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Single- and two-particle spectra of a single immobile impurity immersed in a fermionic bath can be computed
exactly and are characterized by divergent power laws (edge singularities). Here we present the leading lattice
correction to this canonical problem by embedding both impurity and bath fermions in bands with nonvanishing
Bloch band geometry, with the impurity band being flat. By analyzing generic Feynman diagrams, we pinpoint
how the band geometry reduces the effective interaction which enters the power laws; we find that for weak lattice
effects or small Fermi momenta, the leading correction is proportional to the Fermi energy times the sum of the
quantum metrics of the bands. When only the bath fermion geometry is important, the results can be extended
to large Fermi momenta and strong lattice effects and cross-validated by analysis of S-matrix eigenvalues. We
numerically illustrate our results on the Lieb lattice and draw connections to various spectroscopy experiments.
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I. INTRODUCTION

A rare example of an analytically solvable quantum prob-
lem is the description of a single immobile impurity embedded
in a Fermi sea [1-4]. Despite many-body appearances, this
problem can be formulated in single-particle language [5-9]:
If the impurity is structureless, then it acts as a time-dependent
scattering potential for the Fermi sea electrons, inducing phase
shifts of the single-particle orbitals. These lead to a vanish-
ing overlap of the Fermi sea ground state with and without
impurity—a phenomenon known as Anderson orthogonality
catastrophe [10]. The resulting impurity spectra feature diver-
gent power laws (edge singularities), whose exponents can be
expressed via the phase shifts at the Fermi level.

Due to its exact solvability, the edge singularity setup can
be a starting point to explore related problems which are unde-
niably many body. One possible direction is to consider heavy
but mobile impurities. The finite mass adds recoil, cutting off
the singularities in the problem [11-18]. For equal masses,
one arrives at the “Fermi-polaron” problem which has gained
enormous traction in the context of ultracold gases and cavity
semiconductor experiments in the past few years [19-21].

Another interesting route is the modification of edge sin-
gularities due to lattice effects. In previous studies of edge
singularities for lattice models, only the Fermi sea fermions
were subject to specific lattice or trap enviroment [22-24].
Here we propose a new variant of the problem: Both bath
fermions and impurity are placed in bands with nontrivial
band geometry. Such a situation can for instance arise if the
impurity is a single heavy hole created by photoexcitation out
of a flat band. We aim to determine the universal leading
modification of the edge singularities due to (weak) lattice
effects, independent of the concrete lattice of choice.

Nontrivial flat band systems form an ideal breeding ground
for strong-correlation physics, since interactions dominate
over kinetic effects. Typical examples are given by Landau
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levels and modern Moiré materials like TBG [25,26]. Another
venue for generation of flat bands are optical lattices hosting
ultracold atoms, where for instance the Lieb lattice has been
realized [27-30]. While all these systems are most interesting
at generic filling, they are typically inaccessible by controlled
theory. The setup we are considering here is simpler: Kinetic
effects are still quenched, but the single-hole limit provides a
way to get the interactions under control.

Our theoretical starting point is a multiband model with
two active bands, a flat one (termed f band), which is initially
filled, and a dispersive one (termed ¢ band) filled up to the
chemical potential ;. We assume a short-ranged interaction
between f and c particles, which contains overlaps of Bloch
functions (form factors) as a result of the lattice structure. Our
goal is to compute single-hole correlation functions A(v) ~
Im{f" £)(v) and x (v) ~ Im{cf" fc')(v), which describe pho-
toemission spectra (RF spectra in ultracold atom experiments)
or interband absorption spectra, respectively.

In the standard edge singularity scenario, the spectra scale
asA(v) ~ 1)2"‘2’1, x(v) ~ v~2_ where « is the dimensionless
c-f interaction. On the lattice, the form factors come into
play. For small «, the modifications due to form factors can
be treated exactly if only the c-band geometry is of impor-
tance for general band fillings. This can be achieved either by
evaluating Bloch overlaps for generic diagrams, or by com-
puting S-matrix eigenvalues in the Born approximation. If the
f-band geometry is important as well, then the single-particle
character of the problem is lost in general: For instance, a
finite effective mass is generated for the f hole. On the other
hand, the problem can be controlled if the Fermi momentum
kr is small, equivalent to a weak lattice effect: As we show by
diagrammatic analysis, in this case the dominant effect is to
reduce the interaction o, while other effects, such as f-band
mass generation, are subleading. The interaction correction
to o scales as krtr(g/ + g°), where g°, g/ are the quantum
metrics of the respective bands at the c-band minimum. If
the photocreated hole has a momentum |Q| > kp, then the
f-band metric must be evaluated at this momentum. The re-
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duced interaction can be interpreted in terms of the minimal
real-space spread of the wave functions, which cannot be
localized completely due to the Bloch band geometry: There-
fore, the effective scattering potential seen by the ¢ fermions
acquires a finite range, reducing the phase shift at the Fermi
level. We check these results numerically for fermions moving
in a weakly doped Lieb lattice, which contains a flat and
dispersive band with a nontrivial metrics.

While Moiré materials can in principle host the lattice
edge singularity physics, experimental observation might be
challenging due to the insufficient energy resolution of spec-
tral measurements to date. On the other hand, ultracold gas
systems provide both a platform to realize topological flat
bands and also come with a well-developed experimental
toolbox to resolve polaronic spectra. In particular, we expect
the discussed geometrical effects to be observable in RF spec-
troscopy [31,32].

The remainder of this article is structured as follows: in
Sec. IT A, we introduce the general Hamiltonian, and the Lieb
lattice in Sec. II B. In Sec. III, we recapitulate the standard
continuum edge singularities. In Sec. IV, we introduce a band
geometry for the ¢ band, study its impact on photoemission
and absorption-type spectra, and introduce a perturbative for-
mulation of lattice effects in terms of the quantum metric. In
Sec. V, we apply this perturbative treatment to the case where
both ¢ and f bands have a nonvanishing band geometry. In
Sec. VI we discuss the experimental relevance and limitations
of our results and close in Sec. VII by providing a summary
and an outlook. Technical details are relegated to Appendices.

II. SETUP
A. General Hamiltonian

Consider a generic d-dimensional multiband model at T =
0 with two active bands: a flat valence band (f band) and
dispersive conduction band (¢ band). In the band basis, the
kinetic Hamiltonian reads:

Hyin = Z —Eofy i + Zekcick- ey
K

k

We use units such that 7, e = 1, and suppress spins—they
only lead to factors of two which we will reinstall where
needed. Energies are measured from the bottom of the con-
duction band, and we assume that the band gap Ey is the
largest scale in the problem, Ey — oo. As sketched in Fig. 1,
the dispersive band is occupied up to the chemical potential p
(for results on Orthogonality Catastrophe for band insulators,
see [33]). The flat band is filled as well, but these filled f
states are inert. We will study processes where a single hole
is injected in the f band. This can, e.g., be achieved via
photoexcitation in one of two ways: either, a high-energy light
pulse is applied which ejects an f particle from the system
[photoemission, Fig. 1(a)] or the f particle is lifted into the ¢
band [interband absorption, Fig. 1(b)] by irridating light with
an energy = (Ep + w).

Now we include interactions. A general interaction term
involving ¢, f fermions can be written down as

1
Hyy = 3 f drdr T ()W) - HvE)W(r), ((2)

(a) (b)
(¢]
€k €kv
H H >
—E, -E, O
0 K 0 kp k

FIG. 1. Hole creation by photoexcitation. Filled (empty) circles
indicate holes (electrons), the light pulse is indicated by a wiggly
orange line. (a) Photoemission, where the electron is ejected from
the system (shown in gray) (b) Interband absorption, which creates a
hole with momentum > kr.

with field operators

1 .
V()= — U k(1) a, . A3
\/ﬁk,nei{;,c} " )

Here asx = fk, dex = ck, Uk (r) is the normalized cell-
periodic Bloch function and €2 is the system volume. In
momentum space, the interaction becomes

1

o E T T
Hip = 20 VlH‘Kanl,k+qang,k/—qa"3,k/an4»k
ny,na,n3,ny
kK ,q.K

x (n1, k + qng, K)g(no, K — qn3, K) g,  (4)
where

(ni, K|n;, p)g
1

- @@ dd » 2nY ) —iK -1
unit cell vol. /;.C' F Uy, k ()it p(r) exp(—iK - r)

&)

Vq+x is the interaction matrix element in momentum space.
In Eq. (4), k, K/, and q are restricted to the first Brillouin zone,
while K is a reciprocal lattice vector.

The band geometry is encoded in the Bloch factor overlaps
in Eq. (4). To isolate their effects on the edge singularities, we
will simplify the interaction as

Vq+K ~Vy x (SK,(), (6)

dropping the summation over K. That is, we assume that
the interaction in reciprocal space is essentially constant for
the momentum transfers of interest (of order k) but de-
cays quickly enough for momentum transfers on the order
of a reciprocal lattice vector, which allows us to neglect
Umklapp processes. We assume that there is a clear separa-
tion between these scales, which applies in a weak doping
limit. In real space, this implies that the interaction is con-
stant on the scale of a unit cell but decays strongly on
the much larger scale 1/kp. Note that this excludes inter-
actions with an explicit sublattice structure. For a screened
Coulomb-like attraction between the f hole and the ¢ elec-
trons, Vyp > 0; a discussion of edge singularities in the
context of long-ranged Coulomb interactions can be found in
Ref. [34]. To summarize, the most general interaction studied
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in this work reads

1 .
Hin 20 Z Voam,kar'tz,k’a"&k’—qa”%k"'q
ny,np,n3,ny
k.k'.q
x(n, K|ng, k4 q) (n2, K'|n3, k' — q). (7

When a hole is created in a photoexcitation process
[Fig. 1(a)], the measured spectra are determined by the
correlation functions involving ¢, f operators. For the photoe-
mission spectrum Aqg(w) (which can essentially be measured
via RF spectroscopy in ultracold gas experiments [31,32]), the
relevant correlation function is the propagator:

Fo(t) = —i{0IT { fo(1) £,(0)}10)
Aq(w) = Im[Fo(-w)], ®)

where T is a time-ordering operator. In general, |0) is the
interacting ground state; however, in the limit £y — oo we
are interested in, it is equivalent to the noninteracting ground
state with a filled f band. This implies that Fo(t) ~ 6(—t) is
purely advanced when Ey — oo.

For the interband absorption spectrum x (w) [Fig. 1(b)], we
need the interband current-current correlation function,

() = (—i) Y I (k)T ], (ky)

k. k>
X (OIT{fJ2 (t)ck, (t)cli1 (0)fi, (0)}10)
X (0) =—Im[IT(w)], 9)

where the matrix elements of the interband operator can be
expressed as [35]

J2p (k) = (Eo + €x){c. K|dy|f. k), 9, = 0,
:E()(Cak'an'f’ k>7 (10)

and the last approximation holds for large E.

As pointed out in Ref. [35], care needs to be taken when
evaluating optical response for a set of active bands, since
interband current matrix elements scale with the band gap, see
Eq. (10), and higher “passive” bands may therefore contribute
as well. In our case, processes involving active bands lead to
logarithmic singularities when the external frequency is close
to a specific threshold energy. For off-resonant higher-band
contributions, such singularities should not appear, and we
therefore neglect them in the following.

B. Exemplary tight binding model: Lieb lattice

To illustrate our results on a concrete tight binding model,
we will consider the two-dimensional Lieb lattice (see, e.g.,
Ref. [36]), which has already been realized with optical lat-
tices [27-30]. The kinetic part of the Hamiltonian is given by

o t t
Hiiep =—t E ) R4 91.R T d3 g (A1R
R,s=%

! il il
+ it E a3 R4y @2.R+sk +ayp_ 333 R4sy T H.c.,

R,s=+
(11)

FIG. 2. Lieb lattice. (a) Lattice structure; sublattices are indi-
cated by coloring. (b) Band structure for + = 1, = 0.6 (bottom
band is not shown). Momenta are shifted by (7, 7).

where a,, ay, a3 denote operators on sublattices 1, 2, and 3
as indicated in Fig. 2(a). This lattice is characterized by an
exactly flat central band (f band), and two dispersive bands,
with the band gap equal to ¢’ [Fig. 2(b)]. We consider a doped
upper band, calling it the ¢ band. The minimum of the ¢ band
is located at the M point, which we will choose as momentum
space origin for convenience. For ¢’ > 0, the Lieb lattice bands
are characterized by Chern numbers (—1, 0, 1) [36]. While
the f band has a vanishing Chern number, its Bloch functions
uy (k) are strongly varying.

III. RECAP: EDGE SINGULARITIES
FOR TRIVIAL BANDS

To set the stage for evaluation of the spectra Ag(w), x (@)
in the lattice case, we recapitulate the standard continuum so-
lution of the edge singularity problem [1-5,7,19]. It assumes
that the hole is featureless and the momentum dependence
of hole operators can be erased, fx — f. For the conduction
band, the form factors are usually suppressed, and the interac-
tion Hyy is approximated as

1 .
HY = -5 Z voc]L+qck i (12)
k.q

where we have permuted the f operators to ensure that the
interactions are turned on in the presence of holes [37]. Only
c-f interactions are retained in Eq. (12). In particular, interac-
tion terms involving ¢ fermions only are neglected, assuming
that they lead to a renormalization of the ¢ band that can be
absorbed in the bare Hamiltonian. Furthermore, one typically
assumes rotational invariance.

Given that the operator ff' can only take the values 0
when the hole is absent and 1 if it is present, the Hamiltonian
is effectively quadratic, and the evaluation of spectra can be
reduced to solving a time-dependent scattering problem. A
number of exact approaches have been developed to this end,
which rely on the solution of singular integral equations [5,7],
bosonization [6], or the solution of Riemann-Hilbert boundary
value problems [8,9]. The resulting spectra feature divergent
power laws (“edge singularities”), whose exponents are de-
termined by the phase shifts § of conduction electrons on
the Fermi surface. For the momentum-independent (s-wave)
interaction of Eq. (12), one obtains:

A(U) ~ Uz(ﬁ/ﬂ)zfl’

—28/74+2(8 /7 )?

v=ow-—E

x(w)~v v=w—Ey—pu, (13)
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where v is the energy measured from the respective thresh-
old, neglecting perturbative threshold shifts, and nonsingular
dependencies on v. The factor 2 in the exponents which mul-
tiplies the 82 terms (but not the prefactor of the linear term)
comes from spin. Frequencies are measured in units of a UV
cutoff A of order u. The results (13) are is asymptotically
exactas v — 0.

For momentum-dependent scattering potentials, the scat-
tering phase shifts can be defined via the eigenvalues
~exp(i28;) of a (time-independent) S matrix at the Fermi
energy [8,9]. The spectra become

A(v) ~ p2Zi0i/m =1 (14)

AOLD Dt (15)

J

where in the last equation we suppressed the prefactors of
the power laws in the various channels. For a spherically
symmetry potential, the channel indices correspond to angular
momenta [5].

While the nonperturbative solutions are elegant, they are
difficult to generalize to many-body variants of the impurity
problem. Instead, one can take the diagrammatic solution
(which was found first historically [3]) as a starting point. The
Feynman diagrams are organized in powers of an effective
dimensionless coupling constant,

a = pVo, (16)

where p is the density of states at the Fermi level. For ¢ < 1,
the spectra obtained via summation of diagrams read, to the
leading order in o:

A() ~ v 719 (v) (17)
x() ~v7¥0(v) (18)

where § ~ ma for o < 1, such that Eq. (13) agrees with the
weak-coupling result in this limit [the exact functional form
of §(«) depends on dimensionality and UV regularization].

The weak-coupling results can be derived by summing
the leading logarithmically divergent (parquet) diagrams. An
essential fact is that the asymptotic behavior as v — 0 is
dominated by scattering of ¢ fermions close to the Fermi
surface. For A ~ v“z’l, the summation of diagrams is most
easily achieved by applying the “linked cluster” theorem [38],
which states that

F(t) ~ exp [Z Cn(t)i|. (19)

C,(t) can be related to time-dependent Feynman diagrams.
The leading behavior, Eq. (17), derives from the the second-
order diagram shown in Fig. 3(a), which is evaluated
as Go(t) = —a? log(Alt]) as |t| — oo [39]. The evaluation
works with logarithmic accuracy, neglecting O(1) terms when
compared to large logarithms. Fourier transform of exp[C,(¢)]
leads to the result in Eq. (17).

For the derivation of y ~ v~2%, a short-cut as in Eq. (19)
is not available, and the result is computed by solving a set of

—w+k—p
n® g I

FIG. 3. Feynman diagrams that determine the photoemission A
and the interband absorption x. Dashed and full lines correspond
to f (c) particles, respectively, and wavy lines to the interaction.
(a) Left: Leading contribution to the hole propagator C,(¢), which is
exponentiated in the linked cluster approach. Right: Self-energy part
in frequency domain. (b) Leading parquet diagrams that determine
IT(w) up to second order in the interaction.

(b) /\

170

coupled Bethe-Salpeter equations [3]. The first few relevant
diagrams in frequency space are shown in Fig. 3(b); they
reproduce a perturbative expansion [1]:

T (kp ) 2
l'[(v):Z—' (;) lp(aL—a2L2+§a3L3+...)
n

2
-3 W[l — exp(=2aL)], (20)
n

where L = log(|v|/A); x(v) can be derived by restoring the
correct imaginary part of the logarithms via Kramers-Kronig
relations. To the leading order in «, self-energy diagrams or
vertex corrections do not contribute to x.

In the preceding discussion, we have implicitly assumed
the absence of bound states. These can lead to additional
low-energy singularities in the spectra, with associated power
laws that have a form similar to Eq. (13) [7,19]; in this case,
the phase shifts are close to w. To recover these results in a
diagrammatic calculation, the interaction lines in Fig. 3 need
to be replaced by ladders (7" matrices), see, e.g., Ref. [40].
To keep the computations manageable, we will neglect the
effect of bound states, which is justified for sufficiently small
binding energies.

IV. ¢c-BAND GEOMETRY ONLY

In the following, our goal is to relax the assumptions that
lead from H;y, Eq. (7) to Hiilol), Eq. (12), step by step. To begin
with, we keep the hole structureless, but allow for a nontrivial
c-band geometry, using an interaction of the form

1 T
HY = -5 > Voek,qoxf £ e K+ qle k). 1)
k.q

Such an interaction can be appropriate if the ¢ and f electrons
are in fact different particle species, as is the case in typical
polaron-type ultracold gas experiments.

The interaction term (21) also describes a scattering poten-
tial for the ¢ fermions. When the f hole is present, ffT = 1,
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we can rewrite Eq. (21) in single-particle notation as

1
Hy = =2 D Vole o+ ale. K Weierg) (Wek|
k.q

1 ) L o
= _5 Z Voel(k+q)rpl§+qplie_lkr' (22)
k.q

Here W, x = exp(ikt)|k) is the full energy eigenstate (i.e.,
not just the cell-periodic part), f is the position operator, and

= |k)(k| is the projector on the c-band Bloch function
with momentum k. The formulation (22) has the advantage of
being manifestly gauge invariant, and is a convenient starting
point for an analysis of the scattering problem.

Here we will instead follow the Feynman diagram ap-
proach, since it can readily be generalized to the case of
a nontrivial f band as discussed in the later Sec. V. In
Appendix D we show how to recover the same weak-coupling
results via S-matrix analysis using Eq. (22).

A. Single-hole spectrum A

To analyze the single-hole (photoemission) spectrum
A(v) = Im[F(—v)], consider the self-energy part of the
second-order diagram for the hole propagator F' evaluated in
the imaginary frequency domain [Fig. 3(a)]:

dopdw, dk dp
B(-w) = f T ny )l ——= |(kIp)?
X G, K)G(wp, PIF V(0 + oy — wp), (23)
where Ge(,K) = [iw — (e — )] ", FO>w) = (iw +

Ey)~'. Evaluating the frequency integrals, one obtains

) / dk  dp

= VO _—
a>u (2m) (2m)?
p=<H

1
X
—iw+E0+Ek—6p

T(—w)

I(k|p)|*. (24)

After analytical continuation iw — w + i0", we can, e.g.,
evaluate the imaginary part as

n A
m[X(—v)] =~ jmz/ dep/ dey 8[v — (ex — €p)] - I
0 Iz

= n’ozzé?(v)v -, asv— 0. (25)

Here I, corresponds to the gauge-invariant squared overlap of
c-Bloch functions averaged over the Fermi surface:

/ _! / aed—ad. (6)

The restriction to the Fermi surface alone is an approximation
for general v, but it becomes exact as v \( 0 in Eq. (29).
By the Kramers-Kronig relations, Re[X(—v)] — Re[X(0)] ~
vlog(|v]), showing the emergence of logarithmic factors.
Note that internal momenta that contribute to Re[X(0)] ~
a’ulog(i) do not have to be restricted to the proximity of
the Fermi surface, as can be seen from direct computation or
Fumi’s theorem [38]; however, Re[X(0)] is only essential for
determination of threshold energies, but not for the detailed
form of the spectra.

L= | k|p)|*

(2) A®)[au] ®) o))

0. 1.x1073 2.x107° VUV 0 1.x1073 2.x10° VU
e Tr{(PC)Q} =0.95 —— Amax = 0.97
T‘r{(PC)Z} =0.65 )\max =0.78

FIG. 4. Edge singularities on the Lieb lattice, including c-band
geometry. Used parameters: « = 0.4, 1" = 0.6. (a) Single-hole spec-
trum A(v), Eq. (28) in arbitrary units; frequencies are measured in
units of the UV cutoff. The inset shows the respective Fermi level.
(b) Absorption spectrum x (v), Eq. (37). The plot shows the most
singular contribution with the maximal eigenvalue A,y.

In terms of the projector P’ = |k) (k|, we can rewrite

b =/ Tr{P{PS} = Tr{(P°)’) < 1
k.p

Pe = / P 27
k

where the trace acts in band (or orbital) space, and P¢ is the
projector averaged over the Fermi surface. We therefore see
that at the level of the second-order diagram, the only relevant
change we need to perform is > — o*l,.

The derivation of the linked cluster theorem for F(t),
Eq. (19), relies only the f hole being structureless, which
equally applies to the interaction (21) [38]. In evaluating the
relevant expression C,(¢), one then obtains the same result
as in the infinite mass case, but again with the replacement
a®> — o’l,. Therefore, to the leading order in «, but treating
the f-band geometry exactly, the spectrum becomes

A(v) ~ v2a2Tr{(P")2}—l. (28)

The interaction is suppressed by the Bloch overlaps which
penalize large momentum transfers. This suppression is en-
hanced for larger doping kr ', since the overlap integral
Tr{(P¢)?} probes larger momenta. Therefore, the photoemis-
sion spectrum gets more singular. Two representative plots for
the Lieb lattice are shown in Fig. 4(a). For o> Tr{(P¢)*} —
0, one recovers the noninteracting form A(v) = §(v) when
restoring normalizing factors.

B. Particle-hole spectrum yx

For the particle-hole (intraband absorption) spectrum, we
consider the correlation function

M) = (=) ) Ej(kil0"(k;, ka)lka)
ki ka,n

< (OIT {f"(t)ex, ()c, (0)£(0)}[0)
0" (ki ko) = =0, 1/, ki) (3, ([ Kal). (29)

To maintain the assumption of a structureless hole, we assume
that the momentum dependence of the operator O” is negligi-
ble. One can now evaluate the IT(v) in similar manner as X
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described in the previous section, for instance by computing
the leading logarithmic diagrams of Fig. 3(b). In this com-
putation, an independent momentum variable can be chosen
for each c-fermion line. As a result, the low-order diagrams
incur the following additional gauge-invariant factors due to
the Bloch overlaps:

no Z/ (k|0 k) = > " Tr{0"P)
n k n
WWZAUM%WM=memﬁ
n P n
ne) :ZTr{O"(PCf}, (30)
n

with P¢ the Fermi-surface averaged projector introduced in
Eq. (27). This structure continues for all diagrams without
additional fermion loops; all leading parquet diagrams are of
this form [1,3]. Therefore, we can rephrase the perturbative
expansion for I1(v), Eq. (20) as

M) = ZTr{%[aLPC — (aL)*(P°)?
n

2 3/ pcy\3
+§(aL) (P9) “ 3D

Summing this series, we obtain

W) = ZTr{ ?[1 - exp(—zaL(v)P"]}, (32)

n

where 1 is the identity in band space and the exponential is a
matrix-exponential. Diagonalizing P¢, we obtain for x (v) =
Im[IT(v)]:

Xy~ Y v, (33)
where A; are the eigenvalues of P¢, and we suppressed the
prefactors of the the power laws which correspond to the di-
agonal elements of O" rotated into the P¢ eigenbasis. Note the
analogy between Eqgs. (14) and (15) and Eqgs. (28) and (33): x
is a sum of power laws, while A is a single power law, with the
sum in the exponent. In Appendix D, we rederive these results
by evaluating the S matrix in the Born approximation.

When kr is increased, the particle-hole spectrum y be-
comes less singular because the maximal eigenvalue A, in
Eq. (33) is reduced, as we analyze in detail in the next section.
This behavior is expected, since x simply becomes a step
function in the limit v — 0 for a constant density of states.
In Fig. 4(b), we show x (v) for two values of the chemical
potential p, pinpointing this behavior.

C. Perturbative expansion for small band geometry

For a simpler interpretation of the results, which is also
generalizable to the case of nontrivial f bands, it is useful
to consider the limit of “weak” c-band geometry: We assume
that the momentum-variation of Bloch functions |k) is small.
This can always be justified for weak doping n, when kg is
much smaller than a reciprocal lattice vector which sets the

typical scale for the variation of |k). One can think of this
limit as the leading lattice correction to the continuum limit.
A related perturbative expansion in the context of excitons can
for instance be found in Ref. [41].

Under this assumption, we can expand |k) around k = 0,
where 0 denotes the momentum where the ¢ band has its mini-
mum; however, with the same accuracy, any other momentum
within the Fermi volume can be chosen as point of expansion.
Up to second order in k, we have

k) = [0) + ki) + Skik;lij), (34)

with the notation |i) = 0, |k)|_o. Applying this expansion to
the squared overlap |(k|p)|> which appears in I, = Tr{(P¢)?},
Eq. (27), we obtain

|(k|p)* = 1 — g;(k — p)i(k — p);
=1—|k—pll;. (35)

Here g;; is the quantum (Fubini-Study) metric of the ¢ band at
the point k = 0, defined by

g5 = 3 + (1) + (0101 ). (36)

To get from Eq. (35) to (36), we used the identities (0|i) +
(i10) = 0 and 1((ilj) + (jli)) = Re(ilj) = —Re(ij]0).

The quantum metric is the real part of the c-c component
of the quantum geometric tensor [42—46], while the imaginary
part corresponds to the Berry curvature B. g° is a gauge-
invariant positive-semidefinite measure of the distance of the
Bloch states in Hilbert space. The Brillouin-zone average of
trg (k) can be related to the minimal real-space spread (r?) —
(r)? of Wannier functions [42]. While g¢ can be nonvanishing
for a topologically trivial band, for a band with nonzero Berry
curvature B it is bounded from below: trg®(k) > |B(k)| for any
k [45]; lower bounds related to symmetries can also be derived
as well [47]. For the Lieb lattice, trg° (k) has a broad maximum
at the M point for ¢’ < 1 (for ' — 0, the metric is sharply
peaked at the M point), see Fig. 8(a). Various theoretical
proposals [44,48-51] and successful experiments [52,53] to
determine the quantum metric have been put forward.

With Eq. (35) at hand, we can rewrite our result for A(v),
Eq. (28), as

A(v) ~ L2 0= [, kapug),l' a7

The edge singularity is preserved, but the effective interaction
is reduced by the Fermi-surface averaged Hilbert space dis-
tance of the scattered ¢ fermions. The expansion in Eq. (37) is
controlled to first order in

!
xo = kitrg® < 1, (38)

where kp is a Fermi-surface averaged Fermi momentum [54].
This parameter quantifies the leading lattice effect. For the
Lieb lattice, the Fermi surface becomes nearly circular for
small kr, and the perturbative correction simply reads

/ Ik —pl|*> - x. for kp— 0, (39)
k.p

as verified in Fig. 5(a). This implies that, in principle, measur-
ing the doping dependence of the edge-singularity exponent
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R 2 c —_ 172 c
k3trg skwtrg

FIG. 5. (a) Evolution of lattice-corrections to the edge singularity
exponents for the Lieb lattice vs chemical potential u, for ¢’ = 0.6.
(a) Corrections relevant for A(v). (b) Corrections relevant for x (v).

gives access to trg® provided that the kr dependence of the
coupling constant « is accounted for.

It is interesting to compare the result in Eq. (37) with
the effect of a finite f mass on A(v) [16-18]. Similarly to
Eq. (37), the finite hole mass penalizes large momentum trans-
fers which come at a high kinetic energy cost. This effect
can be captured by evaluating an phase space factor similar
to I,. However, in the case of a finite hole mass, this factor
vanishes as v — 0 with a power dependent on dimensionality.
This leads to a more drastic reorganization of the spectrum
A(v) compared to Eq. (37), with a partial reemergence of the
noninteracting delta function.

Similarly to A(v), an expansion in terms of the metric
can also be applied to x (v) ~ >, v™2** Egq. (33). We focus
on the most singular contribution, i.e., the largest eigenvalue
Amax- When kg — 0, P° becomes a projector, and its largest
eigenvalue is 1. For small kr, second-order perturbation the-
ory (see Appendix A) leads to

Ik — plI2
)\max ~1- / Tp’ (40)
k.p
which we check in Fig. 5(b). Thus
L) ~ 2=y, uk—sz?)' @n

Like in the photoemission case, in the absorption case the ef-
fective coupling constant is reduced. Note that, to the leading
order in x., the same effective coupling

k — 2
et = a<1 —/ Ik — plle p”ﬂ) (42)
k.p 2

appears in both Egs. (37) and (41). Interestingly, this result
agrees with a Fermi-surface average of the modulus of the
overlap term in Hi(nlt) at order O(x,), with both incoming and
outgoing momenta on the Fermi surface.

With the accuracy of Eq. (42), we can in fact go beyond the
leading order in « in the determination of the edge singularity
exponents for both A(v), x (v): a generic diagram at nth order
in o will incur a factor

TPy n=)"m, m>1,  43)
1 1

where [ is the number of c-fermion loops, and the condition
n; > 1 excludes tadpole-type diagrams which can shift the

(a)
2
IIi(nt)

AT

(b)
tz tl

———— ———

0<ti<ta<t

FIG. 6. (a) Interaction processes that contribute in the limit £, —
oo. (b) Diagrams that involve I-Ti(nz[). For the diagram on the right,
the time-domain structure is indicated. Note that interactions are
instantaneous.

respective thresholds only. To the leading order in x., we have
. k — oll2
Te((PY"} =Y )" ~1—n / Ik~ plle

i k.p

2 b
where we used Eq. (40), and the fact that ; = O(x,) for A; <
Amax (Appendix A). As a result,

_ 2
o [T Teipy"y = “"(1 —n / M)
1 Kp

~ ol + O(x2). (45)

Since a.g enters every diagram, and not just the logarith-
mically dominant parquet diagrams, it will determine the
Fermi-level scattering phase shift of the ¢ fermions. Therefore
we can apply the results expressed in terms of the s-wave
phase shift, Eq. (13), with § = §(aefr) + O(xf.).

(44)

V. FULL BAND GEOMETRY

So far, we have studied a structureless f hole. To make
the connection to correlated flat band materials, we must lift
this restriction, and reintroduce the full interaction H;, from
Eq. (7).

This step is more involved than the introduction of c-band
geometry alone: If the f hole has a momentum-dependent
Bloch function, then the problem looses its single-particle
character. Therefore, an analysis of a time-dependent scat-
tering problem as in Appendix D does not go through in
general. However, as long as the band geometry of both ¢
and f bands is weak, large logarithms remain, and we can
still gain insight on spectra by diagrammatic analysis. To keep
the problem under control, we will work to leading order
O(x) = O(x., x¢), where x; quantifies the band geometry of
the f band x; analogously to x..

In general, the interaction Hj,, contains terms with up to 4
f operators. In the limit £y — oo only terms which conserve
the number of f electrons survive: Processes violating this
condition are strongly off-shell and suppressed by factors of
1/Ey. This leaves terms with 4, 0 or 2 f operators. As before,
terms with O f operators can be absorbed in a renormalized
¢ band, while terms with 4 f operators are ineffective for a
filled f band. We are left with the terms involving two f and
two ¢ fermions graphically represented in Fig. 6.

In addition to the conventional term Hift , processes ﬁlﬁ)
where f and c electrons interconvert are allowed, see Fig. 6(a).
These processes can appear in the diagrams for F, I1, as shown
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Q
AT

e ——— -~ —<——-

Q+p—q Q

FIG. 7. Third-order diagram for the hole-propagator with mo-
mentum labels.

in Fig. 6(b): when a conventional diagram contains a c-band
hole propagating backwards in time, we can replace it with an
f-band hole. On the right-hand side of Fig. 6(b), we illustrate
the time-domain structure of the diagram: As required, all
f holes propagate backwards in time. While such processes
survive the limit Ey — oo, they are small for a weak band
geometry: One can easily show (see Appendix B 1) that for
k, p = O(kr), the squared overlap element between ¢ and f
bands fulfills |(c, k|f, p)|*> = O(x). Each diagram involving
I:Iif[) contains at least four overlap elements and is therefore of
order O(x?), which is to be neglected within our approxima-
tion. Therefore, we only need to keep an interaction term

1 T
- 5 Z VOC]tfkffk’qukJrq
k.k'.q

X <Cak|csk+q)(fs k/|f’ k/_(l) (46)

A. Single-hole spectrum A

Via photoemission, a single hole with external momentum
Q can be created. To compute the spectrum Aq as defined in
Eq. (8) to order O(x), it is instructive to examine the generic
third-order diagram shown in Fig. 7. Given the interaction
Hif[), the Bloch-overlap structure of this diagram can be writ-
ten as

BO(Q. k. p. q) = Te{PEPPE I Te{PYPL qpé oa) @D

where Pé = |f, Q)(f, Q|. We can distinguish two cases: First,

Q = O(kr). In this case, we can expand the projectors P/
in the second factor in small momenta around 0 (again,
small in the sense that x; < 1). One can then easily show
(Appendix B 2) that the Q dependence drops out: At O(xy),
the overlap function depends on the transferred momenta only.
This implies that, at order O(xy), no dispersion is generated
for the f band on the relevant recoil momentum scale kr. As
a result, the large logarithms in the problem are not cut off by
the hole recoil, and the power laws in the spectrum remain;
as in the previous section, what is left to do is to determine
the prefactors of the dominant diagrams by evaluating the
overlaps on the Fermi surface.

We may also consider the case |Q| > kp. In this situation,
we cannot expand Pé around Q = 0 in general. Instead, we
can expand all f-propagators around the momentum Q; the
only difference to the preceding case is that the resulting
overlap factors depend on g/ (Q) instead of g/ (0).

To evaluate the overlap factors involving the P/ projectors,
for simplicity we consider an inversion-symmetric Fermi sur-

pis
5 bad

FIG. 8. (a) trg/ (Q) = 2trg°(Q) for the Lieb lattice at ' = 0.6.
The red circle shows the Fermi surface used for Fig. (b). Momentum-
dependent correction to the effective interaction a.g, see Eq. (52),
when Q is varied along the unit cell diagonal Q = (¢, £), for u =
0.015.

face (as in the Lieb lattice case), for which
gl / kipj = 0. (48)
k.p
and therefore

glf/‘(Q)/ (k= plitk — p); = 2gf,»(Q)/k;k,
k.,p X

Ezfnmﬁq (49)
k

For the Fermi-surface averaged Bloch overlap of the third-
order diagram from Eq. (47) we then obtain (see Appendix C)

[ Bo@.kepay =13 [ (kI + 1K ) + 06
k,p.q k
(50)

Likewise, at nth order we obtain a factor

1—nfk (1K + 11K[17.¢)- (51)

This shows that, similarly to the case of a trivial f band, for a
weak band geometry we can introduce an effective interaction
constant

ozeff(Q)Ea(l - /k ||k||§+||k||§~,Q>, (52)

which again characterizes an effective momentum-
independent scattering problem with phase shift &[a(Q)].
Although we do not show it here, this suggests that at order
O(x) a mapping of the interaction Hif[) to a scattering problem
might be possible directly on the level of the Hamiltonian.
The spectrum resulting from the phase shift §[cs(Q)]

takes the form
A(Q, v) ~ p20ler @177 =1 20 @1 for e ]
(53)

The scattering of f fermions to different momentum states
on the Fermi surface further reduces the effective interaction
Oeff, parametrized by the distance of the scattered f states in
Hilbert space. The photoemission power-law exponent inher-
its the Q dependence of the local f metric. Results for the Lieb
lattice are shown in Fig. 8. Note again that, for a.(Q) to be
valid, x., x; < 1 are required. A closely related requirement
is that the metric does not change too strongly on the scale
of kr. For the Lieb lattice, this condition breaks down when
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V/trg¢(0)

A“‘mmhﬂ:/\\
\/

FIG. 9. Flat band edge singularity as effective potential scatter-
ing problem: A ¢ wave packet of width /trg¢(0) is scattered by a
potential created by an f electron of with effective range /trg/ (Q).

¢’ becomes too small and trg/ (Q) is strongly peaked at the M
point.

In a typical potential scattering problem, the phase shift
is decreasing when potential range is increased for fixed po-
tential depth. Recalling the connection of the metric and the
minimal spread of the Wannier functions, we can therefore
view Eq. (52) as a result of two effects: First, the effective f
potential seen by the ¢ fermions has a finite range ~+/trg’ (Q).
Second, any wave packed formed by the ¢ fermions has a finite
width ~./trg¢, which effectively adds to the potential range.
A cartoon of this effect is shown in Fig. 9.

Note that, strictly speaking, it is the Brillouin-zone average
of the metric and not the metric itself which determines the
spread of the Wannier functions; the simple picture above
holds if the momentum scale over which trg changes ap-
preciably is much larger than ,/trg itself, which is realized
ideally for a system with a uniform metric, e.g., a model with
wavefunctions as in a lowest Landau level [55].

B. Particle-hole spectrum y

For the particle-hole spectrum x(v), at order O(x) we
can follow the same approach as in the previous section and
evaluate the Bloch overlaps for the logarithmic diagrams of
Fig. 3(b), including the interband current matrix elements, see
Eq. (10). It is convenient to introduce an operator fff(k) =

P a,lPl{ . Then, for instance, the “crossed” diagram Hf) in-
cures a factor

/ el (0P (a + k= P (@P-@).  (54)
k.p.q '

A challenge in evaluating Eq. (54) is the momentum de-
pendence of the current operators. If we set J1(K) ~ J(0) +
AJ"(k), and neglect the momentum-dependent correction
AJ(Kk), then the O(x) evaluation of (54) and subsequent
diagrams, including multiloop processes, proceeds as for the
single-hole spectrum, and we find

x (V) ~ V*Z(S[acff(o)]/7T+2(8[“cff(0)|/7T)2 ~ U*Z%ff(o)’ (55)

with a¢(0) as in Eq. (52). A priori, the missed correction
~ fk (0| AJ"(K)|0) is not smaller than O(x). However, this
correction only appears twice in each diagram, independent of
the order in the interaction, while the corrections derived from
the Bloch overlaps for the momenta pile up as in Eq. (51). As
a result, the exponent of the edge singularity in Eq. (55) is not
impacted by the momentum dependence of J".

VI. DISCUSSION

While the absorption x ~ v=2%1® in principle is of di-
rect relevance for correlated flat band materials (e.g., Moiré
systems) with a filled flat and doped conduction band, ex-
perimental observation might be challenging due to the
insufficient energy resolution of spectral measurements to
date. Furthermore, in such systems processes where ¢ elec-
trons relax into the f band must be considered, which lead to
an IR tail in the f spectra. Due to energy conservation, these
processes require emission of an excited particle, for instance
a photon, phonon or additional ¢ electron (Auger process);
they are often suppressed by small matrix elements if the band
gap between the f and c band is sufficiently large.

The case for the observation of the single-hole edge sin-
gularity A(v) can be made more easily, in particular when ¢
particles and f hole correspond to different particle species
and thus cannot interconvert, which prohibits the relaxation
process described above. This is possible if the f hole is
an “impurity” coupled to a c-fermion bath, a scenario that
can, e.g., be realized in experiments involving quantum dots,
where edge singularities have been observed for trivial bands
[56]. Likewise, this situation applies to typical “polaronic”
spectral measurements in ultracold gases, where two different
particle species are studied (see, e.g., [19,31,32] and Refs.
therein). In this case, a mature experimental technique for
measuring single-particle spectra is inverse (injection) RF
spectroscopy [57]: Here the f particles have to be initially
prepared in a state where the interaction with the ¢ particles
can be neglected; by applying a weak RF pulse of frequency w
(v plus threshold energy), particles are excited into an interact-
ing f band. In linear response, the depletion current from the
noninteracting state is proportional to A(v), and the spectral
resolution is inversely proportional to the pulse duration. A
possible observable is the dependence of the spectrum on the
Fermi surface volume, either via Eq. (28) for general Fermi
momentum, or Eq. (37) for small one (separating out the
distinct k¢ dependence of «). For the ultracold gases, a cru-
cial experimental challenge is the required small temperature
T < p; finite temperatures will broaden the edge singularities
in a well-understood manner [58,59].

If the f hole is part of a flat band with nonvanishing
band geometry, then the momentum dependence of Ag can
in principle be extracted by combining the RF measurement
techniques such as time-of-flight mapping [60] or Raman
spectroscopy [61]. If the power-law exponent c.(Q) can
be extracted from such a measurement, then the flat band
metric g/ (Q) can be mapped out in experiment. When such
momentum resolution is not available, the RF spectrum yields
the Brillouin zone average of the f-spectrum; if the non-
interacting f state has flat dispersion as well, then simply
Agp(V) ~ f dQAq(v). At O(x), we can equivalently aver-
age the momentum-dependent exponent o.(Q). Therefore, at
weak doping the momentum-averaged RF measurement of the
power-law exponent gives access to the momentum-averaged
metric, a probe of the minimal real-space spread of the asso-
ciated Wannier functions.

The universal effective interaction a,p(Q) was obtained
for weak doping. At strong doping, the universality breaks
down, and the results will strongly depend on lattice details.
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TABLE 1. Exponents y for the single-hole spectrum A(v) ~ Im[{f7f)(v)] ~ V¥ in d dimensions, relevant for photoemission. Results

involving the metric are for a spherical Fermi surface.

A(v) Exact in interaction

0(a?)

No band geometry
c-band geometry

c- and f-band geometry

208/ — 1
28/ ~1
der = a1 — trg*(0)*E]
2{8[ater(Q)]/7 > — 1

202 — 1
202Tr{(P.)*} — 1
P. = [, le. k) (c. K|
20%:(Q) — 1

@@ = all - ug 04 — g/ (@41

In particular, if the scale on which trg/ (Q) changes strongly
becomes O(kr), then effective mass generation becomes im-
portant, cutting off logarithmic singularities. In passing, we
note that effective two-body masses in the flat band can be
related to the integral over the quantum metric (which can
be nonzero even for a momentum-independent metric) if a
sublattice-sensitive contact interaction is used [62—-64]. For a
finite f-band mass, the f particle becomes a mobile “Fermi
polaron,” which can for instance be described by variational
methods [65] and has been explored in the literature in various
lattice contexts [66—71].

VII. SUMMARY AND OUTLOOK

In this work, we derived a universal lattice generalization
of edge singularities: we considered processes where a single
degree of freedom (hole) in a f band interacts with fermions
in a dispersive ¢ band, allowing for a nontrivial Bloch geom-
etry for both bands, and evaluated corresponding single-hole
~(fTf) and particle-hole ~(cf" fc') spectra. We found that
the leading effect of the band geometry is to reduce the effec-
tive coupling that enters the edge singularity exponents, which
we derived by evaluating Bloch function overlaps appearing
in the respective singular Feynman diagrams. For kr much
smaller than a reciprocal lattice vector, corrections to the
exponents are proportional to the quantum metrics times the
Fermi energy, which can be traced back to the finite range of
the effective scattering potential created by the f hole. Our
results for the exponents are summarized in Tables I and II.

While we considered a two-band scenario, real materials
can feature degenerate c- or f bands. We expect our results
to carry over to this situation as well, replacing single-band
projectors by projectors on a degenerate set of bands, and the
(Abelian) quantum metric by the non-Abelian one [72,73].

In our derivation of the spectra, diagrammatic perturba-
tion theory and a coordinate representation of the metric was
employed. For a trivial impurity but nontrivial ¢ band, we
have cross-validated these results by perturbatively evaluating
the S matrix of the associated scattering problem. One could

also attempt a full evaluation of the § matrix by solving
a Lippmann-Schwinger equation. Furthermore, it would be
interesting to reformulate the problem with a trivial impu-
rity but nontrivial ¢ band purely as a scattering problem on
Riemannian manifold which reflects the nontrival Bloch band
geometry [74]; this formulation may also enable a numerically
exact solution valid for all frequencies v > 0 via bosonization
and functional determinant methods [19,75,76].

Last, we note that the orthogonality catastrophe underlying
the edge singularities can occur in bosonic systems as well
[77], which is of particular relevance for the ultra-cold gas
setups. To enrich this bosonic orthogonality with effects of
lattice geometry and topology is a worthwhile goal for future
study.
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APPENDIX A: EIGENVALUE SHIFT

To determine the maximal eigenvalue Ap,x of the Fermi-
surface averaged projector P, we perform an expansion,

P¢ = /1; k)(k| >~ [0)(0] + T; + T»
T = fk Ki(li) (0] + 10) (1)

kikj ... S
TzZ/kTj(|l‘]><0|+|0><”|+|l>(1|+|j)(l|), (A1)

where we suppressed the label ¢ in the Bloch functions. Re-
taining terms up to second order in the expansion of the Bloch

TABLE II. Exponents y for the particle-hole spectrum x (v) ~ Im[{cf" fc")(v)] ~ v” in d dimensions, relevant for interband absorption.

For definitions of o, P., see Table I.

x(w) Exact in interaction O(x)
No band geometry —28(a)/m + 2[6(0{)/7{]2 —2u
c-band geometry —28(tesy) /T + 2[8(0tegr) /7 T —20 A max
)Lmax = maX[EV(P()]
c- and f-band geometry —28[aei(0)]/7 + 2{8[ctes(0)] /7 }? —2a¢(0)
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functions, the maximal eigenvalue reads
o = 1+ 0Ty + T[0) + Y [(yITIO)P,  (A2)
¥

where |y) are vectors orthogonal to |0). We have (0|77|0) = 0
and

(0|72|0) = —/gijkikj- (A3)
Kk
Furthermore,
Y lyIT0)f
%
= (0|1 (1 — |0)(0[)7110) = (0|71 T7110)

= /k kip({012) (01 ) + (O0[2) (j10) + (il /) + (il0){j10))
P

¢, [ ks (Ad)
k.p

where in the last step the first two terms cancel and the last two
terms can be symmetrized by relabeling k <> p. Therefore,

1
hanax = 1 — =5 | (k — pYitk — p);
2g,,/k,p( plitk — p);
k —pl|?
51—/ Ik~ plle. (AS5)
kp 2

as in Eq. (40) of the main text.

This result also allows us to estimate the remaining eigen-
values of P¢ which appear in the general expression for x (v),
Eq. (33). We note that

TiP) = [Tk = [ =1 =+ 3 4 (26)
k k i< Amax
Therefore
k — 2
> [ ot )
Ai <Amax

Note also that P¢ is positive semidefinite, therefore A; > 0 Vi.

APPENDIX B: SHORT PROOFS
1. Upper bound for |{c, k|f, p)|?

We have
1 = (c,Kklc,k) = (c, k|(Z|n (n, p|>|c,k)
> (e, kIf, p)I* + I{c. Kle, p)I?
= [{c.kIf, p)I* +1— O(xo),
therefore

(e, KIf, P)I* = O(x.). (B1)

In the same manner, one can also show that

(¢, kIf,p)* =0(xyp), x/ =kptrg/(0).  (B2)

2. Q independence of overlap factors for Q = O(kr)

Consider the BOs(Q) =
Tr{PéPé k—q Q p— q} from Eq. (47). To shorten notation,
we write a =K —q, b =p — q. When Q = O(kr), we can
expand all projectors to second order in momenta with
notation similar to Eq. (A1):

PL~ £, 0)(f. 0l + QT + 00, T,

Bloch-overlap  factor

T = (If, )(f, 01 + | £, 0) (£, i])
T = Y(f i) (f, 01+ | f, 0)(f, ij]
A Vs L1 D D (B3)

Collecting all second-order terms (first-order terms vanish),
we obtain

BO#(Q) = (f, 0IT\T{|f, 0)[Q:(Q + ),
+(Q+a)i(Q+b); + (0 + b)Q;]
+(f. 0T |, 0)[Q:iQ; + (Q + a)i(Q + a);
+ (0 + b)i(Q + b);1. (B4)
Using that (f, 0|1(T/T{ + T/T})|f, 0) = g, see Eq. (A4),

and (f, 0|, |f, 0) = —gf/, we immediately see that all terms
involving Q appear in symmetrical combinations and there-
fore cancel. From the form of BO,(Q) it is clear that this
property will also generalize to higher order.

APPENDIX C: EFFECTIVE INTERACTION
FOR FULL BAND GEOMETRY

To illustrate the derivation of

aeffza<1—/||k||§+||k||§,Q>, (C1)
k

we consider the third-order Bloch overlap,

Te{RCPSPS) x Tr{Pf PQ e qPé oal-

(C2)

BO(Q) = /

k.p.q

We evaluate this expression by expanding the projectors up to
second order in momenta as in Eq. (B3). Under the assump-
tion of an inversion-symmetric Fermi surface, where mixed
terms in momenta vanish [Eq. (48)], this expansion can be
performed by sequentially keeping one of the momenta k, p, q
nonzero, and setting the remaining ones to zero; furthermore,
we only need to keep the terms of the form Tzij from Eq. (B3).
Last, at order O(x), the corrections from the two traces in
Eq. (C2) add up and can be evaluated independently.
As a result, we obtain

/ Tr{P PPy} =
k.p.q

For the f-projector trace, a possible difference is that the
momentum —q appears in two projectors; however, since
these projectors are adjacent, on setting k = p = 0 as dis-
cussed above, we have 24 7qu —q= Péfq, and the q integral
therefore gives the same contribution as the Kk, p integrals.

/ IKI|Z + O((x.)*)  (C3)
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FIG. 10. Generic diagram with one c-fermion momentum q set
to nonzero only. The momentum q runs in a a loop through the
diagram—the propagators and interaction lines which transport q are
marked blue. This ensures that all projectors Péfq in the trace are
adjacent to each other.

Thus
BOQ)=1- 3/k (I1K17 + 11K[17.q)- (C4)

For a generic nth-order diagram (excluding tadpole-
diagrams), the evaluation proceeds in the same manner,
including diagram which contain multiple c-fermion loops.
In particular, one can easily convince oneself that “nonzero”
momenta only appear in adjacent f projectors; see Fig. 10 for
an illustration of this fact.

Therefore, the corresponding overlap reads,

BO,(Q) =1-n / (I1K[1Z + 11K][7.q)- (C5)
k

Including the coupling constant «, we have, at nth order

om[l —n/ (11K + ||k||§,Q)} = a4+ 0(?),  (C6)
k

where o, is given in Eq. (C1).

APPENDIX D: S-MATRIX APPROACH
FOR TRIVIAL f-BAND

As shown in Refs. [8,9], scattering problems with a
time-dependent potential can be solved by mapping to a
Riemann-Hilbert boundary value problem, which also allows
for generalizations to nonequilibrium settings [8,9] or finite
temperatures [58]. For the spectra A(v), x (v) of interest to us,
such an analysis results in Egs. (14) and (15):

A(v) ~ 222G/ =1 (D1)

X(V) ~ Z v728j/n+22f/(8/r/71)2.
J

(D2)

Here §; are derived from the eigenvalues exp(2i3;) of the §
matrix at the Fermi level.
The S matrix connects in- and outgoing scattering states.
Using the potential Hi(n]t) from Eq. (22),
1
Hy === Vole K+ le, K Werq) (Werl. (D3)
k.q

to the leading order in V) (Born approximation), its matrix
elements can be expanded as

Skp = (Wic|Wp) — 27 (W[ HL) W) 8(ek — €p) + O(V)

nt

= Skp — 27i(kIp)3(ek — &), (D4)
where we have used the orthonormality of the full energy
eigenfunctions, and drop c labels for brevity.

By definition, the S matrix at the Fermi level has eigenval-
ues exp(2id;) >~ 1 + 2i§;. Therefore, to the leading order in
Vo, the phase shifts §; can be extracted from the eigenvalues
of the matrix S/ given by

SV — g /k (KIp) [ W) (W, . (D5)
P

where the k integral is restricted to the Fermi-surface as de-
fined in Eq. (26), and o = pVj.

To reproduce the diagrammatic results of Eqgs. (28) and
(33), we need to show that the eigenvalues of S and the
eigenvalues of aP¢ = o fk |k) (k| agree. This is not readily
obvious: P¢ is a matrix in band (or orbital) space. For the
example of the Lieb lattice, it is a 3 x 3 matrix. On the other
hand, nominally SV is a matrix in the larger space of energy
eigenstates indexed by momenta on the Fermi surface. How-
ever, because the entries of SV are determined by the Bloch
functions |k), |p) which are defined in the smaller band space,
the ranks of S and P¢ are the same. To see this, we can, e.g.,
assume that |p) is defined in a two-dimensional space and has
a decomposition |p) = apla) + b,|b) into a basis {|a), |b)}.
Assume that we discretize the integral over the Fermi surface
into a summation over momenta k;, . ..k,, such that S® is
an n x n matrix. Then, all columns of SV are spanned by the
two vectors ((kj|a), ..., (k,/a))” and ((k;|b), ..., (k,/b))7,
which shows that S has rank 2.

To see that the nonzero eigenvalues of SV and aP° agree,
one can for instance consider traces over matrix powers:

Tr{eP‘} = « f Tr{|k)(k|} = & = Tr{S"}, (D6)
k

Tr{(aP°)*} = o? / I(kIp)|>, (D7)

k.p

Tr{[K) (K[p) (pl} = /

k.p

TS} = o2 /

q.k;,p1.k2,p2
X (W, [Wq) (ki p1) (k2 [p2)
= Tr{(aP°)*}.

<\Ijq‘\ykl)<qul ‘qj'ﬁ)

(D8)

Proceeding analogously, one finds that Vn:

Tr((@P)') = ) (k)" = Tr{(SV)") = Y (8i/n)". (DY)

L 1

By comparing the largest eigenvalues of P¢, S (which are
real) for large even values of n one can sequentially show
that all eigenvalues are the same. This proves that the power-
law exponents obtained from the diagrammatic and S-matrix
methods agree to the leading order in «.
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