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Orbital-free potential functionals with submillihartree errors for single-well slabs
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Using principles of asymptotic analysis, we derive the exact leading corrections to the Thomas-Fermi kinetic
energy approximation for Kohn-Sham electrons for slabs. This asymptotic expansion approximation includes
crucial quantum oscillations missed by standard semilocal density functionals. Because these account for the
derivative discontinuity, chemical accuracy is achieved at fourth order. The implications for both orbital-free
electronic structure and exchange-correlation approximations are discussed.
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I. INTRODUCTION

Almost all modern density functional theory (DFT) cal-
culations use the Kohn-Sham (KS) scheme [1], where only
the exchange-correlation (XC) energy is approximated as a
density functional [2]. Accuracy comes at the cost of solving
self-consistently the KS equations for the orbitals. However,
the KS kinetic energy, Ts, is also a density functional [2,3].
If it could be approximated with sufficient accuracy, with-
out incurring substantial additional computational cost, one
would bypass the KS equations [4], speeding up every DFT
calculation on the planet. The dream of orbital-free DFT lives
on [5].

Thomas-Fermi (TF) theory [6,7], the original DFT, is
orbital-free, but is too crude for modern calculations. First,
Ts is typically far larger than the XC energy, so a far smaller
fractional error is required. Second, via the Euler equation that
follows from the variational principle [8], the functional
derivative of Ts determines the density, which is typically very
poor [9].

Over the decades, many attempts have been made to con-
struct orbital-free density functional approximations [2,4,10–
12], often aimed at a limited set of circumstances [13]. These
include the original gradient expansion from slowly varying
densities [2,14–16], generalizations of that expansion [13,17],
functionals designed for weakly interacting subsystems such
as water molecules [18], two-point functionals for use in ma-
terials calculations [19,20], and functionals for surfaces [21].

But Lieb and Simon (LS) showed long ago [22,23] that,
in a very specific semiclassical limit, TF theory becomes rel-
atively exact. One approach to the LS limit is to take h̄ → 0,
keeping μ, the chemical potential, fixed. Expanding about this
limit, functionals of the potential have been developed for the
total energy of one-dimensional (1D) problems [24–27]. The
dominant term is given by a TF calculation, while higher-

order terms include not only the gradient expansion but also
oscillating corrections to it, and depend on both the Maslov
[28] indices and whether the system is finite or extended. By
resumming this asymptotic series for a linear half well, the
total energy of 10 noninteracting fermions was found to 33
digits [24].

Here, we demonstrate the capabilities of a potential func-
tional to yield chemical accuracy [errors below 1 millihartree
(mH)] for a three-dimensional slab geometry, with a po-
tential that varies in only one direction. We find excellent
results when the leading correction is added to TF theory,
and chemical accuracy when the next two orders are in-
cluded, providing a systematic, parameter-free approach to
orbital-free calculations. Figure 1 illustrates the deviation of
the kinetic energy from its TF value, for a Pöschl-Teller
(PT) slab with well depth 10. The standard density func-
tional, the gradient expansion approximation (GEA), yields
the smooth gray curve, which averages over the density of
states. Our potential functional (red curve) includes the quan-
tum oscillations characteristic of systems with discrete states,
with errors almost too small to be visible here. These re-
sults are characteristic of any system to which our functional
applies, and it is unlikely any existing orbital-free density
functional can compete. Our calculation (a) shows how the
asymptotic expansion corrects standard semilocal functionals
to account for the derivative discontinuity [29,30], (b) con-
nects the rich field of semiclassical analysis of eigenvalue
problems, including densities of states and the importance of
Maslov indices [31,32], to the construction of approximate
functionals for nontrivial 3D problems, (c) explicitly con-
nects the failures of semilocal functionals for stretched bonds
(symmetry breaking) to the divergence of the asymptotic
expansion [33], and (d) provides insight for creating func-
tionals of chemical accuracy for systems with more general
potentials [34].
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FIG. 1. Slab kinetic energy per unit area vs electron number
per unit area, with the exact (black), gradient expansion (gray), and
asymptotic approximation (red; see text). The TF kinetic energy has
been subtracted from all curves. Cusps, i.e., derivative discontinu-
ities, occur when a new band starts to be filled.

II. BACKGROUND

For any quantum problem, one can consider functionals of
either the potential or the density (thanks to Hohenberg-Kohn
[35]). The KS scheme requires density functionals for the XC
energy, but orbital-free approximations can use either variable
for Ts. The derivation of the gradient expansion of DFT be-
gins with a potential functional approximation (PFA) for a
slowly varying gas [14], and converts it, order-by-order, into a
density functional approximation (DFA) [2]. The lowest order
is Thomas-Fermi theory, which is local in either the density
or the potential. For a slowly varying gas, the procedure is
extended to include second-order gradients in either variable.
The oscillating contributions captured by the PFAs derived
here depend on integrals over the entire system; i.e., they have
no known analog as density functionals.

Before discussing slab PFAs, our main topic in this paper,
we will briefly discuss PFAs in 1D. This will give us the
opportunity to introduce our notation and semiclassical jargon
which may be unfamiliar to nonspecialists. Moreover, for
noninteracting particles, one dimension is special, because the
semiclassical expansion of the eigenvalues can be performed
to arbitrary order (the celebrated WKB expansion [36]). The
relation to DFT was first noted in 1956, when (noninteract-
ing) TF theory was derived by summing WKB eigenvalues
[37]. Lastly we will use 1D quantities to construct our slab
functionals.

Just as in Ref. [24], we define a quantum action as a
function that yields the eigenvalues ε j via [36]

s(ε j ) = j + ν, j = 0, 1, . . . , (1)

where ν is the Maslov index. In this paper we only consider
smooth single potential wells so ν = 1/2. Expanding s in
powers of h̄ yields a series expansion for s in even gradients
of the potential [36]:

s = s(0) + �s(2) + �s(4) + · · · . (2)

We use atomic units (h̄ = me = 1), so energies are in hartrees
and distances are in Bohr radii. In these units the lowest-order

action (also called the classical action) at energy μ is

s(0)(μ) =
∫

dx
pF(x)

π
, (3)

where pF(x) = √
2[μ − v(x)] is the classical momentum of a

particle with energy μ. All spatial integrals throughout this
paper are understood to run only between the classical turning
points satisfying v(±xF ) = μ, as we consider only symmet-
ric single-well potentials v(x). Inserting Eq. (3) into Eq. (1)
yields the familiar WKB eigenvalues found in introductory
textbooks on quantum mechanics [38].

The higher-order corrections are well defined, although
less well known. A useful way of writing them was given in
Ref. [39]. Define

I (μ) =
∫

dx
v′′(x)pF(x)

8π
,

J (μ) =
∫

dx
7v′′(x)2 − 5v(4)(x)pF(x)2

π pF(x)
, (4)

where v( j)(x) = d jv/dx j . I (μ) has a second-order gradient
and J (μ) has fourth-order gradients. Then the next corrections
can be written as

�s(2)(μ) = − I ′′(μ)

3
, �s(4)(μ) = J ′′′(μ)

5760
, (5)

where the derivatives on I and J are with respect to μ. This
particular way of writing the higher-order action terms avoids
dealing with divergences at the turning points (compared to
the forms in Ref. [36]).

The 1D number staircase n(μ) gives the number of eigen-
states below μ:

n(μ) =
∞∑
j=0

�(μ − ε j ), (6)

where �(x) is the Heaviside theta function. In terms of the
quantum action [25]

n(μ) = s(μ) − 〈s(μ)〉, (7)

where 〈y〉 = y − �y + 1/2	 is periodic, oscillating between
±1/2, and �y	 is the integer part of y.

The exact 1D total energy can be written as a potential
functional using the 1D number staircase:

E (μ) = μ n(μ) −
∫ μ

0
dε n(ε). (8)

Using the asymptotic expansion of s in Eq. (2) we can con-
struct the asymptotic expansion of the 1D number staircase.
Later we will use this expansion of n(μ) to construct order-
by-order approximations for our slab potential functionals.
We define the asymptotic expansion approximation (AEA) to
order M (AEAM) as

n(M )(μ) = s(M )(μ) − 〈s(M )(μ)〉, AEAM; (9)

i.e., it includes terms up to Mth order in both the smooth
and oscillating pieces. Because the oscillating contribution
is bounded in the LS limit, where j → ∞ in Eq. (1), it is
typically of lower order than the smooth contribution. Thus
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we define an alternative to AEA, denoted AEA′, as

n(M )(μ) = s(M )(μ) − 〈s(M−2)(μ)〉, AEAM′, (10)

which is easier to calculate and is correct to the same order.
However, any derivative with respect to μ may not be.

We have shown in Eq. (8) how the 1D number staircase
determines the total energy. It also determines the kinetic
and potential energy and the density. If you have n(μ) you
have all the information you need about a system. This is not
surprising since Eq. (6) shows that knowing n is equivalent
to knowing all the eigenvalues. The structure of n(μ), in
particular its oscillatory term, is very interesting. If we ignore
the oscillating term entirely and approximate n(μ) with the
lowest-order action, n(μ) ≈ s(0)(μ), we recover 1D TF theory.
If we use a higher-order action, n(μ) ≈ s(M )(μ), we recover
the 1D GEA to Mth order [15]. Thus TF theory corresponds
to the special case M = 0, without the oscillating contribution.
Here we derive the GEA as a potential functional, but it is
always possible to invert it into the traditional density func-
tional GEA. However, the failure of the GEA, when applied to
finite systems, is well known [40]. In this case (single-well 1D
potentials), we can easily see why the GEA fails: it neglects
the oscillatory term 〈s(μ)〉. By including this term we derive
PFAs which (unlike the GEA) yield the correct asymptotic
expressions. The resulting PFAs are much more accurate, and
they capture the derivative discontinuity. But converting PFAs
into DFAs is much more difficult when these oscillatory terms
are included, and it may not even be possible. The lesson is
clear: the GEA fails to produce correct asymptotics because
it ignores this oscillatory piece. Modern generalized gradient
approximations (GGAs) that change the GEA coefficient [17]
cannot compensate for this missing oscillatory correction in
general, so either their accuracy or their range of applicability
is limited. Restoration of the oscillations is crucial on a path to
a systematic, asymptotically correct expansion of functional
approximations.

III. THEORY

Now we apply this technology to a three-dimensional non-
interacting problem, a slab with a potential profile v(x), but
uniform and infinite in the other two directions. This geom-
etry allows comparison with any existing orbital-free kinetic
energy functional [17]. By choosing a v(x) that is the sum of
two potential wells (a dimer), separated by a distance R, we
mimic certain aspects of more realistic calculations, such as
binding energies as a function of bond lengths in diatomics
[41]. We will only examine symmetric single-well potentials,
v(x) = v(−x), whose derivatives are finite up to at least the
fourth derivative. For simplicity we fix v(0) = 0.

The eigenstates are two-dimensional free-electron bands,
with energies ε j (K ) = ε j + K2/2, where ε j is the jth eigen-
value in the 1D well, and K is the parallel wave vector.
Figure 2 shows the simple shape of the PT slab bands, which
are free-electron-like in the two directions perpendicular to
v(x) and begin at each of the eigenvalues of the 1D well.
The system is a band metal. Summing over parallel directions
in the continuum limit, with double occupation, yields the
number of electrons per unit area from the 1D number

FIG. 2. The eigenvalues of a slab with a Pöschl-Teller well of
depth 6 as a function of the parallel wave vector K .

staircase:

N (μ) =
∫ μ

0

dε

π
n(ε); (11)

i.e., the density of states per unit area, dN/dμ, is simply
proportional to the 1D number staircase. The slab energy (per
unit area) is then

E (μ) = μ N (μ) −
∫ μ

0
dε N (ε). (12)

From now on all energy components are per unit area. Since
N (μ) is completely determined by n(μ) the slab E (μ) is also
completely determined by n(μ). Figure 1 shows its kinetic
contribution. The density of states, dN/dμ, consists of con-
stants (2D uniform gas), with steps up at each ε j . We populate
our slabs with noninteracting KS electrons. Inversion of N (μ)
then yields E (N ), either for the exact functional or any ap-
proximation. The density is never calculated if not needed for
other purposes.

Inserting s(0) and dropping the oscillatory term in Eq. (7),
and then plugging this n(μ) into Eqs. (11) and (12), yields the
familiar (noninteracting) TF theory to lowest order:

NTF(μ) =
∫

dx

3π2
pF(x)3,

ETF(μ) =
∫

dx

3π2

[
3

10
pF(x)2 + v(x)

]
pF(x)3. (13)

Both of these are potential functionals, and the first term in
the energy is the kinetic contribution. As we typically solve
problems for a given N , one inverts to find μTF(N ) and then
ETF(N ) = ETF(μTF(N )).

To extract the density from such a PFA, we take the func-
tional derivative of the energy functional with respect to the
potential while keeping the particle number N fixed:

ρTF(x) = δETF

δv(x)

∣∣∣∣
N

= pF(x)3

3π2
. (14)

We could also use this to eliminate pF(x) from the above
expressions, thereby converting to the usual density functional
approximations. The same equations result from starting with
the kinetic energy as a density functional, and finding the
density by minimizing the total energy for fixed N .
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A principal achievement of this work is the derivation of
the leading post-TF corrections. There is no correction to
first order, but even orders appear to have both smooth and
oscillatory terms, while third order is purely oscillatory. A
full careful derivation, which we will give elsewhere, involves
subtle interchanges of orders of limits to avoid apparent di-
vergences, but a nonrigorous derivation is straightforward.
The smooth contributions in Eq. (7) from s(μ) can be easily
integrated, as they are given by explicit derivatives in Eq. (5).
The subtleties occur in the oscillating contributions. These can
be treated by replacing the integration variable ε in Eq. (11)
with the action itself. The change of variables allows the
integrand to be evaluated by elementary means (as in Eq. (16)
of Ref. [25]), but only if s′(μ) is known as a function of
s(μ). This smooth function can be found, order-by-order, by
expanding for large μ. The resulting expression for the slab
staircase is

�N (2) = − I ′(μ)

3π
+ q

2τ
, (15)

where

τ = πs(0)′(μ) =
∫

dx

pF(x)
(16)

is the classical time to cross the well at energy μ, and

q = 1
12 − 〈s〉2 (17)

is a periodic function of the action, originating from an inte-
gral proportional to the linear term in Eq. (16) of Ref. [25].
The smooth contribution can be isolated by taking τ → ∞.
These smooth terms yield the standard gradient expansion
when converted to density functionals.

The total energy can then be deduced via the same proce-
dure we used to find N (μ), but applied to Eq. (12), yielding

�E (2) = μ�N (2) + I

3π
. (18)

Given an expression for the total energy, one can extract the
potential contribution by taking a derivative with respect to
the magnitude of v(x). We do this order-by-order in the 1D
expressions, and find the slab contribution via

V =
∫ μ

0

dε

π
V 1D(ε), (19)

which can be subtracted from the total energy, to yield

�T (2) = − I

6π
+ πs(0)q

4τ 2
. (20)

These expressions apply to any smooth symmetric v(x) with
one minimum and two turning points. As we illustrate below,
these are the exact asymptotic corrections to TF theory for
such problems. The red curve in Fig. 1 is the AEA2 kinetic
energy.

The process is repeated to find further higher-order terms,
in which the lengthy algebra and careful avoidance of appar-
ent divergences will be reported elsewhere. Here we simply

report the results:

�N (3) = πτ ′

6τ 3
h, �E (3) = μ�N (3) − πh

6τ 2
,

�T (3) = π2s(0)τ ′

4τ 4
h, (21)

where all primes are derivatives with respect to μ and

h = 〈s〉(q + 1
6

)
. (22)

The fourth-order corrections are

�N (4) = J ′′

5760π
+ π I ′′′

6τ 2
q − π2w

2τ 4

[
3
τ ′2

τ
− τ ′′

]
,

�E (4) = μ�N (4) − J ′

5760π
+ 3π2τ ′

2τ 4
w,

�T (4) = − J ′

11520π
+ πq

12τ 2

[
I ′′ + 2πs(0)I ′′′

τ

]

+ π2w

4τ 4

[
3τ ′ + 4πs(0) τ

′′

τ
− 15πs(0)

(
τ ′

τ

)2
]
,

(23)

with w = (7 − 240g)/2880 and

g = 〈s〉2
(
q + 5

12

)
. (24)

We note that our separation of terms into smooth and oscilla-
tory is based on their origin in the derivation, rather than any
process averaging over energy levels.

IV. PÖSCHL-TELLER SLABS

Our next step is to apply these formulas to a spe-
cific problem. Our prototypical well is the Pöschl-Teller
well, with v(x) = D tanh2 x. Such potentials are used in
semiconductor physics [42,43], and yield analytic formu-
las. Here s(0) = √

2Dc, �s(2) = 1/(8
√

2D), and �s(4) =
−1/(256

√
2D3), where c = 1 − √

1 − μ/D. The TF PT par-
ticle number and energies are

NTF =
√

2D3c2

π

(
1 − 2

3
c

)
,

ETF =
√

2D5c3

π

(
4

3
− 3c

2
+ 2c2

5

)
,

T TF = 3

2
(μNTF − ETF). (25)

The second-order contributions from Eqs. (15), (18), and (20)
are

�N (2) =
√

2D

48π
[c (4 − 3c) − 24〈s〉2(1 − c)],

�T (2) = −
√

2D3

192π
[c2(4 − 3c) + 96〈s〉2(1 − c)2]c,

�E (2) = μ

[
�N (2) +

√
2D

96π
(4 − 6c + 3c2)

]
. (26)
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FIG. 3. The PT slab number staircase with D = 6 (black), and its
TF (blue), GEA2 (gray), AEA2′ (orange), and AEA2 (red) approxi-
mations. The lower panel shows the errors in the upper panel.

The third-order corrections from Eq. (21) are

�N (3) = h

6π
,

�E (3) = μ�N (3) − Dh

3π
(1 − c)2,

�T (3) = Dh

2π
c(1 − c). (27)

The fourth-order corrections from Eq. (23) are

�N (4) = 2 − 6c + 3c2

768π
√

2D
,

�E (4) = μ�N (4) +
√

2D

2π
β,

�T (4) =
√

2D

4π

[
β − (1 − c)2q + 24cw

8

]
, (28)

where

β = 24 − 40c + 80c2 − 60c3 + 15c4

7680
+ 3w(1 − c). (29)

Figure 3 shows the number staircase (integrated density
of states) for a given PT slab. The function is rather smooth,
making it difficult to see differences between approximations.
However, there are kinks in the exact curve whenever a new
band begins to be occupied. Both the TF and GEA2 curves
have no such kinks. Figure 3 also plots the errors (defined
as approximate minus exact) in the number staircase of the

FIG. 4. The D = 6 PT slab density of states dN/dμ (black),
and its TF (blue), GEA2 (gray), AEA2′ (orange), and AEA2 (red)
approximations.

various approximations. The TF and GEA2 error curves have
kinks because they are smooth, while the exact curve is not.
The orange curve is AEA2′, which only accounts for the
leading behavior of the oscillating term, while the red curve
is AEA2, which includes the next contribution to the oscillat-
ing term. Their difference becomes negligible for sufficiently
large μ (both are asymptotically correct), but AEA2 clearly
has smaller errors for small μ.

Figure 4 shows the density of states of a particular PT
slab. This is just the derivative of the number staircase given
in Eq. (11) and shown in Fig. 3. Both TF and GEA2 yield
smooth approximations to it, and miss the discrete steps (the
origin of the infamous DFT derivative discontinuity [44]).
Unlike how it is treated in many semiclassical works [31], the
smooth curve is not synonymous with the TF contribution,
as GEA2 makes a small but finite correction. The asymptotic
expansion approximation contains approximate steps, with
approximations to the plateau in between. The exact density
of states jumps discontinuously when μ = ε j , where the ε j are
the exact 1D eigenvalues. Using the definition of the sawtooth
function 〈x〉 = x − �x + 1/2	, we can see that the AEA2′
approximation jumps whenever

s(0)(μ) = j + 1
2 , j = 0, 1, 2, . . . . (30)

This is just the lowest-order WKB quantization rule for a
single 1D well [38]. This means that AEA2′ jumps when
μ = ε

(0)
j , the jth WKB eigenvalue. Similar analysis shows
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TABLE I. Kinetic energy per particle for Pöschl-Teller slabs with D = 2εM and μ = D/2. Here AEAp is the pth-order asymptotic
expansion approximation, GEAp is its analog without oscillating terms, while MGE2 is a generalized gradient approximation (GGA) [17].
The rightmost columns are density functionals evaluated on the exact density. Table IV in the Appendix shows the analogous results for the
total energy.

Errors (mH)

Potential Functionals Density Functionals

M D N T/N TF GEA2 AEA2′ AEA2 AEA4 TF GEA2 MGE2 GEA4

1 12.685 1.293 3.059 −87 −126 −29 −2.74 0.04097 −156 −41 −8 −2
2 36.000 6.525 8.728 −85 −125 −14 −0.92 0.00487 −159 −35 1 −6
3 70.971 18.318 17.233 −85 −125 −9 −0.46 0.00124 −162 −31 7 −7
4 117.599 39.293 28.573 −84 −125 −7 −0.28 0.00045 −164 −28 11 −6
5 175.883 72.075 42.748 −84 −125 −6 −0.18 0.00020 −165 −26 14 −6
6 245.824 119.288 59.757 −84 −125 −5 −0.13 0.00010 −166 −25 16 −6
7 327.422 183.555 79.602 −84 −125 −4 −0.10 0.00006 −167 −24 18 −6
8 420.677 267.500 102.281 −84 −125 −3 −0.08 0.00003 −168 −23 19 −6
9 525.589 373.746 127.795 −84 −125 −3 −0.06 0.00002 −168 −22 21 −5
10 642.157 504.918 156.145 −84 −125 −3 −0.05 0.00001 −169 −21 22 −5

that AEA2 jumps when

s(2)(μ) = j + 1
2 , j = 0, 1, 2, . . . , (31)

which is just the second-order WKB quantization rule from
Eq. (1). Thus AEA2 jumps when μ = ε

(2)
j , the second-order

WKB eigenvalue. AEA2 is much more accurate, as the lower
panel of Fig. 4 shows, because ε

(2)
j is a better approximation

to ε j than ε
(0)
j . The inaccuracies in both second-order AEAs

vanish as μ becomes large. Neither curve is quite flat, but
AEA2 is flatter than AEA2′.

V. NUMERICAL RESULTS

In Table I we report results for a PT slab [45]. We approach
the LS limit by deepening the well while keeping μ/D = 1/2
fixed. Values of D are chosen where a new band begins to
fill at μ = ε j . Figure 6 shows that our approximations are
poorest when μ is close to a 1D eigenvalue, but still beat
the competition. For each PFA, N (μ) is found to the given
order and inverted numerically to yield E [μ(N )] = E (N ).
Here T/N is the exact kinetic energy per particle in hartrees,
but errors are in millihartrees. In this paper errors are defined
as approximate minus exact. The TF PFA error starts at about
3%, and shrinks to less than 0.1%, consistent with the LS
theorem [22,23]. TF is particularly good for our slab, due to
the smoothness of the density in the x direction and uniformity
in the other two (see Fig. 5). The (second-order) gradient
expansion (GEA2) PFA worsens the result, but AEA2 has
much smaller errors, especially for larger D. In fact, errors
are less than a mH for all but the shallowest well.

The right-hand set of columns are DFAs evaluated on the
exact density. Unusually, TF does better self-consistently than
on the exact density [46,47], but GEA2 is improved. The
MGE2 [17] (gradient expansion with coefficient modified to
recover asymptotics of atoms) is better for small wells, but
comparable to GEA2 in the asymptotic limit. GEA4 is better,
but not nearly as good as AEA2. AEA4 is the best approx-
imation and always yields sub-millihartree errors, which are
microhartree for M > 3.

This table only tests one value of μ/D, but similar trends
hold for any value. In Fig. 6, we plot errors for a shallow PT
slab, D = 3, as a function of N , far from the LS limit. Our
second-order approximations are typically better than GEA2
and even MGE2 in this range, and all are beaten by fourth
order. Both this figure and Fig. 1 show that the AEA includes
cusps in the kinetic energy as a function of N , the infamous

FIG. 5. Upper panel: Densities for M = 1 (orange), 2 (blue), 4
(red), and their TF limiting value (black). The areas under the curves
are TF (0.0879), M = 1 (0.0809), M = 2 (0.0854), M = 4 (0.0871).
Lower panel: The deviation of the exact scaled densities from the
scaled TF density. The exact chemical potential is μ and μTF is its
TF approximation.
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FIG. 6. Kinetic energy errors for a shallow PT slab (D = 3). Leg-
end: TF (black), GEA2 (gray), MGE2 (magenta), AEA2′ (orange),
AEA2 (red), AEA4 (blue). Dashed lines denote density functionals
acting on the exact density.

derivative discontinuity that is the source of many errors in
modern DFT calculations [29,30]. Cusps occur when μ = ε j

both exactly and in approximations. The resemblance with
Fig. 9 of Ref. [48] (noninteracting electrons in a Coulomb
potential) is striking.

Figure 5 shows exact densities, from Table I, and their TF
approximation. We scaled the densities so that the TF density
is the same for all values of M. As M increases we approach
the semiclassical limit and these densities weakly approach
their TF counterpart. Because the chemical potential (relative
to well depth) is held fixed but the particle number is not
(unlike in Fig. 2 of Ref. [49]), the normalization changes, but
approaches that of TF in the LS limit. The lower panel simply
shows the differences from the TF curve, making the weak ap-
proach to TF evident. Here, weak means that the integral over
any well-behaved function times the exact density approaches
its TF counterpart [50].

VI. ENERGY DIFFERENCES

While it is important to demonstrate the validity of our
expressions on total energies, essentially all useful DFT calcu-
lations are of energy differences, such as ionization potentials

and binding energies of molecules (infinitesimal differences
determine bond lengths and lattice parameters). In the asymp-
totic behavior of ionization potentials of neutral atoms [51],
local exchange in a KS calculation was found to match the
exact result (Hartree-Fock), even capturing variations across
a row of the (very extended) nonrelativistic periodic table.
Moreover, the average over such a row matched that of ex-
tended interacting TF theory.

A. Removal energies

In Table II we calculate electron removal energies (RE) in
two distinct ways. To simulate electron removal in a molecule,
we introduce eRE: the energy per electron to remove 0.5 elec-
trons (each per unit area). In fact μ is the true ionization
potential of a metal, which eRE approaches in the LS limit.
The left-hand errors are those found from energy differences,
in which AEA2 is surprisingly poor. This is because AEA2
for E (N ) has no oscillations (the cusps in Fig. 1 are in T ,
which does). On the other hand, μAEA2(N ) does contain quan-
tum oscillations, as shown in the lower panel, which plots
the exact chemical potential and two approximations to it.
The right-hand side of the table shows much better results
from μAEA2(N ), illustrating the subtleties of derivatives of
the oscillating terms. The derivatives of oscillations are typi-
cally one order larger than those of the corresponding smooth
terms.

Finally, Fig. 7 shows the exact and two approximate energy
curves, each with the TF curve subtracted, as a function of N .
The black curve (exact) is oscillating, as is the blue (AEA4)
approximation. But the red curve (AEA2) contains no oscil-
lations, as the oscillations cancel out of the total energy curve
to second order [which means that EAEA2(N ) = EAEA2′

(N )].
The middle panel in Fig. 7 zooms in on the energy curve in
the region of the particle number corresponding to μ = D/2,
marked by the vertical line. Clearly the oscillations play a
large role in the energy change if you remove 1/2 an electron
when μ = D/2. The red curve yields a very poor approxi-
mation to this energy difference. The exact energy satisfies
E ′(N ) = μ, but dEAEA2/dN yields a poor approximation
to the chemical potential. Instead we derive μAEA2(N ) by

TABLE II. The removal energies, eRE, and the chemical potentials for the slabs of Table I. The GEA2, AEA2′, and AEA2 total energy
PFAs, as functions of N , are identical and thus yield the same eRE values.

Errors (mH)

eRE μ

M eRE μ TF AEA2 AEA4 TF AEA2′ AEA2 AEA4

1 5.557 6.342 −63 −3 0.185 −242 −41 0.010 −0.0011911
2 17.607 18.000 −172 −131 0.296 −239 −21 0.013 −0.0001006
3 35.224 35.486 −204 −166 0.159 −238 −14 0.009 −0.0000218
4 58.603 58.799 −217 −180 0.095 −237 −11 0.006 −0.0000072
5 87.784 87.941 −224 −187 0.062 −237 −9 0.004 −0.0000030
6 122.781 122.912 −227 −191 0.044 −237 −7 0.003 −0.0000015
7 163.599 163.711 −230 −194 0.033 −237 −6 0.003 −0.0000008
8 210.240 210.339 −231 −196 0.025 −237 −5 0.002 −0.0000005
9 262.707 262.794 −232 −197 0.020 −237 −5 0.002 −0.0000003
10 321.000 321.079 −233 −198 0.016 −237 −4 0.001 −0.0000002
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FIG. 7. Upper panel: The exact energy (black) and its AEA2
(red) and AEA4 (blue) approximations (with the TF energy sub-
tracted), for the M = 5 PT slab in Table I. The middle panel shows a
zoomed-in view of the upper panel. The gray line marks the particle
number we examined in Table I. Lower panel: The exact chemical
potential for a PT slab with D = 10 (black), dEAEA2/dN (red), and
μAEA2(N ) (magenta). We have subtracted the TF value from all
curves.

inverting NAEA2(μ). The blue AEA4 curve will clearly yield
almost exact answers.

B. Binding energies

Our last test is the most stringent. We consider the sum
of two identical PT slabs (the PT dimer), each of well
depth D = 3, as a function of their separation, R, to mimic
the binding energy curve of a molecule. From 0 to Rc =
2 asech

√
2/3 = 1.31696 the depth of each dimer is given by

D = 6 sech2(R/2) and there is a single minimum. Beyond Rc,
there is a double well and the formula for the total well depth

FIG. 8. Several PT dimer potentials made from two PT slabs
(each with D = 3) at various separations: R/Rc = 0, 0.5, 1, 3 (black,
blue, magenta, red), where Rc = 2 asech

√
2/3 and v(±∞) = 0.

becomes more complicated (see Fig. 8). We keep N fixed
throughout. Table III shows the result. For R � Rc, our results
for energy differences are similar to, but less accurate than,
those for total energies in Table I, with AEA4 still yielding
chemical accuracy. Figure 8 shows various potentials of the
PT dimer slabs as a function of their separation, given in units
of the critical separation (Rc) at which the second derivative
of the midpoint potential vanishes. Beyond this critical value,
there are two wells, and our derivation of the semiclassical
asymptotic expansion no longer applies.

C. Delocalization error

While AEA4 yields chemical accuracy for any R � Rc, it
fails to do so beyond Rc. This may be because a different, more
complicated asymptotic expansion applies, one that accounts
for the additional turning points below μ (there are still only
two turning points at μ). The Rc < R error in AEA2 remains
below that of R = 0, although it is also growing slightly. This
is characteristic of an asymptotic expansion and presumably,
for R sufficiently large, AEA2 would fail. Eventually for R
very large, as the transition to four turning points at μ is
approached, even TF should fail. This is highly analogous to
the situation for XC [48], but beyond the scope of the present
work.

VII. CONCLUSIONS

Our PFAs are the asymptotic expansion in h̄ of the en-
ergy to a given order, derived directly from the Schrödinger
equation. Unlike any DFAs in use today, they are the cor-
rect generalization of the gradient expansion (as a PFA) to
finite systems. Our results bring the proof of principle from
earlier 1D studies closer to realistic orbital-free electronic
structure calculations. The leading terms in the semiclassical
AEA achieve much greater accuracy than modern orbital-free
DFAs, and their quantum oscillations capture derivative dis-
continuities. However, our results are limited to homogeneous
slabs with only two turning points.

For such homogeneous slab calculations, our PFAs can
be tested immediately. With any existing KS code and XC
choice, find the self-consistent solution, and then test our
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TABLE III. The kinetic binding energies, T − 2TA, for a series of PT dimer slabs with 3/π electrons per unit area. T is the exact kinetic
energy and TA is the kinetic energy of an isolated PT slab (D = 3). All approximations are defined as in Table I. We give more energy tables
for these dimers in the Appendix.

Errors (mH)

Potential Functionals Density Functionals

R/Rc T − 2TA TF GEA2 AEA2′ AEA2 AEA4 TF GEA2 MGE2 GEA4

0 0.792 27 28 32.2 6.1 −0.177 −23.8 −11 −7 −12
0.1 0.784 28 30 32.1 6.1 −0.179 −23.0 −11 −7 −12
0.2 0.760 31 34 31.7 6.2 −0.186 −20.6 −10 −7 −12
0.25 0.743 33 37 31.4 6.3 −0.191 −18.8 −10 −7 −12
0.3 0.722 35 41 31.0 6.2 −0.197 −16.8 −9 −7 −12
0.4 0.672 38 48 30.0 6.1 −0.211 −11.8 −8 −7 −11
0.5 0.613 41 55 28.5 5.7 −0.219 −6.0 −6 −7 −10
0.6 0.547 43 60 26.6 5.0 −0.204 0.2 −5 −6 −9
0.7 0.477 42 63 24.4 4.1 −0.141 6.5 −2 −5 −8
0.75 0.441 41 64 23.3 3.7 −0.083 9.4 −1 −4 −7
0.8 0.406 40 64 22.2 3.2 −0.001 12.3 0 −4 −6
0.9 0.337 35 62 20.1 2.5 0.251 17.3 2 −3 −4
1 0.271 30 59 18.4 2.1 0.644 21.3 3 −2 −3
1.1 0.211 24 54 17.2 2.2 1.191 24.0 4 −2 −2
1.2 0.157 18 48 16.8 2.8 1.876 25.3 4 −2 −1
1.25 0.133 15 45 16.8 3.4 2.253 25.5 4 −2 −1

PFAs by feeding them the KS potential. Pseudopotentials are
smoother than full potentials, and so are likely to lead to
higher accuracy for a given order. To do this self-consistently,
the XC potential requires the ground-state density. There are
highly accurate PFAs for the 1D density [52–54], which can
be generalized to slabs and then tested for sufficient accuracy.
Otherwise one can extract a PFA density via ρ(x) = δE/δv(x)
for fixed N , a nontrivial derivation when oscillating terms
are included. Alternatively, the Lieb maximization principle,
T [ρ] = sup{E [v] − ∫

ρ v}, where the supremum is over all
potentials [55,56], converts a PFA into a DFA. This nontrivial
derivation for AEA2 has several caveats. Since the AEA is not
variational, such a maximization might not yield useful results
(the bare AEA might need to be generalized). Moreover, the
resulting DFA might be less accurate than the original PFA for
finite systems.

Another interesting area is surfaces. As the interior region
of a slab is broadened, quantum oscillations will become less
relevant, and the AEA should reduce to the Airy-gas [57]
approximation for Ts, and AEA2 should give accurate surface
kinetic energies. As for inhomogeneity in the perpendicular
directions, there are many approximations one could try (e.g.,
application to surface averaged potentials, application in the
direction of the local gradient of the potential, and simple
GGA-type generalizations of AEA expressions) that could
be constrained to recover our results in the uniform limit.
Another exciting area is to generalize the AEA to include
complex turning points when bonds are stretched [58]. This
has not yet been done, even in one dimension. Real turn-
ing points determine the dominant form of the semiclassical
expansion, and complex turning points yield subdominant
corrections to this expansion.

TABLE IV. Same as Table I of the main text, but for the total energy.

Errors (mH)

Potential Functionals Density Functionals

M D N E/N TF AEA2 AEA4 TF GEA2 MGE2 GEA4

1 12.685 1.293 4.312 −192 9.2 0.003781 −156 −41 −8 −2
2 36.000 6.525 12.189 −190 3.1 0.000452 −159 −35 1 −6
3 70.971 18.318 24.005 −189 1.6 0.000115 −162 −31 7 −7
4 117.599 39.293 39.759 −189 0.9 0.000042 −164 −28 11 −6
5 175.883 72.075 59.451 −189 0.6 0.000019 −165 −26 14 −6
6 245.824 119.288 83.082 −189 0.4 0.000010 −166 −25 16 −6
7 327.422 183.555 110.651 −189 0.3 0.000005 −167 −24 18 −6
8 420.677 267.500 142.159 −189 0.3 0.000003 −168 −23 19 −6
9 525.589 373.746 177.605 −189 0.2 0.000002 −168 −22 21 −5
10 642.157 504.918 216.990 −189 0.2 0.000001 −169 −21 22 −5
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TABLE V. Same as Table III of the main text, but showing the total kinetic energies, not the kinetic binding energies.

Errors (mH)

Potential Functionals Density Functionals

R/Rc T TF GEA2 AEA2′ AEA2 AEA4 TF GEA2 MGE2 GEA4

0 1.890 34 −19 11.8 3.1 −0.038 −77 −22 −5.5 −12
0.1 1.882 35 −17 11.7 3.1 −0.041 −76 −21 −5.5 −12
0.2 1.858 38 −13 11.4 3.2 −0.047 −74 −21 −5.6 −12
0.25 1.841 40 −10 11.1 3.2 −0.052 −72 −21 −5.6 −12
0.3 1.821 41 −6 10.7 3.2 −0.058 −70 −20 −5.6 −11
0.4 1.771 45 1 9.6 3.1 −0.072 −65 −19 −5.4 −11
0.5 1.711 48 8 8.1 2.6 −0.080 −59 −17 −5.0 −10
0.6 1.645 50 13 6.2 2.0 −0.065 −53 −15 −4.3 −9
0.7 1.575 49 17 4.1 1.1 −0.002 −47 −13 −3.4 −7
0.75 1.540 48 17 2.9 0.6 0.056 −44 −12 −2.8 −6
0.8 1.504 47 17 1.8 0.2 0.138 −41 −11 −2.3 −6
0.9 1.435 42 16 −0.3 −0.6 0.390 −36 −9 −1.3 −4
1 1.369 37 12 −2.0 −1.0 0.783 −32 −8 −0.6 −3
1.1 1.309 31 7 −3.2 −0.9 1.330 −29 −7 −0.1 −2
1.2 1.255 25 1 −3.6 −0.2 2.014 −28 −6 −0.2 −1
1.25 1.231 22 −2 −3.6 0.3 2.392 −28 −6 −0.3 −1

Could these techniques be applied to the XC energy? Yes,
but with difficulty. Consider exchange. Our most accurate
results come from fitting highly accurate atomic data for
atoms up to Z = 120, because we lack analytic results [59].
Asymptotic expansions must be found for the double sum
in the exchange energy, and one also needs the semiclassical
expansion for the KS density matrix with real turning points
[60]. A computational nirvana might be reached [24] if we
could overcome that one difficulty.

More rigorous derivations, exact results for PT slabs, and
limiting cases will appear in future work.
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APPENDIX: TABLES OF ENERGIES

This Appendix contains tables that supplement those in the
main text.

Table IV shows the total energies (not just the kinetic
energies) of the calculations in Table I of the main text. In
this case, any functionals evaluated on the exact density in-
clude the exact potential energy by construction. Just as in the

TABLE VI. Same as Table III of the main text, but with the total binding energy.

Errors (mH)

Potential Functionals Density Functionals

R/Rc E − 2EA TF AEA2 AEA4 TF GEA2 MGE2 GEA4

0 1.174 −39 −8.1 0.14 −23.8 −11 −7.1 −12
0.1 1.162 −39 −8.2 0.14 −23.0 −11 −7.1 −12
0.2 1.127 −36 −8.5 0.14 −20.6 −10 −7.2 −12
0.25 1.100 −34 −8.6 0.14 −18.8 −10 −7.2 −12
0.3 1.068 −32 −8.7 0.14 −16.8 −9 −7.2 −12
0.4 0.988 −27 −8.7 0.13 −11.8 −8 −7.0 −11
0.5 0.887 −21 −8.3 0.10 −6.0 −6 −6.6 −10
0.6 0.767 −13 −7.4 0.04 0.2 −5 −5.9 −9
0.7 0.630 −6 −6.0 −0.04 6.5 −2 −5.0 −8
0.75 0.556 −2 −5.1 −0.09 9.4 −1 −4.5 −7
0.8 0.479 2 −4.2 −0.14 12.3 0 −3.9 −6
0.9 0.315 9 −2.3 −0.23 17.3 2 −3.0 −4
1 0.143 15 −0.5 −0.28 21.3 3 −2.2 −3
1.1 −0.036 19 0.7 −0.29 24.0 4 −1.8 −2
1.2 −0.217 22 1.3 −0.21 25.3 4 −1.8 −1
1.25 −0.309 22 1.2 −0.12 25.5 4 −1.9 −1
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TABLE VII. Same as Table III of the main text, but with the total energy. We fix the center of each well at 0: v(0) = 0.

Errors (mH)

Potential Functionals Density Functionals

R/Rc E TF AEA2 AEA4 TF GEA2 MGE2 GEA4

0 2.845 −99 −7.2 0.15 −77 −22 −5.5 −12
0.1 2.833 −98 −7.3 0.16 −76 −21 −5.5 −12
0.2 2.798 −95 −7.6 0.16 −74 −21 −5.6 −12
0.25 2.772 −94 −7.7 0.16 −72 −21 −5.6 −12
0.3 2.740 −92 −7.8 0.16 −70 −20 −5.6 −11
0.4 2.659 −86 −7.8 0.15 −65 −19 −5.4 −11
0.5 2.558 −80 −7.4 0.12 −59 −17 −5.0 −10
0.6 2.438 −73 −6.5 0.06 −53 −15 −4.3 −9
0.7 2.301 −65 −5.1 −0.03 −47 −13 −3.4 −7
0.75 2.227 −61 −4.3 −0.07 −44 −12 −2.8 −6
0.8 2.150 −57 −3.3 −0.12 −41 −11 −2.3 −6
0.9 1.986 −51 −1.4 −0.21 −36 −9 −1.3 −4
1 1.814 −45 0.4 −0.26 −32 −8 −0.6 −3
1.1 1.636 −40 1.6 −0.27 −29 −7 −0.1 −2
1.2 1.454 −38 2.1 −0.19 −28 −6 −0.2 −1
1.25 1.362 −37 2.1 −0.10 −28 −6 −0.3 −1

self-consistent TF calculation, we expect errors on (some ver-
sion of) self-consistent densities to be larger.

Tables V, VI, and VII supplement Table III of the main
text, showing total kinetic energies of the PT dimer slabs, not

just binding energies, so that approximations cannot benefit
from cancellation of errors between the PT dimer slabs and
the separated “atomic” slabs. We also give the corresponding
total energy and binding energy.
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