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Interfaces of nodal-line semimetals: Drum states, transport, and refraction
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We study transport through interfaces in topological nodal-line semimetal (NLS), focusing on two geometries:
a single interface between two large samples, one NLS and one metal, and an infinite NLS slab in between two
metallic regions. We investigate the dependence of the spectra on the boundary conditions, showing how they
affect the surface states and the band dispersion. We find a set of drum states, arising from the hybridization
of the drumhead states on opposite surfaces at finite slab width, and describe their signatures in the transport
properties of a clean sample. Finally, we compute the electronic trajectories in the ballistic regime and show that
there is a series of resonant angles that ensure perfect transmission. We also show how the current density profile
acquires an inhomogeneous distribution in the radial direction.

DOLI: 10.1103/PhysRevB.109.195144

I. INTRODUCTION

The introduction of topology in condensed matter physics
famously dates back several decades, yet topological mate-
rials continue to attract renewed attention due to the intense
experimental activity in recent years [1,2]. In fact, topology
is nowadays an established and widely applied paradigm,
promising impactful technological applications in various
fields [3,4]. Research on topological semimetals is fueled
by their predicted and measured sizable magnetoresistance
and extremely high carrier mobility [5-10], attractive features
for, e.g., ultra-sensitive detectors and fast-operating electronic
devices. Nodal-line semimetals (NLSs) are a class of topo-
logical semimetals in which a pair of bands crosses on a
one-dimensional manifold in the Brillouin zone (BZ), namely,
anodal line or nodal ring [11]. Such a crossing is protected by
a discrete symmetry, which quantizes the possible values of a
topological invariant [12—15].

The band structure of NLSs is associated with characteris-
tic signatures in a number of phenomena [16-18], including
quantum oscillations from the toroidal shape of the Fermi
surface [19-21], the anomalous Hall effect in magnetic ma-
terials [22], ultra-flat bands in a magnetic field, and related
magnetotransport [23]. There are, to date, numerous proposed
materials to host a NLS phase and mounting experimental
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confirmation [24-39]. Moreover, it has been shown that
phononic and photonic crystals can be engineered to form
synthetic analogs of nodal-line materials [40,41] and can be
useful to probe all those characteristics that only depend on
the eigenenergies. It was observed that the carrier mobility
can reach sizable values in clean samples, orders of magnitude
higher than typical metals at room temperature and compa-
rable with that of graphene [42]. Interestingly, the relative
flatness of the band along the nodal ring makes NLSs also a
good platform for highlighting correlation effects [43,44] and
superconductivity [45—47]. Strongly correlated NLSs have re-
cently been synthesized in the laboratory [48].

Topological surface states are generally expected when two
materials with a different value of a bulk topological invariant
are in contact [49]. In NLSs, they have support on the disk
delimited by the projection of the nodal line onto the interface
BZ: for this reason, they are dubbed drumhead states in the
literature [11,50]. Such states are present even at nonideal
interfaces and are associated with van Hove singularities in
the density of states [50,51], robust signatures in spectroscopy
[34,35,37,52], quasiparticle interference [53,54], and spin-
polarized transport [55]. A small dispersion of surface bands
can arise from the particle-hole symmetry breaking, manifest
in the dispersion of the nodal line itself [11,17,56,57].

In this paper, we consider interfaces between a NLS and the
vacuum or another material, which are always parallel to the
plane of the nodal line. We describe the most general paramet-
ric family of boundary conditions preserving self-adjointness
and mirror symmetry, in which the parameter is related to the
surface composition. We show that the boundary parameter
determines the penetration length and the dispersion of the
surface band; as our model does not break particle-hole
symmetry in the bulk, we conclude that the surface states can
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acquire a dispersion even in the absence of a tilt of the nodal
line.

We also show that, in a slab geometry, the drumhead states
on opposite surfaces can hybridize, forming a pair of drum
states. Despite their exponential localization, such states can
produce a sizable contribution in transport measurements
across the slab because their penetration length becomes
comparable with the sample size in the region around the
nodal line.

Finally, we also explore the consequences of the electron
refraction, originated by the change of dispersion at the inter-
face. The possibility of electron focusing in a crystalline solid
was experimentally demonstrated in ballistic two-dimensional
electron gases at semiconductor interfaces [58,59], paving the
way for all subsequent electron optics studies. Most famously,
Veselago lensing in graphene has been observed [60-63],
taking advantage of the very long mean free path in the ma-
terial. In a sufficiently clean topological semimetal sample,
measured mean free paths can be of the order of tens of
um [64]. For this reason, they offer very good candidates
for observing focusing effects in three dimensions [65], and
the possibility was indeed already demonstrated in a photonic
lattice Weyl semimetal [66]. In NLSs, specifically, electronic
correlations play a comparatively larger role than in other
topological semimetals [43], reducing the characteristic scat-
tering time and renormalizing the electron velocity. While at
low carrier density and temperature the Coulomb interaction
has a power-law behavior at short distances, at larger distances
or at sufficiently high temperature or chemical potential, the
interaction is exponentially suppressed [67], and an analysis
based on a single-particle Hamiltonian is approximately justi-
fied. In this paper, we adopt such a viewpoint and show that,
in a ballistic junction, the band dispersion associated with a
nodal line refracts part of an incident wave packet toward the
main axis. We also propose an experiment that exploits the
electron optical properties of the NLS to image the nodal line
in real space.

This paper is structured as follows. In Sec. II, we introduce
our model and its eigenstates, then proceed to imposing the
most general boundary conditions and describe the dispersion
and penetration length of the surface states as well as their
impact on the transport properties of the surface. In Sec. III,
we study the electronic tunneling through a single interface
between a metallic material and a NLS, and we proceed to
study the transport through a NLS slab in Sec. IV, with par-
ticular focus on the resonances. We also tackle the current
distribution and demonstrate the possibility of focusing the
transmitted electrons on a ring as well as of increasing an
electron beam collimation over a certain region by using a
NLS slab. We conclude by summing up our considerations in
Sec. V. A few complementary technical details are provided
in the Appendixes.

II. MODEL OF A NODAL-LINE SEMIMETAL:
BULK AND INTERFACES

We start by considering an effective Hamiltonian describ-
ing the vicinity of the nodal line of the form [11,50]:

H = —ihvd.1, + M)t + V, (1)

FIG. 1. Schematic representation of the energy bands in Eq. (3)
(in arbitrary units) in the NLS regime: a ring-shaped crossing with
radius knp. (here, with unit value) is present at zero energy.

where 1;, j =x,y,2z, denote the Pauli matrices, acting on
an effective degree of freedom that can be represented on a
spinor. In the example of CasP, [24], the two bands appearing
in Eq. (1) are formed out of the p and d orbitals of P and
Ca, respectively. The scalar term V describes a global shift of
the bands. In Sec. III, we will use a space-dependent V(z) to
model an interface between a NLS and a metal. The Hamilto-
nian is fully invariant under SU(2); hence, the spin degree of
freedom does not appear explicitly. The momentum compo-
nents parallel and perpendicular to the plane identified by the
nodal line are denoted as k;, = (ky, k,) and k;, respectively.
The function

M(ky) = D(k; — a) )

of k, = |Kkp| is zero at kni, = /a, provided a > 0. More gen-
eral shapes of the nodal ring can be modeled by introducing
an angular dependence of a, which is tackled via a reparame-
terization of the coordinates and momenta in the xy plane. The
eigenvalues of the Hamiltonian in Eq. (1) for constant V are

EL(k) = £,/ *v2k2 + M2(ky) + V 3)

and are shown in Fig. 1 for sample values of the parameters.
When V =0 and a > 0, this Hamiltonian describes a NLS
with a nodal line at k; =0, k, = knr, where the two bands
cross at zero energy. The energy 2E, = 2D|a| corresponds to
the maximal separation between the bands in the inverted gap
region if a > 0, and it is typically a fraction [68] of electron-
volt [31,33,61]. This is a natural ultraviolet cutoff energy scale
for our effective model and is a material-dependent parameter.

The Hamiltonian in Eq. (1) can also model an insulator
with band gap A = 2E,; whenever a < 0. Moreover, it has
two metallic regimes (N), which can be reached by shifting
the bands with the term V. At zero chemical potential, for
V K —Ep, it features electronlike carriers and a spherical
Fermi surface, while for V > E;, one has a metal with hole-
like carriers. As seen in Sec. III, the geometry of the Fermi
surface is of importance in describing the transmission prop-
erties of a N-NLS junction.
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The eigenstates corresponding to Eq. (3) can be written in

the form:
—ihvk,
, )

Ve =M |:E —V — M(ky)

with V' = /2(E = V)[E — V — M(k,)] the normalization
factor. The Hamiltonian in Eq. (1) is not a good description
for the whole BZ but only in the vicinity of the nodal line. As
it will not affect our conclusions, we will assume throughout
this paper that the description holds, at least qualitatively,
also for k — 0, while this is not the case close to the edge
of the BZ. We will comment on the specific limitations as
they arise.

Importantly, the Hamiltonian in Eq. (1) possesses, together
with particle-hole H(k) = —t,H(—k)*t, (for V =0) and
time-reversal H(—k) = H(k)* symmetries, mirror symmetry
with respect to the plane z = 0, implemented as

H(kz) = rzH(_kz)Tz' (5)

The presence of this discrete symmetry squaring to the iden-
tity protects the nodal line and the corresponding surface
states [15,17,50].

Without loss of generality, we will measure energies with
respect to the energy of the band crossing in the NLS,
and to lighten the notation, we shall work with dimen-
sionless quantities in the following. In our convention, we
express all energies (¢) in units of Avkyy and momenta (q)
in units of knr, ie., gp =1 will identify the nodal line.
Analogously, we define the dimensionless “mass” function
m(qp) = M(ky)/hvkn, = D(qlz, — 1), where D = kn.D/hv.
For later use, we introduce the notation V = V/hvkny as
well as the sample width £ and its dimensionless version
L= kNLﬁ.

To conclude this discussion, we note that, while for sim-
plicity we use a particle-hole symmetric Hamiltonian, a term
which breaks this symmetry can in general be present. In
the case of a scalar function of the momenta [50], it can be
readily considered by means of a suitable transformation and
a rescaling of the eigenenergies [51]. Therefore, we do not
expect qualitative changes to our results.

A. Interface with the vacuum

To gain insight on the role of boundaries in topological
semimetals, we now consider a surface at z = 0. The results
of this section will form the basis for the conductance
calculations in Sec. IIl. For an infinitely extended system
in the z direction, we expect two-dimensional drumhead
surface bands, with flat dispersion at zero energy. These states
have support within a disc in momentum space, delimited
by the projection of the nodal line onto the surface BZ,
and penetration length that diverges as 1/(1 — qg) when
the in-plane momentum approaches the nodal ring [11,69].
Because of this, it is reasonable to expect that finite-size
effects will play an important role. As in Weyl semimetals,
the most general boundary conditions for a Dirac Hamiltonian
that can be imposed on the surface z = 0 are of the form:

B(a)¥a(0) = ¥ (0), (6)

where B(a)=rt,cosa + 1,sin iS a one-parameter
(the angle «) family of Hermitian matrices that ensures
the self-adjointness of the Hamiltonian in Eq. (1) [70]. Using
the fact that B(a) anticommutes with the current j, = evt,,
it can be shown that the expectation value of j, vanishes
on the surface at z = 0: for this reason, these conditions are
sometimes referred to as zero-current boundary conditions.
As underlined in Ref. [50], the Dirac Hamiltonian with the
linear term k, only establishes that the gapped regions inside
and outside the nodal line are topologically distinct. The nodal
line separates two regions of the BZ with a different value of
the bulk topological invariant, defined by Zak’s phase along
q; for fixed qp. To resolve which of these regions supports
boundary states, higher-order terms are, in general, necessary
[71]. Nevertheless, as we show in this paper, the boundary
conditions determine where the topological surface states
are present and, therefore, define the topologically nontrivial
region. With physical systems in mind, throughout this paper,
we will describe the surface states inside the nodal line, with
the understanding that the alternative range of the boundary
parameter leads to the other configuration of the surface
states.

The angle o in Eq. (6) has been introduced as a way of
guaranteeing the formal consistency of the low-energy Hamil-
tonian. It models aspects of the surface that are not explicitly
accounted for in the low-energy Hamiltonian. In the context of
Weyl semimetals, for instance, it accounts for the curvature of
the Fermi arcs [72]. Provided the surface can be considered
homogeneous on a macroscopic scale and invariant under
translations, aspects like, e.g., the chemical composition of the
termination and the electrostatic fields on the surface [73-75]
can be captured by the single phenomenological parameter
a. In the fully SU(2)-invariant model of CazP;, [24,50], the
interpretation of the two bands in Eq. (1) is that of the p and
d orbitals of the two components of the binary compound.
Then o = 0 corresponds to a “polarization” in orbital space
along the Ca d-type orbitals, i.e., a surface termination by that
element. Analogously, the termination with P on the surface
(p-type orbitals) is modeled by & = m, while a generic value
of o denotes a termination that contains both elements. One
way of connecting this phenomenological parameter to exper-
iments that can determine it in a material-independent way is
proposed in Sec. II B.

We now derive the dispersion of the surface states in the
presence of general boundary conditions. The eigenstates in
Eq. (4), indeed, can be shown to describe localized states as
well, under analytic continuation k, = ik,: the constraint in
Eq. (6) fixes the spinor orientation on the surface as ¢ o &,
having denoted with &, 1 the eigenstate of B(«) with eigen-
value 1 (see also Appendix B). ForV =0and 0 < o < 7,
one finds a two-dimensional band corresponding to localized
states of the form:

Vo) = || G) | opcret igee g, @
v Ve sin(3) |

with support in the interval 0 < qg < 1, i.e., a disk in the
surface BZ. Here, the inverse penetration depth is given by

Kk = k(qp) = —m(qp)sina, (8
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FIG. 2. Schematic of the proposed surface measurement, with
two infinitely extended contacts acting as source and drain on the
surface of a NLS, parallel to the plane that hosts the nodal line. The
current in linear response depends on the boundary parameter «, as
discussed in the main text.

and the corresponding dispersion relation reads

&(qp) = m(qp) cos &)

and is not flat for generic values of «. These states describe
drumhead states, filling the projection of the nodal line onto
the surface BZ. For the choice o = 7 /2, they reproduce the
known states in the flat surface band [11].

B. Boundary conditions and surface transport

We now examine the effects of the boundary parameter.
To do this, we consider the setup in Fig. 2, in which a pair
of contacts probes the current on the surface of the sample
hosting the topological state. We consider a NLS slab, with
area S in the xy plane and with size £ along z, which is for the
moment used as a regulator and considered to be large. For
simplicity, we will limit our analysis to the regime 0 < o <
7 /2. The bulk density of states for the Hamiltonian in Eq. (1)
n® = 13 S[E — Ex(K)] = 521 vanishes linearly at
the nodal line; hence, in the ideal case in which the chemical
potential is aligned with the band crossing, the only contribu-
tions must come from the surface. Presently available samples
of NLSs have nonvanishing bulk carrier densities, hugely
varying between 10'® and 102°cm™3 [16,28,42,76-78], still
orders of magnitude lower than metals. It is still useful to
consider the situation in which n® =~ 0, while the surface
component of the density of states is

nN(E) = O(@Dcosa + E)O(—E), (10)

47 LD cosa

where ® denotes the Heaviside step function. For large widths
and generic values of «, the bulk states give the dominant
contribution to the density of states. On the other hand, the two
contributions become comparable as soon as |E|Lcosa <
2w hv, and the surface density of states eventually becomes
dominant when the inequality is strictly satisfied. In the flat-
band limit, one obtains a divergent DOS in the limit £ — 0
[11], which has been argued to generate an enhanced Joseph-
son current through a NLS sample [79].

The boundary angle o determines the degree of penetration
of the drumhead states in the sample, as seen from the decay
length in Eq. (8) and the local density of states (per unit
surface):
|E| sin aexp(2zE tan o/ hv)

27 hivkny D cos? o

O(—E)O(Dacosa + E). (1)

AS(Z;E) =

We now show that the angle o has observable con-
sequences in transport experiments and start by noting
that the semiclassical velocity of the surface electrons is
v = v(qp) = 2Dq, cos «, thus, explicity contains the bound-
ary parameter.

Let us assume that the carriers in the electrodes are in
equilibrium at the same temperature 7' as well as a slight im-
balance in chemical potential, manipulated through a voltage
bias, that we can treat in linear response. We apply a standard
Boltzmann formalism in the relaxation-time approximation,
under the hypothesis of a weak relaxation rate due to the resid-
ual interactions and scattering with impurities or phonons.
With the electric field polarization #, the surface conductivity
in linear response is

d’k of
_ 2 4 a2
e /(2n)2r(v u)( aE)

_ 62 DTQkI%IL
h

coso. (12)

In this expression, we have approximated the relaxation
time with its value at the Fermi energy 7, treated here
as a phenomenological parameter, obtaining a temperature-
independent result for kgT < hivkyy. The latter can be
estimated as a fraction of electronvolt (in the example of
CazP,, hvkny = 0.515 eV [24]). The scattering time 7, is
determined by a complex interplay of electron-electron inter-
actions, electron-phonon interactions, and impurity scattering,
involving both surface as well as bulk states. Here, we treat it
as a phenomenological parameter, independent of temperature
and surface termination.

While this is a crude estimate, which can be affected by
fluctuations of the bulk chemical potential and by surface-
bulk coupling [72], we can nonetheless draw some interesting
conclusions from our analysis. First, we note that the same
system, even in the presence of a certain degree of protection
of the surface states due to the bulk symmetries, can show very
different responses in the surface conductivity, depending on
the details of the surface itself. In systems for which the bands
in Eq. (1) represent orbital types [50], the expression above
links the chemical composition of the surface to its charge
conductivity. Specifically, if the Hamiltonian in Eq. (1) is
written in the basis of the elements of a binary compound,
the relative concentration on the surface is tan(«/2). Then
the surface conductivity is proportional to cos«, which in
turn implies that surfaces with one element type only are
relatively bad conductors. The (electronic contribution to the)
low-temperature thermal conductivity k; is related to the elec-
tric conductivity by the Wiedemann-Franz law [80]; hence,

ks = kE—ZTO'S + O(T?) exhibits the same dependence from the
boundary angle.

III. N-NLS INTERFACE
A. Model of the interface

We begin by considering a sharp interface between a nor-
mal metal and a NLS, as represented in Fig. 3. It can be
modeled as a special case of parameter discontinuity in the
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FIG. 3. Schematic representation of a N-NLS junction, with the
interface parallel to the plane of the nodal line.

Hamiltonian in Eq. (1). We can, in practice, consider this inter-
face by choosing a(z) = ay®(—z) + a®(z), withay < 0 < a.
A more general choice of function is also possible [51] but is
not expected to affect the main features of the transmission
function in this context. In addition, we choose a position-
dependent band shift in the form V (z) = Vy®(—z), and we
will focus on the instance V) < 0, in which case the carriers
in the metallic regions are electrons. Figure 4 schematically
shows the two different quasiparticle spectra on the two sides
of the junction. We also define for convenience the quantity
&0 = ¢ — V. Using this quantity, the energy of the bulk ex-
citations on the N side also has the form of the dispersion in

Eq. (3):
g0,+(q) = +,/¢2 + mj(qp), 13)

here written in terms of dimensionless variables and using the
function:

mo = mo(qp) = Do(qg + ), (14)

where 1y = |ap|/a. As translation invariance in the z direction
is broken, the corresponding momentum is not conserved
anymore. Instead, we will use as quantum numbers the energy
of the state and the particle/hole branch, which we denote as

FIG. 4. Schematic representation of the band structure in the
metallic region z < 0 (left) and in the semimetallic region z > 0
(right).

v and vy in the NLS and in the metallic regions, respectively.
The absolute value of the momentum in the z direction as a
function of the quantum numbers is
q: = g2 — mz(Qp)v
(15)

qo = /€5 — m3(qp).

which we write here for later use, see Secs. IIIB, IIIC,
and IV B.

We study the problem of transmission through the N-NLS
interface in two limiting regimes: first the perturbative regime
in the tunneling between the surfaces, then the transparent
limit. It is important to remark at this point that the Fermi
surfaces of the two samples have distinct topologies: while in
the N region it is an ellipsoid, in the NLS region, the Fermi
surface is a torus, which implies that there are distinct regions
in the parameter space. To see this, we note that the states
that can propagate in the bulk of the NLS are contained in
an annulus when projected onto the interface BZ, namely, the
two-dimensional projection of the toroidal bulk Fermi surface.
This is identified by the condition that the momentum in the z
direction in Eq. (15) is real, reading

1—@<q2<1+ﬂ (16)

D P D’

for —D < ¢ < D. At the same time, the projection of the
propagating states in the N region onto the interface BZ is
the full disk qg < % — ro. We can therefore identify three
regimes: (i) The diameter in the g.g, plane of the Fermi
surface in N is smaller than the inner diameter of the Fermi
surface of the NLS. Focusing for definiteness on an electronic
Fermi surface, this is possible if

—Do(1 +rg) <V <0, (17)

for energies in the range:

(18)

Dy(1 Vi
0O<e <Dmin{m,l}.

D+ Dy

In this regime, the absence of matching states implies that the
transmission always vanishes exactly. (ii) The transverse size
of the Fermi surface of the metal is intermediate between the
inner and the outer diameters, in which case the transmission
probability is different from zero but never reaches unit value,
as seen in the right panel of Fig. 5. (iii) The projection of the
N Fermi surface completely covers the projection of the NLS
Fermi surface onto the interface BZ. As seen in the left panel
of Fig. 5, the transmission probability reaches unit value for
some values of the momenta, and the expected conductance
per unit surface is maximal. In the specific case D = Dy, this
is ensured when the inequality

Vo < =Do(1 + ro) (19)

is satisfied. We refer the reader to the more general descrip-
tion in Appendix C 1, where the other parameter regimes are
discussed.

B. Transport through a single interface

We start by exploiting the results of Sec. Il A and consider
the two samples as disconnected but weakly hybridized by
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FIG. 5. Transmission through a single interface as a function of
the momenta in the xy plane. In purple, the edges of the Fermi surface
of the NLS; in green, those of the metallic region. The parameters
chosen here are ¢ = 0.3, D =Dy =1, ry = 0.1, Vy; = —=3.5 (left),
and Vp = —0.7 (right).

the electronic tunneling between the interfaces at z = 0. Here,
we assume that the transverse momentum g, is conserved by
the tunneling process as a consequence of the translational
invariance in the plane of the interface. This may be violated
in the presence of inhomogeneities, such as charged impurities
or vacancies, or if there is a certain degree of roughness at the
interface. It is nevertheless a reasonable approximation if the
interface is sufficiently clean.

We start from two disconnected materials with the band
structure represented in Fig. 4; open boundary conditions on
each of them are imposed as in Eq. (6) but with two generi-
cally different parameters « and ctp. The equilibrium chemical
potential of the whole system is set at . To study the current
in linear responses, we impose a small imbalance S = e§V
between the two samples. The (elastic) tunneling is described
by the term:

Hr =3 ik, 2 =0 (k, z=0)+Hc,  (20)
kP

where the subscript 0 denotes the metallic lead, infinitely
extended in the negative z direction, see Fig. 3. In the ex-
pression above, there appears a tunneling amplitude X, and
we assume, for simplicity, that it is approximately constant in
a region around the Fermi energy of the order of kz7. Note
that the operators ¥ have two components, but the tunneling
is diagonal in the internal degree of freedom.

We first consider the regime |A|ny < 1, where ny denotes
the density of states at the Fermi energy. The current through
the interface is the derivative of the number of carriers in the
lead j(r) = (Np), in the presence of the weak perturbation
in Eq. (20). The standard problem of perturbative tunneling
(see, e.g., Ref. [81]), together with the condition of conserva-
tion of the transverse momentum, brings the linear-response
current per unit surface in the form:

U

J= P r{gozgao}

dq B
de | =2 , &),
Xf 8/ 21 4p10(Gp- £)1(qy 8)4cosh2 bec)

2n

where the integration range of g, is in Eq. (16), and §V
is a weak potential imbalance between the two subsystems.

The momentum-resolved densities of states in the lead ny =
dqo/de and in the sample n = dgq,/de are directly obtained
from Eq. (15), while the matrices g and g, encode the spinor
structure of the surface of the two materials and, together
with additional details about the derivation, are provided in
Appendix C 1. It is worth mentioning that the equation above
only sums the states which are transmitted into propagating
states, which are detected asymptotically far from the inter-
face. The tunneling into surface states is also possible and
produces, after a transient, a surface charge accumulation.
While we do not explicitly model this electrostatic barrier
here, the net effect is a suppression of the effective tunneling
coefficient in Eq. (20). Assuming this is already considered
in the tunneling parameter, one arrives at the low-temperature
linear-response conductance per unit surface:

202|A -
o= # In (2 cosh 5_#) cos’ u. (22)
P BviD 2 2

As seen from the expansion of the argument of the log-
arithm 2 cosh ’37" ~ 2 4 0(B*u?), the conductance vanishes
linearly in the temperature in the limit S < 1. Moreover,
we observe that the surface parameters appear in a re-
markably simple combination, which showcases the dramatic
effect of the boundary angle mismatch on the weak-tunneling
conductance.

Conversely, the details of the boundary do not matter
in the strong tunneling regime |A|ng > 1. Within our as-
sumption of ballistic transport, this regime can be tackled as
a quantum-mechanical scattering problem by matching the
single-particle wave functions at the interface. Details are
presented in Appendix C 1, while here we just state the result
for the transmission probability as a function of the energy and
the transverse momentum of the incoming electron or hole:

4qoq;|e — m||eg — myl

(qole — m| + g;leo — mo|)*

Ti(e, qp) = (23)
We note that this function describes both the scenarios in
which an incoming electron is transmitted as an electron (nor-
mal tunneling) if € > 0 and that in which it is transmitted
as a hole (Klein tunneling) if ¢ < 0. In Fig. 5, we illustrate
the transmission probability in Eq. (23) at given energy as
a function of the transverse momenta. In the left panel, the
chosen parameters fall in regime (iii) of Sec. III A, and we
observe that the perfect transmission (7; = 1) is reached when

N DS() — V()D()S (24)
o D80 — D()S '

This is in contrast with the right panel of Fig. (5), in which the
parameters fall in regime (ii), and the transmission function in
Eq. (23) never reaches unit value.

We will continue the analysis of transport in the transparent
interface limit in Sec. IV and consider now the refraction
of the electron trajectories originated by the change in the
dispersion through the single interface.

C. Refraction and electronic optics

As already discussed in Sec. I, topological semimetals are
good candidates for observing phenomena connected to the
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geometric electron optics, such as focusing. We show now that
this is achievable because of the bulk band dispersion alone,
specifically because of the presence of a nodal line around the
I" point, without the need of an applied electrostatic potential
or electric field.

Consider an electron incident on the interface at z =0
from the N side, with energy ¢ and angle 6, with respect
to the normal. The electron is transmitted to the NLS side
with probability given by Eq. (23) and with exit angle 6;. The
components of the semiclassical velocity u in the NLS sample
can be parameterized by its modulus # and the angle 6; with

the normal to the surface:
u, =usinb, u; =ucosby, (25)

while the angle in the plane of the interface is irrelevant due
to the cylindrical symmetry of our problem. Analogously, the
velocity w in the metallic sample can be parameterized by its

module w and the incoming angle 6,
w, =wsinb,, w;= wcosb,. (26)

Following the procedure detailed in Appendix D, we arrive at
the generalized Snell’s law:

tan Oy = x(¢)(tan 6, — tan 6)7), 27
with x a function of the energy and of the material parameters:
Dt 2g(1)

Dje 2e3 + (14 ro)gd(1)’

x(e) = (28)

having used go(1) = /&2 — D3(1 + ry)?, the latter being the
momentum defined in Eq. (15) with ¢, = 1. Note that the
above expression has a different sign when the energy is above

or below the nodal line. The angle 6, such that

D3(1 + ro)
qo(1)

identifies an incoming electron which is transmitted exactly
on the nodal line, i.e., with an incidence angle such that
the electron exits normally to the interface on the NLS side,
which takes place when the transverse momentum matches
the nodal line. Interestingly, Eq. (27) shows that the exit angle
0, changes sign when the incidence angle moves across the
value 6, = 6.

Imagining a localized source of electrons as in Fig. 6 and
defining an axis as the line passing through the source and
perpendicular to the interface, several scenarios can arise,
according to the doping level. For ¢ > 0, the change in the
sign of the velocity implies that the electrons with transverse
momenta enclosed by the nodal ring invert the component
of their velocity parallel to the interface. In other words,
electrons with g, < 1 start traveling back toward the axis
after crossing the interface, without ever changing the compo-
nents of their momentum parallel to the interface; for normal
(electron-electron) transmission, the refraction index is effec-
tively negative for these states, see Fig. 6. The phenomenon
described here is different from what is observed in doped
graphene [60] in two aspects: first, the change in the sign
of the velocity is not originating from the electron being
transmitted as a hole; second, refraction indices of opposite
sign coexist in different parts of the BZ.

tan0; =2 , (29)

1(z)

-1.0 -08 -06 -04 -02 0.0 0.2

-1.0 -08 -0.6 -04 -0.2 0.0 0.2

FIG. 6. Refraction of monochromatic electrons from a N-NLS
interface on a ring in real space. The trajectories of the transmit-
ted electrons from a point source are plotted for various angles at
Vo=—2,D =Dy =1, and ry = 1. Top: normal transmission ¢ =
0.1. Bottom: Klein transmission & = —0.1. Only the trajectories with
nonzero transmission amplitude are shown.

For ¢ < 0, the electron is transmitted as a hole (Klein
tunneling). The exit angle is still given by Eq. (27), but the
function in Eq. (28) is negative [65]. In this situation, as shown
in Fig. 6, the transmitted rays focus on a ring in real space.
Let us consider a point source of electrons at distance d;
from the interface on the metallic side: electrons arrive with
a given energy and various incoming angles on the interface
such that the transverse momentum ¢, is within the range in
Eq. (16). The latter requirement implies that the transmission
probability is nonvanishing in regime (iii) and can be directly
translated into a range of incidence angles for which transmis-
sion into the NLS is possible, see Eq. (D5) and the discussion
in Appendix D. The distance from the axis of the electron/hole
trajectory can be written in terms of the incidence angle and
the z coordinate:

(dy + z)tan 6, z<0,
r@ = (30)
dytan 6, + ztan6,;, z > 0.

From the path above, one sees that, for tan6; < 0, there is
a focal ring of radius R = d,tan 6, at distance dg from the
interface, in the semimetallic region, with dg = d;/|x (¢)|. As
this is a direct consequence of the presence of a nodal line,
it can be interpreted as a way of observing it in real space.
We will discuss an experimental setup to probe this effect in
Sec. IV.
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As mentioned in Sec. II, a more general shape of the nodal
line can be accounted for by an angle-dependent rescaling
of the momenta. The phenomenon of negative refraction for
momenta inside the nodal line is originated only from the sign
change of the velocity across the interface, which is guaran-
teed by the existence of a nodal line, and therefore, it will be
present regardless of its shape. In other words, both panels of
Fig. 6 will be qualitatively the same. However, we expect the
focusing effect for ¢ < 0 to take place at a distance dg which
becomes angle dependent. If the nodal line is reasonably close
to a circle, we still expect to detect a focusing pattern that
displays the surviving discrete rotational symmetries, possibly
blurred due to the deformation.

IV. N-NLS-N HETEROSTRUCTURE

The problem of a double interface is similar to the one
considered above [82]. We take a slab of NLS and insert
two interfaces with a metallic sample, which we assume fully
transparent for simplicity. As in Sec. III, the interfaces are
parallel to the plane of the nodal line, at z = —% and z = %
To gain insight into the kind of states that can carry charge
and energy through the system, we first consider an isolated
slab and show that there is a class of states resulting from
the hybridization of the drumhead states on the two opposite
surfaces. We dub them drum states. We then study the trans-
port through the slab in Secs. IV B and IV C and highlight the
effect of electron refraction from the nodal line in Sec. IV D.

A. Spectrum in a slab

We start our analysis from the spectrum of a NLS slab,
specifically by studying the effect of the boundary parame-
ter o, by deriving the drum states and the width in which
they exist. We impose the boundary condition in Eq. (6) at
z = —L/2, and we consider the class of boundary conditions
that do not spoil the defining mirror symmetry in Eq. (5). As
the symmetry is implemented by the operator t,, the boundary
condition to be imposed at the surface z = L/2 is

L L
B(—Ot)w(z) = w<§>- 3D

Following, e.g., Ref. [65], one arrives at the quantization
equation:
q,sina
tan (q,L) = —————, (32)
gcoso —m

in which ¢, is given in Eq. (15) and m is the function of
the transverse momentum defined in Eq. (2). The boundary
conditions in Ref. [11] correspond to the choice o = 7 /2, for
which the pseudospins on opposite surfaces are orthogonal.
Equation (32) captures the finite-size effects on the spectrum
of a NLS slab for general mirror-symmetry-preserving bound-
ary conditions.

For generic values of the boundary angle «, we are not
aware of analytic solutions to Eq. (32), which is therefore
tackled numerically. Analytic solutions are only obtained in
specific limits, as discussed in Appendix B. Interestingly,
Eq. (32) can be directly continued to imaginary values of the
momentum, see Eq. (B11); as a matter of fact, there exist so-

-0.2t

—0.4¢

—0.6f

-0.8¢

-1.0

FIG. 7. Dispersion of the surface states as a function of the
transverse momentum for L = 10 and various values of the boundary
angle, from the numerical solution of Eq. (32). At finite size, each
doublet splits into a pair of drum states, as evident on the right part
of the graph. The solid black line ¢ = m is the threshold of contin-
uum states. The splitting is larger as one approaches the boundary
of the support because of the diverging penetration length, which
determines a larger overlap between the drumhead states.

lutions with g, = ix, where k = v/m? — &2 takes the meaning
of the inverse of a penetration depth. Such solutions represent
drum states, arising from the hybridization of the drumhead
states on opposite surfaces and have therefore nonvanishing
weight on both surfaces. They are labeled by the transverse
momentum ¢, and the parity under the mirror reflection in
Eq. (9).

In the large-slab limit, particularly in the regime
L|m|sina > 1, one recovers linear combinations of states of
the form given in Eq. (7), with the inverse penetration length
given in Eq. (8) and the dispersion in Eq. (9). In Figs. 7 and 8§,
we show the numerical solution of Eq. (32) for a moderately
large size. A completely flat band exists only for o = 7 /2
in the limit L — oo, see Eq. (9). For finite size, instead, the
hybridization between states on opposite surfaces generates
a pair of dispersive bands with opposite eigenvalues under
inversion. Numerical analysis, see Fig. 7, shows that one band
corresponding to surface states curves upward and is positive

0.2 0.4 0.6 0.8 1.0
FIG. 8. Inverse penetration depth of surface states as a function

of the transverse momentum for L = 10 and various values of the
boundary angle.

195144-8



INTERFACES OF NODAL-LINE SEMIMETALS: DRUM ...

PHYSICAL REVIEW B 109, 195144 (2024)

FIG. 9. Scheme of a N-NLS-N junction, infinitely extended in
the x and y directions. The metallic leads are at z < —L/2 and
z > L/2, and the nodal line is in the plane parallel to the interfaces.

around the edge of the support ¢ = —m. The bottom band
remains instead negative and merges into bulk states when
£ =m.

B. Transport through a NLS slab

In this section, we return to the transport analysis from
where we left it in Sec. III B and connect the NLS slab to
two infinite metallic leads, in the configuration of Fig. 9. Let
us focus, for definiteness, on regime (iii) and energies —D <
& < D. By considering the problem of scattering through the
double interface, we derive the transmission probability:

%4:
T (e, = < , 33
(& dp) q2q> cos? £+ (g08 — mom)? sin’ & (33)
where ¢, qo are defined in Eq. (15), and
@ =2q.L (34)

is the phase acquired by an excitation with energy & while
completing a back-and-forth path between the two interfaces.
The details of the calculation are presented in Appendix C 2.
We note that there is a series of resonances when this phase is
an integer multiple j of 2z for which perfect transmission is
achieved. The corresponding energies are

2 j2
L2
for integer values of j. Following the geometric considera-
tions in Sec. IIIC, we conclude that, at given energy, there
are a series of resonant angles ¢; which correspond to per-
fect transmission via each of these quantized resonant states.

Exploiting the relation between the incidence angle and the
transverse momentum, see Eq. (D4), we conclude that

2D,/ &% — ”LZ{Z

ex(e)

ej(qp) = + m*(gp), (35)

tan6;(¢) = tan 6 + , (36)
with 0 defined in Eq. (29). This expression holds for energies
above the first resonance threshold 7 /L and angles within the
range specified in Eq. (D5).

Another important feature of this function is that it can be
analytically continued to imaginary values of the momenta

0.4

.8

0.2

FIG. 10. Transmission probability in Eq. (33) (real ¢,) and
Eq. (37) (imaginary g¢,) in the transparent interface limit. The green
line denotes the boundary of the projection of the bulk Fermi surface
of N onto the interface Brillouin zone, while the dashed purple
lines denote the boundaries of the projection of the bulk toroidal
Fermi surface of the NLS. The states inside the inner circle cannot
propagate in the bulk; instead, the nonzero value of 7 is originated
from the drum states, see Eq. (37). The parameters chosen in this
figure are L =3, e =—-03, V, =-55,V=0,D=D; =1, and
o = 0.1.

q, = ik, obtaining the result:

T (e, qp)

2,.2
_ qOK (37)

g2k cosh? (kL) + (o — mom)? sinh? (kL)

As the product kL appears in the hyperbolic functions in the
denominator, the expression for transmission through bound
states is significantly different from zero only for states close
to the nodal line, where the penetration length is comparable
to L. However, as shown in Fig. 10, localized states can
contribute in the momentum region where no propagating
states are allowed, thus, enhancing the conductance at low
temperatures. A sizable contribution from the localized states
is obtained when the hyperbolic functions in the denominator
of Eq. (37) are at most O(1). Since « is at most O(D), as seen
in Fig. 8 and from Eq. (8), this occurs provided DL < 1. We
note that, in this model [11,50], the regions inside and outside
the nodal line can both host surface states. While for the
open boundary condition in Sec. IT A the boundary parameter
selects the support of the surface states, for a transparent inter-
face, the energy ¢ will determine in which momentum region
evanescent states are present in the junction. The addition of
higher-order terms in the low-energy Hamiltonian cures the
ambiguity [71] but, while turning the analytical calculations
more cumbersome, does not add qualitatively new features.

C. Electric transport

We now address the conductance of the slab, focusing
particularly on the role of the drum states. We assume that
the equilibrium distribution of the carriers in the leads is

1

o= B — T+ 1

(38)
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FIG. 11. Slab thickness dependence of the charge conductance
per unit surface in the low-temperature limit according to Eq. (39) (in
units of e?vky; /2m) as a function of the energy (in units of /vkyy).
The parameters are D = Dy = 1, ry = 0.1, and V, = —5.

and is controlled by contacting the sample with voltage-biased
reservoirs. Consistently with the choice to measure temper-
atures in the energy units of Sec. IIl, we have introduced
the notation 8 = hivkny /kgT for the dimensionaless inverse
temperature, and p, the chemical potential, is also in units of
hvknr. We bias the two leads with a small chemical potential
difference, and assuming a low impurity concentration and
small enough electron-phonon coupling, we study the regime
of coherent transport in linear response.

With the leads in a metallic regime, the magnitude of
[Vo + 1] is fixed by the Fermi energy of the metal, which is
generally larger than the cutoff ~D discussed in Sec. II [83].
Since our low-energy Hamiltonian is a good description of the
system for BD >> 1, thenin turn 8|V + 1| > 1. We conclude
that, within the regime of validity of our effective description,
the system is in the low-temperature regime, and the distri-
bution in Eq. (38) is steplike up to exponential corrections.
Therefore, we focus on the low-temperature regime and apply
the Landauer formula, which yields

2 3
o= LT 4 o), (39)
27
in which
d*qp
T(e) = / S Te.q) (40)

is the total transmission probability at given energy . Our first
observation is that this quantity contains the nodal line radius
knL, 1.€., it can be useful to predict a trend when comparing the
conductance of different materials. The transmission function
itself is plotted in Fig. 11. At ¢ =0, we note that the bulk
contribution to the conductance vanishes because of the van-
ishing density of states. In the limit L > 1, the conductance
vanishes linearly for ¢ — 0. However, at finite size, the zero-
temperature conductance shows signatures of the localized
drum states; indeed, they turn this quantity finite even for a
vanishing bulk density of states. Numerical evaluation shows
that the zero-temperature conductance dies out as o o 1/L for
large width, despite the exponential localization discussed in
Secs. II and IV A above. The mechanism behind this result is

zZ

FIG. 12. Example of electron focusing on a ring of radius R, at
distance d: N-pNLS-N junction with a slab of thickness L = 0.8, de-
limited by the vertical lines, and a source of monochromatic electrons
in N on the left. The parameters used are ¢ = —0.1, Dy =D =1,
Vo=-2,ry=0.1,and d;, = 0.8.

the divergence of the penetration length of the surface states
when approaching the nodal line. The argument is that, while
at fixed momentum ¢, the overlap between localized states
is exponentially suppressed ~¢"", the function m(g,) given
at the end of Sec. II tends to zero at the nodal line qu, -1
When computing the contribution from the whole drumhead
state, the resulting integral over g, goes to zero indeed as
1/L. We note in passing that the low-temperature electronic
thermal conductance is related to the charge conductance in
Eq. (39) by the Wiedemann-Franz law and shows similar
features.

D. Current profile

It is interesting now to look at the junction from an electron
optics perspective. Based on the considerations of Sec. III,
we propose here that the change in the band dispersion at
the interface between a metal and a NLS naturally creates a
negative refraction index, which can be used to redirect part
of the electronic beam. For a sufficiently extended slab, see
discussion above, we can for simplicity neglect the contribu-
tion of the surface states and study the geometric paths of the
propagating electrons only. We consider a point source at a
distance d; from the left interface of a slab of width L and
study the path of an electron incident on the slab with angle
6,. We are interested in the dependence of the radial distance r
on the distance d measured from the right interface. With the
considerations of Sec. III, we write

r(d, 0,) =dstan6, + Ltan6; + d tan 6,,. 41

In Fig. 12, we show an interesting effect taking place for a p-
doped NLS. As discussed in the previous section, a focusing
effect takes place in the pNLS, which is also present when
the electrons exit the interface on the metallic side. Following
similar geometric considerations, the condition that two paths
with incidence angles 6, and 6, meet at distance d identifies
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FIG. 13. Observable effect of the negative refraction within the
nodal line in a N-nNLS-N junction with a slab of thickness L = 0.8
and a source of monochromatic electrons in N. In the N region on
the right, a finite region of higher current density is present around
the axis beyond the slab. The parameters used here are ¢ = 0.1,
Dy=D= 1, Vo = —2, ro = 0.1, andds =0.6.

the focal ring and can be cast into the form:
0 = r(dg, 0x) — r(dr, 0,)
= [d; + Lx(e) + dg](tan 6, — tan 9,’1). 42)

It follows that all the transmitted rays, independently of the
incidence angle, cross at distance

dg = L|x(&)| — d; (43)
from the second interface. Thus, they focus on a ring of radius:
R =r(dg) = Llx(e)tan 6}, (44)

which is a direct consequence of the inversion of the semi-
classical velocity originated by the nodal line. Therefore, the
result in Eq. (44) provides a way of imaging the nodal line
in real space. The fact that the trajectories exactly meet on a
ring is a consequence of the linearization of the momentum
around the nodal line, while inclusion of higher-order terms
would spread the focus onto a larger area [60]. Nevertheless,
when the chemical potential is reasonably close to the nodal
line, the range of transverse momenta for which transmission
is nonvanishing is narrow, and the linearization is a relatively
good approximation.

In Fig. 13, we show instead a typical scenario occurring in
a long junction including an n-doped NLS. As seen in Sec. I,
the refraction index for electrons with transverse momentum
inside the nodal ring is negative, which implies that the elec-
trons with transverse momentum ¢, < 1 are refracted back
toward the axis while they travel within the NLS slab. After
exiting in the metallic region again, they propagate with their
original velocity, i.e., with the same angle with respect to the
interface. However, traveling through the slab has shifted the
path to a parallel one, which is evident in the spreading in
Fig. 13. This suggests that a sequence of NLS slabs is an
effective means to keep electronic wave packets close to the
axis.

To probe these predictions, we propose the setup illustrated
in Fig. 14, in which the electric current through the N-NLS-N

NLS
Al
"
"
&
|
S . i
|“' <)
7 D

FIG. 14. Proposed setup for the detection of the spatial current
profile: a STM tip or a quantum point contact on one surface of the
metallic sample (S) acts as a point source of electrons. After passing
through the NLS slab, the current acquires an intensity distribution
as a function of the distance from the axis, which can be probed by a
mobile STM tip (D) on the other surface.

heterostructure is probed by means of two STM tips. One tip
on one surface of the metallic sample acts as the localized
source of electrons, while a mobile tip on the opposite sur-
face can be used to scan for the local current density. In the
example of Ca;P,, with the parameters quoted in Sec. IV A,
we obtain a reference energy scale Avkyy =~ 0.51eV and
taking E ~ 0.095eV [24], Ey~ 1eV, we obtain 6 =~
14.3° and x ~ 5.1. For a qualitative estimate, using instead
E =—-0.1eV, d; = £ = 0.1 um, we obtain a focus on a ring
of radius R/kny, &~ 0.13 um at distance dg/knr. = 0.41 pm.

V. CONCLUSIONS

We have studied in detail the effect of interfaces of NLSs in
electronic transport, both for a metal-NLS junction and for a
NLS slab embedded between two metallic samples. While the
bulk topological invariant, quantized by a mirror symmetry,
implies the existence of drumhead states on the surfaces paral-
lel to the plane of the nodal line, their support and penetration
depth are also determined by the details of the termination.
Such details determine the surface band dispersion, shifting
it away from zero energy, and are of relevance in ARPES
experiments targeting the drumhead states and for transport
experiments, both along and across the surface. As transport
in specific geometries of Weyl semimetals is strongly sensitive
to boundary conditions [84], it will be interesting to check if
the same holds true for NLSs.

In the transparent limit, the interface becomes featureless,
but the contribution of the surface states is still present in the
slab geometry. In fact, we have shown that drumhead states
hybridize into drum states and contribute to transport across
the sample with a factor that scales like the inverse of the slab
width. This extends the support of the transmission function,
enhancing the conductivity across the slab and turning it finite
even when the chemical potential is exactly at the band cross-
ing. Interestingly, we have identified a series of resonances
and connected them to the incidence angles of the electrons
on the interface.

We have shown that two kinds of refractions take place
at the interfaces between a metal and a NLS, depending on
the level of doping of the latter. In one regime, part of the
electrons are refracted back toward the axis of the system; in

195144-11



MATTIA RUDI et al.

PHYSICAL REVIEW B 109, 195144 (2024)

the other, the electron paths cross on a ring of given radius,
which can be exploited to image the nodal line in real space.
Hole pockets in a NLS were detected, e.g., in HfSiS [85], but
a more elaborate model is needed to describe the complicated
Fermi surface of this material. We are presently not aware of
experiments reporting a hole Fermi surface around the nodal
line, but a material with such a characteristic would open the
possibility of exploring part of the physics described in this
paper.

As a final remark, we only considered throughout this
paper interfaces parallel to the plane of the nodal line. As
nodal lines are protected by a crystal mirror symmetry, it is
often the case that a material can be cleaved in such a con-
figuration [24,25,32]. For a generic orientation, what matters
is the projection of the nodal line onto the surface BZ, which
delimits the surface states. The refraction effects only depend
on the sign change of the group velocity across the nodal-
line projection and therefore are expected to be qualitatively
unaffected by the orientation. We do expect some changes in
the formulas for the focus distance and radius, respectively,
Eqgs. (43) and (44).
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APPENDIX A: BOUNDARY GREEN’S FUNCTION

In the presence of a surface at z = 0, the eigenstates in the
region z > 0 in the regime m? < &2 have the form of reflected
waves, with an incoming component ~exp(—ig,z) and a re-
flected component ~exp(ig,z). The reflection coefficient has
unit modulus and is completely determined by the boundary
condition in Eq. (6) as

(e —m)cos 5 + ig.sin §

r = explifa(e)] = — (A1)

(e —m)cos 5 — ig sin 5

(the label qp is omitted for compactness of notation). The
Green’s functions assume the generic form:

Ge(z, 250 = Y Gerp()explig:(rz — r'7)]
rr'=%+

x expli(r — )€ (e)], (A2)

with the various components directly written from the bulk
eigenstates in Eq. (4). We are interested in computing this
function on the boundary z =z’ = 0. To do this, we exploit
the fixed spinor structure from the boundary condition in
Eq. (6) and write

8a
hkniL o +in — &’

Gl (g 0) = (A3)

in which n denotes the small imaginary part of the frequency,
and the matrix 2 is
sin &
1—cosa/

.\ 1 4+ cosa

E= U sina
We have normalized the wave functions by a length L, which
can be sent to infinity at the end. Similarly, one writes the
boundary Green’s function for the surface states as

(A4)

GXqp, 2, 7 w)

=1 2umy(gp)sinaexplmy(g,)(z 4 2') sina]
" hvkaL w +1in — my(qp) cosa

’

(AS5)

having taken advantage of the inverse penetration length in
Egs. (8) and (9) for the energy of the drumhead states. The
associated local density of states per unit surface is then com-
puted as

mwb—@mﬁffﬁwﬁmzmﬂ.ma
9 T (27‘[ )2 s P S Ko
Substituting Egs. (A4) and (AS), one obtains the expression in
Eq. (11) in the main text.

APPENDIX B: QUANTIZATION IN A SLAB

We provide here some detail about the quantization in a
slab of Sec. IV A. We apply the NLS Hamiltonian in Eq. (1)
to the Ansatz:

Vg,(2) = 84+ (2)ba+ + 8- (2)8a—, (BI)

where &,1 denote the eigenvectors of B(«) with eigenvalues
41, and g4 are two unknown functions of the coordinate
across the slab. One obtains the decoupled equations:

[m*(g,) — e*1ge — 92g+ =0, (B2)

for the unknown functions g4, which have two families of
solutions. If &2 > mz(qp), we have plane-wave solutions in
the form g+ = arexp(iq.z) + biexp(—ig.z) and momentum
q. = ~/&€% — m?. Further application of Eq. (1) fixes the ratios
between the coefficients as

av _ msino + iqz’ (B3)
a_ mcoso — &
b_+ _ msing — iqz. (B4)
b_ mcosa — &
The following step is imposing the boundary conditions. The
application of Eq. (6) at z = —L/2 implies g(—%) = 0, while
the boundary condition at L/2 is equivalently written as

0=¢" ¢(£> (B5)
Lo (5
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Using
§ a4+ =COSUEy 4 + Sin()[fa’,,
§_q+ = —sina, . +cosaf, _, (B6)

after some manipulation, one arrives at the quantization con-
dition in Eq. (32).

To solve the quantization equation numerically, it is useful
to have a good starting guess for the root-finding routine. With
the parameterization:

q; = |m|siny, e=|m|cosy, 0<yx <m, (B7)

one notices that the quantization equation can be cast in the
form:

. sin x sin o
tan (|m|Lsin x) = . . (BY)
cos x cosa — sign(m)
In the limit [m|L > 1, the solution is readily written as
147
QZ%T’ n:O,l,..., (Bg)

J

which holds for the lowest bands |n| < L/w and 0 < o < 7.
This can be denoted a bulk limit, as the details of the bound-
aries do not matter. In the opposite limit [m|L < 1, instead,
one finds

(B10)

If m*(q p) > &2, the differential equation in Eq. (B2) admits
evanescent solutions in the form g+ = a1e** + bre ™. The
energy is quantized by the condition:

K sina

tanh (kL) = (B11)

gcosa —m’

with k = +~/m? — &2, which is just the analytic continuation of
Eq. (32). The explicit form of the drum states is

L . . L
Vg, (2) =N{ (K cosh |:K (z + 5>:| + m sin « sinh |:/< (z + §>:|>§a+ cos o

+ [k coth(k L) 4+ m sin ] sinh |:K (z + E)]Ea_ sina},

up to a normalization , in which « is determined from the
quantization condition in Eq. (B11), and the spinors &, + have
been defined in Sec. II A. Using the relations in Eq. (B6), it is
straightforward to check that Eq. (B12) satisfies the boundary
conditions in Egs. (6) and (31) and has equal weight around
both surfaces.

APPENDIX C: SINGLE AND DOUBLE INTERFACE,
TRANSPARENT LIMIT

1. Single interface

We solve the quantum-mechanical problem of transmission
through an interface, with the injection and detection of charge
carriers taking place asymptotically far from the interface.
To this end, we write the incoming, reflected and transmitted
waves as

VYrogo.a,EXP(V0iG0Z) + TV —1440.q,EXP(—V0iq02),

1Y0q..q,€XP(Viq;2), (cn

where the bulk solutions are written in Eq. (4), ¢, and ¢o
are the absolute values of the longitudinal momenta, defined
as a function of the energy in Eq. (15), and v, vy are the
particle/hole indexes as defined in Sec. III. In the described
setting, the states which need to be considered are only the
ones that can carry current along z, i.e., the localized states
are not included. The currents in the z direction as derived
from the Hamiltonian in Eq. (1) have the form:

J. = evt, (C2)

B12
7 (B12)
[
and expectation values
. vevg . Voevqo
JNLS = 5 Jo=—— (C3)
& €0

in the two regions. Matching the wave functions at the
interface, one obtains two equations for the two compo-
nents and can solve the unknown reflection and transmission
coefficients:

_ vwgo(e —m) — q.(g9 — mo)
vvogo(e — m) + g: (0 — mo)’

f— e(e —m) 2q0(eo — myp) . (©3)
go(eo — mo) qole — m| + g,(g9 — mp)

We note in passing that, within our normalization of the states,
reflection and transmission satisfy the current conservation
relation:

(o))

2+ | S 2 = 1 (C6)

The transmission probability T = |j1;$||t|2 is provided in
Eq. (23).

Finally, we provide the inequalities corresponding to the
transmission regimes discussed in Sec. IIT A. For ¢ > 0, the
boundaries of regime (i), in which no transmission is possible,
are

€N

Dy(1 Vi
0 < & < Dmin Do +ro) +Vo 01t
D+ Dy
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reported as Eq. (18) in the main text. Regime (iii), in which
the highest transmission is found, is instead delimited by

Do(1+r0)+ Vo

D max 10,
Dy—D

}<8<D, D > Dy,
Do(1 +ro) + Vo

0<&e<Dmin{—
Dy —D

31}9 D<D0- (CS)
J

Viog0.q,€XP(V0iqG0Z) + T —140.q,EXP(—V0iq02),

a '(pqz,q,)exp(i%z) +a- 1ﬁ—q;,q,, exp(—iq;2),

“/fvoqg,qpexp(VOiQOZ),

Imposing the continuity at both interfaces, we determine the
complex coefficients r, #, and ay and arrive at the end result
in Eq. (33) for 7 = |¢|*>. We note in passing that it can be cast
into the form:

U

T= ,
1—2R cos(p:) + R%

(C10)

where 77 is the transmission probability in Eq. (23) through
each interface, and R; =1 — 77 is the corresponding re-
flection probability, while the phase ¢, has been defined in
Eq. (34). This is expected from our assumption of coherent
transport through the slab [86].

All thermoelectric coefficients are obtained from inversion
of the response matrix (see, e.g., Refs. [80,87,88]). We focus
in this paper on the electric conductance per unit surface:

o = ¢’Ko, (C11)

K() ! dé‘T( )(—i;)

where

Cl12
R (C12)

In the expression above, 7 is the transmission function at
given energy defined in Eq. (40) and f; the free electronic
distribution from Eq. (38).

APPENDIX D: ANGLES

In this Appendix, we provide some details of the calcu-
lation leading to Eq. (27). Assuming a small Fermi surface
around the nodal line, see Sec. II, we can consider momenta
close to the nodal line g, ~ 1 and retain only the linear term in
the deviation 8¢, i.e., g, = 1 + 8g,. Throughout this section,
we will therefore write the velocities (in units of v) and all the

Equation (19) must hold if D < Dy, while the stricter condi-
tion Vy < —(D + Dyry) is found for D > Dy.

2. Transport through a NLS slab

The scattering problem through a double interface is a
standard scenario in quantum mechanics. We write the wave
function as

L
< —5,
L
I RARE)
L
2> (C9)
[
this order:
4D?
u, ~ Tr?q,,, lu,| ~ 1. (D1)

Using the expressions above, we relate the exit angle in
Eq. (25) to the distance from the nodal line:

4D?
tan gy = — —8q,,

Z

(D2)

The strategy is now to express 8g,, conserved across the
interface, in terms of the energy and angle of the incoming
particle. From the definition in Eq. (26), we obtain

w 2D? 34 r
—~ =20 +"o)<1 +2 705 )
v &0 14+r
1 2D2(1
Yo 9ol )(1 _ 2o+ ) ,,> (D3)
v E2N) qp(1)

Note that the last line never changes sign, provided |dg,| < 1.
Combining these relations, we obtain

¢s(1) (tan, — tan6})
2D} 2&3 + (1 + ro)g3(1)’

where 6 is defined in Eq. (29). We can now substitute this
expression into Eq. (D2) and obtain the generalized Snell’s
law (27) in the main text.

Interestingly, the condition that the electron has a real
momentum ¢, in the NLS identifies a range of transverse
momenta in Eq. (16), which can be promptly translated into
arange of allowed incidence angles from the N side for which
transmission into the NLS is possible. Substitution of Eq. (D4)
into Eq. (16) implies that

8q, =

(D4)

expressions up to terms ~O(3¢;). We begin by writing the an Omin < tan 6, < tan mas, (D3)
semiclassical velocity components in Eq. (25) in the NLS to with
|
2D; | |
tan in = 551 (1 0)go(1) = 75 [265 + (1 -+ ro)gg (D] . (D6)
9
2D} lel 1) 5 )
tan Opax = (1) (147 O)CIO(I) + — 2D [250 + 1+ rO)CI()(l)] . (D7)
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