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Extraction of important degrees of freedom in quantum dynamics using singular value
decomposition: Application to linear optical spectrum in two-dimensional Mott insulators
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We propose a new approach to extract the important degrees of freedom in quantum dynamics induced by
an external stimulus. We calculate the coefficient matrix numerically, where the i − l element of the matrix is
the coefficient of the lth basis state at the ith discretized time in the solution of the time-dependent Schrödinger
equation induced by the external stimulus. By performing a randomized singular value decomposition of the
coefficient matrix, a practically exact solution is obtained using a linear combination of the important modes,
where the number of modes is much smaller than the dimensions of the Hilbert space in many cases. We apply
this method to the analysis of the light absorption spectrum in two-dimensional (2D) Mott insulators using an
effective model of the 2D Hubbard model in the strong interaction case. From the dynamics induced by an
ultrashort weak light pulse, we find that the practically exact light absorption spectrum can be reproduced by as
few as 1000 energy eigenstates in the 1.7 × 107-dimension Hilbert space of a 26-site cluster. These one-photon
active energy eigenstates are classified into free holon and doublon (H-D) and localized H-D states. In the free
H-D states, the main effect of the spin degrees of freedom on the transfer of a holon (H) and a doublon (D) is the
phase shift, and the H and the D move freely. In the localized H-D states, an H and a D are localized with relative
distances of

√
5 or

√
13. The antiferromagnetic (AF) spin orders in the localized H-D states are much stronger

than those in the free H-D states, and the charge localization is of magnetic origin. There are sharp peaks caused
by excitations to the localized H-D states below the broad band caused by excitations to the free H-D states in
the light absorption spectrum.

DOI: 10.1103/PhysRevB.109.195150

I. INTRODUCTION

The transition from a two-dimensional (2D) Mott insulator
phase to a metallic or high-temperature (high-Tc) super-
conducting phase is induced by chemical doping, and the
physics of doping of 2D Mott insulators has been attracting
considerable research attention [1–3]. Mott insulators are an-
tiferromagnetic (AF) because exchange energy can be gained
when their neighboring spins are oppositely aligned, and an
empty site (designated a holon, H) and a doubly occupied
site (designated a doublon, D) are mobile excitations that
can carry a charge in Mott insulators. The separation of the
spin and charge degrees of freedom (spin-charge separation)
is considered to be a basic concept that underpins various
properties of one-dimensional (1D) Mott insulators [4–6]. In
contrast, the translation motion of an H or a D in the AF
background destroys the AF order, and the coupling between
the spin and charge degrees of freedom is the origin of various
physical properties of doped 2D Mott insulators [7–25].

Because H and D (H-D) pairs are generated by photoexci-
tation, we can investigate their coupling based on the optical
properties of 1D and 2D Mott insulators. Extensive theoretical
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studies have been conducted on these insulators using the
half-filled Hubbard and extended Hubbard models, and by
using the effective Hubbard models in the strong interac-
tion case [26–39]. The main optical properties of 1D Mott
insulators have been shown to originate from spin-charge sep-
aration [40–49]. However, it has been shown that spin-charge
coupling plays an important role in the dynamics of photogen-
erated charges in 2D Mott insulators [45,50–58]. Furthermore,
the light absorption spectrum of a 2D Mott insulator is es-
sentially different from that of a 1D Mott insulator. In the
1D Hubbard model, the light absorption spectrum mainly
consists of a few discrete peaks in the small-sized clusters,
and the spectrum shape remains almost unchanged when the
magnitude of the on-site Coulomb interaction is varied [59].
In the 2D Hubbard model, an absorption band is formed, and
the spectrum shape is strongly dependent on the magnitude of
the Coulomb interaction. Specifically, exciton-like peaks have
been found near the low-energy edge of the continuum band
in the light absorption spectrum of the 2D Hubbard model
[60–71]. Based on consideration of the parameter dependen-
cies of the peak positions and magnitudes, it has been found
that these peaks are of magnetic origin [68]. A few of the
lowest-energy eigenstates that contribute to the exciton-like
peaks have been calculated using the numerical diagonaliza-
tion method and the physical properties of these eigenstates
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have been investigated [71]. However, it has not been possible
to confirm a clear signature of the binding of an H-D pair in
real space. This is partly because the energy eigenstates that
contribute to the continuum band cannot be calculated using
this method. The characteristics of the energy eigenstates that
contribute to the exciton-like peaks are clarified by comparing
them with those that contribute to the continuum band.

It has been found that the exciton-like bound states of an
H-D pair exist and that there are peaks caused by excitations
of these states below the continuum band in the light ab-
sorption spectrum in both the 1D and 2D extended Hubbard
models when the Coulomb interaction between the different
sites is strong enough [29,72–78]. The H-D binding is caused
by direct Coulomb interactions in these cases, and the energy
eigenstates that contribute to the exciton-like peaks in the 2D
Hubbard model are different from these exciton-like bound
states of an H-D pair resulting from the direct Coulomb inter-
action.

The strong dimensionality dependence of the light ab-
sorption spectrum is closely related to the differences in
spin-charge coupling between the 1D and 2D Mott insulators.
Because chemical doping of 1D Mott insulator materials is
difficult, photoinduced phenomena represent important stages
for investigation of the coupling [48]. However, we have not
succeeded to date in understanding the origins of the charac-
teristic features of the light absorption spectrum in a 2D Mott
insulator.

We therefore propose a new approach to address this
problem in this paper. We can extract the important degrees
of freedom for quantum dynamics induced by an exter-
nal stimulus through singular value decomposition (SVD)
of the coefficient matrix for solution of the time-dependent
Schrödinger equation. When we consider an ultrashort weak
light pulse to be the external stimulus, we then obtain all
energy eigenstates that contribute to the light absorption
spectrum. Analysis of these energy eigenstates allows us to
understand the characteristic features of the spectrum. All the
energy eigenstates can be calculated via exact diagonalization
of the Hamiltonian in very small clusters of up to about
10 sites in the Hubbard model. However, finite size effects
are very serious in the results obtained in these small clusters.
In particular, the problem of H-D binding in real space cannot
be investigated from these results. The proposed method us-
ing SVD enables us to calculate all energy eigenstates that
contribute to the light absorption spectrum in much larger
clusters, in which the finite-size effects are not significant.
This is possible because only the important energy eigenstates
are extracted using the proposed method.

II. SINGULAR VALUE DECOMPOSITION OF
COEFFICIENT MATRIX

The solution to the time-dependent Schrödinger equa-
tion |ψ (t )〉 is given by the linear combination of the basis
states |ϕl〉 as

|ψ (t )〉 =
Nb∑

l=1

cl (t )|ϕl〉, (1)

where Nb is the dimension of the Hilbert space and the coeffi-
cients cl (t ) are complex numbers. From the solution |ψ (�t j)〉
for 1 � j � Nt with the time interval �t and the number
of time steps Nt , we obtain the Nt × Nb matrix C with the
j − l element cl (�t j). We can extract the important modes
for the dynamics from the SVD of the coefficient matrix C:
C = U�V †. Here, U (V ) is an Nt × Nt (Nb × Nb) unitary
matrix, and � is an Nt × Nb diagonal matrix with positive real
entries, where the number of nonzero diagonal elements is less
than or equal to the rank R of C. Using this equation, |ψ (�t j)〉
is then given by a superposition of the modes |�k〉 as

|ψ (�t j)〉 =
R∑

k=1

Uj,kσk|�k〉, (2)

where Uj,k (Vl,k) is the j − k (l − k) element of U (V ), σk is
the k − k element of �, and

|�k〉 =
Nb∑

l=1

V ∗
l,k|ϕl〉. (3)

The k-th mode |�k〉 is given by the kth column of V , and the
k-th column of U gives the time dependence of the coefficient
for |�k〉. The modes |�k〉 are normalized and orthogonal,
and |Uj,kσk|2 gives the weight of |�k〉 in |ψ (�t j)〉. The
singular values σk are sorted in descending order such that
σ1 � σ2 � · · · � σR � 0, and thus the modes are numbered
in order of their importance. If the values of σk for k � K are
much smaller than σ1, then |ψ (�t i)〉 can be approximated by
superposition of the K modes as:

|ψ (�t j)〉 =
K∑

k=1

Uj,kσk|�k〉. (4)

In many cases, K is much smaller than Nb, and the solution
|ψ (t )〉 can then be approximated using a linear combination
of far fewer important modes than Nb. The important degrees
of freedom for the dynamics are then extracted by SVD of the
coefficient matrix.

As will be described later, we consider large coefficient
matrices with Nb = 1.7 × 107 and Nt = 6000 in this paper.
SVD of these large matrices cannot be performed using con-
ventional numerical methods. We therefore adopt a numerical
method called randomized SVD (RSVD) [79]. RSVD is a
type of low-rank approximation but it provides practically
rigorous SVD for the modes where the singular values are not
negligible.

III. MODEL

We applied the RSVD method to understanding of the
characteristic features of the light absorption spectrum of 2D
Mott insulators. We consider the half-filled Hubbard model on
a two-dimensional square lattice, which is given by

H = K̂ + V̂ , (5)

K̂ = −T
∑

<n,m>

∑
σ

(c†
n,σ cm,σ + H.c.), (6)

V̂ = U
∑

n

c†
n,↑cn,↑c†

n,↓cn,↓, (7)

195150-2



EXTRACTION OF IMPORTANT DEGREES OF FREEDOM IN … PHYSICAL REVIEW B 109, 195150 (2024)

where cn,σ and c†
n,σ are the annihilation and creation operators,

respectively, for an electron of spin σ at a site n, < n, m >

are pairs of nearest-neighbor sites, −T is the transfer integral
between these nearest-neighbor sites, and U is the on-site
Coulomb repulsion energy.

The copper oxides La2CuO4, Nd2CuO4, and Sr2CuO2Cl2

are all 2D Mott insulator materials, and the experimentally
obtained optical conductivity[19,80,81] is reproduced well
by the time-dependent density-matrix renormalization group
(tDMRG) calculation performed in the half-filled 2D Hubbard
model with a system size of N = 36. [68] We have calculated
the light absorption spectrum α(ω) using the exact diagonal-
ization method in the 2D Hubbard model with system sizes
of N = 10, 16, 18, 20, 26, and 32, which are all compati-
ble with the periodic boundary condition. For N � 20, α(ω)
changes greatly with variations in N , and the α(ω) differs
significantly from that obtained for N = 36 via the tDMRG
calculation. When N � 26, the spectrum for N = 36 can be
reproduced reasonably, but SVD of the coefficient matrices
is practically impossible to perform for N � 26, even when
using the RSVD method.

We therefore adopt the effective Hamiltonian for the
Hubbard model, which is valid in the strong correlation case
where U � T , in this paper. RSVD of the coefficient matrices
can then be performed for N = 26 by using the effective
model. For the special case where T = 0, the energy eigen-
values simply take the values of mU , where m is the number
of doubly occupied sites, and a huge number of energy eigen-
states with different spin configurations are then degenerated
at each energy level. For a finite T that satisfies the condition
U � T , the degeneracy is lifted, and each discrete energy
level becomes an energy band. When the effects of the transfer
term K̂ to the second order in T/U are taken into account by
a Schrieffer-Wolff transformation [31], the effective Hamilto-
nian Heff for the Hubbard model is given by [26–39]

Heff =
∑

m

(
UPm + H (m)

eff

)
, (8)

where H (m)
eff is the effective Hamiltonian for the states in the

(m + 1)th lowest energy band, which have m doubly occupied
sites that are given by

H (m)
eff = PmK̂Pm − U −1PmK̂Pm+1K̂Pm + U −1PmK̂Pm−1K̂Pm,

(9)

and Pm is the projection operator onto the Hilbert subspace Sm

for states with m doubly occupied sites.
In Mott insulators, the H and the D are mobile excitations

that may carry a charge. The first term PmK̂Pm describes the
transfer of an H and a D to singly occupied nearest neighbor
sites. Only this term is order of T and the other parts are order
of T 2/U . The second term −U −1PmK̂Pm+1K̂Pm describes the
AF Heisenberg interaction between nearest neighbor spins
with the coupling constant J = 4t2/U , a virtual three-site
transfer, where an H or a D is transferred to the second
or third nearest-neighbor sites, and annihilation and cre-
ation of an H-D pair on nearest-neighbor sites. The third
term U −1PmK̂Pm−1K̂Pm is inherent in photoexcited states.
This term describes the transfer of an H-D pair on nearest-
neighbor sites, annihilation and creation of an H-D pair on

FIG. 1. The shape of the N = 26 cluster is indicated by the
dashed lines. Each site is marked with its individual site number. The
square with the bold sides represents the subsystem A.

nearest-neighbor sites, and the exchange of an H and a D on
nearest-neighbor sites. The H-D exchange term is represented
as the exchange term of the η-spin operators, and is closely
related to the η-pairing states [38,39,82].

We calculate the light absorption spectrum α(ω) via the
Lanczos method using H (1)

eff and using the original Hubbard
Hamiltonian. We find that the results agree well for U/T �
10, which indicates that H (1)

eff is valid for use as an effective
Hamiltonian to consider the characteristic light absorption
spectrum of a 2D Mott insulator in the strong correlation case.

We solve the time-dependent Schrödinger equation,

i
∂

∂t

∣∣ψ (t )〉 = H (1)
eff

∣∣ψ (t )〉, (10)

with the initial state

|ψ (0)〉 = Ĵ|φ0〉. (11)

The operator Ĵ = Ĵ · e is a component of the current operator
Ĵ along the direction of the unit vector e, and Ĵ is given by

Ĵ = −iT
∑

<n,m>,σ

(rn − rm)(c†
n,σ cm,σ − H.c.), (12)

where rn is the position vector of the site n, as shown in
Fig. 1, and the unit of distance is set to be the lattice spacing.
The ground state |φ0〉 and the energy eigenvalue E0 of |φ0〉
are obtained by diagonalizing H (0)

eff . H (0)
eff is the Heisenberg

spin Hamiltonian and |φ0〉 has the AF spin order. The time-
dependent Schrödinger equation is solved here by using the
time-dependent exact diagonalization method. Because the
initial state |ψ (0)〉 is in the subspace S1, as shown by Eq. (12),
the solution is always in S1 and the time evolution is only
driven by H (1)

eff .
When the ground state is excited by a pulse given by

the vector potential A(t ) = eAδ(t ), the photoexcited state im-
mediately after pulse irradiation is given by iAĴ|φ0〉 to the
first order in the amplitude A. Therefore the solution |ψ (t )〉
considered here with the initial state given by Eq. (11) gives
the dynamics when the ground state |φ0〉 is excited by an ultra-
short weak light pulse that is polarized along the direction of e.
The initial state is given by a linear combination of the energy
eigenstates |φn〉 (1 � n � Nb) of H (1)

eff that have the same sym-
metry as the initial state. We consider the translation, rotation,
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and charge conjugation symmetries, and then the dimension
Nb of the Hilbert space is 1.7 × 107 when N = 26.

The initial state is given by a linear combination of |φn〉 as

Ĵ|φ0〉 =
Nb∑

n=1

Jn,0|φn〉, (13)

where

Jn,0 = 〈φn|Ĵ|φ0〉, (14)

is the transition dipole moment when the light is polar-
ized along e. The solution |ψ (t )〉 to the time-dependent
Schrödinger equation is therefore given by

|ψ (t )〉 =
∑

n

Jn,0 exp(−iEnt )|φn〉. (15)

where En is the energy eigenvalue of |φn〉.
By comparing Eq. (15) with Eq. (4), we find from the

uniqueness of the SVD that |�k〉 = |φk〉, σk = √
N tJk,0, and

Uj,k = 1√
N t

exp(−iEk�t j), (16)

hold within the limits of �t → 0 and TI = �tNt → ∞. Here,
the energy eigenvalues Ek and the eigenstates |φk〉 are num-
bered such that the values of σk are sorted in descending order.

Therefore, if we use a small enough �t and a large enough
TI, we obtain |φk〉, Ek and Jk,0 from the SVD of the coefficient
matrix. The energy eigenvalue Ek is obtained from the peak
energy of the Fourier transform of Uj,k . Because Uj,k is given
in the finite time range 0 � t � TI, the Fourier transform
is performed using the Blackman window function w(t ) =
0.42 − 0.5 cos(2πt/TI ) + 0.08 cos(4πt/TI ), and the Fourier
component with ω is then given by

Ûk (ω) =
Nt∑

j=1

w(�t j)Uj,k exp(iω�t j). (17)

Here, we note that if some eigenstates have the same (or
extremely close) singular values, one cannot distinguish one
from the others: the modes are mixed up with arbitrary coeffi-
cients of a linear combination.

If the σk values are negligible for k > K , then α(ω) is given
approximately by

α(ω) = − 1

π

K∑
k=1

�
[ |Jk,0|2
ω − U − Ek + E0 + iε

]
, (18)

where ε is the broadening.

IV. RESULTS

We consider the N = 26 cluster and the periodic boundary
condition is used. The shape of the cluster is shown as the
tilted square that covers the bulk 2D lattice in Fig. 1. We
consider the case where the light field is polarized in the
x direction. First, we present the light absorption spectrum
calculated by the RSVD for T/U = 0.1, which is shown in
Fig. 2. We use the parameters Nt = 6000 and �tT = 0.1.
Then, TI is large enough to ensure that there is only one
dominant peak in Ûk (ω) and that the hybridization of the
other energy eigenstates is negligible, except for modes with
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FIG. 2. Comparison of the light absorption spectra calculated
using the RSVD method with K = 200 and K = 1000 with the exact
spectrum calculated using the Lanczos method for T/U = 0.1. The
broadening ε = 0.12T is used.

very small singular values. The light absorption spectrum
α(ω) obtained via the RSVD with K = 1000 is almost indis-
tinguishable from the rigorous spectrum obtained using the
Lanczos method. These results show that a practically exact
α(ω) can be reproduced using 1000 energy eigenstates in the
1.7 × 107-dimension Hilbert space. Use of the RSVD allows
us to extract all energy eigenstates |φk〉 that contribute to the
light absorption spectrum (i.e., the one-photon active energy
eigenstates). The results also show that �tT = 0.1 is small
enough to allow the high-energy part of α(ω) to be reproduced
almost exactly.

The light absorption spectra for the 2D Mott insulators
are essentially different to those for the 1D insulators. In the
1D Mott insulators, α(ω) mainly consists of N/2 − 1 discrete
peaks in the site N cluster. Furthermore, only the energy
gap increases with increasing U , and the spectrum shape
remains almost unchanged when T/U is varied within the
strong correlation range T/U � 0.1 [59]. These characteristic
properties come from the separation of the spin and charge
degrees of freedom [59]. In the 2D insulators, many more
energy eigenstates make significant contributions to α(ω), and
an absorption band is formed with even a very small broaden-
ing of ε = 0.12T . Furthermore, the spectrum shape is strongly
dependent on T/U in 2D Mott insulators, as illustrated in
Fig. 3.

To understand the characteristic features of α(ω) for 2D
Mott insulators, we calculate all the one-photon active energy
eigenstates by performing RSVD and investigate the physical
properties of these eigenstates by analyzing the following
physical quantities. Because there is one H-D pair in an energy
eigenstate |φk〉, the correlation between the H and D charges
ξ (r) for |φk〉 is given by

ξ (rm − rn) =
{〈φk|(1 − nn)(1 − nm)|φk〉 for n �= m

0 for n = m
,

(19)
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FIG. 3. Comparison of the light absorption spectra for various
values of T/U . The broadening ε = 0.12T is used here.

where 1 − nn is the charge density operator at a site n, and
nn = ∑

σ c†
n,σ cn,σ . The D density at the site r when H exists

at the site (0,0) is given by −(N/2)ξ (r), and the standard
deviation of the spatial D distribution is then given by

σC =
√√√√ 1

(N − 1)

rm �=(0,0)∑
m

(
−N

2
ξ (rm) − 1

(N − 1)

)2

. (20)

The spin correlation η(r) for |φk〉 is defined by

η(rm − rn) = 〈φk|Sn · Sm|φk〉, (21)

where Sn is the spin operator at site n. The spin structure factor
S(π, π ), which is defined by

S(q) =
∑

m

η(rm) exp[iq · rm], (22)

shows the magnitude of the AF spin correlation. Because η(0)
is constant for the states that belong to S1, we use

IAF = N−1(S(π, π ) − η(0)), (23)

as the quantity that represents the magnitude of the AF spin
order. We also consider the entanglement entropy here. We
divide the entire system of N = 26 cluster into two parts:
subsystem A and environment B. The subsystem A is 3 × 3
cluster shown in Fig. 1 and B is the cluster of the remaining
17 sites. The partial trace TrB of an operator Ô is defined as
TrB[Ô] = ∑

n〈n|Ô|n〉, where |n〉 represents the complete and
orthonormal basis states in B. The reduced density matrix ρA

for A is defined as ρA = TrB[ρ], where ρ = |φk〉〈φk| is the
density matrix. The entanglement entropy is then defined by

S = −TrA[ρA ln(ρA)]. (24)

A more localized wave function |φk〉 corresponds to a smaller
entanglement entropy S. We can thus determine the extent to
which the wave function is localized from S. We plot these
quantities as a function of Ek in Figs. 4(a)–4(c). As seen
from these figures, as T/U changes, the physical properties
of the one-photon active energy eigenstates changes signifi-
cantly, resulting in a significant change in the light absorption
spectrum.

First, we consider the strong correlation limit where
T/U = 0. In this case, H (1)

eff = P1K̂P1 holds, and there are

no interaction terms between the spins in the effective
Hamiltonian H (1)

eff . The term P1K̂P1 describes the transfer of an
H and a D to the neighboring sites and this term is therefore
given by the transfer operator T̂di for an H and a D as:

P1K̂P1 = −T
4∑

i=1

T̂di , (25)

where T̂di is defined by

T̂di =
∑
n,σ

∑
l

Pl c
†
n(di ),σ

cn,σ Pl . (26)

Here, n(di ) is the neighboring site of n in the di direction,
and d1 = x, d2 = y, d3 = −x, and d4 = −y. An H (D) is
transferred to the neighboring site in the −di (di) direction and
one spin is transferred in the opposite direction by the operator
T̂di . As a result of the spin scattering induced by T̂di , solving
for the eigenstates of P1K̂P1 is no longer a simple two-body
problem involving an H and a D.

Before we investigate the energy eigenstates of P1K̂P1 in
the half-filled case, we begin by considering simpler cases.
First, we consider the energy eigenstates in the Hilbert space
S0 when the electron number is N − 1. These states have one
H and no D, and the effective Hamiltonian of the Hubbard
model for these states is then given by P0K̂P0 = −T

∑4
i=1 T̂di .

Because T̂di is translationally invariant, an eigenstate of T̂di

is given by:

|�q(H),s〉 = 1√
N

∑
n

exp(iq(H) · rn)| fs(n)〉, (27)

where the wave vector q(H) for an H is compatible with the
N = 26 cluster with the periodic boundary condition, and
| fs(n)〉 represents the normalized spin wave function of the
spin state s. [83] The wave function has an H at site n, and this
function is given by

| fs(n)〉 =
∑

σ2,σ3,··· ,σN

fs(σ2, σ3, · · · , σN )c†
n+1,σ2

c†
n+2,σ3

× · · · c†
N,σN−n+1

c†
1,σN−n+2

· · · c†
n−1,σN

|vac〉, (28)

where |vac〉 is the vacuum state. Because we use a relative
coordinate representation here, fs(σ2, σ3, · · · , σN ) is not de-
pendent on n. For |�q(H),s〉 to be an eigenstate of T̂di , the wave
function | fs(n)〉 must satisfy the following equation:

T̂di | fs(n)〉 = exp[i�qdi (s)]| fs(n(−di ))〉, (29)

where �qdi (s) is a real number that is dependent on s, and
we use the fact that T̂di is a unitary operator in the Hilbert
space S0 considered here. From Eqs. (27) and (29), we see that
|�q(H),s〉 is an eigenstate of T̂di with an eigenvalue exp[i(q(H)

di
+

�qdi (s))], where q(H)
di

is the di component of q(H). Because

the condition that T̂ †
di

= T̂−di holds, |�q(H),s〉 is also an energy
eigenstate of P0K̂P0 with an energy eigenvalue of Eq(H),s =
−2T

∑2
i=1 cos(q(H)

di
+ �qdi (s)). The quantity �qdi (s) can be

regarded as the phase shift induced by spin scattering. Ad-
ditionally, �qdi (s) is a small quantity of the order of 1/N
because only one spin is transferred by the operator T̂di . Be-
cause spin scattering does not occur, the relation �qdi (s) = 0
holds only in the ferromagnetic state. Therefore the ground
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FIG. 4. (a) Light absorption spectrum α(ω) is shown by the black solid line, and the central peak is indicated by the arrow for
T/U = 0. |Jk,0|2, IAF, σC, and S for |φk〉 are represented by the green, red, blue, and purple circles, respectively, as functions of Ek for
T/U = 0. A histogram for the density of states D(E ) with a bin size of 0.4T for T/U = 0 is also shown. (b) Corresponding results for
T/U = 0.06. (c) Corresponding results for T/U = 0.1. The points corresponding to the localized H-D states are circled using dotted lines,
and the contribution of the localized H-D states to α(ω) is shown by the red solid line in each case.

state is the ferromagnetic state with q(H) = 0, and this state is
called Nagaoka ferromagnetism [84].

Next, we consider the energy eigenstates in the Hilbert
space S1 when the electron number is N + 1. These states have
no H and one D, and the effective Hamiltonian of the Hubbard
model for these states is given by P1K̂P1 = −T

∑4
i=1 T̂di . Be-

cause the operator T̂di is translationally invariant, an eigenstate
of T̂di is given by

|�q(D),s〉 = 1√
N

∑
n

exp(iq(D) · rn)| fs(n)〉, (30)

where the wave vector q(D) of a D is compatible with the N =
26 cluster with the periodic boundary condition, and | fs(n)〉
represents the normalized spin wave function of the spin state
s. The wave function has a D at site n, and this function is

given by

| fs(n)〉 = c†
n,↑c†

n,↓
∑

σ2,σ3,··· ,σN

fs(σ2, σ3, · · · , σN )c†
n+1,σ2

c†
n+2,σ3

× · · · c†
N,σN−n+1

c†
1,σN−n+2

· · · c†
n−1,σN

|vac〉, (31)

The normalized spin wave function satisfies the condition that

T̂di | fs(n)〉 = exp[−i�qdi (s)]| fs(n(di ))〉, (32)

and |�q(D),s〉 is an eigenstate of T̂di with an eigenvalue
exp[−i(q(D)

di
+ �qdi (s))]. Note here that the shift �qdi (s) is

the same in the cases with only one H and only one D be-
cause the effects of the spin scattering caused by the charge
transfer on the spin states are the same in these two cases.
Because the condition T̂ †

di
= T̂−di holds, |�q(D),s〉 is also an
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energy eigenstate of P1K̂P1 with an energy eigenvalue
Eq(D),s = −2T

∑2
i=1 cos(q(D)

di
+ �qdi (s)).

Next, we consider the energy eigenstates of the effec-
tive Hamiltonian P1K̂P1 = −T

∑4
i=1 T̂di in the half-filled case,

which has one H-D pair. In the first step, we temporarily
neglect the constraint that an H and a D cannot occupy the
same site. We then consider the following two approximations
of the effect of the spin scattering: (i) the interaction between
an H and a D induced by the spin scattering is negligible and
(ii) the transfer of an H or a D only induces the phase shift in
the spin wave function, and this shift is the same as that in the
case of one H and no D and the case of no H and one D. Using
these approximations, the eigenstates of T̂di are then given by

|�q(H),q(D),s〉 = 1

N

∑
n,m

exp(iq(H) · rn + iq(D) · rm)| fs(n, m)〉,

(33)

where | fs(n, m)〉 is the spin wave function with an H at site n
and a D at site m that satisfies the following relation:

T̂di | fs(n, m)〉 = exp[i�qdi (s)]| fs(n(−di ), m)〉
+ exp[−i�qdi (s)]| fs(n, m(di ))〉, (34)

and the eigenvalue of |�q(H),q(D),s〉 is exp[i(q(H)
di

+ �qdi (s))] +
exp[−i(q(D)

di
+ �qdi (s))]. |�q(H),q(D),s〉 is also an energy

eigenstate of P1K̂P1 and has the energy eigenvalue
−2T

∑2
i=1{cos(q(H)

di
+ �qdi (s)) + cos(q(D)

di
+ �qdi (s))}.

The constraint is satisfied by considering a linear combina-
tion of two degenerate eigenstates: 1√

2i
{|�q,−q,s〉 − |�−q,q,s〉}.

Consequently, the energy eigenstates of P1K̂P1 are given by

|ψq,s〉 =
√

2

N

∑
n,m

sin[q · (rn − rm)]| fs(n, m)〉, (35)

and the energy eigenvalue of |ψq,s〉 is given by

Eq,s = −2T
2∑

i=1

{cos(qdi + �qdi (s)) + cos(qdi − �qdi (s))}.

(36)

The H-D wave vector q must be compatible with both the
periodic boundary condition and the constraint that an H and a
D cannot occupy the same site. The latter constraint cannot be
satisfied for the wave vectors (0,0), (0, π ), (π, 0), and (π, π )
because |�q,−q,s〉 and |�−q,q,s〉 are the same state in each of
these cases.

The H-D model describes the transfer of an H and a D
under the constraint that an H and a D cannot occupy the same
site. The spin degrees of freedom are not included in the H-D
model. The charge distribution of |ψq,s〉 is the same as that for
the energy eigenstate of the H-D model when using the same
H-D wave vector q. In this paper, |ψq,s〉 are therefore regarded
as free H-D states. Note, however, that the spin scattering
induces a phase shift and the spin-charge coupling is not
negligible, even within the strong interaction limit T/U = 0.

Next, we consider the spin structure of these free H-D
states. A free H-D state |ψq,s〉 is given by a linear combination
of the spin wave functions | fs(n, m)〉, and all these spin wave

(a) (b)

(c) (d)

FIG. 5. (a) Spin configuration of the AF spin state | fs(n, m)〉 with
an H-D pair located at nearest-neighbor sites. (b) Spin configuration
of | fs(n(x), m)〉. (c) Spin configuration of | fs(n(x, y), m)〉, where
n(x, y) is the site neighboring n(x) in the y direction. (d) Spin config-
uration of the state where a spin flip of an antiparallel pair indicated
by the red arrows is induced in | fs(n(x, y), m)〉. In all parts of the
figure, the up (down) spins are shown by the up (down) arrows, the
H and the D are represented by the blue and red circles, respectively,
and the parallel spin pairs induced by the H transfer are surrounded
by dotted lines.

functions are coupled through the transfer operator T̂di , as
shown by Eq. (34), except for the case where |qx| = |qy| =
π/2. When |qx| = |qy| = π/2 holds, if | fs(n, m)〉 has a finite
weight, then the weights of | fs(n(−di ), m)〉 and | fs(n, m(di ))〉
are both zero in |ψq,s〉, as shown by Eq. (35). Therefore the
spin wave functions | fs(n, m)〉 that construct |ψq,s〉 are not
coupled through T̂di in this case alone.

If | fs(n, m)〉 has the AF spin order, this order is destroyed
locally around the site n (m) in | fs(n(di ), m)〉 (| fs(n, m(di ))〉)
by the spin scattering induced by the transfer of an H (D),
and the number of parallel spin pairs increases when an H (D)
is transferred further, as depicted schematically in Figs. 5(a)–
5(c). If all the spin wave functions in a free H-D state |ψq,s〉
are coupled through T̂di , then the AF spin order is destroyed
by the free translation of an H (D). Therefore |ψq,s〉 can have
the AF spin order only when |qx| = |qy| = π/2.

Because spin scattering does not occur in the ferro-
magnetic state, free H-D states with a ferromagnetic order
exists. However, because the ground state has the AF
spin order, the transition dipole moments to the free H-D
states with the ferromagnetic spin order are effectively zero.
Therefore the one-photon active free H-D states have neither
AF nor ferromagnetic spin orders, except for the case where
|qx| = |qy| = π/2.

The spin and charge correlation function characteristics
of the free H-D states |ψq,s〉 agree well with those of
the one-photon active energy eigenstates that were obtained
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FIG. 6. (a) ξ (r) and (b) η(r) for |φk〉 at Ek = 0, and (c) ξ (r) and (d) η(r) for |φk〉 at Ek = 5.85T within the strong correlation limit T/U = 0.

numerically via RSVD. As shown in Fig. 4(a), the magnitude
of the AF spin order IAF for the energy eigenstate with Ek = 0
is much higher than the magnitudes for the other states. We
show the spin correlation function η(r) for the |φk〉 at Ek = 0
and 5.85T in Figs. 6(b) and 6(d), respectively. We see that
|φk〉 with Ek = 0 has the AF spin order. Furthermore, the
values of |η(r)| for r �= 0 are very small, and no spin order
exists in |φk〉 when Ek = 5.85T . We see from the results of
the numerical calculations that the spin correlations are very
weak in the other one-photon active energy eigenstates, except
for the case where Ek = 0. As shown in Eq. (36), Eq,s = 0
holds irrespective of the spin state s when |qx| = |qy| = π/2,
and many of the free H-D states are degenerate at Ek = 0.
This property of the free H-D states is also consistent with the
numerical result that only the single energy eigenstate has the
strong AF spin order.

The charge correlation for a free H-D state |ψq,s〉 is given
by

ξ (r) = − 4

N2
sin2[q · r]. (37)

In the case where |qx| = |qy| = π/2, ξ (rm − rn) = 0 holds
when both n and m belong to the same bipartite sublattice;
this shows that if an H is on one bipartite sublattice, then a
D is always on the other bipartite sublattice. As the values
of qx and qy become closer to 0 (π ) and Eq,s approaches the

low-energy (high-energy) band edge, the spatial variations in
the charge correlations become more gradual.

We show ξ (r) for |φk〉 with values of Ek = 0 and 5.85T
in Figs. 6(a) and 6(c), respectively. The characteristic charge
correlation function of the free H-D state for the case where
|qx| = |qy| = π/2 is shown, i.e., ξ (rm − rn) = 0 holds when
n and m belong to the same bipartite sublattice in |φk〉 when
Ek = 0. Because |φk〉 with Ek = 0 is given by a linear com-
bination of the degenerate free H-D states with |qx| = |qy| =
π/2 and different signs of qx and qy, the value of ξ (rm − rn)
is not constant when n and m belong to different bipartite
sublattices. In the case of |φk〉 with Ek = 5.85T , which is
near the high-energy band edge, the Fourier transformation of
the charge correlation function ξ (r) shows a peak around the
wavelength that is comparable to

√
N . We have also investi-

gated ξ (r) for the other one-photon active energy eigenstates.
Because of the degeneracy of |ψq,s〉, the value of ξ (r) given by
Eq. (37) is not reproduced in the numerically obtained |φk〉,
but we confirmed that the spatial variation in ξ (r) becomes
more gradual as Ek becomes closer to the band edges. The
characteristic spin and charge structures of the numerically
obtained one-photon active energy eigenstates agree very well
with the corresponding quantities for the free H-D states.

The light absorption spectrum α(ω) for T/U = 0 con-
sists of a broad band with a sharp peak at ω − U = 0. This
broad band is symmetrical about ω − U = 0 and extends from
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U − 6T to U + 6T , and α(ω) decreases as ω approaches
the band edges. These characteristic features of α(ω) can be
explained using the physical properties of the free H-D states.

In the H-D model, the energy eigenvalue is determined
from the H-D wave vector q. Because the number of q that
is compatible with both the periodic boundary condition and
the constraint that an H and a D cannot occupy the same site
is smaller than N , α(ω) consists of only a few isolated peaks
in the small-sized cluster. In the model presented here, the
energy eigenvalues of the free H-D state are determined not
only from q but also from the phase shift �q(s), which arises
from the spin scattering and is dependent on the spin state s.
As a result of the large number of spin degrees of freedom,
approximately 1000 energy eigenstates make nonnegligible
contributions to α(ω), and the continuum band is thus formed.
In the 1D Hubbard model, as a result of the spin-charge
separation, the energy eigenvalues of the one-photon excited
states are mainly determined from the wave number q of an
H and a D, and α(ω) then mainly consists of a few isolated
peaks [59]. The broad band structure in the 2D effective model
originates from spin-charge coupling.

A logarithmic singularity has been reported in the density
of states for noninteracting electrons on a 2D square lattice
[85,86]. However, we can see that α(ω) is mainly determined
from |Jk,0|2 by comparing α(ω) with |Jk,0|2, as shown in
Fig. 4(a). As Eq. (14) shows, Jk,0 is given by the overlap
between |φk〉 and Ĵ|φ0〉. In Ĵ|φ0〉, an H-D pair is generated
at neighboring sites along the x direction in the AF spin
background, as indicated by Eq. (12). Therefore |Jk,0| tends
to be higher for |φk〉 with a higher IAF and a higher |ξ ((1, 0))|,
which is proportional to the probability that an H and a D exist
at neighboring sites along the x direction.

The transition dipole moment is much higher for |φk〉 with
Ek = 0 than for any of the other states, and this is mainly the
result of IAF being much larger for this state, which is charac-
teristic of free H-D states with |qx| = |qy| = π/2. The sharp
peak observed at ω − U = 0 occurs because of the excitation
to the single energy eigenstate with the dominant transition
dipole moment, which stems from the properties of the free
H-D states.

Next, we consider the origin of the broad band struc-
ture. Because the values of IAF for the one-photon active
energy eigenstates are small and are nearly constant, |Jk,0|
is determined mainly from |ξ ((1, 0))|, except for the case
where Ek = 0. In the free H-D state |ψq,s〉, the relation
that |ξ ((1, 0))| = 4

N2 sin2(qx ) holds. For the two wave vec-
tors q± = (π/2, π/2) ± q′, Eq+,s = −Eq−,s holds, and the
value of |ξ ((1, 0))| for |ψq+,s〉 and that for |ψq−,s〉 are equal.
As q approaches (0,0) ((π, π )), Eq,s approaches the upper
(lower) band edge, and ξ ((1, 0)) approaches zero. The value
of |ξ ((1, 0))| is highest at qx = ±π/2, and |ξ ((1, 0))| can
reach its highest value only when −4T � Eq,s � 4T . These
characteristics of the free H-D states are consistent with the
numerically obtained results that indicated that the Ek de-
pendence of |Jk,0| is symmetrical about Ek = 0, that |Jk,0| is
nearly constant for −3T � Ek � 3T , and that |Jk,0| decreases
with decreasing (increasing) Ek for Ek � −3T (Ek � 3T ) and
approaches zero near the low-energy (high-energy) band edge.
The characteristics of α(ω) for T/U = 0 can be explained

using the charge and spin structures of the free H-D energy
eigenstates. The density of the free H-D states D(E ) decreases
as E approaches the band edges. This also contributes to the
reduction in α(ω) near the band edges.

As shown in Fig. 3, as T/U increases from T/U = 0,
the sharp peak at the center of the band broadens and
blue shifts, and α(ω) for ω < ωCP (ω > ωCP) increases (de-
creases), where ωCP is the central peak energy. Furthermore,
new peaks that are separated from the broad band toward the
lower energy, which is confirmed from D(E ) shown in Fig. 4,
appear when T/U � 0.03, and these peaks become higher as
T/U increases. As a result, the shape of α(ω) for a realistic
value for two-dimensional Mott insulators of T/U = 0.1 is
essentially different from that at the strong correlation limit
of T/U = 0. This result is in contrast to the 1D case, where
the spectrum shape remains almost unchanged when T/U is
changed under the condition that T/U � 0.1.

To understand the characteristics of α(ω) for T/U = 0.1,
we investigated the physical properties of the one-photon ac-
tive energy eigenstates. As shown in Fig. 4(c), the one-photon
active energy eigenstates can be classified into two categories.
The magnitudes of the transition dipole moments |Jk,0|, the
magnitudes of the AF spin order IAF, and the standard devia-
tions of the spatial H and D distribution σC of the nine energy
eigenstates are significantly higher, and the entanglement en-
tropies S of these eigenstates are significantly smaller than
those of the other states. The points corresponding to the nine
energy eigenstates are circled using dotted lines.

We compare ξ (r) and η(r) for |φk〉 with Ek = −3.82T (one
of the nine energy eigenstates) with the corresponding quan-
tities for Ek = 1.69T (one of the other eigenstates) in Fig. 7.
Except for the nine energy eigenstates, the energy eigenstates
including |φk〉 with Ek = 1.69T show the typical charge and
spin structure of a free H-D state. Because there are almost
degenerate eigenstates |ψq,s〉 of the main part P1K̂P1 of the
effective Hamiltonian H (1)

eff with different H-D wave vectors q,
even samll perturbations of the remaining part of H (1)

eff induces
hybridization among nearly degenerate eigenstates |ψq,s〉. As
a result of the hybridization, spatial variations in ξ (r) are
quite small for the energy eigenstates except for the nine ones,
including that for |φk〉 with Ek = 1.69T shown in the figure.

The AF spin order is much stronger, and |ξ (r)|, which is
proportional to the D density when an H exists at site (0,0),
is much more localized around sites (2,−1) and (−2, 1) in
the case of |φk〉 with Ek = −3.82T than in the case of |φk〉
with Ek = 1.69T . The much higher values of σC for the nine
energy eigenstates result from the more localized H and D
distributions. We cannot determine whether the H and the D
are localized or not from the long-range behavior of ξ (r) in
the finite cluster calculations in the present case. However,
because the AF spin order is destroyed by the free transfer of
an H and a D, the strong AF spin order indicates localization
of an H and a D. Furthermore, the entanglement entropy S
and the density of states D(E ) are significantly smaller within
the energy regions of the nine energy eigenstates than in the
other energy regions. These results are consistent with the
conclusion that an H and a D are localized within these en-
ergy eigenstates. These nine energy eigenstates are therefore
described as localized H-D states.
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FIG. 7. (a) ξ (r) and (b) η(r) for |φk〉 at Ek = −3.82T , and (c) ξ (r) and (d) η(r) for |φk〉 at Ek = 1.69T for T/U = 0.1.

An H and a D are localized around rH-D = √
5, where rH-D

is the distance between the H and the D, in |φk〉 with Ek =
−3.82T . We have also investigated ξ (r) for the other localized
states. An H and a D are localized around the distance rH-D =√

5 in cases where Ek = −3.39T , −3.22T , and −3.08T , and
an H and a D are also localized around the distance rH-D =√

13 in the cases where Ek = −2.79T , −2.72T , −2.58T , and
−2.51T . In addition, in the case where Ek = −3.17T , an H
and a D are localized around both rH-D = √

5 and
√

13. These
characteristics are in contrast to the H-D exciton state that
originates from the direct Coulomb interactions between the
different sites. In the lowest energy H-D exciton state, |ξ (r)|
is a decreasing function of rH-D [29].

This characteristic charge distribution can be understood
as follows. The one-photon active energy eigenstates have
a nonzero overlap with the solution to the time-dependent
Schrödinger equation with the initial state |ψ (0)〉 = Ĵ|φ0〉,
because the relationship 〈φk|ψ (t )〉 = exp(−iEkt )Jk,0 holds.
There is an H-D pair at a nearest-neighbor site on the AF
spin background in the initial state Ĵ|φ0〉. An H or a D is then
transferred to the neighboring site by the transfer term P1K̂P1

in H (1)
eff , and the neighboring parallel spin pairs are generated

by the transfer, as shown schematically in Figs. 5(a)–5(c).
A spin flip of an antiparallel pair is induced by the spin-
spin interaction term in H (1)

eff . The parallel spin pairs that are

generated by successive transfers of charge carriers can be
removed by the spin flip only when an H and a D exist on
different bipartite sublattices, i.e., when rH-D = 1,

√
5, and√

13 in the current N = 26 cluster, as shown schematically in
Fig. 5(d). Therefore the energy gain due to the AF spin order
that results from the localization of an H and a D reaches local
maxima at these distances.

The AF spin order survives and the spin-spin interaction
energy is much lower in the localized H-D states with these
distances than in the free H-D states, where the AF spin order
is destroyed. However, the H and D transfer energy is also
increased by the localization. The increases in the spin-spin
interaction energies from the AF ground state are roughly
estimated to be 7J|η0|, 8J|η0|, and 8J|η0| for the cases of
rH-D = 1,

√
5, and

√
13, respectively, where η0 is the spin

correlation between neighboring states in the AF ground state,
and the increase is shown to be lowest for rH-D = 1. When a
localized state with a distance rH-D is represented by a linear
combination of complete basis states |ψq,s〉, the states with
the wave vectors of |q| � π/rH-D have the dominant weights.
Therefore the transfer energy is much higher in the localized
states with rH-D = 1 than in the states with rH-D = √

5 and
rH-D = √

13, and the difference is related to the order of T .
This is the reason why an H and a D are localized with a
distance of rH-D = √

5 or rH-D = √
13 in the localized H-D
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states. Note here that the localization does not come from
the direct Coulomb interaction; in fact, it comes from the
spin-spin interaction.

Consequently, the one-photon active energy eigenstates
can be classified into localized H-D states and free H-D states.
The localized H-D energy eigenstates have much higher Jk,0

values than the free H-D energy eigenstates, and the density
of states is much lower in the energy region of a localized
H-D state than in the corresponding region of a free H-D
state. As a result, α(ω) consists of a few sharp peaks in the
low-energy region of the localized H-D states for −4T �
ω − U � −2.5T . The contribution of the localized H-D states
to α(ω) is shown by the red solid line in Fig. 4(c). In con-
trast, the free H-D states form a broad band that extends
from −2.5T � ω − U � 8T . The peaks that result from the
localized H-D states are separated toward the lower energy
from the broad band that results from the free H-D states as
seen from the dip in D(E ) shown in Fig. 4(c).

Exact diagonalization studies in limited functional space
have revealed various interesting results on dynamics of a
charge carrier doped in AF spin background, [20–25] which
is closely related to the properties of photoexcited states in the
2D Mott insulators. The method is based on the string picture.
The basis states of limited functional space are constructed
from a Neel state with one hole, and new states are generated
by operating the transfer term P0K̂P0 to the state repeatedly.
Therefore the string excitation induced by the transfer of an
H and a D, which contributes to the H-D interaction of spin
origin, can be described by the method. However, effects of
some terms in the present Hamiltonian are not included in
this limited functional space. Among them, spin flip plays
a crucial role in the H-D interaction and makes the local
minimums of the interaction at the distances rH-D = √

5 and√
13 as mentioned before. The characteristic localized H-D

states at these distances cannot be described by the method
unless the space is constructed not only by using the kinetic
term but also by using the spin flip term. Furthermore, in the
practical application of the method, restriction is imposed on
the maximum length of string excitation. When this restriction
is imposed, the AF spin order is not destroyed by charge
transfer, and the free H-D states cannot be described by the
theory.

Next, we consider how α(ω) and the photoexcited states
change with changes in T/U . The localized H-D states ap-
pear when T/U � 0.03. There is one localized H-D state
for T/U = 0.03. As T/U is increased from T/U = 0.03, the
number of localized H-D states increases, the H and the D
becomes more localized, and IAF and |Jk,0| both increase in the
localized H-D states, as illustrated by comparison of Figs. 4(b)
and 4(c). The interaction between the spins strengthens and
the gain of the spin-spin interaction energy that results from
the localization of the H and the D increases as T/U increases.
This characteristic T/U dependence of the one-photon active
energy eigenstates can be attributed to the increased gain of
the spin-spin interaction energy. The peaks caused by the lo-
calized H-D states become more prominent as T/U increases
because of the increase in |Jk,0| and the increase in the number
of these states.

The sharp peak centered at ω − U = 0 becomes broader
as T/U is increased from zero. Numerical calculations show

that the sharp peak results from excitation of a few nondegen-
erate energy eigenstates, and these energy eigenstates have the
characteristic charge and spin structures of the free H-D states
|ψq,s〉 with |qx| = |qy| = π/2 for T/U = 0.01. Therefore the
broadening that occurs in the extremely strong correlation
region T/U � 0.01 is mainly because the degeneracy of
|ψq,s〉 with |qx| = |qy| = π/2 is lifted by the introduction of
spin-spin interactions. For the region where T/U � 0.03, we
cannot confirm the characteristic spin and charge structures
of |ψq,s〉 with |qx| = |qy| = π/2 in the energy eigenstates
that contribute to the peak. This shows that |ψq,s〉 with dif-
ferent wave vectors are strongly hybridized in these energy
eigenstates, and this behavior leads to the broadening in the
correlation region.

Next, we consider the broad band of the free H-D states.
When T/U = 0, α(ω) is nearly constant within the central
part of the band for −3T � ω − U � 3T when the sharp
central peak is neglected. As T/U increases, both IAF and σC

also increase slightly in the free H-D states, showing that the
translation motion of the H and the D is also slightly sup-
pressed to gain the spin-spin interaction energy in these states.
Furthermore, a smaller energy eigenvalue tends to correspond
to a greater increase in σC and IAF, as shown in Figs. 4(b)
and 4(c). The effect of the potential energy that results from
the spin degrees of freedom increases as the kinetic energy
of the H and the D decreases. As a result of the character-
istic Ek dependence of IAF, α(ω) becomes approximately a
decreasing function of ω in the central part of the band for
0 � ω − U � 6T for T/U = 0.1 when the small peaks are
neglected.

The light absorption spectrum α(ω) for the realistic magni-
tude of the Coulomb interaction T/U = 0.1 agrees well with
the experimental results for 2D Mott insulators composed of
La2CuO4, Nd2CuO4, and Sr2CuO2Cl2 [19,80,81]. The char-
acteristic α(ω) of the 2D Mott insulator can be explained by
considering the effects of the spin degrees of freedom on the
transfer of an H and a D.

V. SUMMARY AND DISCUSSIONS

We have proposed a new approach to extract the impor-
tant degrees of freedom in quantum dynamics induced by
an external stimulus by performing RSVD of the coefficient
matrix C, and then applied this method to analyze the light
absorption spectra in 2D Mott insulators. We found that a
nearly exact light absorption spectrum α(ω) can be repro-
duced by using as few as 1000 energy eigenstates in 1.7 ×
107-dimension Hilbert space. Furthermore, we calculated all
these one-photon active energy eigenstates and analyzed their
physical properties, which then enabled us to understand the
characteristic α(ω) of 2D Mott insulators. For a realistic
magnitude for the Coulomb interaction T/U = 0.1, the one-
photon active energy eigenstates were classified into free H-D
and localized H-D states. In the free H-D states, the main
effect of the spin degrees of freedom on the transfer of an H
and a D was a phase shift, and the H and the D moved freely.
In the localized H-D states, an H and a D were localized with
the relative distances of

√
5 or

√
13, and the AF spin order

was much stronger than the free H-D states. The localization
of the charge carriers was caused by the interaction between
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them, which originated from the spin degrees of freedom.
Sharp peaks are caused by the excitation to the localized H-D
states, and these peaks are separated from the broad band
that results from the free H-D states toward the lower energy.
The numerical results provide reasonable reproductions of the
experimentally obtained optical conductivity characteristics in
the 2D Mott insulators composed of La2CuO4, Nd2CuO4, and
Sr2CuO2Cl2 [19,80,81]. In the experimental results, a peak
was observed at the low-energy edge of the continuum band.
We believe that this spectrum shape occurs because the peaks
caused by the localized H-D state are not separated from the
continuum band of the free H-D states because of the large
broadening effect.

The H-D binding effect caused by the Coulomb interaction
between the different sites is not investigated in this paper. It
has been investigated in the extremely strong interaction case
of T/U = 0.001, where the H-D interaction of spin origin is
negligible, and it has been shown that H-D exciton states exist
when V/T � 2, where V is the Coulomb interaction energy
between the neighboring sites [29]. Since an H and a D are
strongly bound around rH-D = 1 in the H-D exciton states,
the peaks caused by the excitations to them are dominant in
the light absorption spectrum α(ω), and α(ω) for V/T � 2
differ greatly from the experimentally obtained spectra in the
2D Mott insulators La2CuO4, Nd2CuO4, and Sr2CuO2Cl2.
Therefore it is essential to consider the H-D binding effect
of spin origin to understand the low-energy region of α(ω) in
these 2D Mott insulators. However, this does not indicate that
the binding effect caused by the direct Coulomb interaction
can be neglected. The combined effect of the direct Coulomb
interaction and the interaction originating from spin degrees
of freedom may play an important role in the formation of the
bound H-D states. The problem is a subject for future studies.

The localized H-D states can be detected from the pho-
ton energy dependence of the photoconductivity. Since the
localized H-D states are not expected to contribute to the
photoconductivity, the photoconductivity rises above the band

edge, i.e., at the boundary energy between the localized and
free H-D states.

In this paper, we have shown that all the one-photon ac-
tive energy eigenstates can be calculated using the proposed
method, namely by performing RSVD of the coefficient ma-
trix in the case of the linear response to the photoexcitation,
and this enables us to understand the light absorption spectrum
in the 2D Mott insulators. However, this method is not limited
to analysis of the linear response. The proposed method can
also be used to extract the important degrees of freedom for
the dynamics when the photoexcited states change greatly,
e.g., as in the photoinduced phase transitions. Transient ab-
sorption spectroscopy represents a powerful experimental tool
for investigation of the dynamics of photoinduced phase
transitions. However, it is often difficult to understand the
dynamics from the transient absorption spectrum, similar to
the difficulty of understanding the linear absorption spectra
of 2D Mott insulators. The proposed method can be used
to analyze the transient absorption spectrum by performing
RSVD of Cprobe − C, where Cprobe is the coefficient matrix
when the pump and probe pulses are irradiated and C is the
corresponding matrix when only the pump pulse is irradiated.
Although the modes obtained are not the energy eigenstates
because of the uncertainty relation between the time and the
energy in this case, analysis of these important modes will still
advance our understanding of the optical transient absorption
spectrum. These problems will form part of our future work.
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