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We study a Su-Schrieffer-Heeger electron-phonon model on a square lattice by means of auxiliary-field
quantum Monte Carlo simulations. The addition of a symmetry-allowed interaction permits analytical integration
over the phonons at the expense of discrete Hubbard-Stratonovich fields with imaginary-time correlations. Using
single-spin-flip and global updates, we investigate the phase diagram at the O(4)-symmetric point as a function
of hopping t and phonon frequency ω0. For t = 0, where electron hopping is boson assisted, the model maps
onto an unconstrained Z2 gauge theory. A key quantity is the emergent effective flux per plaquette, which equals
π in the assisted-hopping regime and vanishes for large t . Phases in the former regime can be understood in
terms of instabilities of emergent Dirac fermions. Our results support a direct and continuous transition between
a (π, 0) valence bond solid (VBS) and an antiferromagnetic (AFM) phase with increasing ω0. For large t and
small ω0, we find finite-temperature signatures, a disordered pseudogap phase, of a previously reported (π, π )
VBS ground state related to a nesting instability. With increasing ω0, AFM order again emerges.
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I. INTRODUCTION

One of the most fundamental interaction channels in the
solid state is the coupling between lattice vibrations (phonons)
and conduction electrons. In a Fermi liquid with a coherence
temperature orders of magnitude greater than the Debye fre-
quency, electron-phonon coupling leads to a retarded and net
attractive interaction. The Cooper instability of Fermi surfaces
promotes superconductivity [1,2]. However, electron-phonon
coupling does not always lead to superconductivity. Notably,
in one dimension (1D), where 2kF nesting is generic, it
triggers a Peierls charge-density-wave (CDW) instability. In
two-dimensional (2D) systems, nested Fermi surfaces lead to,
e.g., (π, π ) valence bond solid (VBS) or antiferromagnetic
(AFM) order [3,4].

Here, we investigate if a symmetry-allowed generalization
of the Su-Schrieffer-Heeger (SSH) model [5] on a square
lattice can host exotic phases and quantum phase transitions.
This question has previously been answered affirmatively for
a spinless 1D SSH model, which exhibits instances of 1D
deconfined quantum criticality [6–9].

From the original perspective of electron-phonon coupling,
the phonon-mediated modulation of the direct hopping t in
the SSH model has to be small [5]. However, we can take a
more general view by also considering the regime of small
(vanishing) t , where electronic hopping is partially (exclu-
sively) phonon assisted. Related fermion-boson models have
been put forward to describe the motion of holes in an anti-
ferromagnetic background [10,11]. Similar to Ref. [12], our
model includes an additional electronic interaction term cor-
responding to the square of the hopping. Both models, with
and without symmetry-allowed interaction term, do not suffer
from the negative sign problem in auxiliary-field quantum
Monte Carlo (QMC) simulations. However, the additional
term allows us to integrate out the fermions at the expense of

a retarded interaction between discrete auxiliary fields. This
results in a reduced autocorrelation time in the studied param-
eter regimes, as compared to the direct sampling of the phonon
fields. We used an implementation of the finite-temperature
auxiliary-field QMC algorithm [13–16] from the Algorithms
for Lattice Fermions (ALF) package [17].

The main results are summarized by the very rich phase
diagram in Fig. 1. At t = 0, our model maps onto an un-
constrained Z2 lattice gauge theory [18–20]. In this limit, a
π flux per plaquette and associated Dirac fermions emerge.
Importantly, the t = 0 physics is adiabatically connected to
a t > 0 region where the flux remains negative, in which we
observe dynamically generated mass terms corresponding to
(π, 0) VBS and AFM phases. The latter are separated by an
apparently direct and continuous phase transition interpreted
as a deconfined quantum critical point (DQCP) [6,21]. At
large t , the π flux vanishes and previous studies [3,4,22–24]
suggest the ground state at small ω0 to be a (π, π ) VBS state.
At the temperatures considered here, we instead observe a
pseudogap phase of fluctuating dimers.

The paper is organized as follows. In Sec. II, we define
the model and discuss its symmetries and limiting cases, as
well as previous work. In Sec. III, we describe our numerical
method. In Sec. IV, we present our numerical results, followed
by a discussion and conclusions in Sec. V. We provide four
Appendixes with further details about the method and addi-
tional data, respectively.

II. MODEL AND SYMMETRIES

A. Model

A generic SSH-type Hamiltonian [5,25] with Einstein
phonons takes the form

Ĥ =
∑

b

(−t + gX̂b)K̂b +
∑

b

(
1

2m
P̂2

b + k

2
X̂ 2

b

)
. (1)
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FIG. 1. Sketch of the phase diagram of Hamiltonian (3) as a
function of electronic hopping t and phonon frequency ω0, based
on QMC simulations. It features antiferromagnetic (AFM), valence-
bond solid (VBS), and pseudogap phases. Due to the O(4) symmetry
of the model the AFM phase is degenerate with charge-density-wave
(CDW) ordering and s-wave superconductivity (SC). At small t , we
observe the spontaneous generation of a π flux in each plaquette.
(a) Average flux 〈�̂i〉 as a function of t at ω0 = 2.0, (b) correlation
ratio of the spin susceptibility Rχ,S at (π, π ) (lilac scale), and the
VBS susceptibility Rχ,D(π,0) at (π, 0) (gray scale). Results in (a) and
(b) are for L = β = 8. Here, g̃ = √

2/kg = 2 and λ = 0.5. Since the
correlation ratios in (b) are limited to one lattice size and the cutoff
of the color scale is arbitrary, the numerical values of the phase
boundaries are only a rough estimation.

The first term describes fermion hopping and fermion-phonon
coupling on bonds b = 〈i, j〉 connecting nearest-neighbor
sites i and j, with the hopping operator

K̂b =
∑

σ

ĉ†
i,σ ĉ j,σ + H.c. =

∑
i, j,σ

ĉ†
i,σ (Kb)i, j ĉ j,σ . (2)

Here, (Kb)i, j = 1 if i and j are nearest neighbors and 0 oth-
erwise. The operator ĉ†

i,σ creates a fermion in a Wannier state
centered at site i and with z component of spin equal to σ . We
will keep the notation general enough to allow for the case of
N fermion flavors. However, all numerical results will be for
N = 2, corresponding to electrons with spin 1

2 . The strength
of the bare electron hopping is set by the hopping integral
t , whereas g determines the electron-phonon coupling, which
modulates the electronic hopping. The second term in Eq. (1)
describes bond phonons modeled as harmonic oscillators with
position operators X̂b, momentum operators P̂b, and frequency
ω2

0 = k/m.
Here, we study the slightly different Hamiltonian

Ĥ =
∑

b

(−t + gX̂b)K̂b − λ
∑

b

K̂2
b +

∑
b

(
1

2m
P̂2

b + k

2
X̂ 2

b

)

(3)

on a square lattice with Ns = L × L sites. Compared to
Eq. (1), we include an additional electronic interaction −λK̂2

b
to complete the square and facilitate integration over the
phonons, similar to recent work on the Hubbard-Holstein
model [12]. The additional term does not alter the symmetries
of the model and will therefore also be dynamically generated.

B. Symmetries

For half-filling and a bipartite lattice, the Hamiltonian in
Eq. (3) is invariant under the partial particle-hole transforma-
tion [here, M = (π, π )]

P̂−1
σ ĉ†

i,σ ′ P̂σ = δσ,σ ′eiM·iĉi,σ ′ + (1 − δσ,σ ′ )ĉ†
i,σ ′ . (4)

The fermion parity on site i is given by

p̂i =
N∏

σ=1

(1 − 2n̂i,σ ), (5)

where n̂i,σ = ĉ†
i,σ ĉi,σ is the fermion number operator. The

parity changes sign under transformation (4) and can be used
to detect a spontaneous breaking of particle-hole symmetry.
Because the parity is an Ising-type order parameter, p̂2

i =
1, it supports order at finite temperatures in the 2D case
considered.

Our model further exhibits an O(2N ) symmetry on bi-
partite lattices [3,4]. To prove this, we use the Majorana
representation for the fermions [18,26],

ĉ†
i,σ = 1

2 (γ̂i,σ,1 − iγ̂i,σ,2). (6)

With a canonical transformation ĉ†
i → iĉ†

i on one sublattice,
the hopping operator can be written as

K̂b =
N∑

σ=1

(ĉ†
i,σ ĉ j,σ + H.c.) = i

2

∑
σ

2∑
α=1

γ̂i,σ,αγ̂ j,σ,α, (7)

thereby revealing the O(2N ) symmetry. For the case
N = 2 considered here, the infinitesimal generators of the
O(4) symmetry are the spin operators Ŝi = (Ŝx

i , Ŝy
i , Ŝz

i ) and
the Anderson pseudospin operators η̂i [27], given by

Ŝα
i = 1

2

∑
σ,σ ′

ĉ†
i,σ (τα )σ,σ ′ ĉi,σ ′ , η̂i = P̂−1

↑ ŜiP̂↑. (8)

Here, τα is a Pauli matrix with α = x, y, z. The components
of Ŝi and η̂i fulfill the Lie algebra of the SU(2) group,
[Ŝα

i , Ŝβ

j ] = iδi, j
∑

n εαβγ Ŝγ

i (εαβγ is the Levi-Civita symbol),

and commute among each other, [Ŝα
i , η̂

β

j ] = 0. The Lie al-
gebra of the global O(4) symmetry can be interpreted as
O(4) = SU(2) × SU(2) × Z2, where the additional Z2 sym-
metry corresponds to the partial particle-hole symmetry [18].
This implies that a potential AFM phase is degenerate with
a CDW and an s-wave superconductor (SC). More specifi-
cally applying the partial particle-hole transformation maps
the spin correlator at ordering wave vector q onto the density
correlator at the same wave vector and onto the supercon-
ducting correlator at the shifted wave vector q − M. If the
parity operator acquires a nonzero expectation value due to
spontaneous breaking of the particle-hole symmetry, either the
spin or the charge sector is explicitly chosen. However due to
the nature of QMC simulations the expectation value of the
parity 〈p̂i〉 = 0 is always zero and the correlation function of
the AFM/CDW/SC are exactly degenerate in the whole phase
space. In order to measure a finite value of the parity, a small,
but finite O(4)-symmetry-breaking term is necessary, such as
a Hubbard-U term.
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FIG. 2. VBS phase with (a) (π, 0) ordering and (b) (π, π ) order-
ing with strong effective hopping (−t + gXb) on thick, red bonds and
weak effective hopping on thin, black bonds. Rotating the patterns by
multiples of π

2 yields degenerate states [for the (π, 0) VBS a rotation
by π

2 results in a degenerate (0, π ) VBS state].

C. Limiting cases

1. Adiabatic limit ω0 = 0

In the adiabatic limit ω0 = 0, the phonons can be treated
classically since quantum fluctuations are frozen out. The
problem reduces to finding the phonon field configuration that
minimizes the free energy of the mean-field Hamiltonian

Ĥ =
∑

b

(−t + gXb)K̂b + k

2

∑
b

X 2
b − λ

∑
b

K̂2
b . (9)

The fields Xb are defined as the eigenvalues of the position
operator X̂b|x〉 = Xb|x〉. In Fig. 2 two possible patterns for
the phonon fields are shown. For λ = 0, this model has been
extensively studied (see Sec. II D).

2. Antiadiabatic limit ω0 → ∞
For ω0 > 0, we can integrate out the phonons. In the antia-

diabatic limit ω0 → ∞, the electron-phonon coupling reduces
to an electronic interaction proportional to the square of the
hopping operator [4,18],

Ĥ = −t
∑

b

K̂b −
(

λ + g2

2k

) ∑
b

K̂2
b . (10)

In this work we only consider λ > 0, such that the additional
electronic interaction has the same sign as the effective inter-
action in the antiadiabatic limit. For N = 2 (i.e., spin 1

2 ), it can
be rewritten in terms of the generators of the O(4) symmetry,

− 1
4 K̂2

b = Ŝi · Ŝ j + η̂i · η̂ j . (11)

For ω0 → ∞ and g2

2k + λ > 0, the SSH electron-phonon inter-
action hence favors an AFM/CDW/SC ground state [18], as
has been verified for λ = 0 [3,4].

3. Vanishing direct hopping (t = 0)

In the limit t = 0, electronic hopping is phonon mediated
and Hamiltonian (3) simplifies to

Ĥ = g√
2mω0

∑
b

(â†
b + âb)K̂b + ω0

∑
b

â†
bâb − λ

∑
b

K̂2
b .

(12)
Here, we expressed the phonons in second quantization. Equa-
tion (12) has an additional local Z2 symmetry, explicitly

FIG. 3. Single-particle spectral function A(k, ω) of the c
fermions at t = 0. Here, β = L = 14, ω0 = 2.0, g̃ = √

2/kg = 2,
λ = 0.5.

broken at any nonzero t , represented by the local star oper-
ators

Q̂i = p̂i(−1)
∑

δ â†
〈i,i+δ〉â〈i,i+δ〉 (13)

obeying

[Ĥ, Q̂i] = 0, [Q̂i, Q̂ j] = 0, Q̂2
i = 1. (14)

Q̂i captures the fermion parity at site i and the parity of the
phonon excitations on the bonds 〈i, i + δ〉 connected to site i.
Here, δ ∈ {±ax,±ay}. Because we do not impose the Gauss
law on the states of the Hilbert space Q̂i|·〉 = |·〉, Eq. (12)
corresponds to an unconstrained Z2 gauge theory coupled to
fermions.

Bosons and fermions acquire Z2 charge,

{Q̂i, ĉ†
i,σ } = {Q̂i, â†

b} = 0. (15)

At t = 0, Q̂i is a constant of motion, so that these particles
cannot propagate in space:

〈ĉ†
i,σ (τ )ĉ j,σ (0)〉 = δi, j〈ĉ†

i,σ (τ )ĉi,σ (0)〉, (16)

〈â†
b(τ )âb′ (0)〉 = δb,b′ 〈â†

b(τ )âb(0)〉. (17)

In Fig. 3, we show the single-particle spectral function of
the c fermions at t = 0, revealing a gap and the absence of
dispersion. The single-particle gap corresponds to the energy
difference between the low-lying Q̂i sectors.

To capture the physics in this limit, we fractionalize the c
fermion into a Z2 matter field and an f fermion [28]

ĉ†
i,σ = τ̂ z

i f̂ †
i,σ (18)

with the constraint

τ̂ x
i p̂i = 1 (19)

and Pauli matrices τ̂ x
i and τ̂ z

i . The constraint implies that the
Z2 matter field τ̂ z

i carries the Z2 charge and f̂ †
i,σ the quantum

numbers of the electron, namely, its global U(1) charge and
spin. This is in contrast to Refs. [29,30], where a gauge-
invariant (i.e., no Z2 charge) c fermion is replaced by the
product of a Z2-charged f fermion and a slave spin.
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In this representation, the Hamiltonian takes the form

Ĥ = g√
2mω0

∑
b

(b̂†
b + b̂b)K̂ f

b + ω0

∑
b

b̂†
bb̂b

−λ
∑

b

(
K̂ f

b

)2
, (20)

with

K̂ f
b =

∑
σ

( f̂ †
i,σ f̂ j,σ + H.c.), b̂†

b = τ̂ z
i â†

bτ̂
z
j (21)

for b = 〈i, j〉. The constraints can be written as

Q̂i = τ̂ x
i (−1)

∑
δ b̂†

〈i,i+δ〉b̂〈i,i+δ〉 . (22)

Because b̂†
b and f̂ †

i,σ carry no Z2 charge, they can propagate.

In particular, b̂† can condense. The orthogonal fermion repre-
sentation is a good starting point for mean-field theories.

4. Adiabatic limit ω0 → 0 at t = 0

To discuss this limit, it is convenient to return to first
quantization,

q̂b = 1√
2mω0

(b̂†
b + b̂b). (23)

For ω0 → 0, Hamiltonian (20) becomes

Ĥ = g
∑

b

q̂bK̂ f
b + k

2

∑
b

q̂2
b − λ

∑
b

(
K̂ f

b

)2
. (24)

Equation (24) has reflection positivity (see Ref. [31]) for
any line P parallel to the lattice vectors and cutting through
the center of the bonds. Thereby, the flux through a circuit
with lattice sites corresponding to the corners of a plaquette
will take the value π [31]. A circuit is a set of lattice sites
i1, i2, . . . , in, i1 with qim,im+1 
= 0 ∀ m. Hence, if all plaquettes
turn out to define circuits, Lieb’s theorem [31] implies that the
f fermions acquire a Dirac spectrum.

5. Antiadiabatic limit ω0 → ∞ at t = 0

For ω0 → ∞ and t = 0, Eq. (3) becomes equivalent to the
model studied in Ref. [18], describing fermions coupled to
quantum Ising spins. This can be seen by approximating the
phonons as hard-core bosons with the constraint (â†

b)2 = 0
and defining Ising variables

ŝx
b = 2â†

bâb − 1, ŝz
b = â†

b + âb. (25)

D. Previous work

Until recently, most investigations of the 2D SSH model
(1) were based on mean-field treatments or the assumption of
classical phonons (ω0 = 0). The focus was on the true VBS
pattern in the ground state [32–35], the possible existence of
a multimode Peierls state with no well-defined ordering wave
vector [36–38], and the emergence of AFM order from ad-
ditional electron-electron repulsion [33,39–42]. These works
were followed by unbiased QMC investigations on the honey-
comb lattice [43], the Lieb lattice [44], and the square lattice
considered here [3,4,22–24]. On the latter, a unique VBS
ground state with ordering wave vector (π, π ), suggested
by mean-field theory, is well established. Surprisingly, the

SSH model also supports AFM order from electron-phonon
coupling at sufficiently high phonon frequencies [3,4].

III. METHOD

We simulated the modified SSH model (3) using an
auxiliary-field QMC approach. To decouple the electron-
phonon interaction, we first rewrite the Hamiltonian to make
the interaction term a perfect square,

Ĥ = Ĥt + Ĥλ + Ĥph,

Ĥt = −t
∑

b

K̂b, Ĥλ = −λ
∑

b

(
K̂b − g

2λ
X̂b

)2
,

Ĥph =
∑

b

1

2m
P̂2

b +
(

k

2
+ g2

4λ

)
X̂ 2

b . (26)

Using a Trotter decomposition with step size �τ = β/Lτ , the
partition function reads as

Z = Tr e−βĤ = Tr

[(
e−�τ Ĥ

)Lτ

]
,

e−�τ Ĥ = e− �τ
2 Ĥt

(
Nb∏

b=1

e− �τ
2 Ĥλ,b

)
e−�τ Ĥph

×
⎛
⎝ 1∏

b=Nb

e− �τ
2 Ĥλ,b

⎞
⎠e− �τ

2 Ĥt + O(�τ 3) (27)

with Nb = 2Ns the total number of bonds and β = 1/T the
inverse temperature. To preserve the Hermiticity of the Hamil-
tonian, we used a symmetric Trotter decomposition [14,45]. In
Appendix A, we compare this decomposition with an asym-
metric one that breaks the Hermiticity. Electrons and phonons
can now be decoupled with a discrete Hubbard-Stratonovich
transformation [17,46–48]

e
λ�τ

2 (K̂b− g
2λ

X̂b)2

= 1

4

∑
l=±1,±2

γ (l )e
√

�τλ
2 η(l )(K̂b− g

2λ
X̂b) + O[(�τλ)4], (28)

where

γ (±1) = 1 +
√

6/3, η(±1) = ±
√

2(3 −
√

6),

γ (±2) = 1 −
√

6/3, η(±2) = ±
√

2(3 +
√

6). (29)

Since the Trotter decomposition introduces a systematic error
of order �τ 3 [49], we can assume the Hubbard-Stratonovich
transformation to be exact. To evaluate the trace over the
phonons in the partition function we use a path integral in real-
space representation with the eigenstates |xb〉 and eigenvalues
Xb of the position operator,

Z =
∑

{lb,τ,α}

⎛
⎝∏

b,τ,α

γ (lb,τ,α )

4

⎞
⎠ det [1 + B(β, 0)]

×
∫ ∏

b,τ

dXb,τ e− ∑
b XT

b AX b−
∑

b vT
b X b, (30)
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where we used

X T
b = (Xb,1, Xb,2, . . . , Xb,Nτ

),

vb,τ = g

√
�τ

8λ
[η(lb,τ,2) + η(lb,τ−1,1)],

Ak,l = �τ [αδk,l − γ (δk,l+1 + δk,l−1)],

α = k

2
+ g2

4λ
+ m

�τ 2
, γ = m

2�τ 2
. (31)

The index α = 1, 2 is needed as the symmetric Trotter decom-
position produces two Hubbard-Stratonovich decompositions
per time slice and bond. For the electronic part, we rewrite the
trace as a determinant [13],

B(τ1, τ2) =
τ1∏

τ=τ2+�τ

e
�τ
2 t

∑
b Kb

(
Nb∏

b=1

e
√

�τλ
2 η(lb,τ,1 )Kb

)

×
⎛
⎝ 1∏

b=Nb

e
√

�τλ
2 η(lb,τ,2 )Kb

⎞
⎠e

�τ
2 t

∑
b Kb . (32)

We can interpret the matrix A as a tight-binding Hamilto-
nian on a periodic chain with Lτ sites, hopping α, and onsite
potential γ . The eigenvalues of A are

an = �τ (α − 2γ cos νn)

= �τ

[
k

2
+ g2

4λ
+ m

�τ 2
(1 − cos νn)

]
, (33)

with νn = 2π
Lτ

n and 1 � n � Lτ . If k + g2

4λ
� 0, the eigenval-

ues of A can become zero or negative and the integral over
the phonons does not converge. But for λ > 0 the matrix A
is positive definite for the whole parameter range and we can
integrate out the phonons to obtain

Z ∝
∑

{lb,τ,α}

⎛
⎝∏

b,τ,α

γ (lb,τ,α )

⎞
⎠

× exp

{
1

4

∑
b

vT
b A−1vb

}
det[1 + B(β, 0)]. (34)

The summation over the auxiliary fields {lb,τ,α} is done
stochastically with QMC methods employing single-spin-flip
and global updates, which are accepted according to the
Metropolis-Hastings algorithm [50,51]. For the global up-
dates, we randomly choose a rectangular section of auxiliary
fields in the (2 + 1)D configuration space and swap it with
a rectangle of the same size but displaced by Lτ /2 in the
imaginary-time direction.

Additionally, we used a β-doubling method to reduce
warmup times. We started by running a simulation with a
given parameter set for some time with an inverse temperature
β1 smaller than the final value β. Then, we used the last
configuration of this run as a starting configuration for a sim-
ulation with a higher inverse temperature β2, β1 < β2 � 2β1,
identifying η(lb,τ+β1,α ) = η(lb,τ,α ) at the beginning. After two
or three such steps, we reached the final inverse temperature β.

Appendix B contains a comparison of the method de-
scribed here and used for the results with two other methods

that do not involve integrating out the phonons. For the param-
eters considered, the present approach provides a substantial
speedup.

IV. RESULTS

For the simulations, we absorbed k into a renormalization
of the phonon fields, x̃b,τ = √

k/2xb,τ , and set g̃ = √
2/kg =

2, λ = 0.5, as well as �τ = 0.05.
To detect the various phases, we measured imaginary-time-

displaced correlation functions

[SO(q, τ )]μ,ν = 〈Ôμ(q, τ )Ôν (−q)〉 − 〈Ôμ(q)〉〈Ôν (−q)〉
(35)

and corresponding susceptibilities,

χO(q) =
∫ β

0
dτTrSO(q, τ ), (36)

for several observables Ô. The notation is general enough for
correlators with a matrix structure; the scalar case is obtained
by dropping the indices μ, ν. Here, q is a wave vector inside
the first Brillouin zone.

Because of the O(4) symmetry of Hamiltonian (3), the spin
correlator is degenerate with charge and s-wave superconduct-
ing correlation functions (see Sec. II B). Therefore, we focus
on the z component of spin,

Ŝz(q) = 1√
Ns

∑
i

eiq·i(n̂i,↑ − n̂i,↓). (37)

To detect the breaking of particle-hole symmetry, we mea-
sured correlation functions of the parity p̂i [Eq. (5)].
Additionally, we calculated dimer correlations to detect VBS
order that breaks the discrete C4 symmetry of the square
lattice,

�̂μ(q) = 1√
Ns

∑
i

eiq·i�̂i,μ,

�̂i,μ = Ŝσ,ρ (i)Ŝρ,σ (i + aμ), (38)

where

Ŝσ,ρ (i) = ĉ†
i,σ ĉi,ρ − 1

2δσ,ρ. (39)

The vectors aT
x = (1, 0) and aT

y = (0, 1) connect site i to its
nearest neighbors and μ ∈ {x, y}.

We further present results for the correlation ratios

RS,O = 1 − Tr SO(qO + �q)

Tr SO(qO)
, (40)

where |�q| = 2π/L is the shortest wave vector on an L × L
lattice and qO the ordering wave vector of observable O.
The correlation ratio is a renormalization group invari-
ant quantity and takes on values close to zero/one in the
disordered/ordered phase. For the susceptibilities, correlation
ratios can be defined analogously.

The single-particle spectral function A(k, ω), accessible
in angular-resolved photoemission, was calculated from the
imaginary-time Greens function with the stochastic maximum

195154-5



GÖTZ, HOHENADLER, AND ASSAAD PHYSICAL REVIEW B 109, 195154 (2024)

entropy method [52,53] via

〈ĉk,σ
(τ )ĉ†

k,σ
(0)〉 = 1

π

∫
dω

e−τω

1 + e−βω
A(k, ω). (41)

The dynamical structure factors for spins and dimers were
computed from

Tr SO(q, ω) = Tr χ ′′
O(q, ω)

1 − e−βω
, (42)

where the imaginary part of the dynamical susceptibility was
obtained by inverting

Tr SO(q, τ ) = 1

π

∫
dω

e−τω

1 − e−βω
Tr χ ′′

O(q, ω) (43)

with the maximum entropy method [17].
Finally, we also measured observables that depend on

phonon variables, such as the flux operator �̂i. The latter
is defined as the product over the effective hoppings on the
bonds b of an elementary plaquette �i,

�̂i =
∏
b∈�i

(−t + gX̂b), (44)

where i is one of the four corner sites of a plaquette. Because
the phonons were integrated out, such observables are not
directly accessible but require a source term in the action, as
discussed in Appendix C.

Throughout the paper, we have opted for a β = L scaling.
This scaling captures ground-state properties in Lorentz-
symmetric phases, such as the AFM and (π, 0) VBS, and
critical points. As we will see below, both the AFM and (π, 0)
VBS phases correspond to mass terms of emergent Dirac
fermions. These mass-generating symmetry-breaking fields
do not break Lorentz symmetry. In contrast, phases that are
not characterized by Lorentz symmetry will be dominated by
finite-temperature effects.

A. Dynamically generated π flux

We first consider the flux per elementary plaquette
[Eq. (44)] in the t − ω0 plane, shown in Fig. 4. In an electron-
phonon context, gX̂b in Eq. (3) should be a small perturbation
to the bare hopping t . Hence, in this regime, the flux per
plaquette is positive. The ĉ†

i,σ operators create electrons and
the hopping matrix element leads to a (π, π )-nested Fermi
surface. The latter gives rise to instabilities at q = M. Possible
orderings include an AFM phase or a (π, π ) VBS phase, as
observed for λ = 0 [3,4,22–24].

In the opposite, phonon-assisted hopping limit (i.e., at t =
0), our model reduces to an unconstrained Z2 gauge theory
(see Sec. II C 3). The c fermions acquire a locally conserved
Z2 charge and cannot propagate in space, as demonstrated
in Fig. 3. However, gauge-invariant quantities such as the
local spin or local charge can propagate. Hence, the c fermion
corresponds to a so-called orthogonal fermion [54]. To un-
derstand the single-particle physics, we have to adopt the f
fermions [Eq. (18)]. The latter carry no locally conserved Z2

charge, can hop from site to site, and acquire a phase of 0 or π

when circulating around a plaquette. A phase of π is favored
by Lieb’s theorem [31] and confirmed by the numerical results
in Fig. 4.

FIG. 4. Average flux per plaquette 1
Ns

∑
i〈�̂i〉 for β = L = 8. See

also Figs. 5(a) and 17(a) for the flux along the dotted lines (1) and (3)
at fixed t and varying phonon frequency and Figs. 9(a) and 14(a) for
the flux along the dotted lines (2) and (4) at fixed ω0 and varying
hopping.

The generated π fluxes cause the f fermions to acquire
a Dirac dispersion relation [55], which has important con-
sequences for the understanding of the phase diagram. In
particular, we can classify the interaction-generated ordered
states in terms of mass terms that generate a single-particle
gap and break discrete or continuous symmetries [56]. Of
particular importance are the two (π, 0) VBS masses and the
three AFM mass terms, which break the C4 lattice symmetry
and the SU(2) spin symmetry, respectively. The Dirac vacuum
allows for topological terms in the action, which play a key
role in the understanding of DQCPs [21,57,58].

Our symmetry arguments are valid only at t = 0. Beyond
this limit, Q̂i is not a good quantum number and the Z2 charge
is not locally conserved. As a consequence, the c fermions
acquire a dispersion, albeit small for small t . This is visible
from the single-particle spectral functions in Figs. 7(Ia)–7(Ie),
that will be discussed in more detail in the following section.
The lack of dispersion of the c fermions for small values of t
suggests that it is still appropriate to work in the f basis. The
hopping of the f fermions reads as∑

b=〈i, j〉
τ̂ z

i (−t + gX̂b)τ̂ z
j K̂

f
b . (45)

Since (τ̂ z
i )2 = 1, the flux �̂i, [Eq. (44)] shown in Fig. 4 indeed

corresponds to the flux acting on the f fermions. In Sec. IV C,
we will further argue that the free energy is an analytical
function of t at t = 0, so that the t = 0 physics is adiabatically
connected to a region around t = 0 set by the convergence
radius of the series.

As a function of t , Fig. 4 reveals a crossover where the
flux changes sign. To a first approximation, this sign change
does not depend on ω0. As we will see below, it marks the
crossover between a regime that can be understood in terms
of the f fermions with a Dirac dispersion and a regime of c
fermions with a nested Fermi surface.

B. Deconfined quantum critical point

Next, we study a cut along the frequency axis at a
small but finite t = 0.1 that explicitly breaks the local Z2
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FIG. 5. Flux and normalized free-energy derivative with respect
to ω0. Here, t = 0.1, β = L.

symmetry. Figure 5(a) shows the average flux per plaquette as
a function of system size and phonon frequency. The flux stays
negative irrespective of ω0, corresponding to a dynamically
generated π flux in each plaquette. The choice β = L in the
finite-size scaling is motivated by the Dirac band structure of
the f fermions, as discussed below. The pronounced change
of the flux around ω0 ≈ 2.6 suggests the possibility of a phase
transition.

Another observable that carries information about a possi-
ble phase transition is the free energy F . At a fixed electronic
hopping t , its first derivative with respect to ω0 is given by

∂F

∂ω0
= mω0

∑
b

〈X̂ 2
b 〉 − g

2ω0

∑
b

〈K̂bX̂b〉. (46)

Figure 5(b) reports results for this quantity as a function of ω0

and for different L. The data reveal no jumps or kinks on the
scale considered, essentially ruling out a strongly first-order
transition.

In Figs. 6(a)–6(c), we present the correlation ratios of the
spin susceptibility as well as the equal-time parity and dimer
correlation functions. The correlation ratio scales as

Rχ,O = f
(
Lz/β,

[
ω0 − ωc

0

]
L1/ν

)
, (47)

FIG. 6. Correlation ratio for (a) spin susceptibility at M, (b) par-
ity correlation function at �, and (c) dimer correlation function at
X as a function of ω0 for β = L. (d) Equal-time dimer correlation
function in the first Brillouin zone for β = L = 14, ω0 = 2.35. Here,
t = 0.1.

with the dynamical exponent z and the correlation length
exponent ν. Here, we neglect corrections to scaling that will
cause a meandering of the crossing points with increasing L.
Unless indicated otherwise, we used β = L when measuring
correlation ratios. This choice appears to be justified by the
dynamical dimer structure factor [Fig. 7(IIc)] and the dynam-
ical spin structure factor [Fig. 7(IIIc)] close to the presumed
critical point. Both quantities are consistent with a linear dis-
persion relation around the ordering wave vector and hence
with an exponent z = 1. Furthermore, we note that mass terms
in the Dirac equation do not break Lorentz symmetry so that
this scaling remains justified even in the ordered phases.

The spin correlation ratio Rχ,S at wave vector M [Fig. 6(a)]
reveals long-range AFM order at high phonon frequencies.
Simultaneously, the parity correlation ratio shows ordering at
� = (0, 0). By lowering ω0, AFM order disappears but dimer
correlations exhibit a marked increase. The equal-time dimer
correlation function is dominated by four peaks at q = (π, 0)
and equivalent wave vectors [Fig. 6(d)]. The corresponding
correlation ratio at X increases with decreasing ω0 [Fig. 6(c)].

The correlation ratios are consistent with a phase transition
from an AFM state at high phonon frequencies to a (π, 0)
VBS state in a range ωc

0 � 2.4–2.6. Finite-size effects make
a more quantitative analysis difficult. Regarding the nature
of this phase transition, several possible explanations exist.
We cannot exclude a weakly first-order transition. The data
are also consistent with an intermediate coexistence region,
especially since the quality of the results for the dimer corre-
lation ratio is limited by long autocorrelation times. A third
possibility is a direct second-order transition. Because the
AFM and VBS phases break different symmetries, such a
transition falls outside the Ginzburg-Landau paradigm and is
instead a candidate for a deconfined quantum critical point
[6,59].

To obtain better insight in the nature of the phase transition,
we consider spin, VBS, and c-fermion spectral functions. Let
us start with the theoretical expectations in the limit t = 0.
Because the VBS and spin order parameters carry no Z2

charge, they will exhibit dispersive features even for t = 0. In
contrast, the c fermion has a Z2 charge and the correspond-
ing spectral function A(k, ω) = A(ω), as shown in Fig. 3.
At t = 0, the Hamiltonian is block diagonal in Q̂i, which is
a good quantum number. Since ĉ†

i,σ generates a Z2 charge,
it causes changes between different Q̂i sectors. Hence, the
single-particle gap can be understood in terms of the energy
difference between different Q̂i sectors. States such as Dirac
spin liquids, or orthogonal semimetals [18,54,60], would
exhibit gapless excitations in the spin sector, but gapped exci-
tations in the single-particle spectral function. Hence, there is
a priori no relation between the gaps observed in the spin and
the c-fermion sectors.

Signatures of our theoretical expectations for t = 0 are
apparent in Fig. 7, obtained for t = 0.1. As for the case of
t = 0 shown in Fig. 3, the spectral function is essentially
independent of k in Figs. 7(Ia)–7(Ie). Moreover, the dominant
features show very little dependence on ω0, with substantial
spectral weight at �sp � 2.5. In the VBS phase at ω0 = 2.45
[Fig. 7(IIIa)], the dynamical spin structure factor is reminis-
cent of gapped Dirac fermions due to the onset of VBS order.
The spin gap can be read off as �s � 1.5. Since t > 0 violates
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FIG. 7. (Ia)–(Ie) Single-particle spectral function A(k, ω), (IIa)–(IIe) dynamical VBS structure factor SD(q, ω), (IIIa)–(IIIe) dynamical spin
structure factor SS (q, ω), and (IVa)–(IVe) histogram of the VBS order parameter mx and my for different ω0 and t = 0.1, β = L = 14. White
dashed lines in (IIc), (IId), (IIIc), and (IIId) are guides to the eye.

the local Z2 symmetry, a spin wave can decay into two c
fermions. The fact that �s < 2�sp reflects vertex corrections
accounting for electron-hole binding.

For ω0 = 2.45, we have VBS order that breaks the C4

lattice symmetry. The VBS spectral function in Fig. 7(IIa)
shows a sharp mode at ω = 0 and at the ordering wave vec-
tor q = (π, 0) that accounts for the Bragg peak associated
with this order. In Fig. 7(IVa), we show the histogram of
the VBS order parameter with mμ = �̂μ(qμ)/

√
Ns, μ = x, y,

qx = (π, 0), and qy = (0, π ) [61]. We find four peaks along
the x and y axes, reflecting the fourfold degeneracy of the
(π, 0) VBS order parameter.

It is beyond the scope of this work to study the critical
exponents of the purported DQCP. However, DQCPs have a
number of hallmark signatures that can be detected in the
dynamical responses. First, at criticality, the C4 lattice sym-
metry is enlarged to U(1). This symmetry enhancement is
captured by SD(q, ω) in the form of a spectrum with a linear
mode. Comparing Fig. 7(IIa) (deep in the VBS phase) to
Fig. 7(IId) (close to the DQCP), we recognize that the Bragg
peak evolves towards a spectrum with a linear dispersion
relation. Equivalently, the histograms of Figs. 7(IVa)–7(IVd)
reveal that the four-peak structure evolves to a circle upon
approaching the critical point. Similar phenomena have been
observed in Ref. [62].

Another DQCP hallmark is a single, continuous, and direct
transition with emergent Lorentz symmetry. The correspond-
ing theory has a single velocity. Our data are consistent with
this expectation: at criticality, the U(1) velocity in Figs. 7(IIc)
and 7(IId) compares favorably with the spin velocity in

Figs. 7(IIIc) and 7(IIId). Hence, several of the defining prop-
erties of the DQCP are borne out by our results.

In the AFM phase, Figs. 7(IIe) and 7(IVe), we observe a
gap in the dimer correlations, a Goldstone mode in the spin
correlations, and a single central peak in the histogram.

In contrast to models of DQCPs with SU(2) × C4 [62] or
SU(2) × U(1) symmetry [63], our model has an O(4) × C4

symmetry. In the AFM phase, the symmetry is broken down to
U(1) × C4. As we will argue below, this symmetry reduction
occurs in two steps. The parity being a Z2 order parame-
ter, we expect a finite-temperature 2D Ising phase transition
with exponents ν = 1 and η = 1

4 . These exponents yield a
satisfactory data collapse of the parity correlation ratio and
susceptibility in Fig. 8. The collapse of the correlation ratio
yields a critical inverse temperature of βc � 4.5, whereas the
susceptibility data give βc � 4.3. Below the finite-temperature

FIG. 8. Data collapse of (a) the parity susceptibility correlation
ratio and (b) the parity susceptibility using 2D Ising exponents (ν =
1, η = 1

4 ). Here, q = �, t = 0.1, ω0 = 3.5.
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FIG. 9. Flux and normalized free-energy derivative with respect
to t . Here, ω0 = 2.0, β = L.

Ising transition, the symmetry is reduced to SU(2) × SU(2)
and either the odd or even parity sector is spontaneously
selected. Only at T = 0 is the continuous SU(2) symmetry
broken down to U(1).

C. From assisted hopping to phonon-modulated direct hopping

So far, we have focused on the small-t regime of the phase
diagram, where the physics can be understood in terms of
the f fermions with an underlying Dirac dispersion stemming
from dynamically generated π fluxes. We now vary t , and
thereby the ratio of direct to phonon-assisted hopping, at a
fixed phonon frequency ω0 = 2.0.

As previously revealed by Figs. 1 and 4, the flux changes
its sign as a function of t . In Fig. 9(a), we present results for
the flux for different lattice sizes. It varies smoothly, with the
sign changing at t ≈ 0.75. Starting from large values of t , the
flux decreases until it reaches a minimum at t ≈ 0.2 followed
by a slight increase.

The derivative of the free energy with respect to t is given
by the average kinetic energy

∂F

∂t
= −

∑
b

〈K̂b〉. (48)

Results are shown in Fig. 9(b). At t = 0, where the model
has the local Z2 symmetry, the kinetic energy vanishes by
symmetry and only phonon-mediated hopping takes place. We
can expand the free energy around t = 0,

F (t ) = F0 − t2
∫ β

0
dτ

∑
b

〈K̂b(τ )K̂b(0)〉0 + O(t4) (49)

with F0 the free energy at t = 0 and 〈Ô〉0 the expectation value
of an observable Ô with respect to the Hamiltonian with t = 0.
Here, only even powers occur since F (t ) = F (−t ). Hence,
∂F/∂t = −2t

∫ β

0 dτ
∑

b〈K̂b(τ )K̂b(0)〉0 + O(t3). Since the
time-displaced correlation function is positive, ∂F/∂t
decreases linearly with t for small t . This is consistent
with the QMC data. Within the numerical resolution and
for our choice of β = L, ∂F/∂t is smooth as a function of
t . As mentioned above, the analytical behavior of the free
energy around t = 0 implies that the physics at small t > 0 is
adiabatically connected to that at t = 0.

The results for the correlation ratios based on the spin
susceptibility and the parity equal-time correlation function
in Fig. 10 indicate the absence of spin order for all values
of t considered. In Figs. 11(Ia)–11(Ic), we present the dimer
correlation function for t = 0.1, 0.5, and 1.0. For small t ,

FIG. 10. Correlation ratios for (a) spin susceptibility at M and
(b) parity correlation function at �. Here, ω0 = 2.0, β = L.

where π fluxes are dynamically generated, the system is in
the (π, 0) VBS phase. When the hopping is increased, the
dominant peaks at (π, 0) and equivalent wave vectors start to
decrease and the VBS order melts. At t = 1.0, the correlation
function is almost flat.

Although VBS order is suppressed with increasing t , the
single-particle gap remains open, as visible from the single-
particle spectral function in Figs. 11(IIa)–11(IIc). The latter
evolves towards a cosine band structure. The bandwidth is
determined by an effective hopping teff = t − (g/Nb)

∑
b〈X̂b〉

due to the coupling to the phonons. At t = 1.0 and ω0 = 2.0,
we obtain teff = 2.25.

The pseudogap phase at t = 1 corresponds to an O(4)-
symmetric finite-temperature phase. Furthermore, the uniform
spin susceptibility in Fig. 12 supports the existence of a finite
spin gap. We understand this phase in terms of preformed
pairs that will order at lower temperature. At t = 1, a π flux
is absent and the f -fermion picture introduced above is no
longer valid. Instead, we interpret the results in terms of an
instability of an underlying (π, π )-nested Fermi surface. In
this case, and at the mean-field level that becomes exact in
the adiabatic limit, the transition temperature will follow an
essential singularity. Hence, for our choice β = L, we expect
to be above the expected transition temperature, limiting our
ability to draw conclusions about the ground state. Strictly
speaking, a β = L scaling (i.e., z = 1) is no longer justified in
the absence of dynamically generated π fluxes. Using lower
temperatures within the present algorithm is challenging in
this parameter region due to long autocorrelation times. While
it is unclear from the present data which ordering wave vector
is picked up for T → 0 at large t , previous studies [3,4,22–24]
suggest a (π, π )-ordered VBS ground state.

D. Flux crossover within the AFM phase

In this section, we consider a value ω0 = 4.0, for which the
system is in the AFM phase according to Fig. 1. AFM order is
revealed by the correlation ratios in Fig. 13 for the entire range
of hoppings considered, 0 � t � 1. Specifically, long-range
order is visible at wave vector M in the spin sector [Fig. 13(a)]
and at q = � in the parity sector [Fig. 13(b)]. In contrast, the
equal-time dimer correlation ratio excludes the presence of
VBS order at M and X [Figs. 13(c) and 13(d)]. We note that
the AFM phase corresponds to a Lorentz invariant phase, so
that irrespective of a plaquette flux, the adopted β = L scaling
suffices to capture ground-state properties.

Results for the flux as a function of t [Fig. 14(a)] are
qualitatively very similar to those for ω0 = 2.0 [Fig. 9(a)].
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FIG. 11. (Ia)–(Ic) Equal-time dimer correlation function in the first Brillouin zone for β = L = 10. (IIa)–(IIc) Single-particle spectral
function A(k, ω) for β = L = 14. Here, ω0 = 2.0.

The flux and the derivative of the free energy with respect to
t are smooth at the considered resolution of t [see Fig. 14(b)].
Comparison of Figs. 9(b) and 14(b) reveals that the slope
of ∂F/∂t ,

∫ β

0 dτ
∑

b〈K̂b(τ )K̂b(0)〉0, is reduced for ω0 = 4.0.
This is a consequence of the increased gap between different
Q̂i sectors.

A pure Z2 lattice gauge theory supports deconfined and
confined phases separated by an Ising transition at which
fluxes (i.e., visons) proliferate [64–66]. In the AFM phase,
the fermions are bound in particle-hole pairs that carry no
Z2 charge. Hence, the AFM and gauge fluctuations effectively
decouple at low energies, and two AFM phases are possible.
The gauge field is deconfined in the AFM* phase but confined
in the AFM phase. Such transitions have been discussed in
Refs. [20,60].

Because the hopping t explicitly breaks the Z2 symmetry
in our case, the AFM* and AFM phases cannot be strictly
distinguished in the sense that they are separated by a critical
point. Nevertheless, we understand the sign change in the flux
in terms of a proliferation of visons and our data in terms of
an AFM* to AFM crossover.

FIG. 12. Spin susceptibility χS (�) as a function of temperature.
Here, t = 1.0, ω0 = 2.0.

V. DISCUSSION AND CONCLUSIONS

We studied a modified SSH model on a square lattice using
an auxiliary-field QMC approach inspired by Ref. [12]. By
adding a symmetry-allowed electronic interaction, we were
able to integrate out the phonon degrees of freedom in the
whole parameter space. This results in imaginary-time cor-
relations between discrete auxiliary fields, which we sample
with a combination of sequential single-spin-flip and global
updates. In Appendix B, we argue that this discrete field ap-
proach is more efficient than updating the continuous phonon
fields. With this method, we were able to study the phase
diagram of the model as a function of the phonon frequency
and the hopping strength.

In the original electron-phonon context of the SSH model,
the ratio of phonon-assisted hopping to direct hopping has
to be small [5]. However, allowing more general values of
the hopping strength provides a direct route between a model
with dominant direct hopping and a model with dominant

FIG. 13. Correlation ratio of (a) the spin susceptibility at M,
(b) the parity correlations at �, (c) dimer correlations at X , (d) dimer
correlations at M. Here, ω0 = 4.0, β = L.
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FIG. 14. Flux and free-energy derivative with respect to t . Here,
ω0 = 4, β = L.

phonon-assisted hopping. In the limiting case t = 0, the sym-
metry of the model is enhanced by a local Z2 symmetry and it
maps on an unconstrained lattice gauge theory. For any value
of t , the model has a global O(4) symmetry. As a result, an
AFM phase is degenerate with CDW and SC ones, and a
partial particle-hole transformation maps the three AFM order
parameters onto one CDW and two SC order parameters.
These symmetries are also present in the SSH model without
the extra term.

The limit t = 0 is special due to the local Z2 symmetry.
However, since the free energy is not singular, the physics of
t = 0 is representative of larger regions of the phase diagram.
At t = 0, it is convenient to adopt a slave-spin or orthogonal
fermion representation [Eq. (18)], in which the original c
fermion of the SSH model is fractionalized into an f fermion
with electronic quantum numbers and an Ising spin τ that
carries a Z2 charge. Whereas the c fermion is localized, the
f fermions are itinerant and subject to π fluxes dynamically
generated by the phonon degrees of freedom. The fluxes
cause the f fermions to acquire a Dirac band structure. Our
simulations reveal an O(4) symmetric phase [a (π, 0)-VBS
solid] that gives way to states with broken O(4) symmetry
(e.g., the AFM phase) at large ω0. The reduction of O(4) to
SO(4) corresponds to a finite-temperature Ising transition in
which the odd (AFM) or even (CDW/SC) parity sector is
spontaneously chosen. At T = 0, the SU(2) symmetry of the
AFM or CDW/SC is further reduced to U(1).

Our results suggest the transition from the (π, 0) VBS to
the AFM/CDW/SC phase, driven by the phonon frequency,
is continuous. The dynamical VBS structure factor supports
an emergent U(1) symmetry in the sense that it exhibits a
linear dispersion at criticality. Within the uncertainty, the
VBS and spin velocities match at the critical point, as con-
sistent with emergent Lorentz invariance. Finally, the Ising
transition temperature vanishes in the proximity of the crit-
ical point. Overall, our data provide evidence for a DQCP,
albeit in a model with O(4) × C4 symmetry, as opposed to
SU(2) × U(1) [63] or SU(2) × C4 [62]. However, we also
note that other results point toward a weakly first-order
transition [67–70]. This does not impair our results on finite
lattices that exhibit signs of pseudocriticality. Following the
theory of DQCP, the critical point is described by a compact
U(1) gauge theory of spinons. The authors of Ref. [71] argue
that such a state exhibits a Peierls instability since single-
monopole instances become relevant. It is hence intriguing
to repeat our calculations with modified model parameters
so as to lower the value of the critical phonon frequency.

If single-monopole instances turn out to be relevant in the
adiabatic limit, then we expect the transition to evolve to a
strong first-order one.

At small but finite values of t , the local Z2 symmetry holds
only on short timescales. The phases that we observe in this
regime are remarkably similar to those in Ref. [18], where
the local symmetry is exact. This is an encouraging result for
quantum simulations of gauge theories, where it is often hard
to impose the constraint on all timescales. Note, however, that
in the considered parameter range, a spin-liquid phase remains
illusive.

The AFM phase with Lorentz invariant critical fluctuations
(spin waves) observed at large frequencies is robust to the
vanishing of π fluxes at large t . On the other hand, and for
the temperatures considered (β = L), (π, 0) VBS order gives
way to a pseudogap phase. We understand the latter in terms
of thermal fluctuations of the (π, π ) VBS phase observed in
this parameter range at lower temperatures [3,4,22–24]. It has
a spin gap and, due to the O(4) symmetry, identical charge and
spin susceptibilities. A possible interpretation is in terms of
disordered singlets, whose dynamics is expected to manifest
itself as a nonvanishing specific heat.

The remarkable richness of the phase diagram motivates
future investigations. Furthermore, the fact that we have an
efficient discrete-field representation of an SSH-type model
provides the basis for several other directions. For example,
one can add a Hubbard term to break down the symmetry from
O(4) to SO(4). Aside from differences in critical phenomena
(e.g., the absence of a finite-temperature Ising transition), we
expect the phase diagram to remain unchanged and hence
robust to weak O(4) symmetry breaking. Another interesting
direction is doping. In the phases with broken O(4) symme-
try, we conjecture a first-order spin-flop-like transition to a
superconducting state upon doping. The fate of the VBS state
requires numerical investigation.
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APPENDIX A: TROTTER DECOMPOSITION

In this Appendix, we compare the Trotter decomposition
used to obtain the results in the main text with an asymmetric
decomposition scheme. By splitting the exponential of the
Hamiltonian asymmetrically,

e−�τ Ĥ = e−�τ Ĥω0

∏
b

e−�τ Ĥλ,be−�τ Ĥt + O(�τ 2), (A1)

the Hermiticity of the time propagation is lost. The formula-
tion of the partition function in Eq. (34) remains valid if we
drop the summation over the index α and instead define

vb,τ = g

√
�τ

4λ
η(lb,τ−1) (A2)

and

B(τ1, τ2) =
τ1∏

τ=τ2+�τ

(∏
b

e
√

�τλη(lb,τ )Kb

)
e�τ t

∑
b Kb . (A3)

When measuring observables, the results of the decom-
position schemes of Eqs. (27) and (A1) scale with �τ 2.
Naively, one would expect a linear scaling for the asymmet-
ric decomposition, but the term linear in �τ vanishes under
the assumption that all operators in the decomposition and
the observable are real representable, as shown by Fye [49].
However, Fig. 15 shows that the prefactor for the symmetric
decomposition is much smaller than that for the asymmetric
decomposition.

In Fig. 15, we present the average energy 〈Ĥ〉 and the spin
susceptibility χS (M) as a function of the Trotter step size �τ

for both decomposition schemes and for different values of the
electronic coupling strength λ. Surprisingly, for small λ, the
energy does not converge to a finite value as �τ is decreased
[Fig. 15(a)]. We expect that in the limit �τ → 0 the system-
atic error due to the Trotter decomposition scales to zero and
the results of both decomposition schemes extrapolate to the
same value. However, for λ = 0.05, it is not clear to which
value the energy extrapolates. By increasing λ, the results
converge to approximately the same finite value. However,
the energy calculated with the symmetric version converges
faster. Similar behavior is observed for the spin susceptibility
in Fig. 15(b).

FIG. 15. Energy 〈Ĥ〉 and spin susceptibility χS (M) as a function
of the Trotter step size at different λ and for an asymmetric (Sym N)
or symmetric (Sym Y) Trotter decomposition. Here, t = 0.1, ω0 =
2.0, β = L = 6.

APPENDIX B: COMPARISON WITH OTHER
QMC APPROACHES

In this Appendix, we provide a short comparison of our
method with other approaches. First, we compared it to an al-
gorithm that does not make use of integrating out the phonons
and is based on a discrete Hubbard-Stratonovitch decomposi-
tion to decouple the λK̂2

b term

e�τλK̂2
b = 1

4

∑
l

γ (l )e
√

�τλη(l )K̂b . (B1)

The partition function can be written as

Z =
∑
{lb,τ }

⎛
⎝∏

b,τ

γ (lb,τ )

4

⎞
⎠ ∫ ∏

b,τ

dXb,τ det[1 + B(β, 0)]

×e
−�τ

∑
b,τ

[
m
2

(
Xb,τ+1−Xb,τ

�τ

)2+ k
2 X 2

b,τ

]
(B2)

with the matrix

B(τ1, τ2) =
τ1∏

τ=τ2+�τ

(∏
b

e−�τgXb,τ Kb

)

×
(∏

b

e
√

�τλη(lb,τ )Kb

)
e�τ t

∑
b Kb . (B3)

In this case, the stochastic sampling is over the discrete
Hubbard-Stratonovitch fields {η(lb,τ )} and the phonon fields
{Xb,τ }. We used single-spin-flip updates with a Metropolis-
Hastings acceptance-rejection step for both kinds of fields.

Motivated by Ref. [4], we also used a Langevin-based
algorithm for comparison. In order to employ the Langevin
updating scheme, we decoupled the electron interaction with
a continuous Hubbard-Stratonovitch transformation

e�τλK̂2
b = 1√

2π

∫
dφ e− 1

2 φ2−√
2�τλφK̂b . (B4)

In this case, the partition function is given by

Z ∝
∫ ⎛

⎝∏
b,τ

dφb,τ dXb,τ

⎞
⎠ × det[1 + B(β, 0)]

×e
−�τ

∑
b,τ

[
m
2

(
Xb,τ+1−Xb,τ

�τ

)2+ k
2 X 2

b,τ

]
(B5)

with

B(τ1, τ2) =
τ1∏

τ=τ2+�τ

(∏
b

e−�τgXb,τ Kb

)

×
(∏

b

e−√
2�τλφb,τ Kb

)
e�τ t

∑
b Kb . (B6)

For an introduction on the Langevin updating scheme, see
Refs. [72–74] and references therein.

In Figs. 16(a) and 16(b), we compare the local imaginary-
time Greens function G(τ ) and the spin correlation function
SS (q, 0) for all three methods. The results are in good agree-
ment. In general, we noticed a reduction of the autocorrelation
time of several observables if the phonons are integrated out.
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FIG. 16. (a) Local imaginary-time Greens function G(τ ) and
(b) spin correlation function SS (q, 0) in the first Brillouin zone for
L = 4, β = 1.0, t = 1.0, ω0 = 3.0, and �τ = 0.02. (c) Correlation
functions CS (m) and CK (m) as a function of the number of sweeps
m for the same parameters but with simulations performed on a
single core. “Integrated out” means we used the algorithm based
on the partition function of Eq. (34), “not integrated out” refers to
simulations based on Eq. (B2), and “Langevin” to the use of Eq. (B5).

In Fig. 16(c), we compare the autocorrelation time of the
equal-time spin correlation function SS (M, 0) and the average
kinetic energy 〈Ĥt 〉 = −t

∑
b〈K̂b〉 for the methods based on

Eqs. (34) and (B2), respectively. The correlation function is
defined by

CÔ(m) =
∑NBin−m

i=1 (Oi − 〈Ô〉)(Oi+m − 〈Ô〉)∑NBin−m
i=1 (Oi − 〈Ô〉)2

(B7)

with

〈Ô〉 = 1

NBin

NBin∑
i=1

Oi, (B8)

where Oi is the value of the observable in the ith bin and
NBin is the total number of measurements for a single run.
The shorter the autocorrelation time, the faster the correlation
function drops to zero, indicating uncorrelated measurements
after a certain number of sweeps. A sweep is defined here
as visiting every auxiliary field twice and proposing an up-
date with a Metropolis-Hastings acceptance-rejection step.
For Fig. 16, we collected around 6 × 106 sweeps on a sin-
gle core. The correlation functions for the method with the
phonons integrated out need on the order of 10 sweeps to
drop to zero, whereas for the other method on the order of
103 sweeps are required. Comparing the autocorrelation time
with the Langevin method is difficult because the notion of an
update is different.

The method used in the main text can be successfully
used at higher phonon frequencies compared to the Langevin
method because of the negative impact of zeros in the deter-
minant on the latter (see also Ref. [4]).

FIG. 17. (a) Flux and (b) derivative of the free energy with re-
spect to ω0. Here, t = 1.0, β = L.

APPENDIX C: MEASURING PHONON OBSERVABLES

Because we integrated out the phonons in the action,
we cannot directly access observables that are functions of
phonon variables. To circumvent this issue, we introduced a
source term in the phonon action,

S j = −
∫ β

0
dτ

∑
b

jb(τ )Xb(τ ) = −
∑
b,τ

�τ jb,τ Xb,τ . (C1)

This allows us to formulate the expectation value of a phonon
displacement operator as the derivative of the action with
respect to the variable j [75,76]:

〈
X̂b1,τ1

〉 = 1

�τ

∂ ln Z

∂ jb1,τ1

∣∣∣
{ jb,τ =0}

= −1

2

∑
τ

(A−1)τ1,τ

〈
vb1,τ

〉
. (C2)

A similar relation holds for the expectation value of the
product of two phonon fields,

〈
X̂b1,τ1 X̂b2,τ2

〉 = 1

�τ 2

1

Z

∂2Z

∂ jb1,τ1∂ jb2,τ2

∣∣∣
{ jb,τ =0}

= 1

2
δb1,b2 (A−1)τ1,τ2 (C3)

+1

4

∑
τ,τ ′

(A−1)τ1,τ (A−1)τ2,τ ′
〈
vb1,τvb2,τ ′

〉
.

APPENDIX D: ADDITIONAL DATA

We consider a fixed value t = 1.0 and vary the phonon fre-
quency ω0. According to Fig. 1, we expect AFM order at large
ω0 and a disordered state (the pseudogap phase) at small ω0.

The average flux remains positive for the parameters con-
sidered, with a maximum near ω0 = 2.5 [Fig. 17(a)]. The

FIG. 18. Correlation ratio for (a) spin susceptibility at M and
(b) parity correlation function at �. Here, t = 1.0, β = L.
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FIG. 19. (Ia)–(Ic) Equal-time dimer correlation function in the first Brillouin zone, (IIa)–(IIc) single-particle spectral function A(k, ω).
Here, t = 1.0, β = L = 14.

derivative of the free energy with respect to the phonon fre-
quency decreases smoothly with increasing ω0 [Fig. 17(b)].

The correlation ratios of the spin susceptibility and the par-
ity equal-time correlation function at the relevant wave vector
(M and �, respectively) indicate ordering at high phonon fre-
quencies and a phase transition at a critical phonon frequency
[Fig. 18].

Figure 19 shows the equal-time dimer correlation func-
tion within the first Brillouin zone at different values of ω0

as well as the single-particle spectral function A(k, ω). The

dimer correlation function shows no ordering wave vector
in the AFM phase and no order develops upon lowering
the phonon frequency. However, with decreasing phonon
frequency, (π, 0) VBS fluctuations grow, thereby signaling
enhanced proximity to the (π, 0)-ordered VBS phase. This
observation is in agreement with the results of Sec. IV C. At
the same time, the gap in the single-particle spectral function
remains open upon crossing the critical phonon frequency.
Spectral weight accumulates around the edges of the gap with
increasing ω0.
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