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In-plane Wilson loop for measurement of quantized non-Abelian Berry flux
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Band topology of anomalous quantum Hall insulators can be precisely addressed by computing the Chern
numbers of constituent nondegenerate bands, describing the presence of quantized, Abelian Berry flux through
the two-dimensional Brillouin zone. Can Berry flux be captured for the SU (2) Berry connection of two-fold
degenerate bands in spinful materials preserving space-inversion (P) and time-reversal (T ) symmetries without
detailed knowledge of underlying basis? We address this question by investigating the correspondence between
a non-Abelian generalization of Stokes’ theorem and the manifestly gauge-invariant eigenvalues of Wilson loops
computed along in-plane contours which preserve the underlying crystalline symmetry. The importance of this
correspondence is elucidated by performing natural number resolved classification of ab initio band structures
of three-dimensional, Dirac materials. Our work underscores how identification of quantized Berry flux, both
Abelian and non-Abelian, offers a unified framework for addressing first-order and higher-order topology of
insulators and semimetals.
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I. INTRODUCTION

The basic concepts of topological band theory were de-
veloped by considering global properties of nondegenerate
energy bands of time-reversal symmetry breaking, two-
dimensional insulators [1–9]. The band eigenfunctions of such
systems are determined up to arbitrary complex phase factors,
i.e., ψn(k) and eiαn (k)ψn(k) are equally good candidate eigen-
functions for the nth band, with n = 1, 2, 3, . . . , N . This U(1)
redundancy for individual bands leads to Abelian Berry’s con-
nection, An(k) = −i 〈ψn| ∇ |ψn〉 and corresponding Berry’s
curvature �n(k) = ∇ × An(k). By integrating �

j
n over the

two-dimensional Brillouin zone (BZ), one arrives at the quan-
tized flux of U(1) curvature,

∫
d2k�n(k) = 2πCn, where Cn

is the Chern number of band n. There exist many reliable
methods for computing Cn. For example, by measuring the
Berry’s phase accrued by ψn(k) when it is parallel transported
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along any nonintersecting closed contour and relating it to
enclosed flux by Stokes theorem.

Can quantized flux exist for twofold degenerate
bands of parity and time-reversal invariant systems with
T 2 = −1? The twofold degeneracy gives rise to local
SU(2) redundancy of each band; as {ψn,↑(k), ψn,↓(k)}T ,
eiθnn̂(k)·σ {ψn,↑(k), ψn,↓(k)}T are equally good candidate
wave functions. The curvature, Fn,s,s′ , of SU(2) Berry’s
connections, An,s,s′ (k) = −i 〈ψn,s(k)| ∇ |ψn,s(k)〉, is gauge
covariant. Therefore there are many conceptual subtleties in
assigning gauge-invariant non-Abelian Berry’s flux. If global
symmetries such as U(1) spin-conservation [6] or mirror
symmetry [10] are present, it becomes possible to assign a
global spin quantization axis [U(1) gauge-fixing of SU(2)
connections]. In the case of a mirror symmetry, one can
separate the eigenspace into two subspaces, labeled by the
eigenvalues of the mirror operator, and calculate Cn in each
subspace.

In the absence of mirror or spin-rotation symmetry, it has
been shown that the relative Chern number of individual
Kramers pairs and the occupied subspace of a spinful, T -
preserving system may still be accomplished by projecting
into nondegenerate, Abelian subspaces. This is done through
construction of the projected spin operator (PSO), P(k)ŝP(k),
where P(k) is the projector onto occupied bands and ŝ is a pre-
ferred (pseudo)spin-quantization axis [11,12]. In the absence
of spin-orbit coupling (presence of U(1)-spin conservation
law) the eigenvalues of the PSO are fixed as ±1; when spin-
orbit coupling is introduced the eigenvalues are no longer
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FIG. 1. Comparison between Wilson loop computed along prin-
cipal axis Wx (ky ), also known as Wannier charge centers (WCCs),
and the in-plane Wilson loop procedure presented in this work
for spinful, time-reversal invariant (T ), crystalline insulators,
WABCD(k0). These procedures are generally nonequivalent in diag-
nosing band topology in the absence of enhanced symmetry.

pinned at ±1. Nevertheless, it has been shown that the gap in
the spectra of PSO (spin-gap) closes adiabatically. The result-
ing spin-Chern number, computed using the nondegenerate
eigenstates of the PSO, is thus protected by both the spin-gap
and bulk energetic gap.

Despite the conceptual power and scope of this method, it
faces significant challenges in application to realistic models.
Namely, ŝ need not correspond to a principal spin quantization
axis, it can correspond to an arbitrary (pseudo)spin axis. As
a result, the number of possible forms for ŝ grows rapidly
with an increasing number of bands. Selection of proper ŝ is
thus extremely challenging without detailed knowledge of the
basis or a computationally intensive trial and error procedure.

In this work, we build off a number of landmark studies
into the study of the non-Abelian Stokes theorem and its
computation using Wilson loops (WLs), going back over fifty
years [13–15]. We demonstrate that in crystalline systems, in-
plane Wilson loops offer a route to quantifying non-Abelian
Berry flux and establish conditions for its quantization in
individual Kramers pairs. While WLs are already widely used
in diagnosis of band topology through analysis of the non-
Abelian Berry phase [16–25], we place special emphasis on
understanding the corresponding non-Abelian flux in any n-
fold rotationally symmetric plane. Care is taken to ensure that
this analysis is agnostic to the choice of basis. Finally, this
method is shown to be applicable in both tight-binding models
and ab initio data.

II. FORMALISM OF IN-PLANE WILSON LOOP

Consider a closed, nonintersecting path lying in the xy
plane and respecting the m-fold symmetry of the plane, such
as that shown in the right panel of Fig. 1. The WL of SU(2)
connections of nth Kramers-degenerate bands along this con-
tour, parameterized by k(l ), is defined as

Wn = P exp

⎡
⎣i

∮ 2∑
j=1

Aj,n(k(l ))
dk j

dl
dl

⎤
⎦, (1)

= exp[i θn(k0) �̂n(k0) · σ], (2)

where P denotes path ordering and k0 corresponds to the
edge size of the loop. The intraband connections of nth
band, are defined according to the formula Aj,n,s,s′ (k) =
−iψ†

n,s(k)∂ jψn,s′ (k), where ψn,s(k) are the eigenfunctions of
nth band, with s = ±1 denoting the Kramers index, and ∂ j =
∂

∂k j
. It is this Kramers degeneracy which causes the Berry

connection to take the form of an SU(2) matrix, making
the subsequent computation non-Abelian despite considering
only a single Kramers degenerate band. Similar implementa-
tions of the Wilson loop have been utilized in Refs. [23–26].
While we will focus on the generic case of an SU(2) Berry
connection defined for a single Kramers pair, this formalism
can be naturally extended for an arbitrary set of degenerate
bands. An example of the Berry connection for fourfold de-
generate bands is available in Ref. [27].

The gauge invariant angle θn(k0) can be related to the
magnitude of non-Abelian, Berry’s flux by employing a non-
Abelian generalization of Stokes’s theorem [15,28–31]. The
gauge dependent, three-component, unit vector �̂n(k0) defin-
ing the orientations in SU(2) color space will not be used for
computing any physical properties. In the subsequent section,
we demonstrate that in the presence of independent P and
T symmetry, regardless of the existence of a U(1) conserva-
tion law, the nth Kramers-degenerate bands support quantized
flux of magnitude |2Mπ | with M ∈ Z, |�θn(k0)| = |θn(k0) −
θn(0)| will interpolate from 0 to |2Mπ | as k0 is systematically
increased from 0 to a final value k f , when the area enclosed by
the loop becomes equal to the area of two-dimensional BZ. In
other cases, such as generic two-dimensional insulators which
break P symmetries, this method remains viable in special
cases which will be discussed further in the following section.

The current standard for topological analysis of ab initio
data, involves calculation of Wannier charge centers (WCCs).
WCCs are so-called because a direct correspondence can
be made with the real-space expectation value of the Bloch
wavefunction. Such a correspondence arises due to the path
of integration coinciding with a single cycle of the Bril-
louin zone, invoking the periodicity of the Brillouin zone. A
schematic of this computation is visible on the left side of
Fig. 1. The computation of WCCs and analysis of the resulting
spectra when computed as a function of a transverse momenta
have emerged as powerful tools for describing topology of
quasi-particle band structures [16–19].

Generally WCCs are used for diagnosis of the Fu-Kane
strong and weak Z2 indices. In the presence of mirror-
symmetry or nondegenerate bands, they are further utilized
to determine quantized Berry’s flux [21]. However, in the
absence of a U(1) conservation law WCCs fail to recognize
flux in spinful band structures. This is due in part to the
fact that computation of WCCs discretizes the Brillouin zone
into a series of one-dimensional insulators for which the one-
dimensional winding number is computed.

For topological insulators supporting gapless surface
states, the WCC spectra displays a spectral flow. This flow
is utilized to establish the bulk-boundary correspondence. It
is thus natural that this analysis of WCCs fails to identify
nontrivial topology for the class of higher-order topological
insulators (HOTIs) for which gapless surface states are absent.
In these situations, performing the WL along a closed contour
in the plane, ensures that the two-dimensional bulk invariant
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is probed rather than inferred through an analysis of a series
of one-dimensional insulators.

We will explicitly demonstrate the power of the in-
plane Wilson loop by performing topological classification
of continuum, lattice, and ab initio band structures of Dirac
semimetals (DSMs). We choose to examine DSMs as the
generic two-dimensional planes lying between the Dirac
nodes and perpendicular to the axis of nodal separation have
been identified as examples of two-dimensional higher-order
topological insulators with gapped edge states, while the high-
symmetry planes are identified by either a Z2 index, or a
mirror Chern number, depending on the presence of mirror
symmetry [32–36]. DSMs thus offer the chance to study
distinct types of higher order and first-order topological in-
sulators, embedded in a single material.

III. MODEL AND SYMMETRIES

Na3Bi was proposed as the first candidate material for
realizing stable DSMs, which arise from linear touching be-
tween a pair of twofold, Kramers-degenerate bands at isolated
points of momentum space, along an axis of n-fold rota-
tion (say the ẑ or c axis) [37–39]. The Dirac points are
simultaneously protected by the combination of parity and
time-reversal symmetries (PT ) and the n-fold rotational (Cn)
symmetry [40,41]. The low energy Hamiltonian is written as,
H (k) = ε0(k)1 + ∑5

j=1 d j (k)
 j , where 
 j’s are again five,
mutually anti-commuting, 4 × 4 matrices, and 1 is the 4 × 4
identity matrix [37]. The topological properties of conduction
and valence bands are controlled by the O(5) vector field
d1 = Akx, d2 = Aky, d3 = Bkz(k2

x − k2
y ), d4 = 2Bkxkykz, and

d5 = M0 − M1k2
z − M2(k2

x + k2
y ), where A, B, M0, M1, and

M2 are band parameters. For Na3Bi, the parameters M0 < 0,
M1 < 0, and M2 < 0 capture band inversion effects, leading to
two Dirac points along the sixfold, screw axis at (0, 0,±kD),
with kD = √

M0/M1. The particle-hole anisotropy term ε0(k)
does not affect band topology.

For describing low-energy physics of massless Dirac
fermions, d3 and d4 terms can be ignored in the renormal-
ization group sense [37,42,43]. Such approximate theories
predict topologically protected, loci of zero-energy surface
states, also known as the helical Fermi arcs, joining the projec-
tions of bulk Dirac points on the (100) and the (010) surface-
Brillouin zones. Therefore the spectroscopic detection of he-
lical Fermi arcs was often considered to be the smoking gun
evidence of bulk topology of DSMs. However, these terms
cannot be ignored for addressing topological properties of
generic planes and they are responsible for gapping out the
helical edge states for all |kz| < kD and kz 	= 0 [38,44,45], and
giving rise to higher-order topology [34,46].

A. Bulk topology of continuum models

Here we provide proof of the correspondence between
in-plane Wilson loop and quantized non-Abelian flux for a
continuum model of the two-dimensional planes embedded
in a Dirac semimetal, perpendicular to the direction of nodal
separation. We omit third-order terms such that all WLs are

analytically tractable with the model taking the form

H (k) = sin α(k⊥) cos(mφ)
1 + sin α(k⊥) sin(mφ)
2

+ cos α(k⊥)
3, (3)

fixing 
i=1,2,3 = τi ⊗ σ1, 
4 = τ2 ⊗ σ0, 
5 = τ3 ⊗ σ0,
where τ0 and σ0 are two 2 × 2 identity matrices. The two
sets of Pauli matrices τ j and σ j with j = 1, 2, 3 operate on
the spin and orbital degrees of freedom respectively. We
further define cos α(k⊥) = ( − k2m

⊥ )/( + k2m
⊥ ), with 

defining the skyrmion core size. Typically, this model is
written in a block diagonal basis such that a U(1) Abelian
Berry connection can be written for the occupied eigenstate of
each block. When sgn() > (<)0, it is then straightforward
to show that the model is topological (trivial) as the Abelian
Berry curvature computed using the U(1) Berry connection
displays quantized |2mπ | (0) Berry’s flux [6].

In the current basis, the model is block off-diagonal,
and the SU(2) intraband Berry’s connections are matrix val-
ued, i.e., non-Abelian. Following the procedure described in
Sec. II, identification of quantized flux relies on tracking in-
terpolation of the in-plane Wilson loop between SU(2) center
elements ±σ0 as the area enclosed by the loop is systemat-
ically increased until commensurate with the Brillouin zone
boundary. A continuous interpolation between these elements
is taken to be in correspondence with the interpolation of the
non-Abelian flux, θc/v , by 2π as TrWxy = 2 cos θc/v . To prove
that the non-Abelian in-plane Wilson loop precisely measures
flux, we consider a path enclosing a sector of the circular
Brillouin zone with central angle 2π/N . The non-Abelian WL
can thus be written as

WN = W k⊥=∞
k⊥,k⊥=0(φ = φi )W

φi+2π/N
φ,φi

(k⊥=∞),

W k⊥=0
k⊥,k⊥=∞(φ = φi + 2π/N ). (4)

After some algebra, using the definition for the intraband
Berry’s connections,

Aj (k) = 1

2|N|(|N| + N5)

[
(N1∂ jN2 − N2∂ jN1)
12

+ (N2∂ jN3 − N3∂ jN2)
23 + (N3∂ jN1 − N1∂ jN3)
31

+
3∑

a=1

(Na∂ jN4 − N4∂ jNa)
a4

]
, (5)

where 
i j = [
i, 
 j]/(2i), we arrive at the form

1
2 Tr[WN ] = cos2 � + cos(2mπ/N ) sin2 �, (6)

where

� =
{
π/2, sgn() > 0
0, sgn() < 0 . (7)

We can conclude that in the topological phase, sgn() > 0
and TrWN/2 = cos(2mπ/N ). As such we have directly shown
correspondence between quantized Berry’s flux, θc/v and the
in-plane Wilson loop, validating the above procedure of track-
ing SU(2) center elements.

Additionally, we could consider analyzing Wφ (k⊥) as
a function of k⊥. After some algebra, we arrive at the
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expression,

TrWφ (k⊥)/2 = cos(mπ ) cos(mπ
√

10 − 6 cos(2α)/2). (8)

We note that in the simple case, m = 1, TrWφ (k⊥∗)/2 = −1
where k⊥∗2m =  is the curve defining band inversion. How-
ever, such correspondence vanishes for m > 1, as Wφ (k⊥) =
±σ0 at general values of k⊥, which are not in correspondence
with the location of band inversion.

Having proven the capability of the in-plane Wilson loop
to detect non-Abelian Berry flux, let us now consider the
consequences of reintroducing higher-order terms into the
continuum model such that it takes the form of a five com-
ponent vector,

Ĥ (k) =
5∑

j=1

Nj (k)
 j = B1k⊥(cos φ
1 + sin φ
2)

+ B2(kz )k2
⊥(cos 2φ
3 + sin 2φ
4) + N5(k⊥, kz )
5,

(9)

where (kx, ky) = k⊥(cos φ, sin φ). At this step we emphasize
that N5(k⊥, kz ) is defined such that for k⊥ = 0(∞), |kz| <

kD, N5/N = −(+)1 while for k⊥ = 0(∞), |kz| > kD, N5/N =
+(+)1. This definition is important as it makes definitive
the presence of band inversion between the high-symmetry
locations k⊥ = 0 and k⊥ = ∞ for all |kz| < kD, which can be
observed through a sign change in symmetry eigenvalues of
P = 
5 for the occupied eigenstates at these locations.

The non-Abelian Berry connection, Aφ , can then be calcu-
lated using Eq. (5). The in-plane Wilson loop taking the form

W ±
φ (k⊥, kz ) = Pexp

[
i
∫ 2π

0
Aφ (k)dφ

]
, (10)

where (±) indicates the Kramers degenerate conduction and
valence bands respectively. Defining W ±

φ (k⊥, kz ) = exp(i�± ·
σ ), we examine the gauge invariant quantity cos �± =
− cos α±. This quantity is equivalent to Tr(W ±

φ )/2. Solving
for α±, we arrive at the form

α± = π

[(
(B2

1 ± 2B2(kz )2k2
⊥)k2

⊥
N(N + N5)

−1 ∓ 2

)2

+ B2
1B2(kz )2k6

⊥
N2(N + N5)2

] 1
2

.

(11)

We will now investigate this quantity in three important limits
(1) at the nodal plane, (2) at the mirror plane, and (3) at a
generic plane.

Nodal plane. At the nodal plane, |kz| = kD, as k⊥ → 0,
N scales as k⊥. As a result α±(k⊥→0) = 2π while in the
limit k⊥ → ∞, α±(k⊥→∞) = π | − 1 ∓ 2|. We therefore find
the quantized flux in the nodal plane to be |��| = |�(k⊥ =
∞) − �(k⊥ = 0)| = π , the critical value. We emphasize that
extraction of this critical value is an advantage of the in-plane
Wilson loop as the spin-Resolved Wilson loop can no longer
be applied in this plane [11,12].

Mirror plane. For the current model, B2(kz ) = kzB2, there-
fore at the mirror plane, kz = 0, we set B2(kz ) = 0. In order
for a plane to support quantized non-Abelian flux of mag-
nitude 2π , we must be able to show that TrW ±

φ evolves

adiabatically from +2 → +2, through TrW ±
φ = −2. We note

α±(k⊥→0,∞) = π |−1 ∓ 2|, while the values of k⊥ for which
TrW ±

φ = −2 are identified in the mirror plane by solving
∣∣∣∣ B2

1k2
⊥

N(N + N5)
− 1 ∓ 2

∣∣∣∣ = 2n, n ∈ N . (12)

This equation satisfied if there exists a value of k⊥ for which
N5 = 0. Given the criteria for N5 at k⊥ = 0 and k⊥ = ∞,
this must be satisfied for kz = 0. We can therefore conclude
that the mirror plane supports quantized non-Abelian flux of
magnitude 2π .

Generic plane. At a generic value of kz, we can again
conclude that α±(k⊥→0,∞) = π | − 1 ∓ 2|, however we can
no longer analytically determine how α± interpolates between
these values. We thus solve numerically, fixing B2(kz ) = kzB2

and N5 = (B3k4
⊥ + B4k2

z − �). Carrying out this computation,
we determine that all planes for which |kz| < kD support quan-
tized non-Abelian flux of magnitude 2π .

At this point, we emphasize the importance of how N5

is defined. Specifically, this function is defined such that a
Wilson line along the boundary of the Brillouin zone yields
a quantized result, TrW ±

φ (k⊥ → ∞) = cos(Nπ ) with N ∈ Z.
This is the only condition which we impose and it is trivially
satisfied in two-dimensional systems supporting inversion
symmetry. As a result we can conclude that quantized non-
Abelian flux can be computed using the method of in-plane
Wilson loops for individual bands of spinful two-dimensional
insulators supporting P regardless of the presence of a U(1)
conservation law. We now consider implementation of the
in-plane Wilson loop in lattice tight-binding models.

IV. MINIMAL TIGHT-BINDING MODELS

We consider a lattice regularization of Eq. (9). The Bloch
Hamiltonian takes the form H (k)n = ∑5

j=1 Nn
j (k)
 j , where

N(k)n = {tp sin kx, tp sin ky, tdλ1(k), tdλ2(k),

ts(2 − cos kx − cos ky − cos kz )}. (13)

The lattice constants have been set to unity, t j’s are hopping
parameters with units of energy and the Dirac points are
located at (0, 0,±kD), where kD = π/2. In general, λn(k⊥)
represent further neighbor hopping terms allowed by C4z sym-
metry and which preserve the inversion symmetry generated
by P = 
5, such that P†H (k)P = H (−k).

At this point, we emphasize the additional constraint
expressed in the previous section, namely that inversion
symmetry be further preserved within the xy plane param-
eterized by kz which comprises a two-dimensional insulator
embedded in the three-dimensional system. To enforce this
condition, we select λ1(k⊥) = sin kx cos ky and λ2(k⊥) =
sin ky cos kx, such that within a generic plane defined by kz 	=
0, P†H (kx, ky)P = H (−kx,−ky). Fourfold rotational symme-
try about the z-axis is preserved, generated by C†

4zH (k)C4z =
H (k′), where C4z = ei 3π

4 τ0⊗σ3 ei 3π
4 τ3⊗σ3 and k′ = {ky,−kx}.

Having fixed the conditions protecting the presence of quan-
tized non-Abelian flux, we examine its computation for
|kz| < kD and |kz| > kD. The distinct topology of the the
planes is then establish by computing the in-plane WL. It is
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convenient to compute WL by following a C4 symmetric path,
denoted ABCD as seen in Fig. 1. Without any loss of gener-
ality we will choose the point A with (kx, ky) = (−k0,−k0)
as our reference point. When the Kramers-degenerate wave
functions are parallel transported between an initial point ki

and a final point k f , the matrix-valued, non-Abelian Berry’s
phase. [13–15,29,47,48] is described by the Wilson line (or
non-Abelian holonomy)

Wi, f = P exp

[
i
∫ l f

li

2∑
j=1

a j (k(l ))
dk j

dl
dl

]
, (14)

where P denotes path ordering, and we choose to work with
the gauge choice given in Eq. (5). We note that Aj (k) is
singular at TRIM locations in which N5 = −|N| as discussed
in Tyner et al. [31]. We have parameterized the line, joining
two points as k j (l ), ki = k(li) and k f = k(l f ). Therefore the
WL for path ABCD can be obtained as the ordered product of
four straight Wilson lines as

WABCD(k0) = WA,BWB,CWC,DWD,A. (15)

Since WABCD(k0) ∈ Spin(4), we can parametrize it as

WABCD(k0) = WABCD,c(k0)WABCD,v (k0)

=
[

exp[iθc(k0) n̂c j (k0) · σ] 0
0 exp[iθv (k0) n̂v (k0) · σ]

]
. (16)

Here, WABCD,c(k0) ∈ SU(2) and WABCD,v (k0) ∈ SU(2) are the
WLs for the respective SU(2) connections of conduction
and valence bands. Two angles θc(k0) and θv (k0) are gauge-
invariant and two O(3) unit vectors n̂c(k0) and n̂v (k0) define
gauge-dependent orientations in color space.

If we wish to abstain from making a gauge choice and com-
pute WLs in a purely numerical fashion, the straight Wilson
line along ĵ for band n can be rewritten as [16,19,32],

Wj (k) = Fj,k+Nj�k j . . . Fj,k+�k j Fj,k, (17)

where Fj,k+Nj�k j = 〈un
k+�k j

| |un
k〉, �k j = 2π/Nj , and |un

k〉 is
the Bloch function of band n at k.

From θc/v (k0) we can construct other gauge-invariant
quantities, such as the eigenvalues of WLs exp[±iθc/v (k0)],
the trace of WLs Tr[WABCD,c/v](k0) = 2 cos[θc/v (k0)],
and the Vandermonde determinant DV [WABCD,c/v](k0) =
2i sin[θc/v (k0)]. In gauge theory literature, Tr[WC] is the
most widely studied observable. It is useful for detecting
interpolation of WC between the center elements ±σ0 of
SU(2) group, leading to Tr[WC] = ±2. When θc,v = 2lπ
[(2l + 1)π )], with l ∈ Z, WC,c/v = σ0 [−σ0]. We determine
both Tr[WABCD,c/v] and DV [WABCD,c/v] to find θc/v . The results
are then shown in Fig. 2(a). It is clear that the |kz| < kD plane
supports Berry’s flux which quantizes to a value of |2π |.

A. Distinction from principal axis Wilson loop

At this point it is sensible to argue that although a mirror
Chern number can not be defined for Eq. (13), the bulk topol-
ogy of the plane can be determined via the two-dimensional
Fu-Kane Z2 index. Here we provide an example in which the
in-plane Wilson loop is able to capture nontrivial topology
invisible to the Fu-Kane index, or computation of WCCs. In
constructing this model we take advantage of the property
stated in the previous section, that we require the Wilson line
along the boundary of the Brillouin zone to be quantized.
While this is satisfied for systems supporting inversion sym-
metry, it is also possible to relax the requirement of inversion
symmetry throughout the two dimensional Brillouin zone,
imposing this condition only at the Brillouin zone boundary.

As an example consider alteration of Eq. (13) to the form,

N(k) ={tp sin kx cos ky, tp sin ky cos kx,

td sin kx sin ky, 0, ts(1 − cos kx cos ky − cos kz )}.
(18)

In this form, the location of the Dirac nodes along the
kz axis are unaltered as well as the generator inversion
symmetry P . The generator of C4z is altered to the form,
C4z = ei 3π

4 τ0⊗σ3 ei π
2 τ3⊗σ3 . However, if we consider a generic

two-dimensional plane parameterized by kz, P†H (kx, ky)P 	=
H (−kx,−ky ). Nevertheless, inspecting the Brillouin zone
boundary, (kx = ±π, ky) or (kx, ky = ±π ), this relation is
restored. We can thus compute the value of quantized non-
Abelian flux in a generic xy plane. The results of the in-plane
Wilson loop computed for |kz| < kD and |kz| > kD are shown
in Fig. 2(b). These results are consistent with the prior anal-
ysis and demonstrate nontrivial topology supported by planes
parameterized by |kz| < kD. In correspondence, we note the
presence of surface bound modes for these planes in Fig. 2(c).
We then contrast this method with computation of the WCC
spectra in Fig. 2(d), demonstrating that the WCC spectra
yields trivial results for both planes, establishing the two tech-
niques as distinct. For an example of the use of this method
in a higher-order insulator supporting corner bound modes
please consult the supplementary material [49].

For an additional example of a realistic band structure in
which the WCC spectra and in-plane Wilson loop return topo-
logically distinct results, please refer to Ref. [50]. The method
of in-plane Wilson loop is utilized in tandem with the spin-
resolved technique developed by Prodan [11], to confirm the
existence of an even-integer spin Chern number in Kramers
degenerate bands of β-bismuthene which have been labeled
trivial via analysis of WCCs. Given the capability of existing
software packages such as Z2Pack [21] to efficiently compute
Wilson loops in ab initio data, we now consider application of
this formalism to ab initio models of DSMs.

V. AB INITIO BAND STRUCTURES

The crystal structure of Na3Bi, belongs to the space group
P63/mmc and has the lattice constants a = b = 5.49 Å,
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(a) (b)

(c) (d)

FIG. 2. (a) Results of in-plane Wilson loop following a C4 symmetric closed contour for the model given in Eq. (13). As the area enclosed
by the contour approaches the area of the Brillouin zone (k0 = π ), the flux converges to |2π |. (b) Results of in-plane Wilson loop following
a C4 symmetric closed contour for model given in Eq. (18) demonstrating quantized non-Abelian flux of magnitude |2π |. (c) Spectral density
on (10) edge for tight-binding model given by Eq. (18) for |kz| < kD. All calculation are performed fixing tp = tp = ts = td = 1. (d) Wannier
center charge spectra, x̄(ky ), for identical choice of hopping parameters in Eq. (18). In contrast to the in-plane Wilson loop, the WCC spectra
does not display winding and thus cannot detect the nontrivial band topology of the system.

c = 9.78 Å. It consists of two nonequivalent Na sites, denoted
by Na(1) and Na(2). The honeycomb layers formed by Na(1)
and Bi are stacked along the c axis, with Na(2) sites located
between the layers [51–63]. For computational details please
see the supplementary material [49] (see also Refs. [64–66]
therein). The calculated band structures within the energy
window −3 and +2 eV are displayed in Fig. 3(a). We have
labeled the Kramers-degenerate bands, according to their en-
ergy eigenvalues at the 
 point, with En(0) < En+1(0). The
bulk Dirac points arise from linear touching between bands
n = 6 and n = 7, along the sixfold, screw axis (A-
-A line
or the kz axis) at (0, 0,±kD), with kD ≈ ±0.29 × π

c . Their
reference energy coincides with the Fermi level.

A. Bulk topology

In order to perform topological analysis of various bands,
we have employed maximally localized Wannier functions
calculated using the WANNIER90 package [67]. We will cal-
culate WLs of individual SU(2) Berry’s connections of bands
n = 1 through n = 6 by utilizing the Z2Pack software pack-
age [18,21]. In calculating in-plane WLs, we have followed
the hexagonal path abcde f , shown in Fig. 3(b). This is

efficiently accomplished utilizing the existing Z2Pack func-
tions through definition of a custom path for integration,
f (t1, t2), where t j ∈ [0, 1]; t2 parametrizing the hexagonal
path and t2 parametrizing the area enclosed by the contour.

We first focus on the results of the in-plane Wilson loop
for occupied bands in the kz = 0 mirror plane. In this plane,
we find that the Dirac band (n = 6) as well as four remote
bands (n = 1, 2, 3, 5) support nonzero flux of varying mag-
nitude [see Fig. 3(c)] for which quantization occurs for a
contour exactly enclosing the two-dimensional BZ. Due to
the presence of mirror symmetry, flux could also have been
computed via WCCs, yielding identical results. As we adi-
abatically tune kz away from the mirror plane, WCCs can no
longer be utilized to determine flux. For more details of WCCs
in these planes please see the Supplementary Material [49].
Computing WLs for the occupied Dirac band at generic planes
defined by |kz| < kD, |�θ6(k0)| does not display 0 to 2π inter-
polation within the Brillouin zone. In the continuum model
of Eq. (9), such a situation would be encountered by fix-
ing N5/N = +1 at k⊥ = 0, |kz| < kD and −1 < N5/N < 0 at
k⊥ = ∞, |kz| < kD. Nevertheless, we observe deviation from
quantization within the Brillouin zone occurs adiabatically.
These topological properties of Dirac bands are identical to
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FIG. 3. (a) The ab initio band structures of Na3Bi are plotted along various high- symmetry directions, and the Kramers-degenerate bands
are labeled, following an ascending order of energy eigenvalues at the 
 point. The linear touching between bands n = 6 and 7 (purple colored),
along the sixfold, screw axis 
-A, gives rise to bulk Dirac points (red dot), lying at the Fermi level (dashed line). (b) The Wilson loops are
calculated following the hexagonal loop abcdef. We increase k0 from zero to kb = π/a, when the enclosed area becomes equal to that of
hexagonal Brillouin zone (yellow). The gauge invariant eigenvalues of Wilson loops are given by e±iθn (k0 ), where n is the band index. For
topologically nontrivial bands, supporting non-Abelian flux of magnitude 2Mπ , |�θn| = |θn(k0 ) − θn(0)| will interpolate from 0 to 2Mπ , as
k0 is increased from 0 to kb. (c) At the kz = 0 plane, the bands n = 1, 2 (n = 3, 5) support quantized flux of magnitude 4π (6π ) and band n = 6
supports flux of magnitude 2π .

what have been found from the effective, four-band model of
sp-hybridized DSMs [31].

While topological diagnosis of the high-symmetry planes
of Na3Bi benefits from the presence of mirror symmetry, one
can also consider a DSM where the high-symmetry plane
lying perpendicular to the direction of nodal separation lacks
mirror symmetry. One such system is β-CuI, which was pro-
posed as a DSM by Le et al. [38], with the Dirac nodes lying
along the kz axis. For full computational details of this mate-
rial please consult the supplementary material [49]. As β-CuI
belongs to space group R3̄m, the high-symmetry xy planes
support threefold rotational symmetry. Mirror symmetry is
therefore absent and the current topological classification of
the planes is limited to assignment of a Z2 index. In Fig. 4(b),
we show that for the high-symmetry plane lying between the
Dirac nodes, the method of in-plane WLs can be utilized
to identify a quantized flux. Furthermore, at a generic plane
lying between the Dirac nodes the adiabatic deviation of the
in-plane loop from the quantized result provides evidence of
higher-order topology.

VI. BULK-BOUNDARY CORRESPONDENCE

Recently, Tyner et al. [31] demonstrated that unlike Weyl
semimetals, the surfaces of Dirac semimetals do not support
loci of two, degenerate zero energy state beginning and ter-
minating at the projection of the bulk nodes [31]. Rather,
a generic plane lying between the Dirac nodes supports
two, nondegenerate gapped surface states. Only at the high-
symmetry mirror planes can we locate gapless points on the
surface with the number of gapless points being determined
by the magnitude of the mirror Chern number. Using the iter-
ative Green’s function method [68] and the WANNIER TOOLS

software package [69], we plot the spectral density on the
(100) surface of Na3Bi in Fig. 5. These results verify that at a
generic value of |kz| < kD, the (100) surface of Na3Bi supports
gapped surface states. Only at the kz = 0 mirror plane do we
find a gapless state in correspondence with the admission of
mirror Chern number |Cm| = 1, by this plane.

In recent works, the bulk-boundary correspondence of two
dimensional higher order insulators has been characterized

FIG. 4. (a) Band structure of β-CuI in the primitive unit cell along high symmetry path detailed by Le et al. [38]. Kramers pairs which
touch at the Fermi energy at k = (0, 0, ±kD ) to produce Dirac point (bands in Dirac subspace) are colored purple. Dirac point is noted with
red dot. (b) Results of Wilson loop calculation at high-symmetry plane, kz = 0, and generic value of |kz| < kD,CV , where kD,CV is the location
of the Dirac point in the conventional unit cell for the occupied Dirac band, n = 6. Wilson loop is calculated as a function of the area enclosed
by the Wilson loop path. This calculation indicates that band 6 supports non-Abelian flux of magnitude 2π for kz = 0.
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FIG. 5. (a) The (100) edge state dispersion for Na3Bi along the kz axis shows the dependence of gap as a function kz. The normalizability
of surface states breaks down at the images of bulk Dirac points on the surface Brillouin zone. (b) Schematic of localization pattern for the
four corner-localized states at half-filling in eight band tight binding model of Na3Bi, setting |kz| < |kD| and solving on a finite slab of 10 × 10
primitive unit cells. Darker shading corresponds to stronger localization. The localization pattern confirms that the xy planes between the
Dirac nodes, which have been identified as higher order topological insulators, support corner localized states. (c) States resulting from exact
diagonalization calculation. Localization shown in (b) corresponds to states colored in red. We note that while these states exist at half-filling,
they do not fall at zero energy and are not separated in energy from the bulk states.

by the presence of corner localized states in those corners
of a two-dimensional slab that align with the corners of the
primitive two-dimensional unit cell [32–34]. Fixing |kz| < kD,
and performing an exact diagonalization calculation for a slab
consisting of 10 × 10 primitive unit cells in the xy plane, we
schematically depict the wavefunction localization of the four
corner-localized states present at half filling in Fig. 5(b). The
localization pattern of these states captures the bulk-boundary
correspondence and verifies the HOTI classification of the xy
planes between the Dirac nodes. However, we emphasize that
these states are not mid-gap states, well separated from the
bulk states [34], posing a significant challenge for experimen-
tal detection and re-enforcing the need for a robust method of
bulk classification.

VII. CONCLUSION

In summary, we have proposed a method capable of quan-
tifying non-Abelian flux in the two-dimensional Brillouin
zone. To place in context the advantages provided by the
in-plane Wilson loop it is useful to briefly remark on existing
alternative methods. One such alternative is Euler classifi-
cation, shown to be applicable in two-dimensional spinful
insulators supporting C2T symmetry [70,71]. However, Euler
classification requires identification of a real basis for the
Bloch Hamiltonian. While this can be accomplished via Tak-
agi transformation [70], a detailed knowledge of the basis is
required. This poses a significant computational challenge for
numerical models of real materials, such as those produced by
the WANNIER90 software package [67].

Separate procedures for computing the bulk invariant of
individual Kramers pairs in the presence or absence of a
U(1) conservation law through analysis of the non-Abelian
Berry connection guided by the crystalline rotation symmetry
are given in Refs. [23–25]. In particular, in Refs. [23,24]
a correspondence is drawn between the proposed method

and splitting of elementary band representations (EBRs),
a core concept of topological quantum chemistry [72–83].
We remark that our work yields identical conclusions to
Refs. [23,24] for systems exhibiting split EBRs. However,
we have further considered materials “invisible” to topolog-
ical quantum chemistry methods in Sec. IV A and focused
on establishing a direct connection with the presence of an
underlying quantized non-Abelian Berry flux.

To summarize, in recent years the topological classification
of spinful, two-dimensional insulators has expanded beyond
assignment of the Fu-Kane Z2 index [7] or mirror Chern
number, when allowed by symmetry. This is in part due to
the increased relevance of nonsymmetry indicative phases
such as higher-order insulators [32–34,46]. While the existing
methods have been successfully used to diagnose nontriv-
ial topology in such systems, their dependence on explicit
knowledge of the basis organization poses a clear obstacle to
widespread and efficient implementation. We have introduced
and applied the method of in-plane Wilson loops to idealized
tight-binding models and ab initio data. Our results are in-
sensitive to the number of underlying bands, suggesting the
topology of real materials can be addressed with stable, bulk
invariants without detailed knowledge of the basis.
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