Hubbard fields [18]. Especially the latter typically have a rela-
tively mild sign problem, but they also suffer from unfavorable
volume scaling of the computational cost. Furthermore, there
is a multitude of available methods to choose from. Prominent
examples are exact diagonalization, density functional theory
(DFT), and various forms of Monte Carlo, such as projection
or grand canonical Monte Carlo. All of those formulations
of the Hubbard model and methods have their individual
strengths and weaknesses. Which one is best is an open and
debated question but certainly depends on the use case. We
chose the grand canonical Hamiltonian Monte Carlo (HMC)
for its promising volume scaling properties, although it might
not be the best choice for the given systems. We strongly be-
lieve that other models and alternative Monte Carlo methods
could benefit from contour deformations as well and hope that
our results motivate further research and application.

As opposed to the systems investigated in our earlier work
[13], here, we also consider systems that are nonbipartite, such
as the fullerenes C20 and C60.

In the following section, we provide the formal aspects
of our method, providing derivations for the location of the
classical and quantum-corrected saddle points that we use to
determine our constant offsets. In Sec. III, we continue with
the description of our method for numerically determining
the optimized plane. We then demonstrate the efficacy of our
methods by providing numerical results of various Hubbard
systems in Sec. IV. We recapitulate in Sec. V. To keep the
presentation reasonable, we place formal (and tedious) deriva-
tions in the Appendixes.

II. FORMALISM

A. The Hubbard model

The Hubbard model describes the interacting behavior of
particles on a lattice. In our case, these are electrons on a
lattice of ions. It consists of a tight-binding term and an
on-site interaction representing electron-electron repulsion. It
considers external influences on the overall particle number,
like doping or an applied voltage, via a chemical poten-
tial μ [19–25]. We formulate our theory in the particle-hole
basis [26]:

H = −κ
∑
〈x,y〉

(a†
xay − b†

xby) + U

2

∑
x

q2
x − μ

∑
x

qx,

(1)
qx = a†

xax − b†
xbx,

where κ is the hopping parameter of neighboring lattice sites,
U provides the strength of interaction of two electrons sharing
one lattice site, and q is the local charge operator relative
to half filling. Alternatively, the sum over neighboring sites
can be represented with the hopping matrix K , which is κ

times the adjacency matrix of the lattice. This option also
allows for individual hopping parameters. The sum in x is
over all Nx sites. The a (a†) operator implements particle
destruction (creation), and a†a counts particles. Similarly, the
b (b†) operators destroy (create) holes, and b†b counts them.

B. Finite lattices considered in this paper

As we explain below, stochastic simulations of the Hub-
bard model suffer from the sign problem when the geometry
of the system is nonbipartite and/or a nonzero chemical po-
tential is present. A lattice is bipartite when its sites can be
divided into two groups, such that each site has only neigh-
bors of the other group. Another way to think of it is that
each closed path must traverse an even number of links. In
this paper, we will investigate both cases, with the 8 and
18 site honeycomb lattices as bipartite examples and the C20

and C60 fullerenes as nonbipartite examples. The 8 and 18
site honeycomb lattices consist of 2×2 and 3×3 unit cells,
respectively, and in this paper are assumed to have periodic
boundary conditions. Here, C20 is a dodecahedron with 12
equal pentagons, and C60 is a truncated icosahedron with 12
pentagons and 20 hexagons. The four lattice structures are
visualized in Fig. 1. All of the lattices we consider are site
transitive, meaning that symmetries of the lattice can map any
site to any other site, an analog to translation invariance.

C. The path-integral formulation of the Hubbard model

The expectation value of any quantum mechanical operator
Ô can be calculated within the path integral formalism:

〈Ô〉 = 1

Z

∫
Dφ Ô[φ]e−S[φ], (2)

where the partition function is

Z =
∫

Dφ e−S[φ], (3)
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FIG. 1. Spatial lattices considered in this paper.

and Dφ = limNt →∞
∏Nx

x

∏Nt
t dφx,t , and S[φ] is the action that

defines the system. It is common practice to estimate the
expectation values in Eq. (2) with importance sampling:

∫
Dφ Ô[φ]P[φ] = lim

N→∞
1

N

N∑
i

Ô[φi], φi ∼ P[φi], (4)

drawing configurations φ from the probability distribution P
by Markov chain Monte Carlo (MCMC) methods such as
HMC (or Hamiltonian Monte Carlo) [27]. For purely real
actions, it is straightforward to choose P[φ] = e−S[φ]/Z . For
generally complex actions S[φ] = SR[φ] + iSI [φ], however,
one typically separates the complex phase and absorbs it into
the definition of the observable:

〈Ô〉 = 〈Ô exp(−iSI )〉R

〈exp(−iSI )〉R
, (5)

where the subscript R indicates sampling according to the
probability defined by the real part of the action P[φ] =
exp(−SR[φ])/ZR. This process is called reweighting, and it
exactly produces the correct expectation values in Eq. (2) in
the limit of infinite statistics.

However, for finite statistics, the oscillating phase in the
denominator of the reweighting in Eq. (5), known as the
average phase:

〈exp(−iSI )〉R =
∫
Dφ exp(−iSI [φ]) exp(−SR[φ])∫

Dφ exp(−SR[φ])

= Z
ZR

, (6)

can be hard to numerically estimate. Stronger oscillation and
its attendant cancellations become more severe for larger sys-
tem sizes and some parameters. We call the absolute value of
the average phase:

� = |〈exp(−iSI )〉R| =
∣∣∣∣ ZZR

∣∣∣∣, (7)

the statistical power, and we use it to quantify the sign
problem. When the statistical power is 1, the path integral is
sign-problem free; a value of 0 indicates the worst possible
sign problem. While in a problem-free case the stochas-
tic uncertainties of expectation values from an ensemble of
Ncfg generated configurations scale with N−1/2

cfg , with a sign

problem, the statistical power effectively reduces the contri-
bution of each configuration: The error scales with the square
root of the effective number of samples [4]:

Neff = �2 × Ncfg. (8)

Trotterizing the thermal partition function tr(e−βH ), lin-
earizing the interaction with a Hubbard-Stratonovich transfor-
mation with an integral over auxiliary fields φ, and inserting
resolutions of the identity in terms of Grassmann coherent
states yields an action:

S[φ, K̃, μ̃] = 1

2Ũ

∑
t,x

φ2
x,t − ln det(M[+φ,+K̃,+μ̃])

− ln det(M[−φ,−K̃,−μ̃]), (9)

where the dimensionless parameters Ũ = U × δ, κ̃ = κδ, etc.,
are rescaled by the temporal lattice spacing δ = β/Nt . The
fermion matrices M encode the particle and hole fermion
loops exactly. There are a variety discretizations of the
fermion matrix that become exact and equal in the continuum
limit [9,26,28]. We use the exponential discretization in the
language of Ref. [9]:

Mx′t ′,xt [±φ,±K,±μ]

≡ Mx′t ′,xt [±; φ]

= δx′,xδt ′,t − [exp(±K̃ )]x′,x exp[±(−iφx,t + μ̃)]Bt ′δt ′,t+1,

(10)

where BNt −1 carries an extra −1 encoding the fermionic tem-
poral antiperiodic boundary conditions. We do not consider
other discretizations in this paper. We note, however, that
when μ 	= 0, this discretization does not suffer from ergod-
icity issues described in Refs. [9,28].

We now consider deforming our original integral by com-
plexifying the auxiliary field φ and deforming the integration
manifold. Cauchy’s theorem guarantees that this deformation
leaves all holomorphic observables the same if the defor-
mation does not cross any singularities and the deformation
preserves the homology class. The statistical power depends
on the imaginary part of the action weighted by its real part
and thus is not holomorphic, so it is manifold dependent.
Some manifolds may tame the oscillations, especially when
they resemble Lefschetz thimbles, high-dimensional analogs
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FIG. 2. Tangent plane of 18-site honeycomb lattice. The vertical lines mark transitions where the argument of a tanh that determines the
tangent plane in Eq. (14) switches its sign. At the beginning of a downwards slope in β → ∞, the sign switches from −1 to 0 and, at the end,
from 0 to +1.

of contours of steepest descent [11,18]. We have previously
trained NNs to learn the results of the holomorphic flow in
a computationally tractable way [13,16]. An even simpler de-
formation, that of a constant imaginary shift in all components
of φ, can lead to significant alleviation of the sign problem
while incurring no additional costs to the HMC algorithm
[29]. Reference [11] showed that a constant shift that inter-
sected the saddle point of the main thimble, producing the
so-called tangent plane, sufficiently reduced the sign problem
in simulations of the Thirring model. We now consider the
same constant shift to the tangent plane of the Hubbard model.

D. The tangent plane of the Hubbard model

The holomorphic flow of a configuration φ is its image
under evolution in a fictitous time t by

dφ

dt
= (∂φS)∗. (11)

The saddle point that fixes the tangent plane is found by
flowing the φ = 0 translationally invariant configuration to
its fixed point. Because it is a fixed point, the time derivative
vanishes, and the saddle point φc satisfies

∂φS[φ] φ=φc = 0. (12)

In the graphene case, this saddle point has the greatest weight
[31] on the semimetal side of the quantum critical point at
U � 3.8 [32–38]. The saddle point φc has a zero real part and,
because the lattices we consider are site transitive, a constant
imaginary part which is nonzero when μ 	= 0 on bipartite
lattices and generically on nonbipartite lattices.

Leveraging the simplicity of φc = iφ0 independent of space
and time, we can calculate the action:

S[φc = iφ0]

= 1

2Ũ
NxNtφ

2
0

− ln det [1 + exp(Ntφ0 + βμ) exp(+βK )]

− ln det [1 + exp(−Ntφ0 − βμ) exp(−βK )], (13)

where we used the Schur complement to simplify the fermion
determinants and used the spatial independence of φ0 to com-
mute the auxiliary field terms past the hopping terms. Using
ln det = tr(ln), transforming into the basis where the hopping
matrix is diagonalized, and requiring φc to be a fixed point in
Eq. (12) leads to

φ0

δ
= − U

Nx

∑
k

tanh

(
β

2

[
εk + μ + φ0

δ

])
, (14)

where the sum is over the Nx modes of the hopping matrix
K with noninteracting energy eigenvalue εk; we provide a
detailed derivation in Appendix A. Writing δ = β/Nt shows
that this transcendental equation contains only temporal con-
tinuum quantities, except for the combination φ0Nt , which
will stay fixed as we go toward the time continuum limit
Nt → ∞. We see that φ0/Ũ is bounded between −1 and +1
and can cheaply determine the imaginary offset of the tangent
plane φ0 solving this equation numerically. Figure 2 shows
the behavior of the tangent plane for the 18 site honeycomb
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FIG. 3. Tangent plane offsets (normalized to Ũ ) depending on the chemical potential μ, for various systems and parameters.

problem as a function of μ for select values of U and β. For
large β, where the tanh becomes a sign function, the tangent
plane has plateaus that are connected by constant slopes. The
location of those depends on the spectrum of the hopping
matrix K ; an example is shown in Fig. 2.

1. Properties of the tangent plane in the μ = 0, β → ∞ limit

The imaginary offset vanishes φ0 = 0 so that the tangent
and real planes coincide if the noninteracting energy eigen-
values εk are symmetric about zero. This symmetry naturally
occurs for bipartite lattices, such as the honeycomb lattice,
in the absence of chemical potential μ = 0. For these cases,
φ0 = 0 for any inverse temperature β.

Moreover, in the β → ∞ limit, the tanh functions become
the sign function, and if there are equal numbers of positive
and negative noninteracting eigenvalues (not necessarily sym-
metric about zero), the sum also vanishes, and the tangent
plane again corresponds to the real plane. Both C20 and C60

have nonsymmetric spectra, but C60 enjoys equally many pos-
itive and negative noninteracting energies. In Fig. 2, we show
how finite temperature smooths the piecewise-linear β = ∞
tangent plane for the 18 site honeycomb lattice.

In Fig. 3, we compare the behavior of the tangent plane
for varying U , μ, β, and different lattices, both bipartite and
nonbipartite. The results at μ = 0 shown in this figure confirm
our statements above. For the fullerene results, which are
nonbipartite, the choice of β = 10 is large enough that the
resulting tangent plane at μ = 0 is nearly identical to the real
plane.

2. Properties of the tangent plane in the μβ → ∞ limit

Another interesting scenario is to consider the behavior
of the tangent plane in the μβ → ∞ limit. To understand
the behavior in this limit, we start again with the action in
Eq. (9). With repeated application of Schur’s complement, we
can express (see Ref. [9] for an explicit derivation)

ln det M[±] = ln det (1 + F[±]),

F[±] =
Nt −1∏
t=0

[
exp
(±K̃

)]
[exp(∓iφt )] exp(±μ̃), (15)

where the zeroth time slice is rightmost and each term in
square brackets in the product represents a space × space
matrix. Since the chemical potential term is proportional
to the identity, we can bring it out of the product, so the
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action becomes

S[φ] = φ2

2Ũ
− ln det

{
1 + exp(−μβ )

Nt −1∏
t=0

[exp(−K̃ )][exp(iφt )]

}

− ln det

{
1 + exp(+μβ )

Nt −1∏
t=0

[exp(K̃ )][exp(−iφt )]

}
. (16)

In the limit of large β but finite chemical potential, the determinant can be simplified if the chemical potential is larger than
the contribution of the exponentials containing the hopping matrix and the auxiliary field. More precisely, let μ ≡ μ0,+ + 	μ,
and define μ0,+ = U + λK

max, where λK
max is the greatest eigenvalue of K , and we provisionally used our knowledge of the

most negative imaginary offset from Eq. (14). We now proceed under the assumption that μ > μ0,+. For asymptotic chemical
potentials, this limit is naturally satisfied:

lim
	μβ→∞

S[φ] = φ2

2Ũ
− ln det (1) − ln det

{
exp(+μβ )

Nt −1∏
t=0

[exp(K̃ )][exp(−iφt )]

}
+ O[exp(−	μβ )]

= φ2

2Ũ
− Nxμβ − ln det

{
Nt −1∏
t=0

[exp(+K̃ )][exp(−iφt )]

}

= φ2

2Ũ
− Nxμβ − ln [exp(−i�) det exp(+Kβ )]

= φ2

2Ũ
− Nxμβ + i� − βtr(K ), (17)

where we define � =∑x,t φx,t since our hopping matrices
have no self hopping tr(K ) = 0. Now solving for critical
points ∂S/∂φ = 0, we find the main critical point at constant
field with φc = −iŨ . This demonstrates that the tangent plane
approaches −Ũ in the large 	μβ limit and self-consistently
fulfills our previous definition of μ0,+. Similarly, in the
	μβ → −∞ limit with μ = μ0,− + 	μ and μ0,− = −U −
λK

max, one finds

S[φ] = φ2

2Ũ
+ Nxμβ − i�, (18)

and the tangent plane approaches +Ũ . While this derivation
relies on the asymptotic limit, we also observe the sign prob-
lem start vanishing roughly around μ � μ0,+ and μ � μ0,−,
which helps us estimate the interesting, nontrivial range of
chemical potentials in advance. This behavior can be seen
in Fig. 9(a), where the extremum eigenvalues are λK = ±3,
and U is varied. These eigenvalues of the hopping matrix are
always bounded by the maximum number of nearest-neighbor
connections.

The resulting tangent plane shift in this limit has important
implications for our stochastic calculations. Simulating on the
tangent plane means using components of the field φ j that are
offset by −iŨ , i.e., φ j → φ j − iŨ ∀ j. The resulting action
under this deformation becomes

S[φ − iŨ ] = φ2

2Ũ
− NxUβ

2
+ NxUβ − Nxμβ

=
(

U

2
− μ

)
βNx + φ2

2Ũ
. (19)

This means that the action on this flat contour is purely real
in this limit. That is, the tangent plane completely solves the

sign problem in this limit. It is equivalent, up to some overall
shift in the energy, to a quenched calculation, with no fermion
matrix. Later, we show numerical results that confirm these
findings.

E. Quantum corrections to the saddle point

The saddle point that defines the tangent plane corresponds
to the critical point of the classical action. In quantum field
theory, the location of this point shifts due to the presence
of quantum fluctuations which, in our case, corresponds to
thermal fluctuations. We can estimate this shift by calculating
the quantum effective action and determining the extremum of
this action, as is done in standard textbooks on quantum field
theory (QFT). This correction to the saddle point corresponds
to the inclusion of all 1PI diagrams. Thus, it represents a
quantum (thermal) correction to the classical saddle point,
and the ensuing constant manifold that intercepts this point
is expected to reduce the sign problem. We assume that the
maximum we find, when including higher-order correction
terms, will return an offset that reduces the sign problem even
more than the basic tangent plane. To start, we assume that φc

is the saddle point in the presence of quantum fluctuations and
apply the saddle point approximation about this point. That is,
we expand the action in powers of a small perturbation η about
this point φ = φc + η. This gives

S[φc + η] = S[φc] + (η · ∇)S[φc]

+ 1
2 (η · ∇)2S[φc] + O(η3)

= S[φc] + (η · ∇)S[φc]

+ 1
2η · HS[φc] · η + O(η3). (20)
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Here, we have made use of the Hessian:(
HS[φc]

)
x′t ′,xt = (∂x′t ′∂xt S[φ])|φ=φc . (21)

Since η is assumed small, we will omit the O(η3) terms.
Furthermore, because the critical point satisfies ∇S[φ]|φc = 0,
the linear terms also vanish. Hence, the path integral simplifies
to a Gaussian integral which we can do:∫

Dφ exp(−S[φ])

≈ exp(−S[φc])
∫

Dη exp

(
−1

2
η · HS[φc] · η

)

= exp(−S[φc])
(

det HS[φc]
)−1/2

≡ exp(−Seff [φc]). (22)

This allows us to formulate an effective action:

Seff [φc] = S[φc] + 1
2 ln det HS[φc]. (23)

The extremum of this action defines our 1PI-corrected
spacetime-constant saddle point φc = iφ1. Note that, without
the Hessian term, we recover our original action, and the
extremum in this case is the saddle point of our leading-order
classical action that defines the tangent plane in Eq. (14). In
comparison, our 1PI-corrected effective action in Eq. (23) in-
cludes the quantum effects at next-to-leading order (NLO). In
Appendix B, we show how to evaluate the Hessian in Eq. (21)
when φc = iφ1 a spacetime constant.

F. Excursion to infinite lattices

In this section, we demonstrate on select lattices how
to determine the tangent plane in the infinite-volume limit.
We provide two well-known examples: the two-dimensional
square and honeycomb lattices. In the infinite volume limit,
we can access every mode in the first Brillouin zone (BZ),
and we can replace the sum over noninteracting energies in
Eq. (14) with a momentum integral. For a two-dimensional
square lattice, one has

1

Nx

∑
k

→
∫

k∈BZ

dk
(2π )2

,

where k ≡ (kx, ky) with −π � ki < π (square BZ). The non-
interacting energies are given by

ε(k) = 2[cos(kx ) + cos(ky)]. (24)

Making these substitutions to determine the tangent plane in
Eq. (14) leads to

φ0

δ
= −U

∫
k∈BZ

dk
(2π )2

tanh

{
1

2
β

[
ε(k) + μ + φ0

δ

]}
. (25)

For the infinite honeycomb lattice, the nonorthogonal lat-
tice translation vectors and the two-band structure means we
must substitute

1

Nx

∑
k

→ 3
√

3

2

∫
k∈BZ

dk
(2π )2

1

2

∑
σ=±1

,

where the factor 3
√

3
2 comes from the hexagonal geometry of

the BZ, and σ runs over the two bands. The noninteracting

energies are [39,40]

ε±(k) = ±| f (k)|,

f (k) = 1 + 2 exp

(
−3ikx

2

)
cos

(√
3ky

2

)
. (26)

Thus, we find

φ0

δ
= −U

3
√

3

2

∫
k∈BZ

dk
(2π )2

1

2

×
∑

σ=±1

tanh

{
1

2
β

[
εσ (k) + μ + φ0

δ

]}
. (27)

We solve the square-lattice [Eq. (25)] and honeycomb
[Eq. (27)] relations numerically. In Fig. 4, we show the so-
lutions of φ0 for both the square and honeycomb systems
for select values of U . We see that φ0 remains smooth as a
function of chemical potential μ, even in the limit of zero
temperature (β � 1). Also, in both cases, in the limit of
asymptotically large μ, we have φ0 → −Ũ .

III. NUMERICAL OPTIMIZATION METHOD

In many cases, both tangent plane and NLO offsets lead
to an improvement in statistical power, with NLO typically
providing modest improvement over the tangent plane (but not
in all cases). However, a simple numerical investigation shows
that one can further improve the statistical power, in most
cases, by shifting beyond the NLO result. For example, in
Fig. 5, we show the statistical power for the 8 site honeycomb
system coming from a scan of various offsets that include
the real plane, tangent plane, and the NLO offset. The scan
shows a singular peak in the statistical power. However, this
peak does not occur at either the tangent plane or the NLO
offset.

In all our investigations of different systems to date, we
find similar behavior; namely, there is a singular peak in
statistical power due to constant offset. We refer to this offset
that maximizes the statistical power as the optimized shift.

Because the greater statistical power means smaller
required samples in Eq. (8), the potential savings in com-
putational resources when simulating at the optimized shift
in comparison with either the NLO or tangent plane can be
orders of magnitude. However, determining the location of
the peak from a simple raster scan in offsets is timely and
inefficient since each point requires an HMC simulation with
sufficient statistics to resolve the statistical power. Instead,
we formulate a search algorithm like Newton-Raphson, rely-
ing on the calculation of derivatives of the statistical power
using the current HMC ensemble to make a prediction for
the location of the offset that corresponds to the peak of the
statistical power. We then iterate this procedure to converge to
the peak.

Our algorithm requires the first two derivatives of the sta-
tistical power with respect to the imaginary offset φ0 from the
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FIG. 4. The zero-temperature tangent plane φ0 (normalized to Ũ ) for the infinite two-dimensional (2D) square lattice (left) and honeycomb
lattice (right) as a function of chemical potential μ for various on-site interactions U , as labeled in the figure.

existing Markov chain configurations:

d

dφ0

〈
exp
(− iSI,φ0

)〉
R,φ0

= d

dφ0

∫
Dφ exp

(− Sφ0

)
∫
Dφ exp

(− SR,φ0

)
= 〈exp

(−iSI,φ0

)〉
R,φ0

〈
dSR,φ0

dφ0

〉
R,φ0

−
〈
exp
(−SI,φ0

)dSφ0

dφ0

〉
R,φ0

, (28)

d2

dφ0
2

〈
exp
(−iSI,φ0

)〉
R,φ0

= d

dφ0

(〈
exp
(−iSI,φ0

)〉
R,φ0

〈
dSR,φ0

dφ0

〉
R,φ0

−
〈
exp
(−SI,φ0

)dSφ0

dφ0

〉
R,φ0

)

= 〈 exp
(−iSI,φ0

)〉
R,φ0

⎛
⎝2

〈
dSR,φ0

dφ0

〉2

R,φ0

+
〈

d2SR,φ0

dφ0
2 − dSR,φ0

dφ0

2
〉

R,φ0

⎞
⎠

− 2

〈
exp
(−SI,φ0

)dSφ0

dφ0

〉
R,φ0

〈
dSR,φ0

dφ0

〉
R,φ0

−
〈

exp
(−SI,φ0

)(d2Sφ0

dφ0
− dSφ0

dφ0

2
)〉

R,φ0

. (29)

We stress that the calculations of these derivatives rely only
on a single ensemble. Reference [41] points out that these
derivatives may be simplified and estimated with reliability
even in cases with a sign problem. Practically, they enable
iterative procedures for a predicting the optimized shift. When
the second derivative is negative, we can get a good prediction
via the Newton-Raphson method:

φ0,i+1 = φ0,i −
d

dφ0

〈
exp
(−iSI,φ0

)〉
R,φ0,i

d2

dφ0
2

〈
exp
(−iSI,φ0

)〉
R,φ0,i

. (30)

When the second derivative is positive, we work with the first
derivative to approach the peak. As soon as there are points
with opposite first derivatives, their central value usually gets
us into the region where the second derivative is negative or
at least fairly close to it. Additionally, we limit the searching
region to the interval [−Ũ ,+Ũ ]. In principle, higher-order
derivatives can also be calculated and used to predict the
location of the optimized shift though the statistical errors
in these terms grow. In practice, we find that the procedure
converges quickly when starting from a region where the sign
problem is light enough to calculate at least the first derivative.
However, it can fail when this is not the case, and it gets stuck
when the statistical power is of the same order of magnitude

as its uncertainty. A more quantitative demonstration of this
method will be given in Sec. III C. A more advanced method
might fit all known measurements and derivatives to estimate
the location of the peak.

When we are only interested in separate sets of parameters,
we must rely on an analytic approximation as the starting
point. When we want to scan over one parameter sufficiently
finely, we can do so iteratively starting from the previous
offset or a rescaled version of it. In this paper, we rescaled
it with the fraction of new and previous tangent plane offsets.

Figure 6 gives a cartoon showing the different offsets
in comparison with the Lefschetz thimbles and conveys a
geometrically intuitive understanding as to why some planes
do better than others.

In Fig. 7, we show the statistical power for an interesting
range of chemical potentials and imaginary offsets. We trace
contours for the tangent plane, NLO offset, and the best off-
sets. The best-case scenario would be a cheaply determined
estimate of the optimized offset for a given μ. The statistical
powers of the real, tangent, NLO, and optimized planes are
compared as a function of μ in Fig. 8. The key takeaways are
that the tangent plane consistently and drastically outperforms
the standard algorithm at practically the same cost and that the
sign problem vanishes when the system becomes saturated.
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FIG. 5. Visualization of effect of an imaginary offset on the sign problem. This example shows the eight site honeycomb lattice with
Nt = 16, β = 8, U = 2, and μ = 1. The error bands show the bootstrap errors of the first and second derivative at the data point.

Furthermore, we see that we can reduce the sign problem
for parameters where the tangent plane is insufficient, which
is typically the case around μ, where the ground state is
frustrated and the charge undergoes rapid change. For system
sizes of interest, these differences determine whether a system
can be calculated (with reasonable resources) or not. Compar-
ing the different systems, we also see in this figure how the
sign problem becomes more severe with increasing lattice size
(note that the fullerenes are shown at a smaller β).

The sign problem also gets worse with increasing β and U
such that even the optimized plane will eventually fail at finite
μ. This simple method is not suitable to fix the sign problem
across the board; it just leads to an efficient expansion of the
calculable parameter space, which might or might not include
interesting physical phenomena but definitely enables us to
do better zero-temperature extrapolations. For stronger sign
problems, we must rely on manifolds with more parameters,
either with simple parameterizations or with NNs [13,16,17].

FIG. 6. A cartoon of the different manifolds referred to throughout this paper. The Lefschetz thimbles are drawn to resemble contours
of holomorphic flow applied to constant fields. The real plane, tangent plane, next-to-leading-order (NLO) estimate (NLO correction) and
optimized plane show the planar manifolds that we use as our integration regions. The red dot marks the main critical point.
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FIG. 7. The data points in this heat map show the statistical power of the system as indicated by the color bar at different chemical potential
μ evaluated with Hamiltonian Monte Carlo (HMC) on a plane with an imaginary offset given by the y axis. The red and purple curves show
our analytically determined offsets. The blue curve connects the offsets with the greatest statistical power at each μ. The inset plot shows a
slice of the heat map to visualize the connection to Fig. 5. The system is the eight site honeycomb lattice with Nt = 16, β = 8, and U = 2.

A. Scaling with U

In this section, we briefly present the effect of U on the
statistical power.

Figure 9(b) shows that the statistical power generally de-
clines following an exponential trend with U . However, due to
the shift of the peaks and dips to higher μ that can be observed
in Fig. 9(a), the behavior becomes nontrivial when focusing
on a fixed μ. As discussed in Sec. II D 2, the coupling constant
determines when the sign problem on the tangent plane, NLO,
and optimized plane begins to vanish.

B. Scaling with β

In this section, we briefly present the effect of β on the
statistical power.

The inverse temperature β does not shift the peaks and dips
in μ, which makes it the preferable parameter for adjusting
the sign problem in a system. The statistical power is known
to decrease asymptotically exponentially, and more detailed
studies are readily available in the literature, for instance, in
Ref. [16]. We reproduce this behavior in Fig. 10.

C. Benchmarks

In this section, we demonstrate the convergence of our
numerical optimization algorithm and present the resulting
increase of the statistical power. The examples refer to the
8 site honeycomb lattice with Nt = 16, β = 8, and U = 2.

Figure 11 showcases the convergence with iterations from
different starting points. While they would all converge to
the same offsets eventually, we observe that starting in a
region with an unclear first derivative that is dominated by
statistical noise turns the algorithm into a random walk, which
can be observed in the real plane example. This further
highlights the importance of having good analytic starting
points.

Figure 12 shows the significant improvements in statistical
power that can be achieved by just a few iterations. We ob-
serve in both figures that most runs starting from a reasonable
guess converge and roughly agree with each other after just
three iterations. Here, the improvements from tangent plane
to leading-order correction to iterative starting points can be
best observed by comparing the second iterations with each
other and in comparison with the converged result.

IV. RESULTS

In this section, we provide physical observables deter-
mined by HMC with the introduced modifications. The
observables of our choice are the single-particle correlation
functions:

Ck (τ ) = 〈ak (τ )a†
k (0)〉, (31)

where a and a† are particle ladder operators, and k labels
operators in definite irreducible representations of the lattice
automorphism group. In the honeycomb case, k labels op-
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FIG. 8. Comparing statistical power of the real plane, tangent plane, NLO correction, and optimized shift as a function of μ. All systems
have Nt = 16 and U = 2. In (a), the vertical lines mark where the exactly determined ground state changes to another charge sector, i.e., the
charge expectation value changes in the zero-temperature limit.

erators with definite momentum; for the fullerenes, k labels
representations of the icosahedral symmetry group. The cor-
relation functions depend on the energies of the system and
encode information about the entire spectrum. For large β,
the energies of low-lying states relative to the ground state
can be extracted by fitting exponentials to these correlators.
For the purpose of this paper, however, it is sufficient to show

that the results of our method agree with the exact correlation
functions to verify the correctness of our simulations.

Additionally, we sum the local charges in Eq. (1) to mea-
sure the global charge:

〈Q〉 =
〈∑

x

qx

〉
= Nx − 2

∑
k

Ck (τ = 0). (32)

FIG. 9. The effect of the coupling constant U on the statistical power. The system is a four site hexagonal lattice with Nt = 16 and β = 8.
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FIG. 10. The effect of inverse temperature β on the statistical power. The system is a four site hexagonal lattice with Nt = 16 and U = 3.

To establish trust in the physical correctness of the algorithm,
we compare with the 8 site honeycomb lattice for which we
have exact results from direct diagonalization. We find that
the uncertainties of the standard real plane HMC are much
greater than the uncertainties of our more advanced methods.
Especially for the 8 site lattice, the real plane results do not
agree with the exact solution, while the calculations with an
imaginary offset match it very well. Above all, the optimized
offset resembles the exact solution with great precision. This
plus the agreement with the NLO, and often with the tangent
plane as well, gives us confidence in the results of the larger
systems. We present the correlation functions resulting from
our methods in Fig. 13.

Figure 14 shows that, for the same number of configura-
tions, the quality of the measured observables seems to match
the expected outcome from comparing the statistical powers,
which can be found in Fig. 8. We see larger statistical fluc-
tuations with worse statistical power; the optimized method
consistently performs best. Figure 14(a) shows that most of
the numerical results estimate the charge correctly in Eq. (32)
according to the exact results. The real-plane HMC underes-
timates its error systematically for large ranges of μ. Still, the
optimized offset resembles the exact result best; the tangent
plane and NLO arguably offer comparable uncertainties for
many parameter choices. Figures 14(d) and 8(d) show that
our method has limits, and not every sign problem can be
conquered with a simple constant offset. Also, in certain areas
of the other charge plots, we see that the optimization routine

could fail when the sign problem is very strong, causing a
worse result than the NLO. An interesting observation is that,
where the charge flattens, the statistical power of the tangent
and NLO planes peaks.

V. CONCLUSIONS

Our results clearly show that the simple introduction of an
imaginary shift of the integration contour can greatly impact
the severity of the sign problem in quantum field theory with
practically no additional computation cost or human effort
required. We provide two analytic expressions for such offsets
for the Hubbard model. Further, a careful tuning of these
offsets while coming at a small cost can lead to even better
outcomes, especially when a range of parameters is to be
explored. The reduction of the sign problem depends on the
system and the physical parameters but can potentially make
a difference of orders of magnitude which can be seen as an
increase in measurement precision at a fixed sample size or
saving of computational resources on the way to achieve a
certain desired precision. Even though this does not eliminate
the sign problem entirely, it extends the parameter space that
is explorable within our naturally limited resources and allows
us to perform higher-quality extrapolations.

In addition to the analysis of the method itself, we provided
observables to condensed matter systems which could not
be calculated before with lattice stochastic methods, going
as far as the C60 buckyball, a stable synthesizable carbon
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FIG. 11. Numerically optimized offset after a given number of iterations. Iteration 0 marks the starting offsets. This plot shows the
convergence to the optimal offset and the value of a good starting guess. The iterative method started from μ = 0 and μ = 6, meeting in
the middle.

nanosystem. Further, we found that, in the limit of infinite
chemical potential, which in the case of the Hubbard model
refers to a completely filled/empty lattice, the sign prob-
lem vanishes at a certain offset, begging the question of
whether this behavior could be seen in other theories as well.
Our numerical optimization could lend itself to unsupervised
learning, driving toward maximizing the statistical power and
minimizing its derivative in Eq. (28).

There are some open questions remaining in regard to
combining optimized offsets with NNs that we will address
in the future. Is the optimized offset also the best starting
point for generating training data? Do the uplift of NNs and
optimized shift over the tangent plane correlate? Further, we
plan to investigate the C60 lattice in more detail, as our meth-
ods have opened the door to high-quality measurements on
these large systems that are out of reach for exact diagonal-
ization as well as HMC without sign-problem optimization.
We are developing a library for these nanosystem calculations

with the intention of making it publicly available so everyone
can try out our methods on the theory or model they are
interested in.
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APPENDIX A: DETAILED DERIVATION OF TANGENT PLANE

Starting from the action in Eq. (9), we provide a detailed derivation of the equation that determines the tangent plane in
Eq. (14). As in Eq. (15), let

F± = F[±φ,±K,±μ] =
Nt −1∏
τ=0

f ±
τ f ±

τ

= [exp(±K̃ )]{exp[±(−iφx,τ + μ̃)]}, (A1)
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FIG. 12. Statistical power at numerically determined optimal offset, after a given number of optimization steps. For each iteration, we used
10000 Hamiltonian Monte Carlo (HMC) steps (+ tuning).

where each term in square brackets is a space-by-space matrix, and the product is from right (τ = 0) to left (τ = Nt − 1). Then
using the Schur complement:

det M[φ, K, μ] = det (1 + F[φ, K, μ]), (A2)

and likewise, for M[−φ,−K,−μ] since the inverses exist for any configuration with finite action:

∂S

∂φx,t
= 1

Ũ
φx,t − tr[(1 + F+)−1∂φx,t F+ − tr(1 + F−)−1∂φx,t F−], (A3)

where the two traces correspond to the particle and hole fermion matrices in Eq. (15).
Each auxiliary field only appears once in any given F, inside one entry of a diagonal matrix. Thus, differentiating F± inserts

∓iPx, where Px projects to site x:

∂φx,t F± =
[

Nt −1∏
τ=t

f ±
τ

]
[∓iPx]

[
t−1∏
τ=0

f ±
τ

]
, (A4)

where the products go from right to left. Cycling the traces so that the projector is rightmost gives

∂S

∂φx,t
= 1

Ũ
φx,t + i

∑
s

str

{[
t−1∏
τ=0

f ±
τ

]
(1 + Fs)−1

[
Nt −1∏
τ=t

f ±
τ

]
Px

}
, (A5)

where the sum over s runs over ±1.
Plugging in the imaginary spacetime constant φ = iφ0 means the auxiliary field factors are proportional to the identity matrix:

f ±
τ = exp[±(K̃ + φ0 + μ̃)], (A6)
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FIG. 13. Single-particle correlation functions in Eq. (31) for different lattices and calculated with different methods. All systems were
evaluated with Nt = 32 at U = 2 and μ = 1. Each data point was calculated from a Markov chain with 50 000 Hamiltonian Monte Carlo
(HMC) configurations, where we measured on each 10th to reduce autocorrelation. Furthermore, we averaged over correlators guaranteed to
be equal by symmetry. This comes out to 4, 5, 6, and 16 unique correlators (different labels k) for the 8, 18, 20, and 60 site lattices, respectively.
The exact solution in (a) was determined by exact diagonalization in the temporal continuum limit.

independent of time slice τ . Since φ0 is space independent, we can sum on x and use the completeness
∑

x Px = 1. Since
Nt K̃ = βK and Nt μ̃ = βμ,

0 = 1

Ũ
Nxφ0 +

∑
s∈±1

str

{
exp[s(βK + Ntφ0 + βμ)]

1 + exp[s(βK + Ntφ0 + βμ)]

}
, (A7)

and evaluating this relationship in the eigenbasis of K yields the tangent plane relation in Eq. (14).

APPENDIX B: DETAILED DERIVATION OF NLO

To find the NLO constant imaginary offset, we need to minimize the effective action in Eq. (23), which requires computing
the Hessian:

Hx′t ′,xt = (∂x′t ′∂xt S[φ])φ=iφ1 . (B1)

We start from the general single derivative in Eq. (A3) and differentiate again. Without loss of generality, we assume t ′ � t :

∂x′t ′∂xt S[φ] = 1

Ũ
δx′xδt ′t −

∑
s

tr[(1 + Fs)−1∂φx′ ,t ′ ∂φx,t Fs − (1 + Fs)−1(∂φx′ ,t ′ Fs)(1 + Fs)−1(∂φx,t Fs)]. (B2)

The second derivative of F is much like the first in Eq. (A4) but with a second projector Px′ inserted at time t ′; (∓i)2 = −1
regardless of sign choice:

∂x′t ′∂xtFs = −
[

Nt −1∏
τ=t ′

f s
τ

]
Px′

⎡
⎣t ′−1∏

τ=t

f s
τ

⎤
⎦Px

[
t−1∏
τ=0

f s
τ

]
. (B3)
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FIG. 14. Charge expectation value at varying μ for different lattices and calculated with different methods. All systems have Nt = 16 and
U = 2. Each data point was calculated from a Markov chain with 50000 Hamiltonian Monte Carlo (HMC) configurations, where we measured
on each 10th to reduce autocorrelation. The exact solution in (a) was determined by exact diagonalization with Nt = 16 discretization.

In fact, this looks much like the two-inverse term, though that term has an inverse between the projectors:

(∂φx′,t ′ Fs)(1 + Fs)−1(∂φx,t Fs) = −
[

Nt −1∏
τ=t ′

f s
τ

]
Px′

⎡
⎣t ′−1∏

τ=0

f s
τ

⎤
⎦[1 + Fs]

−1

[
Nt −1∏
τ=t

f s
τ

]
Px

[
t−1∏
τ=0

f s
τ

]
. (B4)

Cycling the trace so that Px is rightmost and consolidating like factors gives

∂x′t ′∂xt S[φ] = 1

Ũ
δx′xδt ′t +

∑
s

tr

([
t−1∏
τ=0

f s
τ

]
(1 + Fs)−1

[
Nt −1∏
τ=t ′

f s
τ

]

× Px′

⎡
⎣t ′−1∏

τ=t

f s
τ

⎤
⎦{1 −

[
t−1∏
τ=0

f s
τ

]
[1 + Fs]

−1

[
Nt −1∏
τ=t

f s
τ

]}
Px

)
. (B5)

Making repeated use of C−1B−1A−1 = (ABC)−1, we can re-express the term in the sum:[
t−1∏
τ=0

f s
τ

]
[1 + Fs]

−1

[
Nt −1∏
τ=t

f s
τ

]
=
⎡
⎣ 0∏

τ=t−1

( f s
τ )−1

⎤
⎦

−1[
1 +

Nt −1∏
τ=0

f s
τ

]−1
⎡
⎣ t∏

τ=Nt −1

( f s
τ )−1

⎤
⎦

−1

=
⎧⎨
⎩
⎡
⎣ t∏

τ=Nt −1

( f s
τ )−1

⎤
⎦[1 +

Nt −1∏
τ=0

f s
τ

]⎡⎣ 0∏
τ=t−1

( f s
τ )−1

⎤
⎦
⎫⎬
⎭

−1

=
⎧⎨
⎩
⎡
⎣ t∏

τ=t−1

(
f s
τ

)−1

⎤
⎦+ 1

⎫⎬
⎭

−1

, (B6)
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where the products of f −1′s count down from right to left and wrap from 0 to Nt − 1. Inserting convenient products equal to the
identity to use the result in Eq. (B6) twice gives

∂x′t ′∂xt S[φ] = 1

Ũ
δx′xδt ′t +

∑
s

tr

{⎡⎣1 +
t∏

τ=t−1

(
f s
τ

)−1

⎤
⎦

−1⎡
⎣ t∏

τ=t ′−1

(
f s
τ

)−1

⎤
⎦

× Px′

⎡
⎣t ′−1∏

τ=t

f s
τ

⎤
⎦
⎡
⎣ t∏

τ=t−1

(
f s
τ

)−1

⎤
⎦
⎡
⎣1 +

t∏
τ=t−1

(
f s
τ

)−1

⎤
⎦

−1

Px

}
. (B7)

Casting the inverse factors after Px′ into the denominator, we arrive at

∂x′t ′∂xt S[φ] = 1

Ũ
δx′xδt ′t +

∑
s

tr

{⎡⎣1 +
t∏

τ=t−1

(
f s
τ

)−1

⎤
⎦

−1⎡
⎣ t∏

τ=t ′−1

( f s
τ )−1

⎤
⎦Px′

⎡
⎣t ′−1∏

τ=t

f s
τ

⎤
⎦[1 +

t−1∏
τ=t

f s
τ

]−1

Px

}
, (B8)

a convenient general form for arbitrary φ.
To evaluate the effective action in Eq. (23) and find the NLO imaginary offset, we set φ = iφ1, a spacetime constant. Like

before in Eq. (A6), the auxiliary field terms become proportional to the identity matrix, and we can group terms into powers of

f ± = f ±
τ = exp ±(δK + δμ + φ1), (B9)

which has the nice property ( f ±)−1 = f ∓ so that we may treat the sign label as a true exponent. Defining 	t = t ′ − t , we
simplify to

Hx′t ′,xt = ∂x′t ′∂xt S[φ]|φ=iφ1 = 1

Ũ
δx′xδt ′t +

∑
s

tr{[1 + f −sNt ]−1 f −s	tPx′ f +s	t [1 + f +sNt ]−1Px}. (B10)

Since the hopping amplitudes are symmetric K = K�, the matrices f in Eq. (B9) are too f = f �. Moreover, the projectors are
symmetric P = P�. Because the sum is over s ∈ {±1}, the signs and inverses conspire so that the two traces are over a matrix
and its transpose and are therefore equal. Thus, we can consolidate the traces and use the projectors to isolate needed matrix
elements:

Hx′t ′,xt = 1

Ũ
δx′xδt ′t + 2tr[(1 + f −Nt )−1 f −	tPx′ f +	t (1 + f +Nt )−1Px] (B11)

= 1

Ũ
δx′xδt ′t + 2[(1 + f −Nt )−1 f −	t ]xx′[ f +	t (1 + f +Nt )−1]x′x. (B12)

We may quickly evaluate the matrix elements by a unitary transformation from the eigenbasis of K :

[ f ±	t (1 + f ±Nt )−1]x′x =
∑

k

U†
x′k

exp[±	t (δεk + φ1 + δμ)]

1 + exp
[±β

(
εk + φ1

δ
+ μ

)]Ukx, U†KU = εk. (B13)

We emphasize that these results rely on many simplifications offered by a constant spacetime offset φ = iφ1. However, nearly
identical simplifications provide a similar evaluation for configurations with a different constant field on each temporal slice.

Rather than compute derivatives of the action expressed with ln det(1 + F±) in Eq. (A2), one may directly study ln det M±
instead. In the case of a constant field, we may diagonalize M with a straightforward unitary Matsubara decomposition:

Λkn,xt = Ukx exp(iω̃nt )√
Nt

, ω̃n = (2n + 1)π

Nt
. (B14)

One finds a structurally similar and numerically equal expression for the Hessian in terms of matrix elements T :

Hx′t ′,xt =
(

1

Ũ
− 1

)
δx′,xδt ′,t − T+;xt,x′t ′T+;x′t ′,xt − T−;xt,x′t ′T−;x′t ′,xt , (B15)

T±;x′t ′,xt =
∑

kn

Λ†
x′t ′,kn

exp[±(δεk + δμ + φ1 + iω̃n)]

1 − exp[±(δεk + δμ + φ1 + iω̃n)]
Λkn,xt . (B16)

We have numerically verified that these two formulations yield the same Hessian.
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