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The effect of doping on the parameters of an electron-hole liquid (EHL) in heterostructures based on transition
metal dichalcogenides is studied. The phase diagram of the EHL is constructed. It is shown that for the formation
of a high-temperature tightly bound EHL, as well as for the transition from the semiconducting (exciton) state
to the semimetallic one (electron-hole plasma/liquid), it is advantageous to dope the energy band with a larger
number of valleys. The transition from trion gas to electron-hole plasma is investigated using the modified Mott
criterion and variational calculation with screened potential. The effect of doping on the metal-insulator transition
in the equilibrium case without laser excitation is studied.
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I. INTRODUCTION

The beginning of the 21st century was characterized by
the rapid growth of nanotechnology using two-dimensional
(2D) materials such as graphene and transition metal dichalco-
genides (TMDs). Graphene nanoelectronics has been actively
developed [1]. Graphene is now often used as flexible,
durable, and transparent electrodes. For example, graphene
electrodes are used in the manufacture of solar cells based
on perovskites [2]. Unfortunately, graphene-based nanoelec-
tronics has limited applicability. On the contrary, TMDs are
now considered extremely useful for the further development
of logical devices [3].

TMDs have the general chemical formula MX2 with a
transition metal atom M (Nb, Ta, Mo, W, Re, etc.) and two
chalcogen atoms X (S, Se, Te). Bulk samples are a stack
of monomolecular layers (monolayers) connected by van der
Waals forces, similar to graphite viewed as a stack of graphene
layers. The monolayers are separated by ≈6.5 Å. Each mono-
layer has the form of a sandwich with a layer of M atoms
inserted between two layers of X atoms. The most common
crystal structures of TMDs are trigonal prismatic (2H) and
octahedral (1T) [4].

The most TMDs, like MoS2 and especially ReS2 and
ReSe2, are characterized by weak interaction between the lay-
ers. They demonstrate a small change (about twofold increase)
in the band gap as they change from three-dimensional (3D)
samples to monolayer films. On the contrary, the TMDs of the
tenth group exhibit a strong interaction between the layers.
For example, PtS2 has the band gap 0.25 eV in a bulk and
1.6 eV in a monolayer and a clearly pronounced dependence
of the band gap on the number of layers is observed like black
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phosphorus [5]. A detailed description of the structure and
synthesis of TMDs is presented in the review [6].

Low-temperature doped electron-hole liquid (EHL) in tra-
ditional semiconductors (Ge and Si) has been experimentally
and theoretically studied (see the monograph [7] and refer-
ences therein). The density of excess electrons or holes was
determined by the number of donor or acceptor atoms, thence
it could not be controlled in the considered sample. It changed
only when the sample was replaced.

The situation changed significantly with using monolayer
or bilayer heterostructures based on TMDs. In addition to
the fact that EHL becomes high-temperature and tightly
bound [8,9], the density of excess charge carriers is deter-
mined not by the number of introduced impurity atoms, but by
electron or hole doping, when the carrier density is changed
with the help of an electric field effect. A dielectric substrate
(usually heavily doped silicon with a SiO2 layer) acts as a
gate in a field-effect transistor [10]. The electric field effect
causes electrons to flow into the 2D material when a positive
voltage is applied to the gate. This is an electron doping of the
2D material. With a negative gate voltage, an excess of holes
appears in the 2D material (a hole doping occurs).

There are alternative ionic approaches to controlling the
carrier density in 2D materials. The ionic gating technique
is based on the suction of mobile charges from ion gel with
the formation of electric double layers. With the help of ionic
gating, ultra-high carrier densities (over 1014 cm−2) are attain-
able. The usage of 2D TMDs in this technique is especially
convenient due to their atomically smooth surfaces [11]. A
doping method using the gate-controlled Li ion intercalation
into thin films 1T-TaS2 was developed for creation of ionic
field-effect transistor [12].

When Rb ions are deposited on the surface of 3D MoSe2

samples, a built-in electric field appears, which shifts the
Fermi level up to the conduction band. There is a limit 1.4 ×
1014 cm−2 in this method on the carrier density. In a stronger
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electric field, corresponding to the density 1.5 × 1014 cm−14,
an indirect to direct band gap transition is induced [13].

Calculations using the density functional theory showed
that the band gaps in the MoS2, MoSe2, MoTe2, and WS2

bilayers are continuously decreasing when the built-in electric
field increases [14]. For MoS2 in an electric field of 3 V/nm,
the conduction and valence bands intersect, and at an electric
field about 2 V/nm, the MoS2 bilayer becomes direct-gap
semiconductor (in zero field, it is an indirect-gap one).

Such a restructuring of the band gap was experimentally
implemented in a field-effect transistor based on a MoS2 bi-
layer [15]. The decrease in the band gap occurred linearly by
≈ 260 meV with an increase in the electric field by 1 V/nm.

When charge carriers are added via the electric field effect,
excitons (X 0) in monolayers MoS2 [16], MoSe2 [17], and
MoTe2 [18] are transformed into trions, electron-hole (e-h)
triples, consisting of two electrons and one hole (electron
trion X −) or two holes and one electron (hole trion X +). The
exciton binding energy in TMDs is hundreds of meV, and the
trion energy is tens of meV [19].

At the same time, the dependence of the absorption and
photoluminescence spectra on the carrier density was inves-
tigated from the neutrality point (without doping) up to a
doping density of ≈1013 cm−2. The exciton peak decreased
and disappeared, merging with the background, while the
trion lines remained, gradually broadening and approximately
preserving its spectral weight.

A decrease in the exciton binding energy within 100 meV
was observed in WS2. It associated with screening of the
Coulomb potential by injected free charge carriers with a
density up to 8 × 1012 cm−2. Estimates show that excitons are
completely ionized at a carrier density of ≈1013 cm−2 [20].

In previous works [9,21], we proved that the multivalley
structure of the energy spectrum in TMD monolayers leads to
a noticeable increase in the equilibrium density and binding
energy of EHL.

EHL and the metal-insulator transition in doped multival-
ley semiconductors were considered in the framework of the
high anisotropy model [22] in the works [23–25]. Correlation
effects play an anomalously large role. It was shown that the
equilibrium EHL density decreases, the binding energy and
equilibrium chemical potential increase in absolute value with
increasing doping. EHL does not arise at sufficiently strong
doping.

Doping of EHL significantly complicates the density-
temperature phase diagram for the gas-liquid and metal-
insulator transitions. In this case, in addition to temperature,
there are two densities, the density of e-h pairs n determined
by optical excitation (the light absorbed in the TMD layer) and
the density of excess electrons or holes �n controlled by the
static voltage applied to the heterostructure gate. In the special
case �n = n, doped e-h system consists of e-h triples (trions).
The gas branch (with a lower density) of the phase diagram
corresponds to a trion gas, and a liquid branch (with a higher
density) corresponds to a doped EHL. If �n �= n, the gas is not
purely trionic. We consider electron doping for definiteness.
At �n < n, there are not enough electrons and the gas is a
mixture of X 0 and X −. At �n > n, electrons are in excess and
the gas is a mixture of X − and electrons. The screening of

trions by electrons can lead to the disappearance of the bound
state. In this work, we investigate the effect of doping on the
parameters of EHL and characteristics of the metal-insulator
transition in heterostructures based on TMDs.

The paper is organized as follows. The ground state en-
ergy of doped EHL is calculated in Sec. II. The gas-liquid
transition is investigated in Sec. III. Trion gas–electron-hole
plasma transition is considered by two approaches: the mod-
ified Mott criterion (Sec. IV A) and variational calculation
with the screened Coulomb potential (Sec. IV B). The metal-
insulator transition in the equilibrium case is studied in Sec. V.
Finally, the results of the work are summarized and discussed
in Sec. VI.

II. GROUND STATE ENERGY OF DOPED EHL

We consider a model 2D semiconductor with νe electron
and νh hole valleys. The electron and hole densities are ne and
nh, respectively. Let be ne � nh. The excess of the electron
density over the hole density �n = ne − nh is set by the gate
voltage. Under the conditions of photoexcitation, the variable
quantity is the density of generated e-h pairs n = nh. For a
given intensity of photoexcitation, it is convenient to introduce
the parameter δ = �n/n (electron doping level).

The carrier density is measured in a−2
x , where ax is the Bohr

radius of 2D exciton,

ax = h̄2

2mẽ2
.

The energy is measured in units of the 2D exciton binding
energy

Ex = 2mẽ4

h̄2 .

Here, m = memh/(me + mh) is the reduced mass of an elec-
tron me and a hole mh, ẽ2 = e2/εeff and εeff = (ε1 + ε2)/2 is
the effective permittivity, ε1 and ε2 are low-frequency permit-
tivities of the surrounding media. In what follows, Planck’s
constant h̄ will be assumed to be equal to unity.

We introduce the dimensionless distance between particles
(in this case, holes)

rs =
√

νh

πn
.

Wave vectors are measured in units of the Fermi wave
vector of holes

qh
F =

√
2πn

νh
=

√
2

rs
.

We represent the ground state energy in the form (κ =
νe/νh and σ = me/mh)

Egs = 1

(1 + σ )r2
s

(
σ + 1 + δ

κ

)

− 4
√

2

3πrs

(
1 +

√
1 + δ

κ

)
+
∫ ∞

0
I (q)dq. (1)

The first two terms are the energy in the Hartree-Fock ap-
proximation (kinetic and exchange energy). The last term
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is a correlation energy written as an integral over the
wave vector q. It is divided by the average particle density
n = (ne + nh)/2 = (1 + δ

2 )n.
The function I (q) for q � 1 is determined in the random

phase approximation (RPA), and it for q � 1 is the sum of
second-order diagrams in the interaction (loop and exchange
ones):

I (q) =
{−aq + bq3/2 − cq2 + dq5/2 + f q3, q � 1,

−gq−3, q � 1.
(2)

For most TMDs, it turned out to be me ≈ mh. It is well
also known that the dependence of the EHL parameters on
the mass ratio is weak [21]. Furthermore, the formulas for the
coefficients in the function I (q) in the case σ �= 1 are rather
long ones to write in the paper. We present expressions for
these coefficients in the case of equal masses of the electron
and hole in Appendix.

We approximated the function I (q) in the intermediate
region 1 � q � 3 by the line segment [26,27]. The correlation
energy is

Ecorr = 1

2

(−aq1 + bq3/2
1 − cq2

1

)
q2 + 1

2

(
dq2 − b

5

)
q5/2

1

+ 1

2

(
f q2 + c

3

)
q3

1− 3d

14
q7/2

1 − f

4
q4

1− g

q2
2

(
1− q1

2q2

)
,

(3)

where q1 and q2 are the matching points of the asymptotics (2)
with the line segment.

The point q1 lies near the minimum point q0 of the asymp-
totics I (q) for q � 1. For not too large νe,h (νe,h � 4) and
1 � rs � 2, the point q0 is near 1

q1 ≈ q0 ≈ a − 3
4 b + 5

4 d + 3 f
3
4 b − 2c + 15

4 d + 6 f
.

We find for νe,h � 1

q1 ≈ q0 ≈ 2
√

2(1 + δ)1/4

√
1 + √

κ(1 + δ)

κ
3/2 + √

1 + δ
.

With a good accuracy (within 10%) the second matching
point is

q2 ≈
(

4g

|I (q0)|
)1/3

.

We obtain in the multivalley case (νe,h � 1) the lower
bound for the correlation energy Ecorr � −A(κ, δ)n1/3, where

A(κ, δ) = 2

(
12

π

)1/3 (1 + δ)1/6(1 + √
κ(1 + δ))(

1 + δ
2

)1/3
(κ3/2 + √

1 + δ)1/3
. (4)

The coefficient (4) as a function of κ has a maximum at
κmax = 1 + δ (for a given κ, this happens when ne = κn).
Then we have

Ecorr � −4

(
6

π

)1/3(
1 + δ

2

)1/3

n1/3. (5)

Therefore, for δ �= 0 (ne > nh), it is favorable to have κ ≈
κmax > 1 (νe > νh). This means that in order to increase the

correlation energy (in modulus), one should add those charge
carriers whose number of valleys is greater.

The equilibrium EHL density and energy for νe,h � 1 and
σ = 1 are

n0 = 24

3π2

(1 + δ)1/4(1 + √
κ(1 + δ))3/2ν

3/2
h(

1 + δ
2

)1/2
(κ3/2 + √

1 + δ)1/2
(
1 + 1+δ

κ

)3/2 ,

E0 = − 24

3π

(1 + δ)1/4(1 + √
κ(1 + δ))3/2ν

1/2
h(

1 + δ
2

)1/2
(κ3/2 + √

1 + δ)1/2
(
1 + 1+δ

κ

)1/2 .

We neglect the exchange energy, and for the correlation en-
ergy we use the estimate (4). In the cases of κ � 1 and κ � 1
for a given δ, n0 and |E0| increase, i.e., EHL becomes more
compressed and more tightly bound when charge carriers are
added in band with larger number of valleys (this corresponds
for ne > nh to κ � 1)

n0|κ�1 = 24

3π2

ν3/2
e(

1 + δ
2

)1/2
(1 + δ)3/2

,

E0|κ�1 = − 24

3π

ν1/2
e(

1 + δ
2

)1/2√
1 + δ

,

n0|κ�1 = 24

3π2

1 + δ(
1 + δ

2

)1/2 ν
3/2
h ,

E0|κ�1 = − 24

3π

1 + δ(
1 + δ

2

)1/2 ν
1/2
h .

We took into account in the first two lines that κνh = νe.
Thus, for very different numbers of valleys, n0 and E0 are
determined by a smaller number of νe or νh.

Numerical calculations confirm that for intermediate val-
ues of κ (0.5 � κ � 5), the EHL binding energy becomes
larger if we add carriers with larger number of valleys. As the
doping increases, |E0| increases and then begins to decrease
[see Fig. 1(a)]. There is an optimal value of δmax � κ − 1 for a
given κ > 1, when the maximum |E0| is reached. Based on the
results of the performed numerical calculations, it is possible
to make the estimate

δmax ≈ κ
4/3 − 1. (6)

Moreover, the equilibrium EHL density n0 decreases mono-
tonically [see Fig. 1(b)].

In the limit νe,h → ∞, the dependence of the correlation
energy on νe,h and κ disappears

Ecorr = −A(σ, δ)n1/3, (7)

where

A(σ, δ) = π1/3

√
3
(
1 + δ

2

) ∫ ∞

0

[
(1 + δ)

1 + s

(1 + s)2 + ξ 2

+ 1 − s

(1 − s)2 + ξ 2

]4/3

dξ,
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FIG. 1. Numerical calculation of the dependence of the binding energy (a) and the equilibrium density (b) of the EHL on the electron doping
level δ in the case of equal masses of an electron and a hole for a different number of electron valleys νe and one hole valley (more precisely,
two hole valleys with the removal of spin degeneracy in them). Yellow dots mark the maxima of |E0|, which lie at δmax = 1.3, 3, 5, 8 and agree
well with the estimate (6). Black dotted line is square polynomial approximation for the position of these maxima. For κ → 1, δmax → 0, this
approximation gives max |E0| → 1.15, which is in good agreement with the EHL binding energy in an undoped single-valley semiconductor
|E0| = 1.09 [21].

where σ enters through the parameter

s = 1 − σ

1 + σ
.

We have in a particular case σ = 1

A(1, δ) = A(1)

(
1 + δ

2

)1/3

,

where A(1) is the previously found (now corrected) value of
the constant in the absence of doping [9]

A(1) = 3

22/3π1/6
	

(
2

3

)
	

(
5

6

)
≈ 2.387.

The point σ = 1 is the minimum point of the function
A(σ, δ) at δ = 0 with a minimum equal to A(1). When δ �= 0,
the function A(σ, δ) also has a minimum, but it is at σ < 1,
and its value is less than A(1, δ). The point σ = 1 is located
on the growing section of A(σ, δ). This means that in order
to increase (in modulus) the correlation energy in the case
ne > nh, it is desirable to have σ > 1 (me > mh) and vice
versa for ne < nh. Therefore, when νe = νh, heavier carriers
should be added for increasing the binding energy of EHL
and its equilibrium density.

In the case of δ � 1, the number of holes is negligible and
the correlation energy is a function of the electron density ne.
We normalize it to one electron

Ecorr = −Ã(σ )n1/3
e ,

Ã(σ ) = 3(1 + σ )1/3

27/3π1/6
	

(
2

3

)
	

(
5

6

)
≈ 0.752(1 + σ )1/3. (8)

In the region occupied by EHL, the renormalized band gap
is equal to Eg = E (0)

g + E0 − EF , where E (0)
g is the initial band

gap and EF is the Fermi energy of e-h pairs [28]. We have
E0 = −EF for multivalley systems when the exchange energy
is neglected. Therefore the renormalization of the band gap is

�Eg = 2E0. We obtain �Eg = − 4
3 A(σ, δ)n1/3

0 in the region
of EHL in 2D multivalley systems.

In the region of e-h plasma, the renormalized band gap
is equal to Eg = E (0)

g − EF . If the minimum of the ground
state energy is reached, we find �Eg = − 2

3 A(σ, δ)n1/3. This
corresponds to the well-established law �Eg ∝ n1/3 for 2D
e-h plasmas [8,29]. We consider the question about the band
gap renormalization due to the electron (hole) gas in Sec. V.

III. GAS-LIQUID TRANSITION

In the absence of doping (δ = 0), the thermodynamics of
e-h pairs in TMD monolayers was described in our previous
work [21]. At low doping levels (δ � 1, ne ≈ nh), the pic-
ture changes slightly. Carriers added with the help of doping
participate in the formation of trions, which is energetically
favorable (the binding energy of a trion in TMDs is tens
of meV). In this case, the fraction of trions in comparison
with excitons in the gas phase is small. In contrast to the
insulating gas of excitons, the gas of trions is conductive.
Qualitative changes in the kinetic (transport) properties of
the system begin to manifest themselves when the number of
trions becomes comparable to the number of excitons. The
thermodynamics of the gas-liquid transition does not undergo
significant changes.

A specified case is the equality of the number of excess
charge carriers and the number of e-h pairs (δ = 1). The exci-
ton gas is completely converted into the trion gas. Quenching
of exciton lines in the photoluminescence spectrum of TMD
monolayers is observed at high doping levels [16–18]. Instead
of the reaction of formation (decay) of the exciton e + h �
X 0, there is the reaction of formation (decay) of the electron
trion e + X 0 � X − or the hole trion h + X 0 � X + (reactions
e + e + h � X − and e + h + h � X + are significantly more
rare ones). The properties of trions were discussed in detail in
the review [19].
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FIG. 2. 3D phase diagram (δ, n, T ) of a gas-liquid transition for equal masses of charge carriers and two electron and one hole valleys (or
two hole valleys, but with the removal of the spin degeneracy). The red curve on the surface is the critical points (nc, Tc ) for the corresponding
values of δ. The orange curve in the T = 0 plane is the equilibrium density n0 as a function of δ. The inset shows the δ dependencies of the
relations n0/nc (red curve) and |E0|/Tc (blue curve).

The chemical potential of charge carriers in doped het-
erostructures is represented in the form

μ(n, T ) = T ln

{[
exp

(
2π (1 + δ)n

κ(1 + σ )νhT

)
− 1

]
×
[

exp

(
2πσn

(1 + σ )νhT

)
− 1

]}

− 2
√

2√
πνh

(
1 +

√
1 + δ

κ

)
√

n + ∂

∂n
(nEcorr ). (9)

The first term is the chemical potential of noninteracting elec-
tron and hole. The second and third terms are, respectively, the
exchange and correlation contributions, which are assumed to
be independent of the temperature T , since their temperature
corrections cancel at T � EF [30].

The critical density nc and the critical temperature Tc of the
gas-liquid transition are determined by the equations

∂μ

∂n

∣∣∣∣n=nc
T =Tc

= ∂2μ

∂n2

∣∣∣∣n=nc
T =Tc

= 0. (10)

To obtain the temperature dependence of the e-h pair den-
sity in the gas and liquid phases nG(T ) and nL(T ), we use the
Maxwell construction∫ nL

nG

μ(n, T )dn = μ(T )(nL − nG), (11)

where μ(T ) = μ(nG, T ) = μ(nL, T ).
Each value of δ has its bell-shaped curve formed by a set

of pairs of points nG and nL on the plane (n, T ). Thus the
gas-liquid transition at doping corresponds to a surface in
the space (δ, n, T ). Such a surface for a system with equal
masses of charge carriers, νe = 2, and νh = 1 is shown in
Fig. 2. The ratios of equilibrium to critical parameters are
weakly dependent on δ (see the inset in Fig. 2), therefore the
dependencies of Tc and nc on δ are similar to the dependencies
of |E0| and n0 on δ for various κ, which are shown in Fig. 1.
The nc(δ) dependence is monotonically decreasing, and the
Tc(δ) dependence for κ > 1 has a maximum. To estimate the
position of the latter, one can be also use the formula (6).

In the multivalley case (νe,h → ∞), the exchange contribu-
tion to both the energy Egs and the chemical potential can be
neglected, and we can set κ = 1 and νe = νh = ν. Then the
pair of equations (10) is reduced [31] to one equation

zc = (1 − γ )
(cosh zc − cosh(sδzc))(ezc − cosh(sδzc) − sδ sinh(sδzc))(
1 + s2

δ

)
(cosh zc cosh(sδzc) − 1) − 2sδ sinh zc sinh(sδzc)

, (12)
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where the unknown

zc = πnc

νTc

(
1 + δ

2
(1 + s)

)
and

sδ = s + δ
2 (1 + s)

1 + δ
2 (1 + s)

, s = 1 − σ

1 + σ
.

Here and below, γ = 1/3 is the exponent of the density and
A = A(σ, δ) is the coefficient in the correlation energy (7).
These equations and the formulas below contain an arbitrary
γ , since they also apply to layered systems with γ = 1/4. The

corresponding expressions for them in the absence of doping
were written in Ref. [31]. The TMD monolayer, generally
speaking, is a three-layer system, in which a layer of transition
atoms is encapsulated between two layers of chalcogen atoms.
For this reason, the relevant value of γ can be intermediate
between 1/4 and 1/3. The calculation of the effective γ for the
TMD monolayer with a small number of valleys can also be
carried out at electron (hole) doping, following our previous
work [21]. In particular, the effective γ at νe = νh = 4 turns
out to be close to 1/4.

The critical parameters of EHL are expressed in terms of
zc by the equations

nc =
[

γ (1 + γ )νA

π
(
1 + δ

2 (1 + s)
) cosh zc − cosh(sδzc)

ezc − cosh(sδzc) − sδ sinh(sδzc)

] 1
1−γ

, (13)

Tc = π

zc

(
ν

1 + δ
2 (1 + s)

) γ

1−γ [
γ (1 + γ )A

π

cosh zc − cosh(sδzc)

ezc − cosh(sδzc) − sδ sinh(sδzc)

] 1
1−γ

, (14)

μc = −Tc

{(
1

γ
− 1 + 1

γ

sinh zc − sδ sinh(sδzc)

cosh zc − cosh(sδzc)

)
zc − ln 2 − ln (cosh zc − cosh(sδzc))

}
. (15)

The ratios n0/nc and |E0|/Tc are independent of A and
weakly depend on σ only through sδ

n0

nc
=
[

ezc − cosh(sδzc) − sδ sinh(sδzc)

(1 + γ )(cosh zc − cosh(sδzc))

] 1
1−γ

,

|E0|
Tc

= 1 − γ

γ
zc

[
ezc − cosh(sδzc) − sδ sinh(sδzc)

(1 + γ )(cosh zc − cosh(sδzc))

] 1
1−γ

.

It follows that the ratios of the equilibrium parameters to the
critical ones are similar for different systems with different σ

and δ, but with the same sδ .
Expanding the equation (12) in powers of zc up to terms of

the third order, we find

zc(sδ ) ≈ 3

2
(
1 + s2

δ

)
⎡⎣√1 + 8γ

3(1 − γ )

(
1 + s2

δ

)− 1

⎤⎦, (16)

from which we obtain the critical parameters

nc ≈
[
γ (1 − γ 2)Aν

2π

(
1 + 1 + s2

δ

12
z2

c

)] 1
1−γ

, (17)

Tc ≈ πν
γ

1−γ

zc

[
γ (1 − γ 2)A

2π

(
1 + 1 + s2

δ

12
z2

c

)] 1
1−γ

, (18)

μc ≈ −Tc

{
2

γ (1 − γ )

(
1 − 1 + s2

δ

12
z2

c

)
− zc

− ln

[(
1 − s2

δ

)
z2

c

(
1 + 1 + s2

δ

12
z2

c

)]}
. (19)

Using the Maxwell construction (11), we find the tem-
perature dependencies of the e-h pair density in the gas and

liquid phases and the chemical potential near the critical point
Tc−T

Tc
� 1

nc − nG(T ) = nL(T ) − nc

≈
√

6

γ

(
1 − 1 + s2

δ

12γ
z2

c

)
nc

(
Tc − T

Tc

)1/2

, (20)

μ(T ) − μc =
{

2 − ln
[(

1 − s2
δ

)
z2

c

]+ 1 + s2
δ

12
z2

c

}
(Tc − T ).

(21)

At low temperatures T � Tc, the density in the gas phase is
exponentially small, while in the liquid phase it deviates from
the equilibrium EHL density n0 quadratically in temperature

nL(T ) = n0

{
1 − π2(1 + γ )

2
1−γ

6
(
1 − s2

δ

) (
1 − γ

2

) 1+γ

1−γ

×z
2γ

1−γ

c

(
1 + 1 + s2

δ

6(1 − γ )
z2

c

)(
T

Tc

)2
}

. (22)

The correction to the chemical potential is also quadratic in
temperature

μ(T ) = μ0

{
1 + π2γ (1 + γ )

2
1−γ

6
(
1 − s2

δ

) (
1 − γ

2

) 1+γ

1−γ

×z
2γ

1−γ

c

(
1 + 1 + s2

δ

6(1 − γ )
z2

c

)(
T

Tc

)2
}

. (23)

IV. TRION GAS–ELECTRON-HOLE PLASMA
TRANSITION

As the number of e-h pairs increases, a transition from the
insulating state of the system (exciton gas) to the metallic
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one (electron-hole plasma) was observed without doping. This
is a metal-insulator transition (Mott transition). The physical
reason for this phenomenon is in the screening of the Coulomb
interaction between charge carriers with increasing the den-
sity. At the point of the transition, the exciton binding energy
vanishes and the exciton decays into free electron and hole.

If the temperature is significantly lower than the binding
energy of a trion, 20–30 meV [16–18], there is a metallic
phase in which trions are free charge carriers. Trion conduc-
tion has not been studied and may have unusual properties.

Taking into account the possibility of achieving high densi-
ties of excess charge carriers in 2D materials, in order to avoid
confusion, it would be appropriate to speak about the transi-
tion from a trion gas to an electron-hole plasma rather than
the metal-insulator transition. It occurs for the same physical
reason as the Mott transition. As the density increases, the
edge of the continuous spectrum shifts faster than the energy
of the bound state. At the density of the transition, the bound
state goes over into a continuous spectrum and it ceases to
exist [32].

There are three possible experimental realizations of the
trion gas–electron-hole plasma transition.

Firstly, one can fix the voltage at the gate and the density
of excess electrons (holes). At the same time, we increase
the intensity of the exciting laser radiation, i.e., increase the
density of generated e-h pairs n. Then the density of the
transition will depend on the initial doping level δ0. We expect
it to fall off as δ0 increases.

Secondly, one can fix the intensity of laser radiation I0 and
increase the density of excess electrons or holes. In this case,
the excess charge carriers screen the trions. The doping level
increases, and the required value δc for the transition decreases
with increasing I0.

Thirdly, it is possible to maintain a certain ratio between
the e-h pair density n and the excess carrier density �n,
i.e., one can fix the doping level δ, increasing parallel both
the radiation intensity and the gate voltage. As noted above,
an interesting case is a pure trion gas, when δ = 1. Then
the evolution of the trion gas can be investigated, although
this is experimentally difficult to implement. At the density
of the transition ntr, trions undergo decay X − → X 0 + e →
e + h + e (X + → X 0 + h → e + h + h). Due to the stronger
screening of the Coulomb interaction in the presence of excess
charge carriers, it turns out to be less than the density of the
Mott transition in the absence of doping, ntr < ndm.

Below we adhere to the third formulation of the problem as
the most interesting from a theoretical point of view. Although
its experimental implementation is extremely difficult.

In the range of densities above ntr, the system behaves like
3D doped semiconductors and free electrons and holes are
charge carriers. In our case, the system is a semi-metallic,
since it contains both electrons and holes.

A. Modified Mott criterion

The density of the metal-insulator transition in 3D
semiconductors can be obtained based on the Mott
criterion [33–35]

n1/3
3D a(3D)

B = C. (24)

Here a(3D)
B is the Bohr radius of 3D exciton. For a num-

ber of traditional semiconductors, the constant C = 0.26 ±
0.05 [36].

This criterion is justified only for 3D materials, when the
Debye screening of the Coulomb interaction between charge
carriers is exponential. For 2D materials, screening is not
exponential one. Charge carriers are in the film and interact
mainly through its environment. However, for simple quanti-
tative estimates of the density of the metal-insulator transition
in 2D materials, one can use the Mott criterion [37,38], written
in the form

na2
B = C̃, (25)

where aB is the Bohr radius of 2D exciton.
By squaring both sides of (24) and expressing a(3D)

B in terms
of aB as aB = ξa(3D)

B , one can get an estimate

C̃ 
 ξ 2C2. (26)

Coefficient ξ � 1/2 is equal to 1/2 for the 2D Coulomb
potential

V (q) = 2π ẽ2

q
. (27)

Here, as above, ẽ2 = e2/εeff and εeff = (ε1 + ε2)/2, ε1,2 are
permittivities of the surrounding media.

The interaction of charge carriers in thin films is deter-
mined by the Keldysh potential [39–41]

VK (q) = 2π ẽ2

q(1 + r0q)
, (28)

where r0 is the screening length, r0 = dε/(ε1 + ε2), d is
the film thickness, ε is the permittivity of the film material,
ε � ε1,2. As applied to systems with TMD monolayers, the
value r0 is an adjustable parameter that was used to calculate
excitons [19].

The Keldysh potential is weaker than the potential (27),
therefore ξ > 1/2 for excitons in TMDs. The Bohr radius
of the exciton is found by the variational solution of the
Schrödinger equation with the potential (28) as the variational
parameter, which minimizes the energy. Usually ξ ≈ 1, but it
may be more than 1, since ε � ε1,2 and r0 can be so large
that the Keldysh potential turns out to be weaker than the
3D Coulomb potential with the effective permittivity of the
medium εeff. It turns out aB � a(3D)

B . In our opinion, this result
can be a sufficient justification for the estimate (26).

Experiments confirm that the constant C̃ < 1 [42]. Theo-
retical estimates give C̃ 
 0.1 [38].

We propose to adapt the Mott criterion to the trion gas–
electron-hole plasma transition in heterostructures based on
monolayer or bilayer TMD films. For trions, one needs to
calculate ntra2

tr, where ntr is the trion density at the transition
and atr is the trion radius. If we take into account that atr � aB,
we still get ntra2

tr < 1.
Our calculations of the metal-insulator transition [21]

showed that the density of the transition ndm has a noticeable
temperature dependence. ndm monotonically increases with T .
Since the physical mechanism of screening of the Coulomb
interaction is the same for excitons and trions, using our
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previous calculations ndm, we can write the Mott criterion for
the trion gas–electron-hole plasma transition in the form

ntra
2
tr = ζ (T ). (29)

The function ζ (T ) is approximated with a good accuracy on
the temperature range 1

4 Tc � T � Tc by the quadratic function

ζ (T ) ≈ αT 2 + βT + ζ0. (30)

This approximation is not valid at low temperatures (T <
1
4 Tc). We are interested in the pointed out above temperature
range, since the temperature dependence of the density of the
transition under consideration in this range allows us to deter-
mine in which phase (gas or liquid) it occurs. If ntr(T 
 Tc) <

nc, the transition occurs in the gas phase. If ntr(T 
 Tc) > nc,
the transition occurs in the liquid phase.

The functions ζ (T ) for excitons and trions can be consid-
ered rather close at low temperatures, therefore the differences
in the densities ntr and ndm are mainly due to the difference in
atr from aB

ntr ≈
(

aB

atr

)2

ndm. (31)

Hence ntr � ndm. This conclusion is confirmed by the results
of variational calculations provided below.

The density of the transition ntr is obtained using the mod-
ified Mott criterion (29) with the approximation (30) if the
trion radius atr is known. The latter is found by the variational
solution of the three-particle Coulomb problem with the trion
Hamiltonian [37]

Ĥtr = − 1

2m
(�1 + �2) − 1

mni
∇1∇2

− VK (ρ1) − VK (ρ2) + VK (|ρ1 − ρ2|). (32)

Here, the Laplacians �1,2 and gradient operators ∇1,2 act on
2D vectors of relative motion of two identical particles ρ1,2 =
ρi1,2 − ρni, where ρi1,2 are radius vectors of identical particles
and ρni is radius vector of nonidentical particle. In trion X −,
the identical particles are electrons, the nonidentical particle
is a hole and vice versa for trion X +. m = memh/(me + mh)
is the reduced mass of an electron and a hole, mni is the mass
of the nonidentical particle (mni = mh for trion X −, mni = me

for trion X +). VK (ρ) is the Keldysh potential in the coordinate
space,

VK (ρ) = π ẽ2

2r0

[
H0

(
ρ

r0

)
− Y0

(
ρ

r0

)]
, (33)

where H0 and Y0 are the Struve and Neumann functions,
respectively.

At me ≈ mh, the trial wave function is simplified [43]

ψ̃ (ρ1, ρ2) ∝
[

exp

(
−ρ1

a1
− ρ2

a2

)
± exp

(
−ρ2

a1
− ρ1

a2

)]
.

(34)
Plus (minus) corresponds to a symmetric (antisymmetric)
trion. The values of the variational parameters a1,2 corre-
sponding to the minimum energy of the trion are the effective
localization radii.

As one can easily see from the view of the trial func-
tion (34), the average distance is the same for both identical

particles, 〈ρ1〉 = 〈ρ2〉. We define the trion radius as atr =
〈ρ1,2〉, then

atr = (a1 + a2)6 ± 64a3
1a3

2

2(a1 + a2)
[
(a1 + a2)4 ± 16a2

1a2
2

] . (35)

If me = mh, we obtain a1 = a2 = a and atr = a for the sym-
metric trion and atr = 1.5a for the antisymmetric trion. It
follows that the latter has a lower binding energy than the
former, which is consistent with the results of the work [37].

We calculated the exciton and trion radii for a number of
heterostructures (see Table I). We given the parameters for
symmetric trions, because the absolute value of the energy
of antisymmetric trions is less than the exciton binding en-
ergy and they do not exist. This happens for the mass ratio
σ � 0.5 [37]. Moreover, a remarkable result is that according
to the estimate (31) the transition density is about half the Mott
transition density for all heterostructures, as ( aB

atr
)2 
 1

2 .

B. Variational calculation with screened potential

As mentioned at the beginning of this section, the transition
under consideration has two stages. Trions first decay into
excitons and excess carriers X − → X 0 + e or X + → X 0 + h.
At zero temperature, this happens when the energies of the
trion and exciton become equal Etr = Eex (the trion binding
energy vanishes). At a finite temperature, this occurs when the
trion binding energy becomes comparable to the temperature
and the trions undergo thermal dissociation

Eex − Etr = κT . (36)

By analogy with excitons due to the entropy factor [44], this
process occurs at temperatures noticeably lower than the trion
binding energy, therefore the coefficient κ on the right side is
greater than one, 1 � κ � 2. The inaccuracy in its value has a
little effect on the results of the numerical calculation and we
can put κ ≈ 3/2.

With a further increase in the density, excitons also undergo
thermal dissociation X 0 → e + h (the second stage of the
transition)

|Eex| = κT . (37)

The screened Coulomb potential at a high carrier density is
easily found in the momentum space [21,30,45,46]

V (q) = V0(q)

1 + f (q)V0(q)�0(q)
, (38)

where the initial unscreened Coulomb interaction V0(q) is
taken in the form of the Keldysh potential (28), �0(q) is the
static 2D polarization operator of electrons and holes

�0(q) = νe�
e
0(q) + νh�

h
0(q),

�e,h
0 (q) = me,h

π

⎧⎪⎨⎪⎩1 −

√√√√1 −
(

2qe,h
F

q

)2

θ
(
q − 2qe,h

F

)⎫⎪⎬⎪⎭. (39)

The function f (q) is the Hubbard correction to RPA taking
into account the contribution of the exchange diagrams at high
momenta [30,45,47]. Without doping ne = nh in the case of an
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TABLE I. The reduced mass of electron and hole, the effective permittivity, the screening length, the Bohr radius of 2D exciton, the trion
radius, and squared ratio of the exciton and trion radii. m0 is the free electron mass.

No. Heterostructure m (m0) εeff r0 (Å) aB (Å) atr (Å) ( aB
atr

)2

1 MoS2/SiO2 0.32 ± 0.04 [48] 2.45 16.926 [43] 10.003 13.861 0.521
2 MoSe2/SiO2 0.283 [49] 2.45 21.106 [43] 11.715 16.230 0.521
3 WS2/SiO2 0.22 [49] 2.45 15.464 [43] 11.942 16.517 0.522
4 WSe2/SiO2 0.23 [49] 2.45 18.414 [43] 12.494 17.291 0.522
5 hBN/MoS2/hBN 0.275 ± 0.015 [50] 4.45 7.640 [50] 11.426 15.788 0.524
6 hBN/MoSe2/hBN 0.35 ± 0.015 [50] 4.4 8.864 [50] 10.321 14.254 0.524
7 hBN/MoTe2/hBN 0.36 ± 0.04 [50] 4.4 14.546 [50] 12.301 17.012 0.523
8 hBN/WS2/hBN 0.175 ± 0.007 [50] 4.35 7.816 [50] 15.293 21.145 0.523
9 hBN/WSe2/hBN 0.2 ± 0.01 [50] 4.5 10 [50] 15.598 21.555 0.524

equal number of valleys νe = νh = ν � 1, qe
F = qh

F = qF and

f (q) = 1 − 1

4ν

q

q + qF
. (40)

Here, it is taken into account that the number of the exchange
diagrams increases linearly in ν, while the number of the loop
diagrams increases quadratically in ν. Therefore the relative
contribution of the former decreases as 1/ν.

In the case of νe �= νh and/or ne �= nh, the Fermi momenta
of electrons and holes are different. It is convenient to take
their geometric mean qF =

√
qe

F qh
F . Then we have

f (q) = 1 − 1

2(νe + νh)

q

q + qF
. (41)

To find the dependence Eex(n), we solve by the variational
method the two-particle Schrödinger equation in the momen-
tum space

p2

2m
ψ (p) −

∫
d2q

(2π )2
V (q)ψ (p − q) = Eexψ (p). (42)

The trial wave function for exciton is chosen in the form
of the Fourier transform of the exponentially decreasing wave
function

ψ̃ (p) =
√

8πb2

(b2 + p2)3/2
. (43)

To find the dependence Etr(n), we solve variationally the
three-particle Schrödinger equation[

p2
1 + p2

2

2m
+ 1

mni
p1p2

]
ψ (p1, p2)

−
∫

d2q

(2π )2
V (q)[ψ (p1 − q, p2) + ψ (p1, p2 − q)]

+
∫

d2q

(2π )2
V (q)ψ (p1 − q, p2 + q) = Etrψ (p1, p2).

(44)

We choose the trial wave function for trion in the form of
the Fourier transform of the function (34)

ψ̃ (p1, p2) = 8πb2
1b2

2

[(
b2

1 + p2
1

)−3/2(
b2

2 + p2
2

)−3/2

± (b2
1 + p2

2

)−3/2(
b2

2 + p2
1

)−3/2]
. (45)

The variation parameters are related to those entered above as
b1,2 = a−1

1,2.
Numerical calculation of the dependencies of the exciton

and trion energies on the density confirms that the transition
proceeds in two stages already at zero temperature. Figure 3
shows a typical behavior of Eex(n) and Etr(n) for the het-
erostructure MoS2/SiO2 as an example.

In the calculations at a finite temperature, the polarization
operator was substituted in (39) as the integral

�α
0 (q, T ) = 2--

∫
d2k

(2π )2

nα
F (k) − nα

F (k + q)

εα
k+q − εα

k

, (46)

where nα
F (p) = 1/[exp((εα

p − μα
kin)/T ) + 1] is the Fermi dis-

tribution function of the αth kind particles (α = e, h) with the
chemical potential μα

kin (calculated for a gas of noninteract-
ing particles), εα

p = p2/ηα = 1±s
2 p2 is the dispersion law of

the αth kind particles (plus for electrons, minus for holes).
The bar near the integral means that it is taken in the sense of
the principal value.

The results of numerical calculations of the constants ap-
pearing in approximation (30) are presented in Table II for
the same heterostructures as in Table I (their numbering in
Table II corresponds to Table I). The trion radius was cal-
culated as atr = b−1

0 |n→0, where b0 = b1 = b2 is the value of
the variational parameters at which the minimum of the trion

FIG. 3. Density dependence of the exciton energy (blue curve)
and X − trion energy (red curve) in heterostructure MoS2/SiO2. The
green point indicates the decay of trions. The yellow point indicates
the decay of excitons.
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TABLE II. Constants for the temperature dependency of the trion
gas–electron-hole plasma transition density ntr(T ) and the ratio of
ntr = ntr (T = 0) and the metal-insulator transition density ndm.

No. α β ζ0 ζ (0) ntr
ndm

1 2.141661 −0.616313 0.031726 0.053310 0.656888
2 3.169341 −0.701013 0.032581 0.056160 0.692247
3 1.561552 −0.492523 0.032815 0.054030 0.658792
4 2.164500 −0.569959 0.032549 0.053822 0.659217
5 0.389394 −0.252615 0.033263 0.055197 0.656693
6 0.644499 −0.329378 0.033792 0.057648 0.692128
7 1.238440 −0.440202 0.032775 0.055168 0.666533
8 0.259519 −0.210749 0.034000 0.056024 0.658581
9 0.397398 −0.256719 0.034074 0.055604 0.659038

energy is reached as a function of b1 and b2. For comparison,
the penultimate column of Table II shows the value of ζ at
zero temperature, which deviates significantly from ζ0. This
circumstance indicates the inapplicability of this approxima-
tion in the range of low temperatures, which was mentioned
after formula (30). The last column contains the ratio of the
trion gas–electron-hole plasma transition density at zero tem-
perature and the metal-insulator transition density. We can see
that ntr

ndm
≈ 2

3 . This result refines the result obtained in the end
of Sec. IV A.

V. METAL-INSULATOR TRANSITION
IN EQUILIBRIUM CASE

In semiconductors and semimetals with extremely strong
anisotropy of the electronic spectrum, in particular, multival-
ley ones, the role of correlation effects in e-h plasma turns out
to be anomalously large [22]. A significant decrease in energy
associated with electron-electron correlations leads to self-
compression of such a plasma, i.e., to the formation of EHL
with a density n0 � a−2

x and a binding energy |E0| � Ex. The
appearance of EHL at sufficiently low temperatures occurs
through a first-order phase transition, when the carrier density
reaches a certain critical value, the saturated vapor density
(see Sec. III). This situation can be realized under thermo-
dynamic equilibrium conditions for a semiconductor with a
sufficiently narrow band gap Eg with increasing temperature
or decreasing Eg [31].

The formation of EHL means a jump-like decrease in the
band gap Eg to some negative value, which corresponds to
band overlap. There is a transition of the original semicon-
ductor to a semimetal [31].

The metal-insulator transition was considered in detail in
the work [31] for layered semiconductors. It was also in-
vestigated in 3D TMD TiS2 and TiSe2 [51] and in doped
layered multicomponent semiconductors [24]. An appreciable
band gap renormalization in atomically thin WS2 layers was
observed in the work [42].

The experimentally observed change in the temperature
dependence of conductivity is considered under the metal-
insulator transition in 3D traditional doped semiconductors.
As the temperature rises, the conductivity of semiconductors
increases, while that of metals decreases.

Doped heterostructures based on 2D materials (including
monolayers or bilayers of TMDs) compare favorably with the
3D systems. The doping level in heterostructures is easily
changed by the gate voltage.

The renormalization of the band gap is determined by the
ground state energy of an electron gas Egs(ne) (for definite-
ness, we consider electron doping)

Eg(ne) = E (0)
g − ∣∣Ee

gs(ne)
∣∣. (47)

The metal-insulator transition in equilibrium case occurs
when the renormalized band gap becomes equal to the exciton
binding energy at the electron gas density

Eg(ne) = |Eex(ne)|. (48)

The ground state energy of the electron gas is determined
like in the e-h system (see Sec. II)

Ee
gs = 1

ηer2
s

− 4
√

2

3πrs
+
∫ ∞

0
I (q)dq. (49)

Here, the dimensionless distance between the particles is
defined as

rs =
√

νe

πne
.

Wave vectors are measured in Fermi wave vectors of electrons
qe

F = √
2/rs. The energy and density are measured in units of

Ex and a−2
x , respectively.

The last term in (49) is the correlation energy which is
determined by the function I (q)

I (q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

√
2

πrs
q + 21/4

r3/2
s ν

1/2
e η

1/2
e

q3/2 − 2(π−1)
πr2

s νeηe
q2,

+ 3
25/4r5/2

s ν
3/2
e η

3/2
e

q5/2 + r2
s ν2

e η2
e −16

12
√

2πr3
s ν2

e η2
e
q3, q � 1,

−ηe
(
νe − 1

2

)
q−3, q � 1.

(50)
In the intermediate region 1 � q � 3, we smoothly match the
asymptotics (50) by a line segment [26,27]. The correlation
energy is given by the formula (3) with the matching points q1

and q2 by substituting the corresponding coefficients from the
asymptotics (50).

In the multivalley case (νe � 1), q1 ≈ 2
√

2 and q2 ≈
(3πrsνeηe/2)1/3. Whence we get the lower bound for the
correlation energy

Ee
corr � −

(
12

π

)1/3

η1/3
e n1/3

e . (51)

Let be analyze the possibility of the metal-insulator tran-
sition in the equilibrium case in the model 2D multivalley
semiconductor at zero temperature. We use the estimate for
the correlation energy (51) and neglect the contribution of the
exchange energy to the ground state energy of the electron
gas (49). Then the density corresponding to the minimum of
Egs is

ne0 = 2

3π2
η2

eν
3/2
e (52)

and this minimum is equal to

Ee
0 = − 4

3π
ηeν

1/2
e . (53)
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To achieve the maximum effect of the band gap renor-
malization, we consider the region near the minimum of the
ground state energy. For a large number of valleys, the density
ne0 ∝ ν3/2

e is high and the exciton binding energy at such a
density turns out to be negligible. Then the criterion for the
transition (48) is rewritten as

E (0)
g ≈ |Ee

0 |. (54)

Since the estimate of the correlation energy (51) is a lower
bound, and the contribution of the exchange energy is small,
we can also consider (53) as a lower bound for the electron
gas energy. This means that the criterion for the transition is
represented in the form of the inequality

E (0)
g � 4

3π
ηeν

1/2
e , (55)

or the same inequality can be understood as a lower limit on
the number of valleys

νe �
(

3πE (0)
g

4ηe

)2

. (56)

We can estimate the characteristic value of the quantity on
the right-hand side of the inequality (56) using parameters of
the heterostructure MoS2/SiO2 E (0)

g = 2.17 ± 0.04 eV [52]
and ηe = 2.16 ± 0.25 (me/m0 = 0.67 ± 0.08 and mh/m0 =
0.6 ± 0.08 [48]). By analogy with EHL [9,21], we take the
experimentally obtained exciton binding energy in the zero-
density limit |Eex| = 310 ± 40 meV [52] as a unit of energy
measurement. We have in these units E (0)

g = 7 ± 1.03. Then
we find νe � 61 ± 34. Obviously, this estimate for the number
of valleys is larger for encapsulated heterostructures because
of the lower binding energy of the exciton. [Using param-
eters of the heterostructure hBN/MoS2/hBN, we find νe �
119 ± 39.]

We see that the obtained lower bound for the number of
valleys required for the transition does indeed correspond to
the multivalley case. However, in real heterostructures based
on TMD, there are only a few valleys. Usually, there are
two valleys at the K points of the Brillouin zone. Valleys
at the � points are populated by intense photoexcitation of
TMD bilayers [42]. There are six of them in the middle of
the 	-K segments. If the spin degeneracy is removed, they
should be counted as 3 (we explicitly take into account in our
formulas the spin degeneration gs = 2). Then we get νe = 8
or νe = 5. Splitting of valleys at K points is also possible
for alloys such as MoxW1−xS2 with equivalent energy valleys
MoS2 and WS2. The maximum number of valleys for TMD
is νe = 10. We also note that most likely we do not reach
such high densities of the electron gas as to descend to the
minimum of the ground state energy. For the parameters of
the heterostructure MoS2/SiO2, we find ne0 
 1014 cm−2 for
νe = 2 and ne0 
 1015 cm−2 for νe = 10.

This indicates the absence of the transition in real het-
erostructures based on monolayers or bilayers of TMD at
zero temperature. The ground state energy of the electron gas
(in absolute value) in them turns out to be even lower than
the obtained above estimates in the multivalley case. This
is a consequence of the substantially large band gap, which
increases as the number of monolayers in the film decreases

FIG. 4. Temperature dependence of the band gap in heterostruc-
ture MoS2/SiO2 with νe = 2 at an electron gas density corresponding
to the minimum of the ground state energy. The initial band gap is
equal to 7. The decrease in the band gap at T = 0 with respect to 7
is the contribution of the density to the renormalization. The orange
point corresponds to the melting temperature of MoS2 (1458 K). The
inset shows the dependence of the ground state energy of the electron
gas on density. The red point corresponds to its minimum.

to one. A shining example of this behavior is the platinum
disulfide mentioned in Sec. I.

When considering an e-h system at a finite temperature, we
recall that in a thermodynamically equilibrium situation, the
chemical potential of electrons in both the conduction and the
valence bands should be the same. This imposes an additional
condition on the chemical potential [31]

μ = −E (0)
g . (57)

The condition (57) with the chemical potential (9) determine
the dependence of the density n on T and E (0)

g .
The chemical potential of the electron gas is written by

analogy with (9)

μe(ne, T ) = T ln

[
exp

(
2πne

ηeνeT

)
− 1

]
− 2

√
2√

πνe

√
ne + ∂

∂ne

(
neEe

corr

)
. (58)

To take into account the effect of temperature in the renor-
malization of the band gap, we should replace Ee

gs(ne) →
μe(ne, T ) in (47). We assume now that we have reached at
T = 0 the density ne0, and then we increase the temperature.
The renormalized band gap is

Eg = E (0)
g + Ee

0 + T ln

[
1 − exp

(
−2πne0

ηeνeT

)]
, (59)

where Ee
0 is the minimum of Ee

gs.
Figure 4 clearly demonstrates, using heterostructure

MoS2/SiO2 as an example, that the contribution of temper-
ature to the renormalization of the band gap turns out to
be small compared to the contribution from the electron gas
density up to 1000 K (in dimensionless units, T ≈ 0.28).
Taking into account the large value of the dimensionless initial
band gap (5–8 for TMD monolayers on the SiO2 substrate and
10–15 for encapsulated heterostructures), it can be confidently
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asserted that the transition under consideration does not also
occur due to an increase in temperature.

VI. RESULTS AND CONCLUSIONS

We have obtained formulas for the ground state energy of
the e-h system. We have found the equilibrium density and
binding energy of the doped EHL. In the multivalley case, we
have derived simple analytical expressions for them. It was
shown that the EHL becomes more compressed and strongly
coupled upon doping with charge carriers with a larger num-
ber of valleys. Estimates have been obtained for the optimal
doping level depending on the ratio of the number of electron
and hole valleys corresponding to the largest increase in the
EHL binding energy. We have also confirmed the band gap
renormalization law �Eg ∝ n1/3 for 2D e-h plasmas.

We have considered the gas-liquid transition in heterostruc-
tures based on TMD monolayers under electron (hole) doping.
The density in the gas phase nG and in the liquid phase nL form
their own bell-shaped curve depending on the doping level δ.
The gas-liquid transition at doping corresponds to a surface in
the space (δ, n, T ). The ratios of the equilibrium parameters
to the critical ones are weakly dependent on δ; therefore, the
critical parameters Tc and nc depend on δ approximately in
the same way as the binding energy |E0| and the equilibrium
density n0 of EHL on δ.

In the multivalley case, we have obtained analytical expres-
sions for the critical parameters of the gas-liquid transition.
We have also obtained temperature dependencies nG(T ),
nL(T ), and μ(T ) in the vicinity of the critical point and at
low temperatures. Formulas are presented with the arbitrary
exponent γ of the density in the correlation energy (γ = 1/3

for 2D systems). They are also applicable to layered systems
for which γ = 1/4. In the case of a finite number of valleys, it
is also possible to calculate the effective γ using the criterion
proposed by us earlier.

We have predicted the trion gas–electron-hole plasma tran-
sition in heterostructures based on TMD monolayers under
electron (hole) doping. This transition takes place in two
stages. At the first stage, with increasing density, trions decay
into excitons and excess charge carriers. At the second stage,
with a further increase in density, excitons decay against the
background of a dense electron (hole) gas.

We have studied the possibility of the metal-insulator tran-
sition in the considered heterostructures in the equilibrium
case due to electron (hole) doping. For definiteness, we have
assumed that carriers is added to the conduction band. The
renormalization of the band gap at T = 0 is determined by
the ground state energy of the electron gas. If the magnitude
of the renormalized band gap becomes close to the binding
energy of an exciton formed in the presence of the dense
electron gas, the band gap abruptly decreases to a certain
negative value (the original semiconductor transforms into a
semimetal). However, our calculations have shown that this
transition turns out to be impossible even in the multivalley
case. Hence, it is impossible in the case of a finite number of
valleys at T = 0. The reason for this is the large initial band
gap in TMD monolayers. The contribution to the renormal-
ization of the band gap from temperature is less than from
the electron density. It can be stated with confidence that

the metal-insulator transition in the equilibrium case is not
realized in the considered heterostructures. This means that no
this type of the breakdown in devices based on them occurs.

We considered a sufficiently dense background electron
gas (high doping levels), which ensures the applicability of
RPA to the problem of screening the Coulomb interaction. We
assumed that the density of the excess electrons coincides with
the density of the photocreated e-h pairs with good accuracy.
Exact equality between them is hardly feasible. If the number
of the excess electrons slightly exceeds the number of e-h
pairs in the system, the exciton line in the photoluminescence
spectrum disappears, while the trion line remains. This is
explained by the fact that almost all excitons managed to
capture an electron, thereby transforming into trions. In the
case of a lack of the excess electrons, a noticeable portion
of excitons still remains: the system contains a mixture of
exciton and trion gases (with a significant predominance of
the latter). Then there are both trion and exciton lines.

Based on our calculations of the exciton and trion energy
dependences on the e-h pair density (typical dependences
Eex(n) and Etr (n) are presented in Fig. 3), we make the
following predictions. In the case of a lack of the excess
electrons, the excitonic and trion lines shift monotonically
towards the continuous spectrum edge. At first, the exciton
line shifts much more than the trion line. The trion binding
energy relative to the exciton, defined as the energy distance
between these lines, increases. However, further, starting from
a certain density value, when the displacement of the exciton
line slows down, this distance begins to shorten, i.e., the trion
binding energy now decreases. At an even higher density
value, when the trion and exciton energies are compared,
the exciton and trion lines merge (in this case, a dynamic
equilibrium is achieved between excitons and trions). Then,
at an even higher density value, only excitons remain, and
the trion line disappears; at the point n = ndm, excitons decay
(they undergo thermal dissociation). In the case of an overage
of the excess electrons, the trion line also monotonically shifts
towards the continuous spectrum edge, and after the point of
equality Eex = Etr, the trion line disappears, and instead of it,
an exciton line broadened due to collisions appears. At the
point n = ndm it disappears.

We separately note that we solved the problem of the trion
gas–electron-hole plasma transition in a formulation where
the photoexcitation of a TMD monolayer is not resonant with
respect to excitons (the photon frequency exceeds the energy
gap in the semiconductor TMD and is significantly distant
from the exciton resonance). This circumstance allows us
not to resort to considering the transformation of excitons
and trions into each other through the mixed exciton-trion
mode [53].

Polaron effects in TMD monolayers are now actively dis-
cussed in the scientific literature. These effects still remain
poorly studied in the case of high densities of both background
electron gas and excitons.

Individual excitons against the background of a dense 2D
electron gas (the number of background electrons is large
on the scale of interexciton distances) can be considered as
stable mobile bosonic impurities immersed in a fermionic
reservoir. The exciton is surrounded by screening electrons,
shifted towards the exciton. This is an attractive polaron. If
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electrons are pushed out of the region near the exciton due to
an exciton-electron interaction, a repulsive polaron is created,
which is a high-energy metastable excitation [54].

In the formulation of our problem there is a requirement for
an approximate number of excess electrons and photoexcited
e-h pairs (excitons) existing at a given moment in time, so
that the e-h system as a whole behaves like a trion gas: each
exciton, on average, captures one electron with the formation
of a trion, X 0 + e → X −. Note that such a system still con-
tains at least a small amount of free charge carriers due to the
fact that not all e-h pairs form excitons, and the formed trions
are also undergo ionization, X − → X 0 + e. In our opinion,
polaron effects in such a system cannot be pronounced, since
there is nowhere for free electrons to come from in sufficient
quantities to form a polaron.

Nevertheless, we note an interesting feature that is inherent
in both the polaron effect and the Coulomb interaction screen-
ing effect considered here. There is a strong dependence of
the exciton resonance blueshift on the electron gas density.
In the first case, such a feature is interpreted as a repulsive
polaron [54], and in the second, it is a direct consequence of a
strong change in Eex(n) at moderately small n.

Physically meaningful and interesting in many aspects of
solid state physics is the question about the emergence of the
Fermi polaron (Suris tetron) in 2D systems [55]. It is a neutral
bosonic excitation consisting of an e-h pair at the Fermi sur-
face in the conduction band associated with the exciton. Thus
the tetron is formed by two electrons above the Fermi surface,
a hole below it and a hole in the valence band. Experimentally,
this state manifests itself as a trion-hole continuum at the blue-
side of the attractive polaron, blueshifting toward the repulsive
polaron as the Fermi energy of the electrons increases [54].

Tetrons were experimentally observed by the nontrion be-
havior of the optical spectrum features of a structure with a
single (Cd,Mn)Te quantum well and Cd0.85Mg0.15Te barriers
for intermediate values of the electron background density
(≈1011 cm−2). The photoluminescence and Raman signals
were recorded at 1.5 K [56]. The photoexcitation intensities
were apparently weak enough for the densities of the e-h pairs
and exciton gas to be significantly less than 1011 cm−2. Let us
recall once again that in our work the density of photoexcited
e-h pairs is considered approximately equal to density of the

excess electrons and we also investigated the properties of the
doped EHL, which is possible, as is known, at sufficiently high
levels of the excitation light intensity.

Due to the weakness of polaron effects in a trion gas,
one can expect a small difference between the tetron energy
Etet and the trion energy Etr (compared to the difference
between Etr and the energy of another neutral four-particle
bound state—biexciton). The latter, generally speaking, in-
volves very complex calculations. We limit ourselves here to
qualitative considerations.

We can assume that with increasing density, Etet(n) repeats
the course of the Etr(n) curve, moving downward in energy
only slightly. The latter, in turn, means that the point of
intersection of Etet(n) with Eex(n) is separated in density n
from the point of intersection of Etr(n) with Eex(n) by a very
insignificant amount, much smaller compared to the density
interval from the intersection point of Etr(n) with Eex(n) to
the point n = ndm. Apparently, it is very problematic to get
experimentally into such a narrow range of densities between
the points of intersection of Etr(n) and Etet(n) with Eex(n),
when trions have already decayed, but tetrons still remain. In
our opinion, observing the transition from the trions + tetrons
state to the excitons + electrons + tetrons state is extremely
difficult. Most likely, a transition will be observed immedi-
ately to the excitons + electrons state, when both trions and
tetrons have already decayed.

Finally, we note that, although we spoke above about the
“intersection points” of energy curves as functions of density
n, this does not mean that the corresponding stages of the
described transition occur only at these points. More pre-
cisely, at these points the transition stages are completed,
and they begin much earlier due to the gradual ionization
of bound states. The system near these points (on the side
of smaller n) should be characterized by the degree of ion-
ization. To calculate it, the diagrammatic approach be can
adapted [57].
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APPENDIX: COEFFICIENTS IN FUNCTION I(q)

Here, we present expressions for the coefficients in the function I (q) for the case σ = 1

a =
√

2(
1 + δ

2

)
πrs

[1 +
√

κ(1 + δ)], b = 21/4(
1 + δ

2

)1/2
r3/2

s ν
1/2
h

,

c = π�(κ, δ) − f1(κ, δ) − f2(κ, δ)(
1 + δ

2

)
πr2

s νh
, d = 3

217/4
(
1 + δ

2

)5/2
r5/2

s ν
3/2
h

(
1 + (1 + δ)2

κ

)
,

f = 1√
2
(
1 + δ

2

)
πr3

s

{
r2

s

12

(
1 + κ

3/2

√
1 + δ

)
− 1

ν2
h

[
f3(κ, δ)

2(1 + κ)2
+ f4(κ, δ)

]}
,

g = 1

1 + δ
2

[
2νh − 1 + 4νh(1 + δ) +

(
2νh − 1

κ

)
(1 + δ)2

]
,
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where the functions are introduced

f1(κ, δ) =
∫ min{

√
1+δ
κ

, 1}

0
arctan

⎡⎢⎣ x

1 + κ

⎛⎜⎝ κ√
1+δ
κ

− x2
+ 1√

1 − x2

⎞⎟⎠
⎤⎥⎦dx,

f3(κ, δ) =
∫ min{ 1+δ

κ
, 1}

0

κ/

√
1+δ
κ

− x + 1/
√

1 − x

1 + x
(1+κ)2

[
κ√

1+δ
κ

−x
+ 1√

1−x

]2 dx,

at 1 + δ < κ (light doping)

f2(κ, δ) =
∫ 1

√
1+δ
κ

arctan

⎡⎢⎣ x
√

1 − x2
(

1 + κ − κx/
√

x2 − 1+δ
κ

)
⎤⎥⎦dx,

f4(κ, δ) =
∫ 1

√
1+δ
κ

x
√

1 − x2

(1 − x2)
(

1 + κ − κx/
√

x2 − 1+δ
κ

)2
+ x2

dx,

�(κ, δ) =
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√

1+δ
κ

+
(

1 − (1 + κ)
√

1+δ
κ(1+2κ)

)
θ
(
κ − 2δ+1+√

5+4δ
2(1−δ)

)
, δ < 1,√

1+δ
κ

, δ � 1;

at 1 + δ > κ (high doping)

f2(κ, δ) =
∫ √

1+δ
κ

1
arctan

⎡⎢⎣ κx√
1+δ
κ

− x2(1 + κ − x/
√

x2 − 1)

⎤⎥⎦dx,

f4(κ, δ) =
∫ √

1+δ
κ

1

κx
√

1+δ
κ

− x2(
1+δ
κ

− x2
)
(1 + κ − x/

√
x2 − 1)2 + κ

2x2
dx,

�(κ, δ) = 1 +
(

1 + δ

κ

− 1 + κ√
κ(2 + κ)

)
θ

(
1

2
(δ − 1 +

√
5 + 6δ + δ2) − κ

)
.

θ (x) is the Heaviside function,

θ (x) =
{

0, x < 0,

1, x > 0.
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