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We present a hybrid numerical approach to simulate quantum many-body problems on two spatial dimensional
quantum lattice models via the non-Abelian ab initio version of the density matrix renormalization group method
on state-of-the-art high-performance computing infrastructures. We demonstrate that for the two-dimensional
spinless fermion model and for the Hubbard model on torus geometry, altogether several orders of magnitude
in computational time can be saved by performing calculations on an optimized basis and by utilizing hybrid
CPU-multiGPU parallelization. At least an order of magnitude reduction in computational complexity results
from mode optimization, while a further order of reduction in wall time is achieved by massive parallelization.
Our results are measured directly in the number of floating point operations and seconds. A detailed scaling
analysis of the obtained performance as a function of matrix ranks and as a function of system size up to 12 × 12
lattice topology is discussed. Our CPU-multiGPU model also tremendously accelerates the calculation of the
one- and two-particle reduced density matrices, which can be used to construct various order parameters and
trace quantum phase transitions with high fidelity.
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I. INTRODUCTION

The simulation of strongly correlated quantum many-body
problems in two and higher spatial dimensions poses a great
challenge and is still part of active research in modern
condensed-matter physics [1–3]. In spite of great efforts to
generalize the density matrix renormalization group (DMRG)
method [4–8], that is the most accurate algorithm for one-
dimensional systems; there is still no universal tensor network
state (TNS) solution that could be applied in higher spatial di-
mensions with an efficiency approaching the DMRG method
for one-dimensional systems.

In fact, the DMRG method has serious limitations in higher
spatial dimensions as even models with local interactions
become longer ranged when mapped to the one-dimensional
DMRG topology [9–11]. Other approaches such as the pro-
jected entangled pair states (PEPS) and its variants [12–14]
or the tree tensor network state (TTNS) algorithms [15–19]
are based on tensor networks that are already higher di-
mensional [14,20], but, on the other hand, they have much
higher computational demands due to the significant increase
in scaling exponents with increasing accuracy. Other alter-
natives, that are not based on TNS wave functions, also
have limitations. Quantum Monte Carlo (QMC) and its ex-
tensions are hindered by the so-called negative sign problem
[21–24], which generally arises for fermionic and frustrated
models and can only be avoided for special model parame-
ters [23,25]. Other approaches, such as dynamical mean-field
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theory (DMFT), density matrix embedding theory (DMET),
etc., are based on a self-consistent simplification of the many-
body Hamiltonian and are therefore nonvariational [1,26–
28]. Nevertheless, besides their limitations, all of the above-
mentioned methods also have their benefits and are commonly
used—sometimes complementing each other—as state-of-
the-art numerical methods for two- and higher-dimensional
many-body quantum systems [1].

Entanglement scaling law—the so-called area law—for
two- and higher-dimensional systems also indicates serious
limitations for matrix product state (MPS) based methods
[29,30]. Most of the DMRG-based analysis, however, has
been performed for lattice models with local interactions and
represented by localized basis sets, i.e., lattice models [29,31].
We also note that using periodic boundary conditions for
such lattice models, which is usually beneficial due to the
suppressed finite-size effects, may result in even higher en-
tanglement [32]. To circumvent these difficulties, a commonly
used approach in two dimensions is to consider systems with
a rather narrow stripe or cylinder topology, where boundary
conditions are periodic for the shorter side, while open for the
long side [1,33,34]. This approach is sometimes supplemented
by a transformation to momentum space in the shorter direc-
tion to also exploit the translational invariance [1,35,36]. In
these calculations, however, the length of the shorter side of
the system is usually rather limited (L⊥ � 7−8), which may
results in stronger and spatially inhomogeneous finite-size
effects.

The curse of high entanglement can be removed or at
least reduced by transforming to a more general basis via
nonlocal, one-particle unitary transformations. Using such
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FIG. 1. Ground-state energy as a function of the maximum
computational complexity, Cmax

c , for the half-filled, n × n (n =
6, 8, 10, 12), two-dimensional spinless fermion model with t =
1, t ′ = 0.4, and V = 0.8 on a torus geometry using a real-space (rs)
and optimized (opt) basis. Numbers next to some selected data points
label the DMRG bond dimension.

nonlocal basis can alter the scaling properties and bring in
new ingredients, especially for approximate, i.e., truncated
solutions. An optimal unitary transformation can result in
drastically decreased entanglement and, consequently, a large
reduction of tensor ranks, also called the bond dimension
[37,38]. In contrast, the nonlocality of the transformation can
result in a Hamiltonian with long-range interactions instead
of the original lattice model with short-range couplings only.
The combined effect of these two opposing mechanisms de-
termines the total computational cost of the calculation, the
reduction of which, as much as possible, is mandatory for
efficient simulations on classical computers.

This work is devoted to demonstrate the efficiency of
our approach to target low-energy eigenstates of two and
higher spatial dimensional quantum many-body systems by
a generalized variant of the DMRG method. First, the
conventional real-space basis is relaxed and a more general
basis is employed and optimized via the fermionic mode
transformation [37]. As a result, the computational complexity
of the problem (number of floating point operations), Cc,
for a given accuracy threshold can be reduced by an or-
der of magnitude or even more. This is demonstrated in
Fig. 1 for the two-dimensional spinless fermion model at half
filling on a torus geometry up to lattice sizes of 12 × 12
with nearest- and next-nearest-neighbor hopping, t = 1 and
t ′ = 0.4, respectively, and nearest-neighbor Coulomb inter-
action V = 0.8. This point in the t ′ − V phase space was
selected as a numerically very challenging one due to the
vicinity of a quantum phase transition, as will be shown in
Sec. III. The tremendous reduction, which also manifests itself
in drastic saving in wall time, is based on the minimization of
the artificial entanglement and correlation introduced by map-
ping the physical system to a given tensor network topology
[38].

Next we show that another order of magnitude reduction in
wall time can be achieved via massive parallelization utilizing

FIG. 2. Maximum performance in TFLOPS (left) and total diag-
onalization time including device-to-host (D2H) IO of nine DMRG
sweeps in minutes (right) measured for the eight GPU accelerated
diagonalization of the effective Hamiltonian as a function of the bond
dimension using the real-space and the optimized basis for the model
parameters given in Fig. 1. The estimated FP64 theoretical upper
bound for eight Nvidia A100-PCIE-40GB GPU devices is shown by
the dashed line. Note that the achieved performance above the FP64
theoretical upper bound is due to utilization of the highly specialized
Nvidia tensor core units (TCUs).

state-of-the-art hardware and software solutions. Although the
locality of the Hamiltonian is lost via mode optimization,
leading to a significant increase in the so-called matrix product
operator (MPO) bond dimension, our benchmark calculations
using a hybrid CPU-multiGPU DMRG [39,40] demonstrate
that the underlying computational power of high-performance
computing (HPC) architecture can be utilized more efficiently
for the optimized basis (see left panel of Fig. 2). Therefore,
for a given DMRG bond dimension, the total wall time of the
real and optimized basis can be brought much closer for a
broad range of the bond dimension values, D, as is shown in
the right panel of Fig. 2. Recalling from Fig. 1 that by using
the optimized basis, the same accuracy can be achieved with
much smaller D values; the overall reduction in wall time can
be well over two orders of magnitude for a given accuracy
(see, for example, D = 512 data sets for the 8 × 8 lattice
model). Our method, therefore, has the potential to open a
remarkable direction to study models in two and higher spatial
dimensions.

The reduction in block entropy and the efficiency of mode
optimization have already been analyzed in terms of the
DMRG bond dimension for the spinless fermion model [38],
but a detailed scaling analysis in terms of the underlying
computational complexity (Cc), i.e., the competition between
the the MPS bond and MPO dimensions, has remained rela-
tively unexplored, although computational complexity is the
purest measure that determines the efficiency of a numerical
approach at the end. In addition, the suitability for mas-
sive parallelization can also bring in new ingredients when
efficiency is discussed. Therefore, here we aim to fill this
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gap by measuring Cc directly in the number of floating point
operations (FLOP), wall time after massive parallelization
in seconds and the effect of SU(2) spin symmetry on these
quantities.

The setup of the paper is as follows. Section II is devoted
to a brief overview of model systems and mode optimiza-
tion. In Secs. III and IV, we present scaling analysis and
numerical benchmark results obtained by large-scale mode
optimized hybrid CPU-multiGPU DMRG calculations for the
two-dimensional spinless fermion and for the Hubbard mod-
els, respectively. Our work closes with main conclusions and
future perspectives.

II. THEORY

A. Model Hamiltonians

Our numerical framework to simulate the properties of a
two-dimensional quantum lattice models relies on the DMRG
method [41], which is a special variant of TNS algorithms
[6,14,32,42–44], and on a very general form of the Hamil-
tonian operator,

H =
∑

i jαβ

T αβ
i j c†

iαc jβ +
∑

i jklαβγ δ

V αβγ δ

i jkl c†
iαc†

jβckγ clδ, (1)

implemented in our code [45], which can treat any form of
nonlocal interactions related to two-particle scattering pro-
cesses. The operators c†

iα or ciα denote fermionic creation and
annihilation operators [46], where indices i and α specify the
mode and (generalized) spin information of the single-particle
state, respectively. The general form (1) of the Hamiltonian
allows for the simulation of strongly correlated quantum
many-body systems in various discipline fields, such as
condensed-matter physics, nuclear structure theory, or quan-
tum chemistry even in the relativistic domain [5,6,14,32,41–
44,47–54]. In the DMRG method, the eigenstate of the Hamil-
tonian is approximated by a matrix product state (MPS) wave
function, which is optimized iteratively during the so-called
DMRG sweeps [5,32]. Local (one-site or two-site) optimiza-
tion steps lead to the iterative diagonalization of the so-called
effective quantum many-body Hamiltonian [32] that is carried
out by the Lánczos or Davidson algorithms and which corre-
sponds usually to 85–90% of the total execution time. The
effective many-body Hamiltonian is built from renormalized
block operators that are formed via the course of the network
contraction procedure which is responsible for another 5–10%
of the total execution time. The dimension of the virtual in-
dices of the MPS matrices, usually called the DMRG bond
dimension D, determines the accuracy of the calculations
and also the required computational complexity. The overall
computational cost of the DMRG for models with generic
two-body interactions described by Eq. (1) scales as D3N4,
where N stands for the number of modes, i.e., for the system
size. The memory requirement is proportional to D2N2. The
details of the algorithm can be found in various review articles
(see Refs. [5,6,14,32,42–44]).

When interactions are local, in the sense that interac-
tions are restricted to nearest- or next-nearest neighbors of
the underlying lattice only, the number of nonzero terms in
Eq. (1) is largely reduced. For example, if one considers

the two-dimensional spin-1/2 Hubbard model including only
particle hopping t and on-site Coulomb interaction U , Eq. (1)
simplifies to

H =
∑

〈i, j〉α
(t c†

iαc jα + H.c.) +
∑

i

Uniαn jβ, (2)

where i and j denote lattice sites on a two-dimensional lattice
topology, α, β ∈ {↑,↓} denote the spin of the states, and
〈i, j〉 mark nearest neighbors on the lattice. c†

i,σ and ci,σ are
the fermionic creation and annihilation operators, satisfying
the canonical anticommutation relations {ci,σ , c j,σ ′ } = 0 and
{c†

i,σ , c j,σ ′ } = δi, jδσ,σ ′ . Here, niα is the occupation operator

given as niα = c†
iαciα . Another simple lattice model is the

spinless fermionic model, where the spin degrees of freedom
are also omitted and whose Hamiltonian reads

H =
∑

〈i, j〉
(t c†

i c j + H.c.) +
∑

〈i, j〉′
(t ′ c†

i c j + H.c.) +
∑

〈i, j〉
V nin j,

(3)

where 〈i, j〉 and 〈i, j〉′ denote nearest- and next-nearest neigh-
bors, respectively, on a two-dimensional square lattice.

Boundary conditions play an important role for lattice
models, as finite-size corrections take different scaling forms
[55–58]. Usually, the fastest convergence towards the infinite-
size limit can be achieved by enforcing periodic boundary
condition in both directions. On the other hand, periodic
boundary conditions impose serious drawbacks in the ef-
ficiency of the DMRG [10] because periodicity introduces
long-range couplings between sites that are far away from
each other in the one-dimensional MPS chain. In addi-
tion, when two-dimensional systems are mapped to the
one-dimensional topology of the DMRG, local interactions
also become nonlocal. Therefore, the Hamiltonian given by
Eqs. (2) and (3) cannot be considered as a local one in a
DMRG calculation. The corresponding MPO bond dimension
for models in two and three spatial dimensions systematically
increases with system size, albeit slower if compared to the
general long-range model of Eq. (1). Nevertheless, the al-
gorithmic nonlocality of two- and three-dimensional lattice
models makes our approach, which is described below, in-
creasingly beneficial in higher-dimensional lattices.

B. Joint optimization on the MPS and Grassman manifolds

The DMRG method provides the wave function in the MPS
representation,

|ψ〉 =
∑

α1,...,αd∈{0,↓,↑,↓↑}

Aα1
[1] · · · Aαd

[d]|α1, . . . , αd〉, (4)

where the component tensors are Aαi
[i] ∈ CDi−1×Di , with bond

dimensions Di, and D0 = Dd = 1. Although every state vector
can be factorized to an MPS form by applying consecu-
tive Schmidt decompositions [59,60] using sufficiently large
bond dimensions, the sufficient dimensions scale exponen-
tially with the system size in the generic case. The restriction
of the bond dimensions to a fixed value D confines the pos-
sible state vectors to a submanifold of the full state space.
We can then approximate an eigenstate of the Hamiltonian
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(1) within this submanifold by the DMRG algorithm, which,
being an alternating least-squares method, optimizes the en-
tries of the MPS tensors A[i] iteratively [12,43,61–63], leading
to a variational treatment of the eigenvalue problem of the
Hamiltonian (1).

Utilizing a single-particle unitary mode transformation
U ∈ U(N ), a linear transformation of a set of fermionic an-
nihilation operators {ci,σ } to a new set {di,σ } satisfying the
canonical anticommutation relations can be obtained, i.e.,
ci,σ = ∑d

j=1 Ui, j,σ d j,σ . We note that in the presented system,
it is not necessary to use different unitaries for spin up and
down, Ui, j,↑ = Ui, j,↓; however, the implementation is applica-
ble for the unrestricted case too. Under this transformation,
the many-body representation G(U ) can also be expressed
on the Fock space [37], by which a fermionic wave func-
tion |ψ (I)〉 transforms to |ψ (U )〉 = G(U )†|ψ (I)〉 and the
Hamiltonian written in terms of the transformed modes by
H (U ) = G(U )†HG(U ). We note that generic Hamiltonians
of the form given by Eq. (1) keep their form under such
transformation, while the simpler Hamiltonians of Eqs. (2)
and (3) lose their simpler structure and are transformed again
to the generic form (1).

In the course of our implementation of the DMRG algo-
rithm, the unitary U is constructed iteratively from two-mode
unitary operators by sweeping through the network. This im-
plementation has the benefit that the optimal unitaries can
be constructed parallel to the DMRG optimization of the
eigenstate. At each micro-iteration step, the half-Rényi block
entropy S1/2(ρ{1,2,...,k}) = 2 ln(Tr

√
ρ{1,2,...,k}) is minimized by

a two-mode rotation. (Here, ρ{1,2,...,k} is the density operator of
the first k modes [64,65].) In practice, when turn to numerical
simulation including mode optimization, it is favorable not to
transform the operators themselves to keep robustness. Rather,
it is practical to perform mode optimization in terms of the
parameters T αβ

i j and V αβγ δ

i jkl in the Hamiltonian (1) [15].
The optimization based on local (two-mode) unitaries often

converges to a suboptimal local minima, and therefore we
combine it with a global reordering of modes also [37]. At
the end of the last DMRG sweep, the one-mode entropies
[66] si, the two-mode mutual information [67] Ii, j := si

+ s j − si, j , the total correlation [68] Itot = ∑
i si, the correla-

tion distance Idist = ∑
i, j Ii, j |i − j|2, the one-particle reduced

density matrix γi, j = 〈c†
j ci〉, and the occupation number dis-

tribution 〈ni〉 are calculated (where i, j ∈ {1, . . . , d}). Here,
si = −Tr(ρi ln ρi ) and si, j = −Tr(ρi, j ln ρi, j ) are the von Neu-
mann entropies of the one- and two-mode reduced density
operators ρi and ρi, j [69]. The eigenvalues and eigenvectors
of the one-particle reduced density matrix γ define the nat-
ural occupation numbers λi and the natural orbitals (NO),
respectively. An optimized ordering of modes along the ten-
sor network is calculated from the mutual information Ii, j ,
using the Fiedler vector approach [70]; a new complete ac-
tive space vector is calculated from the entropies si for the
dynamically extended active space (DEAS) procedure [66];
and a new Hartree-Fock (HF) reference configuration is cal-
culated from the occupations 〈ni〉. These, together with the
final rotated interaction matrices, are all used as inputs for
the subsequent mode transformation macro iteration. To reach
sufficient convergence of the optimized basis, several tens

of macro iterations are performed, and each macro iteration
contains 5–10 sweeps of DMRG and two-site unitary micro
iterations with low-to-medium values of bond dimensions,
D � 256. After an acceptable optimized mode set is found,
high-precision (large-D) DMRG calculations are performed
without further mode optimization to find eigenstates of the
Hamiltonian with high accuracy. For more details on mode
transformation and its applications we guide readers to previ-
ous works (see Refs. [37,38,71–73]). To fix the notation, we
use Dmo and Dopt to refer to the bond dimension used during
and after the mode optimization procedure, respectively.

III. SPINLESS FERMION MODEL

In this section, we present numerical results together with
scaling analysis for the half-filled spinless fermion model
[Eq. (3)] on a torus geometry including nearest- and next-
nearest-neighbor hopping and nearest-neighbor Coulomb
interactions. This simple model already imposes serious chal-
lenges to understand the nature of emerging quantum phases
and phase transitions. When nearest-neighbor hopping is ne-
glected, i.e., t ′ = 0 for half filling, the charge density wave
order parameter CCDW takes on a finite value for arbitrary
small Coulomb interaction, as has already been shown in
Ref. [38]. However, when next-nearest-neighbor hopping is
also included, the two-dimensional Fermi surface becomes
distorted and interesting physics emerges. In general, for
small perturbations, the Fermi surface changes and umklapp
scattering dies out, but the so-called perfect nesting survives,
i.e., one segment of the Fermi surface can be connected to
another segment of the Fermi surface via a reciprocal lattice
vector [74]. For stronger interactions, however, even perfect
nesting is destroyed. The nature of the Mott-Hubbard transi-
tion in the absence of umklapp scattering even in one spatial
dimension is a subject of active research and has been ex-
plored only recently [75], in the context of the 1/r-Hubbard
model. In this model, there is only a single Fermi point
and the gap opens linearly at a finite Coulomb interaction.
When both local and nearest-neighbor Coulomb interactions
are included, a Luttinger-liquid phase emerges in an extended
region between the charge density wave (CDW) insulator
and the Mott-Hubbard insulator phases [76]. Analogously, the
two-dimensional t − t ′ − V spinless model is also expected to
possess a rich phase diagram.

In the current work, we focus mainly on the technical
aspects of our numerical procedure. Thus, only the charge
density wave order parameter and the quantum information
motivated half-chain block entropy will be analyzed for a
selected finite value of t ′ = 0.4 as a function of V . In addition,
for a detailed scaling analysis of the computational complex-
ity, we fix further model parameters to t = 1, t ′ = 0.4, and
V = 0.8, as this point lies in the vicinity of a quantum phase
transition, which poses a great challenge to acquire accurate
numerical results. A detailed analysis of the two-dimensional
phase diagram, together with further analyses of the emerging
quantum phases, will be part of a subsequent publication [77].

Our software package [45] has been developed for more
than three decades and it has a very flexible structure, leading
to several highly specialized modules to solve computa-
tional tasks in condensed-matter theory, quantum chemistry,
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nuclear physics, and quantum information theory, among
many others. The main code parts are fully scalable with
the number of computational units even on heterogeneous
architectures. This is due to the used mathematical models
for parallelization, based on self-managed thread scheduling
and hierarchical task managements, together with a virtual
memory management model based on graph theory, which
minimizes redundancy between input-output (IO) operations,
substantially increases spatial locality, and eliminates the
over-reliance on driver level memory mappings [39,40,78].
Computational performance using the message phrasing pro-
tocol (MPI), openMP, multithreading, and GPU are monitored
according to various criteria, together with resource usage and
communication overhead. Altogether, these form the basis of
our analysis discussed in the following sections.

A. Computational complexity: Real space
versus optimized basis

When the full bond dimension is kept, i.e., no truncation is
enforced, a unitary transformation on the Hamiltonian leaves
the energy spectrum intact. For truncated bond dimension,
however, better or worse representations can be obtained via
mode optimization in terms of computational complexity. The
combination of the DMRG with the self-consistent field (SCF)
method based on the energy gradient would be a straightfor-
ward procedure to obtain an optimized basis, but it requires
the calculation of the one- and two-particle reduced density
matrices that are, unfortunately, computationally very expen-
sive [15,42]. The Rényi-entropy-based optimization scheme
based on entanglement reduction, on the other hand, is a much
cheaper method, but in general there is no guarantee that it
ultimately leads to energy minimization. Nevertheless, for a
large class of problems, including those studied in this work,
it provides a powerful tool to attack high-dimensional strongly
correlated problems [37,38,71–73].

In Fig. 3, we show the result of the Rényi-entropy-based
mode optimization procedure for a fixed bond dimension
value, Dmo = 80, for the half-filled 12 × 12 two-dimensional
spinless fermion model with t = 1, t ′ = 0.4, and V = 0.8 on
a torus geometry. The systematic decrease in the ground-
state energy together with the dramatic drop in the block
entropy is obvious. Note that the ground-state energy obtained
by mode transformation with Dmo = 80 is already far below
the one calculated via the real-space basis with Drs = 3072
(see Fig. 1). Therefore, the DMRG calculation for a given
Dopt value using the optimized basis, which basis has been
determined beforehand using a bond dimension Dmo 
 Drs, is
expected to provide a significantly more accurate result than
with the conventional real-space basis. A typical outcome of
such calculation is shown in Fig. 4, i.e., the convergence of
the ground-state energy and the block entropy as a function
of DMRG sweeping. Although the block entropy takes much
larger values for large Dopt compared to the profile optimized
with a very limited Dmo value, i.e., it captures more cor-
relations, the resulting profile, nevertheless, remains almost
symmetric. The ground-state energy and the maximum value
of the block entropy are shown in Fig. 5 for the 6 × 6, 8 × 8,
and 10 × 10 lattice sizes as a function of D. This clearly
shows that the optimized modes allow one to reach the same

FIG. 3. Ground-state energy (left) and block entropy as a
function of the left block size, 
 (right), for some selected mode trans-
formation macro-iteration cycles, 0,1,2,5,15,21,31, with fixed bond
dimension Dmo = 80 for the half-filled 12 × 12 two-dimensional
spinless fermionic model, with model parameters given in Fig. 1.

accuracy with significantly lower bond dimension values cor-
responding to much lower block entropy values.

Our results are in agreement with the previous findings of
Refs. [38,71–73], but the more general form of the Hamil-
tonian after mode optimization, given by Eq. (1), imposes
serious technical challenges. Although the block entropy
and thus the DMRG/MPS bond dimension are tremen-
dously reduced, the number of terms in the Hamiltonian and,
consequently, the bond dimension of its matrix product op-
erator (MPO) representation increases significantly [compare
Eqs. (2) and (3) with Eq. (1)]. Since the overall scaling of
the computational complexity of the DMRG for the general

FIG. 4. Ground-state energy (left) and block entropy (right) as a
function of left block size, 
, with increasing DMRG sweeps for the
half-filled 8 × 8 two-dimensional spinless fermionic model parame-
ters given in Fig. 1 using optimized basis, D(start)

l = 1024, D(start)
r =

1024, Dopt = 4096, and εDavidson = 10−7.
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FIG. 5. Convergence of the ground-state energy and the block
entropy as a function of bond dimension using the real-space and the
optimized basis for 6 × 6, 8 × 8, and 10 × 10 lattices and for model
parameters given in Fig. 1 and εDavidson = 10−5.

form of the Hamiltonian given by Eq. (1) is D3N4, it remains
mandatory to demonstrate if the reduction in D can overcom-
pensate the increase in the exponent connected to N when the
locality of the Hamiltonian is lost. Note that for the two- and
higher-dimensional systems, the locality of the Hamiltonian
is already lost when mapped to the one-dimensional DMRG
topology, and thus the increase in the MPO bond dimension is
less than for a one-dimensional model. Here we also remark
that for a given DMRG sweep, the scaling is only D3N3 [48]
and the extra factor related to the system size reflects the
number of sweeps required to reach convergence. This latter
one is highly problem dependent and the worst scenario holds
for models obeying volume law [79].

In Fig. 6, the maximum value of the computational com-
plexity (number of floating point operations), Cmax

c , measured
via the diagonalization procedure in TFLOP (1012 FLOP), is
summarized for the real-space and for the optimized basis as a
function of bond dimension on a double-logarithmic scale for
various system sizes and for the model parameters given in
Fig. 5. Solid lines are the result of first-order polynomial fits.
It is clearly seen that the data points lie along a straight line.
Here we remark that for the 4 × 4 model, the exact solution
is already recovered with D = 27 = 128 and thus a saturation
in Cmax

c becomes apparent for larger-D values up to D = 213.
The fitted exponents for the real-space basis are in the range of
3 ± 0.2, confirming the expected D3 scaling. Data points for
the optimized basis also lie along straight lines corresponding
to the fitted exponents in the range of 3 ± 0.2. Thus the overall
scaling with D does not change due to mode optimization,
as expected, but lines shift toward larger Cc values due to an
increase in the MPO bond dimension. Switching from a real-
space to mode optimized basis, the scaling of such prefactor
is expected to change from

√
N to N2. In fact, as shown in the

inset of Fig. 6, the fitted exponents of the prefactor, as a func-
tion of system size N , lead to 0.53 and 1.85 for the real-space
and for the optimized basis, respectively. Therefore, naively,

FIG. 6. Maximum value of the total computational complex-
ity measured in TFLOP for diagonalization of the effective
Hamiltonian as a function of bond dimension using the real-
space and the optimized basis for model parameters given in
Fig. 1 and εDavidson = 10−5. The solid lines are the results of
first-order polynomial fits leading to exponents νrs(4 × 4) = 2.79,
νopt (4 × 4) = 2.86, νrs(6 × 6) = 2.85, νopt (6 × 6) = 2.85, νrs(8 ×
8) = 2.9, νopt (8 × 8) = 3.2, νrs(10 × 10) = 2.87, νopt (10 × 10) =
2.91, νrs(12 × 12) = 2.85, and νopt (12 × 12) = 2.90. Inset: The
scaling of the prefactor as a function of system size N , where the
fitted exponents lead to 0.53 and 1.85 for the real-space and for the
optimized basis, respectively.

one could render the optimized basis behind the real-space
basis, but after recalling that the same accuracy in energy can
be reached with significantly lower-D values, this is no longer
true. In fact, as can be seen in Fig. 1, the same accuracy in
energy can be reached with Dopt = 512 as with Drs � 3000 for
a 6 × 6 model and with Dopt = 512 as with Drs � 5500 for an
8 × 8 model, respectively [80]. Here, by Dopt, we refer to the
bond dimension used after the mode optimization procedure.
Mode optimization were performed at fixed bond dimension
Dmo = 80. The saving in computational complexity signifi-
cantly increases with system size; for example, for 10 × 10
and 12 × 12, this gets close to four orders of magnitude.

We conclude that the computational complexity for a given
accuracy can be reduced by several orders of magnitude,
depending on system size, via mode optimization. Since
mode optimization is performed with low bond dimension,
the computational complexity of the optimization procedure
is negligible compared to the saving when the post-mode-
transformation DMRG calculations are performed using the
optimized basis. The data for 10 × 10 and 12 × 12 show that
mode optimization can allow for accuracy that is far beyond
the scope of real-space DMRG.

While in Fig. 3, for simplicity, a fixed bond dimension
Dmo = 80 has been used for the mode optimization procedure,
in practice, usually we start mode optimization with an even
lower bond dimension value, performing a finite number of
mode transformation macro-iteration cycles, each compris-
ing DMRG calculations with a finite number of sweeps, and
this procedure is repeated by systematically increasing the
bond dimension [38,73]. This approach further reduces the

195148-6



TWO-DIMENSIONAL QUANTUM LATTICE MODELS VIA … PHYSICAL REVIEW B 109, 195148 (2024)

FIG. 7. Contribution of the most expensive functions to the total
time measured in seconds as a function of the DMRG iteration step
for model and DMRG parameters given in Fig. 1. The calculation
has been performed on a dual AMD EPYC 7702 CPUs with 2 × 64
cores compiled with eight Nvidia A100-SXM4-40GB devices.

calculation time of the optimization procedure and speeds
up convergence at initial sweeps by avoiding sticking to lo-
cal minima of the block entropies. A typical setting that we
used is Dmo = [8, 16, 64, 80], Sweepmo = [11, 11, 9, 7], and
Itermo = [9, 9, 7, 5].

B. Performance: Real space versus optimized basis

Our arguments and conclusion presented in Sec. III A can
be further improved if we also consider the underlying power
in state-of-the-art hardware and software technologies, i.e.,
massive parallelization via message passing interface (MPI)
and graphical processing units (GPUs). Here we demonstrate
that our hybrid CPU-multiGPU solution [39,40] has the poten-
tial to significantly reduce the effective exponent connected to
D, thus further reducing the overall wall time of the calcula-
tions drastically.

First we present a detailed performance analysis for a sin-
gle DMRG calculation for the 8 × 8 lattice, for the model
parameters given in Fig. 1, using the Rényi-entropy opti-
mized basis, D(start)

l = 1024, D(start)
r = 1024, D = 4096, and

εDavidson = 10−7. From a technical point of view, for the spin-
less fermion model, only the total particle number can be
used as a conserved quantum number, and thus the underlying
DMRG matrix and tensor algebra decompose into fewer but
larger sectors compared to spinful models [39,40]. In Fig. 7,
we show the contribution of the most expensive functions to
the total time measured in seconds as a function of the DMRG
iteration step. Here, DiagH denotes the time spent on the di-
agonalization of the effective Hamiltonian, and Renl and Renr

are the renormalization step for the left and right block via the
forward and backward sweep, respectively. The overhead to
prepare the quantum number decomposed based matrix and
tensor algebra is labeled as Tables; the diagonalization of the
reduced density matrix, i.e., the singular value decomposition
(SVD) step, by DiagD; the wave-function transformation to

(a) (b)

FIG. 8. (a) Performance in TFLOPS measured via the eight GPU
accelerated Davidson diagonalization procedure for some selected
DMRG iterations steps of the fifth DMRG sweep for the model and
DMRG parameters given in Fig. 1. Numbers in the legend stand for
the size of the left block size, l . (b) Minimum, maximum, and average
performance measured in TFLOPS for the fifth DMRG sweep as a
function of left block size, l , for the model and DMRG parameters
given in Fig. 1.

generate the starting vector for the diagonalization step by
StVec; and all other utility components by Other. The calcula-
tion has been performed on dual AMD EPYC 7702 CPUs with
2 × 64 cores compiled with eight Nvidia A100-SXM4-40GB
devices. It is clear that even after full GPU parallelization,
80–90% of the total time in a given DMRG iteration step is
allocated for the diagonalization of the effective Hamiltonian.
We also note that a factor of 25–30 speedup is already gained
with respect to a fully parallelized CPU only implementation
[39]. Therefore, in the following, we restrict our analysis to
the diagonalization procedure. Here we remark that via the
sweeping procedure, the renormalized operators, contracted
network components, must be stored and reused in subsequent
iteration steps, which IO time can be significant if disks are
used for that purpose.

To provide more insight, in Fig. 8(a), we present the perfor-
mance measured in TFLOPS via the Davidson diagonalization
procedure for some selected DMRG iteration steps of the fifth
DMRG sweep for the model and the DMRG parameters given
in Fig. 1. The numbers in the legend stand for the left block
size, l . It is clearly seen that the number of matrix-vector
operations fluctuates heavily depending on the DMRG itera-
tion steps, while the performance for a given DMRG iteration
step reaches high values with increasing Davidson steps. Here
we remark that for the first few Davidson iteration steps, the
IO overhead to transfer data from host to device (H2D IO)
and the overhead for our dynamic scheduler to be optimized
[40] reduces the performance to lower initial values. The cor-
responding minimum, maximum, and average performance
values are collected and presented in Fig. 8(b). Note that the
FP64 limit of Nvidia [81], 76 TFLOPS, is reached by most
of the iteration steps and the average performance is affected
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only marginally by the low initial performance values of the
Davidson procedure.

To complete our analysis, in Fig. 2, we compare the largest
performance and wall time as a function of DMRG bond
dimension for calculations obtained with the real-space and
with the optimized basis. For the real-space DMRG, the MPO
bond dimension is much lower, and therefore the efficient
matrix and tensor algebra with SBATCH [40] cannot be uti-
lized as efficiently as for the optimized basis. This leads to
a relatively poor performance as, even for the eight GPU ac-
celerated diagonalization procedure, the largest performance
is about 10–14 TFLOPS (see Fig. 2, left panel). In contrast
to this, for the optimized basis, the underlying GPU power
can be utilized very efficiently. The sharp increase in perfor-
mance up the FP64 ceiling is obvious, while a saturation for
larger-D values becomes apparent. Nevertheless, our results
already demonstrate the utilization of the highly specialized
Nvidia tensor core units (TCUs) [40]. For larger system sizes,
the sudden increase in performance gets even more pro-
nounced, as has also been demonstrated for quantum chemical
calculations [40].

The significant difference in the reachable performance for
the real-space and for the optimized basis also determines the
total wall time. The total time spent on the eight GPU accel-
erated diagonalization of the effective Hamiltonian including
host to device (H2D) and device to host (D2H) IO measured
for nine DMRG sweeps is presented in the right panel of
Fig. 2 on a double-logarithmic scale as a function of the bond
dimension for the n × n half-filled spinless model with n =
6, 8, 10, 12, with the model and DMRG parameters given in
Fig. 1. It is apparent in the figure that via massive paralleliza-
tion, the total diagonalization time for nine sweeps for a given
D value and system size is almost the same for the real-space
and for the optimized basis. For the 6 × 6 lattice size, the
calculations are even faster for the optimized basis; for 8 × 8,
they are almost the same; while for large-N calculations with
the same D, it gets more expensive, and thus the difference
increases in system size. Recalling, however, that for a 6 × 6
lattice, the same accuracy is obtained with D = 512 for the
optimized basis taking two minutes as with D = 3000 for the
real-space basis taking 20 minutes, one order of magnitude
reduction can already be achieved in wall time for this small
system size. Similarly, for 8 × 8, the corresponding numbers
are D = 512 and seven minutes for the optimized basis, while
the matching calculation in energy with D � 5500 takes about
200 minutes, i.e., the reduction of wall time is almost two
orders of magnitude. For larger system sizes, such comparison
is not possible as the real-space approach has been unable to
reach the same accuracy as the optimized basis has already
reached for the lowest considered bond dimension, Dopt = 64.
Nevertheless, our data indicate that the speedup is over two or-
ders of magnitude in these cases. Note that data are measured
for the eight GPU accelerated implementation for all system
sizes.

Here we also remark that the saturation in performance will
be lifted and even eliminated via our new kernel also utilizing
the Nvidia fast device to device (D2D) NVLINK and message
phrase interface (MPI) [78]. Therefore, further reduction in
wall time for the optimized basis can be achieved for a much
broader range of the bond dimension.

(a) (c)

(b) (d)

FIG. 9. (a) Charge density wave order parameter CCDW and
(b) half-chain block entropy obtained via the optimized basis for the
6 × 6 and for the 8 × 8 spinless fermion models on a torus geometry
as a function of V for finite t ′ = 0.4. (c),(d) The same, but as a
function of t ′ for V = 0.8.

C. Quantum phase transition at finite Coulomb interaction

In addition to ground-state energies, our procedure also
allows us to calculate the expectation values of operators with
much higher accuracy than can be done in the real-space
basis. As discussed in Ref. [38], correlation functions, and
one- and two-body reduced density matrices, can be obtained
very accurately in the optimized basis and can then be trans-
formed back to the original, real-space basis via a sequence of
rotations using unitary matrices calculated and stored during
mode optimization. Here we remark that the calculation of the
computationally very demanding 4-index tensor of the two-
body reduced density matrix, 
i jkl = 〈c†

i c†
j ckcl〉, can also be

tremendously accelerated via our hybrid CPU-multiGPU ker-
nels. By taking a linear combination of proper matrix elements
of the back-rotated reduced density matrices, the CDW order
parameter, CCDW = 1

N2 〈(neven − nodd )2〉, can, for example, be
calculated, where neven/odd stands for the total particle number
in the even/odd sublattices. This quantity is shown in Fig. 9,
together with the half-chain block entropy for the optimized
basis as a function of V for finite t ′ = 0.4 and as a function of
t ′ for V = 0.8 for the 6 × 6 and 8 × 8 spinless fermion model
on torus geometry. A sudden change in CCDW is apparent
at a finite value of V that shifts slightly from Vc = 0.7 to
Vc = 0.8 with increasing system size. The large jump in the
block entropy also indicates the anomalous behavior at finite
Vc. Similar behavior is observed as a function of t ′ at t ′ � 0.4
for V = 0.8. Further numerical and analytic analysis of the
phase diagram is beyond the scope of the present work due
to its very complex structure and will be part of a subsequent
work [77].

IV. HUBBARD MODEL

In this section, we present scaling analysis and benchmark
results obtained via the mode optimized non-Abelian SU(2)
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(a)

(c) (d)

(b)

FIG. 10. Ground-state energy as a function of (a) computational
complexity, (b) computational complexity in TFLOP, (c) largest per-
formance in TFLOPS, and (d) total wall time of nine sweeps in
minutes, as a function of bond dimension obtained via the real-space
basis with U(1) and SU(2) spin symmetry and by optimized modes
with U(1) symmetry for the half-filled 6 × 6 Hubbard model at
U = 4 on a torus geometry. The fitted exponents in (b) are νrs = 2.96
and νopt = 2.87. For the SU(2) spin adapted calculations, D stands
for the number of renormalized multiplets.

spin adapted hybrid CPU-multiGPU DMRG method for the
half-filled two-dimensional Hubbard model [Eq. (2)] on a
torus geometry. Besides the total charge, the spin quantum
number can also be kept, which leads to a significant increase
in the number of independent tasks and to smaller sector sizes.
In addition, the SU(2) spin symmetry can also be utilized,
leading to a tremendous increase in the effective performance
without additional computational overhead [40]. In this latter
case, the DMRG matrix and tensor algebra are reformulated
according to non-Abelian quantum numbers, and thus the
bond dimension D stands for the number of renormalized
multiplets. When the corresponding U(1) bond dimension is
also indicated, it is explicitly denoted as Deff

U (1).
Here, we perform mode optimization using U(1) sym-

metries only, by either enforcing the same unitary for both
spin components, and thus preserving the SU(2) symmetry
of the Hamiltonian, or by optimizing two different unitary
matrices for the two spin components independently. We
remark that the SU(2) spin adapted version of the mode op-
timization procedure is part of our current developments. The
post-mode-transformation DMRG calculations with large-D
values can be performed using U(1) and SU(2) symmetries.
In Fig. 10, we summarize our results for the 6 × 6 half-filled
Hubbard model at U = 4 using the real-space basis with U(1)
and SU(2) spin symmetries and via the mode optimized basis
using U(1) symmetries only. The mode optimization has been
performed iteratively up to Dmo = 128. The U = 4 interaction
strength was selected as there are several benchmark results
available for torus geometry in the literature obtained by vari-
ous methods [82–84]. First we remark that although the SU(2)
spin adapted version for the real-space basis provides lower
energy than the U(1) implementation for a given bond dimen-
sion [Fig. 10(a)], it corresponds to enlarged computational

(a) (b)

FIG. 11. (a) Bond energy as a function of inverse bond dimen-
sion for the optimized modes with U(1) symmetry for the half-filled
6 × 6 and 8 × 8 Hubbard models at U = 4 on a torus geometry. The
solid lines are second-order polynomial fits. (b) Bond energy as a
function of inverse bond dimension using the optimized basis via 30,
60, 90, and 120 macromode optimization cycles for the 8 × 8 system
size.

complexity [Fig. 10(b)]. This is due to the larger number of,
and more dense, sectors. Nevertheless, it can be parallelized
more efficiently resulting in larger performance values as a
function of D [Fig. 10(c)]. Therefore, the overall wall time can
be scaled below the U(1) implementation for a broad range of
the bond dimension [Fig. 10(d)].

When mode optimization is performed, we have found
that a significantly larger reduction in block entropy, together
with a significantly lower energy, can be achieved when the
unitary matrices are optimized independently for the two spin
components. Although the SU(2) symmetry is broken for such
unrestricted optimization procedure, the low ground-state en-
ergy could not be recovered via the post-mode-transformation
DMRG calculations even using SU(2) symmetry and large
bond dimension when the same angles were enforced during
the optimization procedure. We note that with Dopt = 256, the
DMRG provides lower ground-state energy for the optimized
basis than for the real-space basis with D = 8192 together
with SU(2) spin symmetry, i.e., for an effective U(1) bond
dimension around 25 000 [Fig. 10(a)]. In addition, a very reli-
ably scaling with inverse bond dimension can be achieved for
the optimized modes (see Fig. 11), leading to an extrapolated
bond energy, EGS/N = −0.8575(2). In Table I, we summa-
rize our results for the bond energy together with reference
data from the literature obtained by various methods. It is
evident that our method provides bond energy in the range
of the reference data sets and, using optimized modes, a very
reliable 1/D extrapolation can be achieved. Our result is, in
fact, in close agreement with the bond energy obtained by
auxiliary-field quantum Monte Carlo (AFQMC) [82]. We also
remark that unlike DMRG, most of the reference methods are
nonvariational.

We close our analysis by providing benchmark data for the
8 × 8 half-filled Hubbard model (see Fig. 11) together with
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TABLE I. Bond energy for the half-filled 6 × 6 Hubbard model
for U = 4 on a torus geometry obtained by various methods. Our
notation reads DMRG[Drs, Symmetry] and DMRG[Dmo, Dopt, Sym-
metry], respectively. The maximum effective bond dimension is also
included in the last column. Note that initiator similarity transformed
full configuration interaction quantum Monte Carlo (iST-FCIQMC),
AFQMC, projected DMET (p-DMET), and DMET are nonvaria-
tional methods.

Bond energy Method max(Deff
U (1))

−0.85625(30) iST-FCIQMC [83]
−0.85736(25) AFQMC [82]
−0.79703 unrestricted Hartree-Fock [84]
−0.86792 p-DMET [84]
−0.86856 DMET [84]
−0.83894 DMRG[6140,SU(2)] 19748
−0.84067 DMRG[8192,SU(2)] 25088
−0.84333 DMRG[128,256,U(1)] 256
−0.85553 DMRG[128,8192,U(1)] 8192
−0.8575(2) DMRG extrapolated

extrapolation leading to EGS/N = −0.8584(2). This value is
close, but off by 10−3 compared to the bond energy obtained
by AFQMC [82]. Note, however, that by increasing Dopt

further, one could get even closer to the error-free solution
and obtain better extrapolation; it would simply require more
computational resources. On the other hand, the rate of con-
vergence significantly depends on the quality of the optimized
basis, i.e., there is an initial error obtained by mode optimiza-
tion with fixed rank Dmo if a fully converged data set is not
used. This affects the 1/Dopt extrapolation as well, i.e., lower
energies with the same Dopt can be reached if a better basis is
used. This is demonstrated in Fig. 11(b) for the 8 × 8 system
size using optimized modes obtained via 30, 60, 90, and 120
macromode optimization cycles.

To gain more insights into how mode optimization is influ-
enced by the nature of the quantum many-body wave function,
we have repeated our analysis for attractive interactions. By
taking a negative value, U = −4, we find that the two angles
during mode optimization for the two modes take on very
close values. This is not a surprise as for attractive interaction,
particles with opposite spins like to form pairs, which is in
favor of preserving SU(2) symmetry. Accordingly, the expec-
tation value of the occupation number operator of both the
spin-up and spin-down components oscillates with the same
profile along the lattice sites. In contrast, the ground state
of the repulsive (U > 0) model is characterized by antifer-
romagnetic correlations, in which electrons of differing spin
are in different sublattices (as also confirmed by our numerics
through the 〈ni↑/↓〉 expectation values). Enforcing a spin-
independent spatial form of fermionic modes during the mode
optimization is not optimal for such states, leading to reduced
performance for the repulsive case. We have found, however,
that there is very stable and fast convergence in the attractive
case with enforced SU(2) symmetry and obtain much lower
ground-state energies for a given bond dimension. Therefore,
we conclude that the optimal unitary transformations that cor-
respond to independent modes depend on the structure of the
ground state. Nevertheless, our procedure works in general.

Further algorithmic developments to boost the convergence
of the mode optimization protocol and to lower such initial
error, together with additional analysis including other fillings
and topologies, are under investigation and will be part of our
subsequent work. Nevertheless, our procedure is variational,
free of sign problem, and thus can be applied at general fillings
and for frustrated models too. Finally, an important advantage
of the mode optimized basis is that it can be parallelized
very efficiently, reaching again 90 TFLOPS in our bench-
mark calculations [Fig. 10(c)] and reducing wall time to the
same range as the real-space calculation with U(1) symmetry
[Fig. 10(d)]. In addition, improving performance further via
our CPU-multiGPU kernel together with the MPI protocol and
fast Nvidia D2D NVLINK will reduce the total execution time
even more for larger system sizes and D values.

V. CONCLUSION

In this work, we have presented a hybrid numerical ap-
proach to simulate quantum many-body problems on two
spatial dimensional quantum lattice models via the non-
Abelian ab initio version of the density matrix renormalization
group method on state-of-the-art high-performance comput-
ing infrastructures. We demonstrated for the two-dimensional
spinless fermion model and for the Hubbard model on torus
geometry that altogether, several orders of magnitude in
computational time can be saved for a given accuracy by
performing calculations on an optimized basis and by utilizing
hybrid CPU-multiGPU parallelization. At least an order of
magnitude reduction in computational complexity, measured
directly in FLOP, results from mode optimization, while an
order of magnitude reduction in wall time is achieved by mas-
sive parallelization. A detailed scaling analysis of the obtained
performance measured in FLOPS as a function of matrix
ranks and as a function of system size up to 12 × 12 lattice
topology for the spinless model revealed that more efficient
parallelization can be gained for the optimized modes. As a
result, even though the computational complexity increases
via mode optimization, the overall wall time can be reduced to
similar magnitude as for the real-space basis for a broad range
of bond dimension values.

For the Hubbard model, we also analyzed the scaling of
the various quantities for the real-space basis using U(1) sym-
metry only and for the SU(2) spin adapted version. For the
mode optimization, we have found that a much better basis
can be obtained by optimizing unitary matrices for two spin
components independently. After such unrestricted optimiza-
tion protocol, we managed to provide new DMRG lower bond
energy values and reliable extrapolations for the nontruncated
limit with respect to previous attempts which are, in fact, in
good agreement with the AFQMC reference data set.

Our numerical results, however, show that mode optimiza-
tion is a more delicate issue for the Hubbard model and it
requires further developments to boost convergence. Never-
theless, mode optimization is crucial to obtain a quasi-optimal
basis, i.e., to reduce initial error for an optimization on a fixed
rank manifold. It is worthwhile to note an imbalance in current
developments in information technology, namely, the number
of computational units increases at a much higher rate than the
available size of memory on HPC infrastructures. Therefore,
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it is more important to reduce the rank of the matrices and
tensors than to minimize the computational complexity. The
latter can be handled more easily via massive parallelization.

Finally, our approach is variational, free of sign problem,
and can be applied to more general fillings and topologies
and for frustrated systems as well. It can also be further im-
proved by utilizing message phrase passing (MPI) protocols
and Nvidia fast device-to-device NVLINK communication.
These latter aspects are part of our current developments.
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