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Competition between Neel, Haldane nematic, plaquette valence bond solid, and (π,π) valence bond
solid phases in SU(N) analogs of S = 1 square-lattice antiferromagnets
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We use stochastic series expansion (SSE) quantum Monte Carlo (QMC) methods to study the phases and
transitions displayed by a class of sign-free designer Hamiltonians for SU(N ) analogs of spin S = 1 quantum
antiferromagnets on the square lattice. The SU(N ) spins are generators of the single-row two-column represen-
tation (complex conjugate of single-row two-column representation) on A (B) sublattices of the square lattice,
and the Hamiltonian is designed to explore the competition between the nearest-neighbor antiferromagnetic
exchange couplings J and four-spin interactions Q that favor a plaquette-ordered valence bond solid (p-VBS)
ground state. We find that this state is indeed established at large Q/J for all N > 3. For 3 < N � 9, the ground
state exhibits a direct first-order quantum phase transition from a small-Q/J Néel ordered antiferromagnetic
state to this large-Q/J p-VBS state. The ground state at Q/J = 0 for N � 10 has been previously reported to
be a valence bond nematic state, dubbed the Haldane nematic in recent literature. For small nonzero Q/J and
N � 10, we additionally find an unusual intermediate state in which the four-site plaquette energy has a Bragg
peak at wave vector (π, π ) with no accompanying Bragg peaks at wave vectors (π, 0) and (0, π ). This (π, π )
state also appears to be metastable at Q/J = 0, as evidenced by low-temperature histograms of the Haldane
nematic and (π, π ) order parameters. Deep in the p-VBS phase of the ground state phase diagram, we find the
temperature-driven melting of the p-VBS order is in the Ashkin-Teller universality class. In this regime, we
identify an interesting signature of Ashkin-Teller criticality in four-site plaquette singlet correlations at wave
vector (π, π ); this is in addition to the expected critical fluctuations of the conventional p-VBS order parameter
at wave vectors (π, 0) and (0, π ).
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I. INTRODUCTION

Quantum antiferromagnetism provides a rich arena for the
study of several phenomena of interest in condensed matter
physics [1–4]. For instance, the Haldane-gapped ground state
of spin S = 1 antiferromagnetic chains [5–8] represents the
prototypical example of topological order, with characteristic
ground state degeneracy that is robust to perturbations in the
microscopic Hamiltonian.

More generally, the competition between magnetic order
(favoured by the exchange couplings) and magnetically dis-
ordered ground states (favoured by quantum fluctuations) can
lead to a variety of interesting phases and phase transitions.
In some cases, it can give rise to spin liquid phases with
topological order [3,9]. In addition, geometric frustration ef-
fects can lead to even richer physics [10]. The large number
of experimentally-studied Mott insulating compounds that
realize some of these phenomena is another reason for the
theoretical interest in these systems [11–13].

A major theoretical challenge is the paucity of reli-
able computational methods for characterizing the ground
state or low-temperature behavior of all but the simplest of
the experimentally-relevant Hamiltonians that display such
interesting phenomena; in large part, this is due to the sign-
problem faced by quantum Monte Carlo (QMC) simulations
when the interactions are frustrated. One way around this is
the study of so-called “designer Hamiltonians” constructed
to be both computationally tractable and physically relevant

(in the sense that their low-temperature phase diagrams dis-
play the phases and transitions of interest) [14–31].

This typically involves replacing the physical ring-
exchange couplings (expected to be relevant for the physics
of spin S = 1/2 Mott insulators with a not-very-large charge
gap) by computationally tractable multi-spin interactions
and/or enlarging the symmetries of the problem from SU(2)
to SU(N ) or other symmetry groups [6,14,32–35]. QMC al-
gorithms have also been developed for the detailed study of
higher spin S � 1 systems [36,37] as well as their SU(N )
generalizations [38,39] using the so-called “minispin” rep-
resentations [7,8]. Interestingly, the remarkable degree of
control achieved in modern cold-atom experiments raises the
possibility of experimental “emulation” of some of these de-
signer systems, adding to the interest in their physics [40–48].

This approach has been quite fruitful in the past. For
instance, the transition from the Néel phase to a columnar
valence bond solid (cVBS) phase has been studied extensively
for SU(2) symmetric S = 1/2 models as well as their gen-
eralizations to SU(N ) [14–29,49] motivated by the proposal
of deconfined criticality [50]. Additionally, it has been used
to study various kinds of impurity effects in valence bond
ordered and magnetically ordered phases, as well as at the
phase transitions between such phases [51–58].

Using the minispin representation mentioned earlier, a state
with bond nematic order predicted previously [33–35] was
also identified in QMC studies of SU(N ) analogs of the
spin S = 1 square lattice antiferromagnet [39]. More recently,
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several interesting SU(2) symmetric designer Hamiltonians
with S � 1 have also been introduced, and used in the S = 1
case to understand the competition between the Néel phase,
the columnar valence bond solid (cVBS) state, and a state with
this kind of bond nematic order (dubbed the Haldane nematic
state in this recent literature) [59,60] on the square lattice.

Here, we use stochastic series expansion (SSE) quantum
Monte Carlo (QMC) methods to study the phases and transi-
tions displayed by a class of sign-free designer Hamiltonians
for SU(N ) analogs of spin S = 1 quantum antiferromagnets
on the square lattice. The SU(N ) spins are generators of
the single-row two-column representation (complex conjugate
of single-row two-column representation) on A (B) sublat-
tices of the square lattice [33–35,39], and the Hamiltonian
is designed to explore the competition between the nearest
neighbor antiferromagnetic exchange couplings J and four-
spin interactions Q that favor a plaquette-ordered valence
bond solid (p-VBS) ground state.

We find that this p-VBS state is indeed established at large
Q/J for all N > 3. For 3 < N � 9, the ground state exhibits
a direct first-order quantum phase transition from a small-
Q/J Néel ordered antiferromagnetic state to this large-Q/J
p-VBS state. The ground state at Q/J = 0 for N � 10 has
been previously reported [39] to be the Haldane nematic state
described above. For small nonzero Q/J and N � 10, we
additionally find an unusual intermediate phase in which the
plaquette energy has a Bragg peak at wave vector (π, π ), with
no accompanying Bragg peaks in the horizontal and vertical
bond energies at wave vectors (π, 0) and (0, π ), respectively.

This is strikingly different from the p-VBS phase at higher
Q/J , in which a subdominant (π, π ) Bragg peak in the pla-
quette energies arises as a consequence of the simultaneous
ordering of the horizontal and vertical bond energies at wave
vectors (π, 0) and (0, π ) respectively. Furthermore, a detailed
study of the histograms of Haldane nematic, plaquette and
(π, π ) order parameters suggests that this (π, π ) ordered
state is also metastable in the Q/J → 0 limit. A schematic
of the exchange coupling and four-spin interaction terms of
this Hamiltonian is shown in Fig. 1, while Fig. 2 provides a
schematic representation of the p-VBS and Haldane nematic
phases.

Deep in the p-VBS phase of the ground state phase dia-
gram, we find the temperature-driven melting of the p-VBS
order is in the Ashkin-Teller universality class. In this regime,
we identify an unusual signature of Ashkin-Teller critical-
ity in four-site plaquette singlet correlations at wave vector
(π, π ); this is in addition to the expected critical fluctuations
of the conventional p-VBS order parameter at wave vectors
(π, 0) and (0, π ). Interestingly, this is specific to the plaquette
ordered case and very different from the better-understood
subdominant critical fluctuations of the nematic order param-
eter at an Ashkin-Teller transition to a low-temperature phase
with columnar VBS order. [61]. The resulting picture of the
complete phase diagram is summarized in Fig. 1.

The rest of the paper is organized as follows. In Sec. II, we
discuss the model Hamiltonians studied, and explain how it
may be viewed as one possible class of SU(N) generalizations
of S = 1 quantum antiferromagnet. In Sec. III, we provide
an account of our QMC methods and the observables we
study. In Sec. IV, we describe our results for smaller values
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FIG. 1. A lattice site is indicated by the gray bubble which con-
tains two symmetrized minispins. Minispins on A (B) sublattice sites
are generators of the single-row two-column representation (com-
plex conjugate of the single-row two-column representation). Solid
lines connecting two minispins denote SU(N ) singlet projectors that
project to the SU(N ) singlet state formed by a pair of minispins on
opposite sublattices. Minispin picture for (a) the Heisenberg interac-
tion, explicitly showing all four components generated by the action
of the symmetrizers at each physical site (b) the plaquette interaction,
showing only one of the sixteen different terms generated by the
action of the symmetrizers (see Sec. II for a detailed account of the
minispin formalism and definition of the symmetrizer). (c) Phase
diagram as a function of N and g = Q/J , where Q is the strength
of the plaquette interaction and J , the strength of the Heisenberg
interaction. For N � 9, the g = 0 groundstate is the Néel state, while
the large g state is a plaquette valence bond solid (p-VBS) state.
The transition from Néel order to pVBS order on increasing g is of
the first-order type. See Sec. IV for details. For N � 10, the g = 0
ground state was previously identified to be a Haldane nematic (HN)
state [39]. For these large values of N , we find intriguing phase coex-
istence phenomena at small g close to zero, indicating the presence of
a metastable state with (π, π ) VBS order. For intermediate values of
g, we find that this (π, π ) VBS state wins over the Haldane nematic
state, while for large values of g, the system has p-VBS order. See
Sec. V for details.

of N , i.e., N � 9. In Sec. V, we describe our results for larger
values of N , i.e., N > 9. Section VI focuses on our study of
the temperature driven melting of p-VBS order deeper in the
p-VBS ordered phase for both large and small values of N . We
conclude with a brief discussion in Sec. VII

II. MODEL

Following earlier work [6,32–35,38,39,62,63], we con-
sider a generalization of the SU(2) symmetric square lattice
Heisenberg antiferromagnet, in which the spins are replaced
by SU(N ) generators. Specifically, our spins on the A sub-
lattice of the square lattice are generators of the single-row
two-column representation, while those on the B sublattice
are generators in the complex conjugate of this represen-
tation. These degrees of freedom can be thought of as
being the SU(N ) analogs of spin S = 1 moments. The va-
lidity of this interpretation is particularly clear when thought
of in the language of our QMC calculations. These calcula-
tions use the SU(N ) generalization [38,39] of a computational
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(a) (b)

FIG. 2. (a) Schematic of the twofold symmetry breaking Haldane
nematic (HN) phase with bond nematic order. This breaks the rota-
tional symmetry of the square lattice, leaving all translational and
spin symmetries intact. (b) Fourfold symmetry breaking plaquette
valence bond solid (p-VBS) phase, which breaks the translational
symmetry of the square lattice, keeping intact spin symmetries and
the symmetry of 90o lattice rotations about a plaquette center. The
dark bonds schematically represent higher values for the expectation
value of the singlet projection operator that projects to the SU(N )
singlet state formed from two neighboring spins on opposite sublat-
tices. Note that the p-VBS state leads to Bragg peaks at wave vector
(π, 0) in the horizontal bond energy and wave vector (0, π ) in the
vertical bond energy. It also leads to a subdominant Bragg peak at
wave vector (π, π ) in the plaquette energy.

scheme [36,37,59] that works within the minispin formal-
ism developed earlier for understanding Haldane gapped spin
S = 1 antiferromagnets in one dimension [7,8]. In this for-
malism, one views a spin S � 1 moment as being formed by
symmetrizing 2S spin S = 1/2 moments (these are the “min-
ispins”), i.e., keeping only the highest spin multiplet from
the angular moment addition of 2S spin S = 1/2 moments.
Since the single-row two-column representation of SU(N ) is
obtained by keeping only the symmetric part of the tensor
product of two fundamental representations, we see immedi-
ately that the same minispin formalism carries over unchanged
to the SU(N ) case. This justifies viewing our degrees of free-
dom as SU(N ) analogs of S = 1 moments. For a pictorial
depiction of the minispin representation, see Fig. 1.

The antiferromagnetic Heisenberg interaction between two
S = 1/2 moments S1 and S2 can be written (up to an additive
constant) as

−JP12,

where P12 is the projection operator that projects to the SU(2)
singlet sector of this two spin system. With this as the tem-
plate, the analogous SU(N ) symmetric interaction terms can
be constructed using projectors that project to the SU(N )
singlet subspace in the tensor product of the local Hilbert
spaces of one minispin on a A sublattice site (carrying the
fundamental representation) and another on a B sublattice site
(carrying the complex conjugate of the fundamental represen-
tation). We write the normalized SU(N ) singlet state formed
from two such minispins ia (living on an A sublattice site) and
jb (living on a B sublattice site) as

∣∣Sa,b
i j

〉 = 1√
N

∑
αia=ᾱ jb

|αiaᾱ jb〉, (1)

where the index αia carries the fundamental representation,
while ᾱ jb carries the complex conjugate of the fundamental
representation, and the sum is from 1 to N . Using this to define
the projector

Sa,b
i j = ∣∣Sa,b

i j

〉〈
Sa,b

i j

∣∣ (2)

that projects to the singlet formed by these two minispins,
we may write the antiferromagnetic Heisenberg interaction
between these two SU(N ) minispins as

−Sa,b
i j . (3)

With this in hand, we turn to the system with two minispins
on each site of the square lattice. On a A sublattice site,
these two minispins represent a spin degree of freedom that
corresponds to the symmetrized tensor product of two copies
of the fundamental representation of SU(N ), while the two
minispins on a B sublattice site represent the symmetrized
tensor product of two copies of the complex conjugate of the
fundamental representation.

The antiferromagnetic exchange interaction between two
of these degrees of freedom (of which one is on an A sublattice
site i and the other on a B sublattice site j) can now be
written as

Ji j = −
2∑

a,b=1

Sa,b
i j .

We note that the operator Ji j acts symmetrically on the two
minispins at each of the two physical sites i and j. Also,
implicit in the above is the restriction that this operator is only
defined to act in the Hilbert space of our model, i.e., on states
are symmetric under interchange of minispins at each physical
site. Such states are unchanged by the action of the projection
operator P ≡ ∏

j P j , where P j is the projector acting at site j
which selects states symmetric under interchange of minispin
labels at that site. To include this explicitly in our definition of
the Heisenberg exchange term, we may define the Heisenberg
exchange Hamiltonian as

HJ = J
∑
〈i j〉

Ji jP, (4)

where the projection operator in front serves to remind us
that this Hamiltonian is only defined for states in the physical
Hilbert space of our model. Note that HJ is Hermitian since
Ji j commutes with P by virtue of the fact that it acts symmet-
rically on the two minispins at a physical site. This exchange
term is depicted schematically in Fig. 1.

The four-spin interaction term which we expect will favour
plaquette VBS order can also be written down in a very
transparent manner in this language, as shown schematically
in Fig. 1. Translating this schematic depiction to an operator
defined in the minispin language and acting on a single pla-
quette of the square lattice, we obtain

Qi jkl = −
∑̃

Sa1,b1
i j Sb2,c1

jk Sc2,d1
kl Sd2,a2

li , (5)

where i jkl represents an elementary plaquette of the square
lattice made up of sites i, j, k, and l (taken, say, anticlockwise)
and

∑̃
denotes the sum over all eight minispin indices with
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the proviso that only terms that satisfy a1 �= a2, b1 �= b2, c1 �=
c2, and d1 �= d2 are included in the sum.

The corresponding plaquette term in the Hamiltonian is
then given as

HQ = Q
∑
i jkl

Qi jklP, (6)

where the P on the right reminds us that this term only acts
on states in the physical Hilbert space of our model. We note
that Qi jkl , like Ji j discussed earlier, also acts symmetrically
on all the minispin labels at each physical site, and therefore
commutes with the projection operator P . HQ is therefore Her-
mitian. In our computational work, we study the competition
between these two terms in the Hamiltonian

H = HJ + HQ, (7)

and determine the ground state phase diagram as a function of
Q/J and N . In addition, in the p-VBS phase, we also study the
finite temperature phase transition associated with the loss of
p-VBS order.

III. METHODS AND OBSERVABLES

Our Monte Carlo (MC) simulations use two different
variants of the stochastic series expansion (SSE) method to
study equilibrium properties of the Hamiltonian (7) as a
function of g ≡ Q/J , N , and the inverse temperature β =
1/T . One of them is the standard stochastic series expan-
sion algorithm (SSE) [64] using the minispin representation
described earlier [37,39,59]. When N is large and/or spin cor-
relations are short-ranged, we find that a recently-developed
color-resummed version of the SSE method [65] has distinct
computational advantages over the conventional SSE method.

We have confirmed both approaches give the same results
within statistical error and have used one or the other based on
the computational advantages of each in specific parameter
regimes. Roughly speaking, when loops constructed in the
deterministic loop update step of the algorithm are long, the
original SSE approach is superior, while the color-resummed
version works better in parameter regimes in which these
loops are short. The former corresponds to long-range spin
correlations, while the latter is typical of nonmagnetic states.
We have carried out MC simulations with approximately
∼105 MC steps as warm up for small N (N = 3). However
for larger N , it takes longer to warm up. For example we had
to take ∼106 MC steps to warm up for N = 12 while using
color-resummed version of SSE. All these simulations are
performed on L × L square lattices with periodic boundary
conditions and L ranging from L = 12 to L = 128 (with the
larger sizes only being needed for studies of the finite temper-
ature phase transitions out of the p-VBS phase), and β ∝ L
when studying ground state properties. Data at relatively mod-
est sizes (L = 12 to 24) with β ranging from 12 to 48 suffice
for studying the small N (N � 9) part of the phase diagram.
However, to get the conclusive picture of the phase diagram
for large N (N � 10) larger values of L are needed.

We now outline the measurements we have performed
to characterize different phases and transitions among them.
The SU(N) symmetric analog of long range antiferromagnetic
order of SU(2) symmetric S = 1 antiferromagnets is long

range correlation in the color (SU(N) index) variable. This is
characterized by the correlation function

Cm(r) = 1

N × Ns

∑
α,x

〈
Ĵα
α (x)Ĵα

α (x + r)
〉
, (8)

where Ĵα
α = |α〉〈α| − 1/N is a diagonal generator of SU(N )1

and Ns = L2 is the number of sites in a L × L square lattice.
In the magnetic phase, the Fourier transform

C̃m(k) =
∑

r

eik.rCm(r) (9)

has a Bragg peak at k0 = (0, 0) and the peak height is propor-
tional to the square of the magnetization.

In addition, we also define the dimensionless ratio

Rm = 1 − C̃m(k′
0)

C̃m(k0)
. (10)

Here k0 is the ordering momentum and k′
0 is the momentum

closest to the ordering momentum.
The spin stiffness is another quantity used to detect the

magnetic phase. It can be measured by adding a twist in the
boundary condition and measuring the second derivative of
the energy of the system with respect to the twist angle:

ρs = ∂2E (θ )

∂θ2

∣∣∣∣
θ=0

. (11)

Here E(θ ) is the energy of the system when you add a twist of
θ in the boundary condition in either the x or the y direction.
In the QMC, this quantity is related to the winding number of
loops in the direction that the twist has been added:

ρs = 1

N

N∑
α=1

W 2
α

β
≡ w2, (12)

where β is the inverse temperature. The winding number of
loops of each color α is measured and the average is taken
over all the colors. Here w2 is the Monte Carlo estimator for
the stiffness.

In order to identify the HN phase, we construct the follow-
ing order parameter:

φ̂ = 1

Ns

∑
r

φ̂(r), (13)

where φ̂(r) is the local nematic order parameter defined as

φ̂(r) = 1
2 (Jr,r+x̂ + Jr,r−x̂ − Jr,r+ŷ − Jr,r−ŷ). (14)

Here Jr,r±x̂(ŷ) is the projection operator (defined in the pre-
vious section) between site at r and it’s nearest neighbor site
along ±x̂(ŷ) direction.

The pVBS phase on the other hand breaks symmetry of
lattice translation along both x and y direction. We construct
the following two complex order parameter:

ψ̂B = 1

Ns

∑
r

ψ̂B(r), ψ̂P = 1

Ns

∑
r

ψ̂P(r) (15)

11/N is subtracted to make the operator traceless.
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using singlet projectors of bonds and plaquettes respectively.
ψ̂B(r) and ψ̂P(r) correspond to local complex order parame-
ters characterizing the VBS order defined as:

ψ̂B(r) = (−1)rx

2
(Jr,r+x̂ − Jr,r−x̂ )

+ i
(−1)ry

2
(Jr,r+ŷ − Jr,r−ŷ), (16)

ψ̂P(r) = (−1)rxQ(r) + i(−1)ryQ(r). (17)

Here Q(r) is the same plaquette singlet projector as defined in
Eq. (5) where we have omitted the site indices of four corners
and used position of the left bottom corner of a plaquette r
to specify the position of Q. Here (rx, ry) are the coordinates
of the lattice vector r. We also define another set of operator
(γ̂B(P) = 1

Ns

∑
r γ̂B(P)(r)) that correspond to Fourier transform

of bond and plaquette singlet projectors at (π, π ) wave vector.
These are, namely,

γ̂Bx(y) (r) = (−1)rx+ryJr,r+x̂(ŷ), (18)

γ̂P(r) = (−1)rx+ryQ(r). (19)

For a general order parameter Ô, the quantum mechanical
expectation,

〈Ô〉 = EO, (20)

where EO is the Monte Carlo average of the estimator EO
corresponding to the operator Ô.

The columnar VBS order breaks symmetry of lattice
translation in any one of x, y direction. That leads to the
complex order parameters having phase angle any one of
0, π/2, π, 3π/2. In contrast plaquette VBS order breaks
translation-symmetry in both x, y direction leading the com-
plex order parameters to have phase angle any one of
π/4, 3π/4, 5π/4, 7π/4. Thus one can distinguish between
pVBS and cVBS phase by measuring the joint histograms of
estimators for the real and imaginary part of ψ̂B. To locate
the phase transition corresponding to the onset of this p-VBS
order, we also find it useful to measure the equal time structure
factor C̃ψB and use it to construct the dimensionless ratio RψB

in a manner entirely analogous to the definition of Rm.
Additionally we measure the static susceptibility corre-

sponding to the order parameters defined above. For a general
order parameter Ô = ∑

r Ô(r)/Ns the static susceptibility
(scaled by volume) is defined as

χO =
∫ β

0
dτ 〈eτHÔe−τHÔ∗〉, (21)

O2 = χO/β. (22)

Here O2 stands for the Monte Carlo estimator for the static
correlator of Ô and the bar stands for Monte Carlo average.

IV. SMALL N RESULTS: COLOR ORDERED (NEEL)
TO p-VBS TRANSITIONS

We begin by studying the phase diagram at smaller values
of N , up to N = 9. At small values of Q/J , one expects
color order which is the SU(N) analog of antiferromagnetism
in the S = 1 square lattice antiferromagnets. As described

in the Introduction, we expect however that large values of
Q/J favor a state that minimizes the expectation value of the
four spin plaquette interaction term. An intuitively appealing
and simple variational wavefunction for such a state can be
constructed from a maximally packed nonoverlapping pattern
(i.e., not sharing an edge or a vertex) of “occupied” plaquettes
as shown in Fig. 2, where each “occupied” plaquette denotes
the singlet state constructed from the four spins on its vertices.

Since this variational state necessarily breaks lattice trans-
lation symmetry simultaneously in both the x and y directions,
we expect a valence bond solid ordered state at large Q/J .
This valence bond solid state has plaquette order, and we dub
it the plaquette VBS (p-VBS) state. As mentioned earlier, it is
expected to show simultaneous Bragg peaks at wave vector
(π, 0) in the static structure factor of the x bond energies
(singlet projector on bonds) and at wave vector (0, π ) in the
static structure factor of the y bond energies. In addition, as a
subdominant feature, it is also expected to show a Bragg peak
at wave vector (π, π ) in the static structure factor of the pla-
quette energies (four-spin interaction operator on plaquettes).
However, it is expected to preserve symmetry of rotations
about a plaquette center.

This intuition motivates our detailed study of the ground
state phase diagram as a function of Q/J for a range of values
of N . To test for the presence of color order, we monitor the
stiffness ρs that is the SU(N) analog of the antiferromagnetic
spin stiffness of SU(2) antiferromagnets. In addition, we mea-
sure the equal time structure factor C̃m of the SU(N) color
quantum number (which is the analog of the equal time spin
structure factor of SU(2) antiferromagnets) and the static color
susceptibility. To test for the presence of p-VBS order, we
measure the corresponding p-VBS parameter susceptibility
χψB , as well as the corresponding equal time structure factor
C̃ψB . In addition, we also construct and monitor the ratios
Rm and RψB of the equal time color structure factor and the
equal time structure factor of the p-VBS order parameter ψ̂B

respectively. These dimensionless ratios are useful as a means
of identifying the location of the phase transition between the
color ordered state and the p-VBS state.

We find that color order persists in the N = 2 case even
when J = 0 and Q > 0. However, for N � 3 we do find that
color order gives way to p-VBS order above a threshold value
of Q/J , exactly in accordance with the intuition outlined
above. As a representative example, we display in Fig. 3 our
small size data for the structure factor ratios Rm and RψB for
the N = 3 case. It is clear from these data that a nonmagnetic
p-VBS ordered state is established for Q/J � 1.83. From
these data, it also appears that the transition is first-order in
nature, since the dimensionless ratio curves steepen and shift
extremely rapidly with increasing size instead of having a
well-defined crossing point that would signify a second-order
phase transition.

To explore this further, we have monitored the low-
temperature Monte Carlo time series and histograms of the
SSE estimator w2 of the spin stiffness ρs, as well as the
SSE estimator EψB of the equilibrium expectation value 〈ψ̂B〉.
These results are displayed in Fig. 4. for N = 3 in the vicinity
of the transition. They show clear evidence of the first-order
nature of the transition: First, the histogram of w2 has a
pronounced two peak structure. Second, the Monte Carlo time
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FIG. 3. Dimensionless ratios constructed from Néel and pVBS
order parameters, Rm2 and Rψ2

B
, (see Sec. III for details of the

definition) plotted as a function of g for different system sizes (L)
at N = 3 and β = 12. In both cases, curves for different L cross at
g ≈ 1.83 indicating a direct transition between the two phases. See
Sec. IV for details.

series of w2 and
√

|ψB|2 shows characteristic “stickiness”,
jumping intermittently between two well-defined plateaus.
Third, the histogram of EψB shows two sets of peaks, one at
EψB = 0 and the other four at a nonzero value of |EψB |. And
finally, this peak structure is seen to sharpen noticeably with

Im
(E

ψ
B
)

L = 12
Re(EψB

)
L = 16 L = 20

(c)

FIG. 4. Order parameter histograms for N = 3 close to the Néel-
pVBS transition at g ≈ 1.83 and β = 12 (zero temperature limit)
(a) Histograms of the spin stiffness estimtor w2, showing two peaks
that get sharper with increasing system size at g = 1.83, 1.81, 1.81
for L = 12, 16, 20, respectively. (b) Monte Carlo time series of w2

and
√

(|ψB|2) for L = 20 with the coupling parameter g = 1.82. The
values of each estimator are normalized such that the maximum value
is unity. The time series shows clear switching between Néel and
VBS phase throughout the MC sampling history near the transition
point. (c) Joint histograms of the real and imaginary part of the
estimator of the complex order parameter ψB. These show five peaks
near the transition (at g = 1.87, 1 .83, 1.82 for L = 12, 16, 20,
respectively): one at the origin and four at nonzero values of Re(EψB )
and Im(EψB ) corresponding to pVBS order. The nature of the his-
tograms show coexistence of pVBS and Néel order indicating a
first-order transition between the two phases. See Sec. IV for details.
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FIG. 5. (a) Histograms of the spin stiffness estimator and
(b) joint histogram of the real and imaginary parts, Re(EψB )-
Im(EψB ), of the estimator of VBS order parameter ψ̂B close to
the Néel-pVBS transition at g ≈ 0.47 for N = 8 and β = 48 (zero
temperature limit) indicating the strong first-order nature of this
transition. The comparison of histograms of (c) w2 and (d) |ψB|2
at the transition for the same system size, L = 16, and β = 48 for
N = 3 and N = 8 shows clearly that the double-peaked structures
are more pronounced for N = 8. See Sec. IV for details.

increasing size L. The nature of the transition at larger values
of N in this range (i.e., N � 9) is similar. This is clear from the
analogous histogram data for N = 8 displayed in Fig. 5. For
this figure, we see that the first-order nature of the color order
to p-VBS order transition is actually much more pronounced
at N = 8.

Finally, we note that the occurrence of a first-order tran-
sition is not surprising here, given that the spins are SU(N)
analogs of S = 1 objects. While the possibility of a second
order transition between the Néel and VBS phase has been
discussed earlier for S = 1/2, the original theory of decon-
fined criticality does not predict the same phenomenon for
S = 1 or other integer spins [50,66]. Parenthetically, we note
however that the possibility of such a second order transition
has been explored in a field-theoretical analysis of the Néel -
Haldane Nematic transition for S = 1 [67]. However, in this
work we find a conventional first-order phase transition when
the nonmagnetic phase has plaquette VBS order. Our results
should also be contrasted with those of another recent study
of a S = 1 model that has been shown to host a “pseudocrit-
ical” or very weakly first-order transition between Neel and
columnar VBS phases [68].

V. RESULTS FOR N > 9: COMPETITION BETWEEN
HALDANE NEMATIC, p-VBS, AND (π,π)-VBS ORDER

We have also studied the phase diagram for larger values
of N , i.e., N > 9. For large enough Q/J , we again find a
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FIG. 6. Susceptibility of different order parameters (φ̂, ψ̂B, γ̂P

and ψ̂P respectively) as defined in Eq. (22) for five different values
of g in the range g � 0.17 as a function of 1/L at N = 12 and β = L.
The susceptibility corresponding to the (a) nematic order decays
down to 0 in the thermodynamic limit whereas χψB , χγP and χψP

all extrapolates to nonzero values in the L = β → ∞ limit. This
provides strong evidences for the existence of p-VBS ordering at
large Q/J . See Sec. V for details.

nonmagnetic p-VBS state entirely analogous to the corre-
sponding state studied earlier at smaller values of N . However,
upon lowering the value of Q/J , we find an interesting se-
quence of nonmagnetic VBS phases that point to the delicate
energetic balance between various kinds of valence bond solid
orders.

To study this in some detail, we focus on the representative
case of N = 12 and monitor (i) the VBS order parameters
ψ̂B and ψ̂P that are sensitive to bond and plaquette order
respectively at the wave vectors (π, 0) and (0, π ), (ii) the
Haldane nematic order parameter φ̂ that is sensitive to lat-
tice rotation symmetry breaking in the bond energies, and
(iii) the (π, π ) order parameter γ̂P that is sensitive to ordering
of the plaquette energies at wave vector (π, π ).

In Fig. 6, we display the results for the L dependence of the
static susceptibilities at inverse temperature β = L for values
of Q/J in the large Q/J regime, with Q/J � 0.18. We see
that T χφ goes to zero rapidly with increasing L, while T χψB

and T χψP go to a nonzero limit as L is increased. This is
what one expects of the p-VBS phase. From the L dependence
of T χγP , we also see that p-VBS order is associated with
subdominant long range order of the plaquette energies at

FIG. 7. Susceptibility of different order parameters (φ̂, ψ̂B, γ̂P

and ψ̂P respectively) as defined in Eq. (22) for five different values
of g in the range 0.1 � g � 0.17 as a function of 1/L at N = 12
and β = L. By visually extrapolating the data points up to 1/L = 0,
we can easily see that only T χγP survives in the low-temperature
thermodynamic limit for this intermediate range of Q/J . See Sec. V
for details.

wave vector (π, π ). This is exactly what one expects from
the simple variational state depicted in Fig. 2.

These results for the various valence bond order parameter
susceptibilities should be contrasted with the corresponding
results at β = L for intermediate values of Q/J , in the range
0.1 � Q/J � 0.17. These are displayed in Fig. 7. In this
regime, we see that T χγP tends to a nonzero large L limit,
while T χψB , T χψP , and T χφ all tend to zero. This is an
unambiguous indication of the presence of a phase in which
the plaquette energies are ordered at wave vector (π, π ), but
there is no ordering of the bond or plaquette energies at wave
vectors (π, 0) and (0, π ), nor is there any sign of Haldane
nematic order.

The nature of the transition from the large Q/J p-VBS
phase to this intermediate Q/J (π, π )-VBS phase is best
understood by monitoring the histograms of the estimators
|ψB|2, γ 2

P , and φ2 of the corresponding scaled susceptibilities
T χψB , T χγP , and T χφ in the vicinity of the transition. This
is shown in Fig. 8. We see that there is a clear double peak
structure in the histogram of |ψB|2, with one peak at zero and
another at an L independent nonzero value.

When one filters the data based on whether a configuration
belongs to the peak at zero or the nonzero peak, we see
quite clearly that the histogram of φ2 remains peaked at zero
for both kinds of configurations. However, the two kinds of
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FIG. 8. (Top) Histogram of ψ2
B at N = 12 and g = 0.178 for β =

L shows two prominent peaks including one nonzero peak indicating
phase coexistence corresponding to a first-order transition between
the (π, π )-VBS phase and the pVBS phase. Bottom panels are the
conditional histograms of γ 2

P and φ2 with the condition on the values
of ψ2

B marked by the blue shaded region in the top figure. There are
two peaks of P(γ 2

P ) for two different values of γ 2
P �= 0. The peak at a

larger value is ascribed to the coexisting (π, π )-VBS state, while the
other peak is the subdominant signal at wave vector (π, pi) expected
in the p-VBS phase. The nematic order histogram shows a trivial
peak at φ2 = 0 near the transition. See Sec. V for details.

configurations correspond to peaks at two different nonzero
values of γ 2

P , with the peak at a higher value corresponding to
configurations which belong to the nonzero peak of |ψB|2. We
have already seen that p-VBS order is also associated with
subdominant order of the plaquette energies at wave vector
(π, π ).

This is consistent with the fact that the peak at a higher
value of γ 2

P corresponds to nonzero values of |ψB|2. The
interpretation of peak at the lower value of γ 2

P is then that it
corresponds to configurations which have (π, π ) order with-
out any p-VBS order. This is exactly what we have already
seen in the intermediate Q/J phase in Fig. 7. This inter-
pretation is further corroborated by the histograms of these
estimators in the intermediate Q/J regime. These are shown
in Fig. 9. From these histograms, we again conclude that
the intermediate phase is associated with (π, π ) ordering of
the plaquette energies without any p-VBS order or Haldane
nematic order. Another point to note is that the bond energies
do not show any ordering at the (π, π ) wave vector although
the plaquette energies are ordered at this wave vector.

Next we turn to the low Q/J regime. In Fig. 10, we display
the susceptibilities corresponding to p-VBS, (π, π )-VBS, and
Haldane nematic orders for inverse temperature β = L and a
sequence of sizes. In this low Q/J regime, T χψB and T χψP

both tend to zero with increasing L. For Q/J � 0.05, T χφ also
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FIG. 9. Order parameter histograms for N = 12 at two inter-
mediate values of coupling strength g = 0.1, 0.16 are shown for
different system sizes L = 48, 64 with β = L (low-temperature
limit). (a) Histograms of γ 2

P show a single peak at an L independent
but Q/J dependent nonzero value of γ 2

P ; this peak survives in the low-
temperature thermodynamic limit. Note the second peak at γ 2

P = 0
for g = 0.1 is suppressed in thermodynamic limit. Histograms of φ2,
γ 2

Bx
, |B|2, and |P|2 are peaked only at zero implying the absence of

coresponding Haldane nematic, c-VBS and p-VBS orderings. These
observations strongly suggest the existence of an unusual solid or-
dering of plaquette energies at wave vector (π, π ) in the intermediate
range of coupling (0.08 < g < 0.17). See Sec. V for details.

tends to zero as L is increased, but when Q/J � 0.02, it tends
to a nonzero value in the large L limit. On the other hand, T χγP

tends to a nonzero limit as L is increased when Q/J � 0.05.
The large L behavior of T χγP for Q/J � 0.02 is less clear, in
the sense that it is not clear if it goes to a small nonzero value
or not. This is a difficult question to resolve, since the number
of plaquette operators in the SSE operator string itself goes to
zero as Q/J goes to zero.

To shed more light on this, we turn to an examination of
the histograms of the estimators |ψB|2, |ψP|2, γ 2

P , γ 2
B, and

φ2 of the corresponding scaled susceptibilities at Q/J = 0.02
for range of L and inverse temperature β = L. These are
shown in Fig. 11. We see a marked double peak structure
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FIG. 10. Susceptibility of different order parameters (φ̂, ψ̂B, γ̂P,
and ψ̂P respectively) as defined in Eq. (22) for four different values
of g in the range 0 � g � 0.08 as a function of 1/L at N = 12 and
β = L. From (b) and (d), it is clear that χψB and χψP extrapolates to
0 at L = β = ∞ for this range of Q/J . At very small Q/J (� 0.05),
the nematic order starts to develop in the low-temperature thermo-
dynamic limit while the susceptibility corresponding to (π, π ) VBS
order seems to vanish at Q/J ∼ 0.02 as is seen by visually extrapo-
lating the corresponding data points up to L = β = ∞ in (a) and (c).
See Sec. V for details.

in the histogram of φ2, with this structure becoming more
accentuated at larger values of β = L. One of these peaks is at
φ2 = 0, while the other is at an L independent value of φ2.
Thus, this low Q/J regime seems to feature a competition
between the Haldane nematic state and another state. The
nature of this competition is of course quite clear when one
examines the histogram of γ 2

P obtained from configurations
that are sorted according to the value of φ2. We see that
configurations belonging to the nonzero peak of the histogram
of φ2 contribute to a peak at zero in the histogram of γ 2

P . On
the other hand, configurations that belong to the peak at zero
in the histogram of φ2 contribute to a peak at a nonzero value
in the histogram of γ 2

P . No such bimodality or anticorrela-
tion is seen in the histograms of |ψB|2, |ψP|2, and γ 2

B. Thus
we conclude that there is a first-order transition somewhere
in the interval Q/J ∈ (0.02, 0.07) at which the (π, π )-VBS
order is lost and Haldane nematic order established at lower
values of Q/J .

However, the fact that we continue to see an anticorrelated
double peak structure in the histograms of γ 2

P and φ2 even at
the lowest values of Q/J at which we are able to measure T χγP

strongly suggests that the (π, π )-VBS ordered state survives

0.000 0.001 0.002 0.003 0.004
φ2

0

2

4

P
(φ

2
)

×103

(a)

Q/J = 0.02

L =48, β =48.0

L =64, β =64.0

φ2 ≤ 0.0004

0.0000 0.0004
γ2

P

0

2

4

P
(γ

2 P
)

×104

L =64, β =64.0

(b)

0.0000 0.0004
|ψP|2

0

2

4

P
(|ψ

P
|2 )

×104

(c)

φ2 ≤ 0.0004

φ2 > 0.0004

0.00000 0.00025
|ψB|2

0

1

P
(|ψ

B
|2 )

×104

(d)

0.0000 0.0001
γ2

Bx

0

2

4

P
(γ

2 B
x
)

×105

(e)

φ2 ≤ 0.0004

φ2 > 0.0004

0.001 0.002

FIG. 11. (a) Histogram of the nematic order parameter φ2 at
N = 12 and Q/J = 0.02 shows two peaks, one at zero and the other
at a non zero value of φ2. The second peak corresponding to very
weak nematic order is seen more clearly in the inset. Both the peaks
get sharper with increasing system size as well as with lowering of
the temperature. This rules out any explanation based on proximity
to a temperature-driven first-order transition or finite-size effects. It
strongly suggests the presence of some other coexisting order in the
ground state. (b)–(e) are the conditional histograms of γ 2

P , |ψP|2,
|ψB|2, and γ 2

Bx
with the condition on the values of φ2 as marked

by the pink shaded region in (a). (b) suggests the coexisting phase
has a Bragg peak corresponding to plaquette singlet projectors at
(π, π ) wave vector. However, there is no nontrivial Bragg peak at
the columnar wave vectors (π, 0) and (0, π ) for (c) plaquettes and
(d) bond singlet projectors and at the plaquette wave vector (π, π )
for (e) bond singlet projectors. See Sec. V for details.

as a metastable state even in the Q/J → 0 limit. Further
(albeit indirect) evidence in favor of this conclusion comes
from an examination of the histograms of |ψB|2, γ 2

B, φ2, and
w2 at Q/J = 0, and an examination of the Monte Carlo time
series of φ2. These are shown in Fig. 12. From these data, we
see that there is a two peak structure in the histogram of φ2,
with one peak at zero and another at a nonzero value of φ2.
Moreover, this two peak structure sharpens as the temperature
is lowered to correspond to β = 100, thereby ruling out the
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FIG. 12. [(a) and (b)] Histograms of the nematic order parameter P(φ2) at N = 12 and g = 0 for two different values of β shows double-
peaked structure implying phase coexistence between nematic ordered phase and some other (rotational-symmetry-unbroken) phase. Both the
peaks gett sharper with increasing L and with β, ruling out any explanation based on proximity to a temperature-driven first-order transition
or finite-size effects. (c) Monte Carlo time series of φ2 is also seen to switch between zero and nonzero values implying the same phase
coexistence. [(d)–(f)] Order parameter histograms corresponding to |ψB|2, w2, and γ 2

Bx
showing single peak at zero imply the absence of

magnetic and any conventional c-VBS or p-VBS ordering. Viewed in conjunction with very similar results for small nonzero g, this strongly
suggests the presence of a metastable (π, π )-VBS state at g = 0, although the limitations of our SSE MC method do not allow us to directly
measure the structure factor of the plaquete singlet projector. See Sec. V for details.

possibility that this is the effect of thermal fluctuations. The
same bimodality is also reflected in the corresponding time
series. However, no corresponding bimodality or two peak
structure is visible in the histograms of |ψB|2, γ 2

B, and w2.
This rules out the possibility that competing magnetic order or
p-VBS order is responsible for the observed low-temperature
two peak structure in the histogram of φ2. When viewed in
the light of the previously displayed evidence for a metastable
(π, π )-VBS ordered state at very low nonzero Q/J , this
strongly suggests that the Haldane nematic state is very close
in energy to a metastable (π, π )-VBS ordered state even
at Q/J = 0.

VI. ASHKIN-TELLER CRITICALITY

The p-VBS order at wave vectors (π, 0) and (0, π ) is
described in terms of the complex order parameter field ψ̂B.
From the symmetries of this local order parameter under lat-
tice transformations, we see that a good description of the
finite temperature melting of this order would be provided
by an xy model with fourfold anisotropy, or, equivalently, an
Ashkin-Teller model comprising two coupled Ising degrees of
freedom σ and τ [69]. The symmetries of this problem dictate
that we may identify EψB ∼ σ + iτ . Note that this is different
from the identification we would make if the ordering was of
the columnar VBS type. In this latter case, one would have
written EψB ∼ (σ + τ ) + i(σ − τ ) [61].

These symmetry based considerations strongly suggest
that the thermal melting of p-VBS order will be in the
Ashkin-Teller universality class [70,71]. In such Ashkin-

Teller transitions, the anomalous exponent η corresponding
the correlation function of the fourfold symmetry breaking
field is fixed to η = 1/4. However, the correlation length
exponent ν varies continuously along the phase boundary.
This variation is tightly constrained, in that ν obeys the
Ashkin-Teller relation which connects it to the value of the
anomalous exponent η2 of the subdominant twofold symmetry
breaking field obtained by squaring the local fourfold sym-
metry breaking order parameter. This relation reads: η2(ν) =
1 − 1/2ν.

In order to test this scenario, we need to identify this sub-
dominant ordering field. From the symmetry considerations
summarized above, this is straightforward to do: We see that
the order parameter γ̂P has the same symmetry as the required
twofold symmetry breaking order parameter field, and there-
fore plays the role of this subdominant order parameter. With
this motivation, we measure the anomalous exponents η and
η2 associated with the critical behavior of the static correlator
of ψ̂B and γ̂P respectively in addition to measuring the corre-
lation length exponent ν that governs this critical behavior.

The results of such a study are shown in Figs. 13 and
14. In our analysis, we use the fact that η = 1/4 to identify
the critical temperature. With this identification made, we
estimate ν by adjusting it to achieve the best scaling collapse
in the vicinity of this critical point. With this in hand, we test
for the validity of the Ashkin-Teller relation by measuring
the anomalous exponent η2 at this critical point. From the
results displayed in these two figures, we see that ν indeed
varies with parameters N and Q/J , as does η2. However, the
Ashkin-Teller relation continues to hold.
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(a)

(b)

FIG. 13. (a) (Inset) (T χψB ) L1/4 for N = 3 and g = 3.0 plotted
as a function of β for different system sizes (L). The curves corre-
sponding to different system sizes show a clear crossing allowing
us to estimate βc = 0.792(5). (a) Scaling collapse of (T χψB ) L1/4

for various system sizes below the critical point with the correlation
length exponent ν = 1.85(10). (b) (Inset) (T χγP ) Lη2 for N = 3 and
g = 3.0 plotted as a function of β for various system sizes cross at
the estimated βc = 0.792(5) when η2 is set to 0.76(6). (b) Scaling
collapse of (T χγP ) Lη2 for various L below the critical point using
ν = 1.85, βc = 0.795, and η2 = 0.73, which is within the error bars
quoted above. Note that the estimated value of η2 is consistent
within errors with the prediction based on the Ashkin-Teller relation
η2 = 1 − 1/2ν if we use the value of ν estimated here. See Sec. VI
for details.

VII. DISCUSSION

In our work, we have focused on a specific class of designer
Hamiltonians, chosen to facilitate a study of the competition
between Neel order, Haldane nematic order, and plaquette (as
oppposed to columnar) valence bond solid order in SU(N)
analogs of S = 1 antiferromagnets. In the specific context of
the phase diagram of such models, one of our results appears
particularly significant. This has to do with the fact that an
unusual state with (π, π ) ordering of four-site singlets, with-
out any bond order at wave vectors (π, 0) and (0, π ), appears
to co-exist with the Haldane nematic state at the lowest val-
ues of Q/J for which we have been able to measure this
four-site (π, π ) VBS order parameter. At Q/J = 0, i.e., for

(a)

(b)

FIG. 14. (a) (Inset) (T χψB ) L1/4 for N = 12 and g = 0.25 plotted
as a function of β for different system sizes (L). The curves corre-
sponding to different system sizes show a clear crossing allowing
us to estimate βc = 11.525. (a) Scaling collapse of (T χψB ) L1/4 for
various system sizes below the critical point with the correlation
length exponent ν = 1.37(5). (b) (Inset) (T χγP ) Lη2 for N = 12 and
g = 0.25 plotted as a function of β for various system sizes cross
at the estimated βc = 11.525 when η2 = 0.60(5). (b) Scaling col-
lapse of (T χγP ) Lη2 for various L below the critical point using
βc = 11.51, ν = 1.36, and η2 = 0.632 which is within the error
bars quoted above. Note that the estimated value of η2 is consistent
within errors with the prediction based on the Ashkin-Teller relation
η2 = 1 − 1/2ν if we use the value of ν estimated here. See Sec. VI
for details.

the SU(N) analog of the SU(2) symmetric S = 1 Heisenberg
antiferromagnet, we have also found that the Haldane nematic
phase coexists with a phase in which the bond energies are
featureless.

This adds significantly to what is known from a previous
study of this system [39], which had identified the Haldane
nematic ordered phase in this class of designer Hamiltoni-
ans. Given our results on the unusual (π, π ) ordered state
at very small Q/J , and the fact that this state leads to no
discernible signature in the bond order parameters, it seems
plausible that this “featureless” state at Q/J = 0 actually has
a nonzero four-site (π, π ) VBS order parameter, which we
are unable to access in our numerics. If this is indeed true,
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then it would be of interest to ask if such a (π, π ) ordering of
four-site singlets also plays a role at the transition between
the Neel ordered antiferromagnet and the Haldane nematic
state.

Although our study admittedly focused on this specific
class of models, our results also suggest some questions of
more general interest, and some lessons that are likely to be
more generally valid. In this spirit, we first note that a recent
theoretical study [67], motivated by the nematic order in the
normal state of FeSe, analyzed the interesting possibility of
a direct continuous transition between the Néel and Haldane
nematic phases. Our finding of the (π, π ) ordering of four-site
singlets coexisting with the Haldane nematic phase leads in
this context to the question: could such a direct continuous
transition be replaced in some cases by a transition that pro-
ceeds via an intermediate phase with this (π, π ) order?

The second such point has to do with an important dif-
ference between plaquette ordered VBS states and columnar
ordered VBS states when it comes to the subdominant order
parameter fluctuations in the vicinity of a temperature driven
transition out of the phase. In the more familiar columnar
case, the subdominant order parameter corresponds to bond
nematic order. This is because the correspondence to the Ising
fields σ and τ of Ashkin-Teller criticality is σ = Re(ψ̂B) +
Im(ψ̂B), τ = Re(ψ̂B) − Im(ψ̂B), and the subdominant order
parameter corresponds in the Ising language to στ .

In contrast, as already noted in the analysis of our data
for the thermal transition out of the plaquette VBS state, the
correspondence to the Ising language in the plaquette VBS
case is different: σ = Re(ψ̂B), τ = Im(ψ̂B). As a result, στ

now corresponds to the product of the x̂ bond energy at wave
vector (π, 0) and the ŷ bond energy at wavevector (0, π ) of
the square lattice. Interestingly, this has the same symmetries
as the unusual (π, π ) order parameter that characterizes the
adjacent ground state at intermediate Q/J . Clearly, this con-
clusion is expected to hold for the thermal phase transition
of plaquette VBS states more generally, including for SU(2)
symmetric S = 1 antiferromagnets if they happen to form
such an ordered state.

As we have emphasized earlier, this product στ thus has
the same symmetries as the plaquette energy operator at wave
vector (π, π ) which keeps track of the pattern of formation

of four-site singlets on plaquettes, and serves as the order
parameter for the unusual (π, π ) ordered ground state of
our designer Hamiltonian. This leads to the following natural
speculation: Could plaquette VBS ordered states of SU(2)
symmetric S = 1 antiferromagnets also have adjacent phases
in which four-site singlets form preferentially in a (π, π )
ordered pattern? Notice that this ties in nicely with our finding
(in the phase diagram of our designer Hamiltonians) that the
quantum phase transition from the plaquette VBS state to
the Haldane nematic state involves an intermediate state with
(π, π ) singlet ordering of this type. Given how this fits in, it
seems likely that this is a general feature of the competition
between Haldane nematic and plaquette VBS states on the
square lattice, including in SU(2) symmetric S = 1 antiferro-
magnets.

Finally, the most intriguing aspect of this intermediate
(π, π ) singlet ordered state is the absence of any simple cari-
cature for this state in terms of a variational wavefunction that
builds in this pattern of symmetry breaking. It would therefore
be of interest to try and identify such a simple variational wave
function. In particular, the absence of bond or plaquette cor-
relations at wave vectors (π, 0) and (0, π ) suggests the need
to build into the wavefunction local resonances that destroy
such ordering but preserve a checkerboard pattern of plaquette
energies, corresponding to the order at wave vector (π, π ).
We hope that the detailed results presented here provide some
guidance for future work in this direction.
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