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Back-reaction and correlation effects on prethermalization in Mott-Hubbard systems
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For the Fermi-Hubbard model in the strongly interacting Mott insulator state, we study the prethermalization
dynamics after a quench (switching on the hopping rate). To this end, we employ the method of the hierarchy
of correlations and compare different levels of accuracy. To leading order, the usual free quasiparticle dynamics
(as encoded in the two-point correlation functions) yields the standard picture of prethermalization. Taking into
account the back-reaction of these quasiparticle fluctuations onto the mean-field background as the first next-
to-leading-order effect, we observe a strong degradation of prethermalization, especially in low dimensions. In
contrast, the inclusion of three-point correlations enhances prethermalization.
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I. INTRODUCTION

The question of how quantum many-body systems relax
back to thermal equilibrium after being excited by an external
stimulus has been the topic of active research [1–47] and is
still not completely understood, especially for strongly in-
teracting systems. As an indicator of the complexity of this
problem, this relaxation dynamics can occur in various stages
and on different timescales.

To be more specific, let us consider a global stimulus in
the form of a quench by suddenly (or rapidly) changing one
or more parameters of the system, which drives it out of
equilibrium. In a quasiparticle picture, this departure from
equilibrium can be understood as the excitation of many
quasiparticle modes. Moreover, such a quench typically cor-
responds to a coherent stimulus (rather than an incoherent,
e.g., thermal, excitation) such that these quasiparticle modes
all have the same phase, at least initially. As a result of this
coherence, local quantities typically start oscillating after the
quench as the phases of the quasiparticle modes evolve with
time. However, due to the distribution or dispersion of the
quasiparticle energies, their phases evolve differently and thus
get scrambled. As a result, the fluctuations of local quanti-
ties diminish gradually, approaching quasistationary values as
time progresses.

Note, however, that this quasistationary state is not neces-
sarily the thermal equilibrium state—only the phases of the
quasiparticle modes have become scrambled; their distribu-
tion has not changed yet and generally differs from a thermal
distribution [48,49]. Thus, this initial stage of dephasing
is usually referred to as prethermalization; full thermaliza-
tion would also require the approach to thermal distribution
functions, which can be achieved via Boltzmann collision dy-
namics (and requires interactions between the quasiparticles)
[50–54].

This complexity of the relaxation dynamics is already
present for weakly interacting systems, but it can become
even more challenging for strongly interacting quantum
many-body systems. In the following, we study the prether-
malization dynamics in the Mott insulator state of the

Fermi-Hubbard model. We place special emphasis on the im-
pact of back-reaction and higher-order correlations in order to
understand how these effects might change the usual picture.
In order to base our investigations on a well-defined analytical
expansion in terms of a control parameter, we employ the
method of the hierarchy of correlations [55].

II. FERMI-HUBBARD MODEL

To analyze the prethermalization dynamics of a proto-
typical strongly interacting quantum many-body system, we
consider the fermionic Hubbard model. The Hamiltonian gov-
erning the system is given by (h̄ = 1)

Ĥ = − 1

Z

∑
μνs

Tμν ĉ†
μsĉνs + U

∑
μ

n̂↑
μn̂↓

μ. (1)

The fermionic creation and annihilation operators at sites μ

and ν, with spin s ∈ ↑,↓, are denoted as ĉ†
μs and ĉνs, respec-

tively. The hopping matrix Tμν (t ) is only nonvanishing for
nearest neighbors where it adopts the value of the tunneling
rate T (t ), which can depend on time. The coordination num-
ber Z represents the number of nearest neighbors for a given
lattice site. In the following, we shall consider the scenario
in which the system is initially prepared in a stationary state
at half filling for T = 0. Then the tunneling rate is switched
to a finite value T > 0. For simplicity, we consider a sudden
change T (t ) = T �(t ), but the analysis can easily be general-
ized to other scenarios.

A. The hierarchy of correlations

Apart from finite lattices (e.g., the Hubbard dimer), exact
solutions of the fermionic Hubbard model (1) are available
only in one spatial dimension [56] or in the limit of infinite
dimensions [57]. To derive approximate solutions in finite
but high dimensions, we employ a hierarchical method suit-
able for systems with large coordination numbers Z . Hence,
we partition the reduced density matrices into correlations
between lattice sites and on-site density matrices ρ̂μ. For
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instance, the correlation between two sites is defined
as ρ̂corr

μν = ρ̂μν − ρ̂μρ̂ν . Similarly, correlations among three
sites can be expressed as ρ̂corr

μνλ = ρ̂μνλ − ρ̂μρ̂ν ρ̂λ − ρ̂corr
μν ρ̂λ −

ρ̂corr
μλ ρ̂ν − ρ̂corr

νλ ρ̂μ and so forth.
The on-site density matrix ρ̂μ and the two-site correlators

ρ̂corr
μν follow evolution equations, which can be represented

schematically as [55]

i∂t ρ̂μ = F1
(
ρ̂μ, ρ̂corr

μν

) = O(1), (2)

i∂t ρ̂
corr
μν = F2

(
ρ̂μ, ρ̂corr

μν , ρ̂corr
μνλ

) = O(1/Z ), (3)

i∂t ρ̂
corr
μνλ = F3

(
ρ̂μ, ρ̂corr

μν , ρ̂corr
μνλ, ρ̂

corr
μνλκ

) = O(1/Z2). (4)

Similar equations apply to higher-order correlations. The spe-
cific forms of the nonlinear functions Fn are determined by
the exact von Neumann equation for the density matrix of
the Hubbard model (1). Analyzing the evolution equations for
the correlators reveals that the scaling hierarchy remains pre-
served over time when the initial values satisfy ρ̂μ = O(1),
ρ̂corr

μν = O(1/Z ), and so on [58,59].
Introducing the following operators proves to be advanta-

geous when analyzing the evolution equation:

ĉμsI = ĉμsn̂
I
μs̄ =

{
ĉμs(1 − n̂μs̄) for I = 0,

ĉμsn̂μs̄ for I = 1.
(5)

Here, s̄ denotes the opposite spin to s. Intuitively, ĉμsI anni-
hilates a fermion with spin s from a doubly occupied lattice
site μ for I = 1 but creates an empty lattice site μ for I = 0
and is thus a precursor for doublon and holon quasiparticle
operators.

The site-local quantities follow the evolution equation

i∂t 〈n̂μsI n̂μs̄J〉

= (−1)I

Z

∑
κ,K

Tμκ [〈ĉ†
μsJ ĉκsK 〉corr − 〈ĉ†

κsK ĉμsJ〉corr]

+ (−1)J

Z

∑
κ,K

Tμκ [〈ĉ†
μs̄I ĉκ s̄K〉corr − 〈ĉ†

κ s̄K ĉμs̄I〉corr]. (6)

By definition, the two-site correlators between sites μ and
ν are nonzero only for μ �= ν. This is expressed formally
as 〈ĉ†

μsI ĉνsJ〉corr = 〈ĉ†
μsI ĉνsJ〉 − δμνδIJ〈n̂μsn̂μs̄I〉. The behavior

of these two-site correlators is determined by their evolution
equation,

i∂t 〈ĉ†
μsI ĉνsJ〉corr

= U (J − I )〈ĉ†
μsI ĉνsJ〉corr

+
∑
κ,K

Tμκ

Z
〈n̂μs̄I〉〈ĉ†

κsK ĉνsJ〉corr + Tμν

Z
〈n̂μs̄I〉〈n̂νs1n̂ν s̄J〉

−
∑
κ,K

Tνκ

Z
〈n̂ν s̄J〉〈ĉ†

μsI ĉκsK 〉corr − Tμν

Z
〈n̂ν s̄J〉〈n̂μs1n̂μs̄I〉

− δμν

∑
κ,K

Tμκ

Z
[〈n̂μs̄I〉〈ĉ†

κsK ĉμsJ〉corr

− 〈n̂μs̄J〉〈ĉ†
μsI ĉκsK 〉corr] + QIJ

μν,s. (7)

The first two lines of Eq. (7) delineate the correlators’ unhin-
dered evolution and their interplay with site-local quantities.
The last two lines introduce terms designed to preserve the
trace-free nature of the correlators, consequently fostering
coupling among the modes, as detailed below. Formally,
this amounts to a minor correction of order O(1/Z2) and
can be safely disregarded to leading order. The interactions
with three-site correlations are encapsulated in QIJ

μν,s, also
manifesting at the order of O(1/Z2). We have omitted consid-
erations of particle-number correlations and spin correlators.
Their dynamics unfold at a slower pace compared to the
dynamics of doublon and holon excitations, hence assuming a
subordinate role in the equilibration process.

B. Normal state

We consider the Hubbard system (1) to be at half filling in
the strong-coupling limit with a large U . In this limit, a small,
finite temperature would not generate doublon-holon pairs
but would tend to disrupt the spin order within the system.
This motivates the following ansatz for the site-local density
matrix:

ρ̂μ = (
1
2 − D

)
(|↑〉μ〈↑| + |↓〉μ〈↓|)

+ D(|↑↓〉μ〈↑↓| + |0〉μ〈0|). (8)

Here, D represents the double occupancy in the Hubbard
system, which is zero before the quench dynamics. If T takes
a finite value, correlations among lattice sites are generated,
resulting in a nonzero double occupancy. The dynamics can
be determined from the local evolution equation (6), which, in
Fourier space, reads

i∂tD =
∑

s

∫
k

Tk
[

f 01
s (Tk ) − f 10

s (Tk )
]
. (9)

Here, f IJ
k,s denote the Fourier components of the two-site

correlators 〈ĉ†
μsI ĉνsJ〉corr, where we have assumed spatial ho-

mogeneity. Similarly, for the spatially homogeneous quench
scenario under consideration, the k dependence solely stems
from the Fourier transformation Tk of the hopping matrix Tμν ,
which simplifies the momentum dependence f IJ

k,s = f IJ
s (Tk ) of

the correlation functions (up to the accuracy we are interested
in).

This permits the usage of the spectral function σd (ω). For
a hypercubic lattice in d dimensions, we find

σd (ω) =
∫

k
δ(ω − Tk )

= 1

2π

∫ ∞

−∞
dx eixω

[
J0

(
T x

d

)]d

, (10)

where J0 denotes a Bessel function of the first kind. Then,
relation (9) takes the form

i∂tD =
∑

s

∫ T

−T
dω σd (ω) ω

[
f 01
s (ω) − f 10

s (ω)
]
. (11)

This simplifies the evaluation of a d-dimensional momen-
tum integral in (9) to the evaluation of a one-dimensional
integral in (11). Note that this simplification can be used
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only when neglecting spin correlations. Similarly, the equa-
tions of motion for the two-site correlators can be written
as

(i∂t + [I − J]U ) f IJ
s (ω)

= ω

2

∑
L

[
f LJ
s (ω) − f IL

s (ω)
]

− 1

2

∫ T

−T
dω′σd (ω′) ω′ ∑

L

[
f LJ
s (ω′) − f IL

s (ω′)
]

+ ω(δJ1 − δI1)

(
D − 1

4

)
+ QIJ

s (ω). (12)

The first line of (12) determines the free evolution of the
individual modes. The trace-free condition of the correlators
leads to the coupling of the modes, which is taken care of in
the second line. The primary source term of the correlators at
leading order in the third line arises from the lattice filling,
with a minor correction introduced by the double occupancy.
Contributions from the interactions of three-point correlators
are encapsulated in QIJ

s (ω).

III. QUENCH DYNAMICS

In the upcoming discussion, we examine a quantum quench
within the Mott regime, transitioning from T = 0 to T/U 

1. Given that the hierarchy of the equations of motion is
effectively managed by a small expansion parameter 1/Z , we
can systematically include higher-order terms in our analysis.
Subsequently, we will delve into the analysis of prethermal-
ization dynamics, employing various levels of approximation
within this hierarchical expansion.

A. Free quasiparticle evolution

Considering the first order in 1/Z , we can disregard the
coupling to the double occupancy and also omit the coupling
among the modes in Eq. (12), as they are formally of order
1/Z2, as shown in relation (7). We can significantly simplify
the analysis by transforming the correlators into a diagonal
basis that corresponds to the doublon and holon excitations.
We achieve this by employing the Bogoliubov transfor-
mation fabsω = ∑

IJ OaI
ω ObJ

ω f IJ
sω , where the matrix is defined

as

OaI
ω =

(
cos ϕω sin ϕω

− sin ϕω cos ϕω

)
, (13)

along with the rotation angle, given by

tan ϕω =
√

ω2 + U 2 + U

ω
. (14)

In the rotated frame, the free evolution of the correlators (12)
is described as follows:

i∂t f
ab
s (ω) = [

Eb
ω − Ea

ω

](
fabs (ω) − 1

2 Oa1
ω Ob1

ω

)
. (15)

Here, we introduce the quasiparticle energies of doublons and
holons, given by [54,60–65]

E±
ω = 1

2 (U − ω ±
√

ω2 + U 2). (16)

The rapidly varying correlators f+−
s and f−+

s experience a rate
of change of order U , while the quantities f−−

s and f++
s do

not display temporal evolution within the leading-order ap-
proach. We identify f−−

s and f++
s as the distribution functions

of doublon and holon excitations in the Mott-Hubbard system.
The distribution functions exhibit nontrivial dynamics when
accounting for the back-reaction of the correlators onto the
mean field, as discussed in the next section. Certainly, it is
worth noting that the long-term dynamics, specifically the
relaxation of these distribution functions towards a thermal
equilibrium state, can be comprehended within the hierar-
chical expansion at order O(1/Z3). Within this framework, a
set of Boltzmann equations for the distribution functions can
be derived, as demonstrated in [52,53]. However, since the
Boltzmann evolution occurs considerably after the prether-
malization dynamics, we will not delve into the associated
scattering processes here.

The rapidly fluctuating doublon-holon correlations, de-
noted as f+−

s = [f−+
s ]∗, govern the temporal evolution of

correlations among lattice sites. This determines the equili-
bration of correlators among different lattice sites. Following
some algebraic manipulation, we determine that, at leading
order, the temporal evolution of the two-site correlators can
be expressed in closed form, namely,

〈ĉ†
μsĉνs〉corr =

∫
k

TkU

2
(
T 2

k + U 2
)

× (
1 − cos

[√
U 2 + T 2

k t
])

eik·(xμ−xν ). (17)

Hence, the dephasing of the individual modes leads to the
equilibration of site correlations, converging to a stationary
value on the order of O(T/U ). Since the correlators influence
the mean-field background through relation (9), the proba-
bility of having a nonvanishing double occupancy becomes
nonzero,

D(t ) =
∫

k

T 2
k

T 2
k + U 2

(
1 − cos

[√
U 2 + T 2

k t
])

=
∫ T

−T
dω

σd (ω)ω2

U 2 + ω2
(1 − cos[

√
U 2 + ω2 t]). (18)

We computed the oscillatory dynamics for two, three, and five
dimensions, as shown in Fig. 1. To estimate the asymptotic
decay of the oscillations to the quasistationary value of order
O(T 2/U 2), we perform an asymptotic expansion of the inte-
gral (18). By employing the spectral density given in (10), we
deduce a power-law decay as follows:

lim
t→∞D(t ) − Dasym ≈ T 2

U 2

(τ

t

)d/2
f (t ), (19)

where f (t ) is a highly oscillating function with a magnitude of
order unity and τ = O(U/T 2) denotes the timescale on which
the oscillations decline.

Note that the above scaling (19) follows from the linearized
quasiparticle evolution, which is the leading order in 1/Z .
Next-to-leading-order effects will be discussed in the next
sections.
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FIG. 1. Prethermalization dynamics of the double occupancy D

following a quench from T = 0 to T/U = 0.2 in two (top), three
(middle), and five (bottom) dimensions. The dynamics exhibit rapid
oscillations; therefore, we depict the envelope function illustrating
the decay of the magnitude of the oscillations. The green curve
represents the decay when only the free quasiparticle evolution is
considered, as per Eq. (18). Adding the back-reaction of the cor-
relations to the local mean field gives rise to the orange envelope.
When considering three-point correlations in the dynamics, the blue
envelope represents the decay of the correlators. The gray dotted line
represents the asymptotic value Dasym, as described in Eq. (24).

B. Back-reaction

The first departure from the free quasiparticle evolution
involves the coupling to the double occupancy and inter-
mode coupling. By applying the Bogoliubov transformation

from Eq. (12) and using the particle-hole symmetry f 00
s (ω) =

− f 11
s (−ω), we derive the dynamics for the correlators

i∂t f
ab
s (ω) = [

Eb
ω − Ea

ω

](
fabs (ω) + 2Oa1

ω Ob1
ω

[
D − 1

4

])

+ i

4

∑
I

(−1)I OaI
ω ObI

ω ∂tD. (20)

Each mode couples to the double occupancy. As the time
dependence of these forced oscillations is the same for each
mode, there is a partial restoration of the coherences, altering
the prethermalization process. To quantify the correction to
the leading-order analysis, we solve the system (20) along
with (11) by utilizing Laplace transformations. This yields
D(t ) = L−1(D̃(r)), where the Laplace transform of the dou-
ble occupancy is given by

D̃(r) = 1

r

I(r)

1 + 3I(r)
, (21)

along with the integral

I(r) =
∫ T

−T
dω σd (ω)

ω2

r2 + ω2 + U 2
. (22)

In the regime of strong interactions, the correction to the aver-
aged value for the double occupancy (18) is relatively small,
approximately on the order of O(T 4/U 4). However, there are
notable alterations in the dynamics, particularly in two and
three dimensions, while the corrections in higher dimensions
(greater than three) are comparatively minor.

To be more specific, let us first discuss the case of two
dimensions (top panel of Fig. 1). Just considering the free
quasiparticle evolution (green curves), we see some beating
effects but a clear signature of prethermalization (as ex-
pected). However, taking into account the back-reaction of
these quasiparticle fluctuations onto the mean field (i.e., the
double occupancy), we do not observe prethermalization any-
more (orange curves), merely a slight initial decline in the
magnitude of oscillations. As an intuitive picture, the coupling
of the double occupancy to each mode restores coherences of
local quantities, which weakens the effect of dephasing.

This effect of coherence restoration is also evident in three
dimensions (middle panel of Fig. 1), albeit with a somewhat
stronger initial decay in magnitude. Consequently, we con-
clude that especially in lower dimensions, it is crucial to
consider higher-order correlators to accurately describe the
prethermalization dynamics (blue curves in Fig. 1; see the next
section).

In dimensions larger than three, the correction resulting
from the back-reaction is significantly less pronounced. Sur-
prisingly, it even amplifies the decay of oscillations compared
to free evolution, as depicted in the lower panel of Fig. 1.

We conclude that the accuracy of the hierarchical expan-
sion for temporal evolution is highly contingent on spatial
dimension and the chosen order of approximation. Although
in low dimensions higher-order correlators are essential for
accurately describing the temporal evolution of local quanti-
ties, the asymptotic value can still be approximated if only
two-site correlators and site-local dynamics are taken into
account.
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This observation holds true for the distribution func-
tions representing doublon and holon excitations as well.
Considering that we commence the time evolution in the Mott
insulating state at T = 0, the initial conditions dictate f−−

s =
f++
s = 0. Upon quenching the system to a finite value of T/U ,

these quasiparticle distributions also attain finite values. In
fact, their prethermal values exhibit the same magnitude as
the local double occupancy, namely,

f−−
s,asym(ω) = UDasym

4
√

ω2 + U 2
= −f++

s,asym(ω). (23)

These expressions, which are formally asymptotic, serve as
the foundation for the distribution functions of doublons and
holons, initiating the slow long-term dynamics. During the
prethermalization process, it is difficult to assert that f−−

s and
f++
s represent well-defined quasiparticle distributions, given

their highly oscillatory nature. Only as the temporal evo-
lution approaches the prethermal state do these distribution
functions accurately describe slow variables. Therefore, the
prethermalization process is essential to achieve the separa-
tion of timescales. Initially, there is rapid oscillatory behavior,
followed by a subsequent slow evolution, where a Boltz-
mann description becomes applicable. In essence, by using
the hierarchical equations of motion we do not assume the
existence of quasiparticles beforehand. Instead, the temporal
evolution reveals the relevant slow-evolving variables directly
[52,53,66]. However, it is evident that for two and three
spatial dimensions, a viable description of the equilibration
process necessitates considering higher-order correlations. As
discussed below, even in this scenario, the average value of
D aligns with its asymptotic value. Formally, the asymptotic
value for the double occupancy can be straightforwardly de-
duced from the Laplace transform (21), yielding

Dasym = I(0)

1 + 3I(0)
. (24)

Note that this expression is formally bounded by the infinite-
temperature value, i.e., Dasym < 1/4. Comparing this with
the leading-order result of Dasym obtained from (18), we ob-
serve that the correction due to the back-reaction is of order
O(T 4/U 4). As one might expect, the two-site correlations also
experience a small correction,

〈ĉ†
μsĉνs〉corr

asym =
∫

k

UTk

2
(
T 2

k + U 2
) eik·(xμ−xν )

1 + 3I(0)
. (25)

We want to stress that even though we took the formal limit of
t → ∞ to derive the prethermal values, our analysis does not
encompass the scenario of infinitely long times. As mentioned
earlier, to investigate the long-time dynamics, it is necessary
to consider scattering processes between quasiparticles. These
processes can be addressed using Boltzmann equations that
involve four-site correlators, which are of order O(1/Z3).

C. Three-point correlators

We emphasize the necessity of considering higher-order
correlators to obtain a reasonable description of the prether-
malization dynamics, especially in two and three dimensions.
The dominant three-site correlators, which contribute to the
source term QIJ

μν,s in Eq. (7), are given for pairwise distinct

sites as follows:

〈n̂λs̄K ĉ†
μsI ĉνsJ〉corr = 〈n̂αs̄K ĉ†

μsI ĉνsJ〉 − 〈n̂αs̄K〉〈ĉ†
μsI ĉνsJ〉, (26)

〈ĉ†
λ,sĉλ,āĉ†

μs̄I ĉνsJ〉corr = 〈ĉ†
λ,aĉλ,āĉ†

μāI ĉνaJ〉, (27)

〈ĉ†
λ,sĉ

†
λ,s̄ ĉμs̄I ĉνsJ〉corr = 〈ĉ†

λ,sĉ
†
λ,s̄ ĉμs̄I ĉνsJ〉. (28)

Note that these simple expressions rely on the symmetries of
our setup, such as vanishing spin polarization, which implies
〈ĉ†

μs̄I ĉνsJ〉 = 0.
These correlators are described by equations of motion that

involve couplings to two-site correlations, double occupancy,
and higher-order correlators (see Appendix A for details). The
resulting equations of motion are highly nonlinear, disrupting
coherences among individual modes and driving local quanti-
ties towards a long-lived prethermal state. In dimensions 2 and
3, the effect of coherence restoration due to the back-reaction
is surpassed, leading to a significant decrease in the magnitude
of the oscillations, as illustrated in Fig. 1.

The site-local dynamics are driven by hopping events of
holon and doublon excitations. As the return probability to
a particular site diminishes with higher dimensionality, co-
herent oscillations decay more rapidly in higher dimensions.
This observation is consistent with our results, where af-
ter incorporating the three-point correlators, the equilibration
process accelerates in dimensions 3 and 5 compared to the
two-dimensional setting.

IV. BANDWIDTH SCALING

In Fig. 1 we compare the prethermalization dynamics in
different dimensions, but for the same values of T and U in
Eq. (1). However, such a comparison requires special care be-
cause the impact of the hopping term ∝ T in Eq. (1) strongly
depends on the lattice structure, e.g., the dimensionality of the
lattice, in contrast to the on-site repulsion U . Keeping T fixed
as in Fig. 1 means that the total bandwidth remains constant.
The extremal values of ±T are reached in the corners of the
Brillouin zone. However, in the limit of large dimensions,
the probability of being in those corners (i.e., their relative
weight in the spectral density σd ) becomes very small, and
thus, it is useful to introduce an effective bandwidth. In view
of the central limit theorem, the spectral density σd (i.e.,
the density of states) approaches a Gaussian distribution. Its
standard deviation scales with T/

√
Z and can be identified

with an effective bandwidth. Actually, this line of argument
underlies the well-known method of dynamical mean-field
theory (DMFT; see, e.g., [57,67]).

In order to disentangle the dependence on bandwidth and
dimension better, we compare three different scaling laws in
Fig. 2. The left column is exactly the same as in Fig. 1,
where T , i.e., the total bandwidth, is kept constant. In the
middle column, the effective bandwidth, i.e., T/

√
Z , is kept

constant, which corresponds to the scaling used in DMFT.
Finally, the right column corresponds to the case where T/Z ,
i.e., the prefactor in front of the hopping term in Eq. (1), is
kept constant. In order to facilitate a comparison between the
three columns (i.e., from left to right), we used the case of
three dimensions as a reference; i.e., the middle row displays
the same plot three times. As a result, T decreases from left
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FIG. 2. Prethermalization dynamics of the double occupancy D following a quench in two (top row), three (middle row), and five (bottom
row) dimensions as in Fig. 1, but applying different scaling laws of the bandwidth with Z . The left column is exactly the same as in Fig. 1; i.e.,
the hopping strength T is kept fixed. In the middle column, T is adapted such that T/

√
Z remains constant, where its value in three dimensions

(middle row) is kept fixed for comparison. In the right column, T is scaled such that T/Z remains constant. Thus, in the top row, T decreases
from left to right, whereas in the bottom row, T increases from left to right (in the middle row, it stays constant; see Fig. 3 in Appendix B)

to right in the top row, while it is the other way around in the
bottom row.

As expected, the prethermalization dynamics following
from the linearized quasiparticle evolution (green curves) oc-
curs faster for larger T . In five dimensions, the same tendency
is observable when including back-reaction (orange curves).
In two dimensions, on the other hand, including back-reaction
(orange curves) yields a strong slowdown of prethermaliza-
tion. Thus, the impact of back-reaction becomes weaker for
higher dimensions. As another observation, the magnitude of
the double occupancy in the steady state remains approxi-
mately constant in the middle column, which can be seen
as a signature of the DMFT limit Z → ∞. Furthermore, the
characteristic timescale tU ≈ 250 of prethermalization one
can read off the blue curves (in the middle column) is nearly
the same in three and five dimensions, which is another smok-
ing gun of the DMFT limit Z → ∞. It can be demonstrated
using Eq. (18) that in this limit and keeping T/

√
Z constant,

the oscillations of the double occupancy exhibit exponential
decay, approximately characterized by ∼ exp(−T 2t2/Z ).

A. Comparison to dynamical mean-field theory

At this point it might be adequate to compare the two meth-
ods, i.e., the hierarchy of correlations used here and DMFT.
As explained above, DMFT is usually based on a different
scaling with coordination number Z , namely, 1/

√
Z instead of

1/Z as in Eq. (1). As a result, the limit Z → ∞ is already non-
trivial in DMFT. In our approach, this limit is much simpler
since all the correlations vanish and the state basically boils
down to a product of the local on-site density matrices (8)
describing the mean-field background. This simplicity allows
us to derive the 1/Z corrections which contain interesting
physics such as prethermalization. Therefore, the hierarchy
of correlations facilitates studying the impact of the structure
and dimensionality of the lattice, which is much harder in
DMFT.

As another point, since DMFT effectively maps the
whole lattice onto a single-site problem, it is harder to
retrieve important information regarding the spatial structures
(e.g., the k dependence). Finally, DMFT is a dominantly
numerical approach, while the hierarchy of correlations
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facilitates analytical approximations, showing that they are
complementary methods.

V. CONCLUSIONS

Via the hierarchy of correlations, we investigated the
prethermalization dynamics in the Mott insulator state of the
strongly interacting Fermi-Hubbard model after a hopping
quench. As a starting point, we focused on the free quasi-
particle evolution as encoded in the two-point correlation
functions, which yields the usual prethermalization picture.

We found that prethermalization can take a comparably
long period of time �t � 1/U , i.e., much longer than what is
expected from other works; see, e.g., [10,68–71], where only
a few oscillations were required until the prethermal state was
approached. We attribute this difference to two main reasons:
First, we consider a hopping quench where T is switched
from zero to a small value (still well within the Mott insulator
regime) instead of an interaction quench where U is switched.
Switching U from zero (i.e., the metallic state) to a final
value in the Mott insulator regime yields a strong excitation,
i.e., a large number of quasiparticles, whereas the hopping
quench considered here creates a much smaller number of
quasiparticles. Second, the final state in our quench scenario is
deep inside the Mott insulator regime characterized by a large
Mott gap ≈ U and a small quasiparticle bandwidth ∝ T . The
Mott gap yields a base frequency for the oscillations, while
their dephasing is generated by the small bandwidth ∝ T .
Actually, as becomes evident from Eq. (18), this dephasing
is further slowed down by the fact that it is governed by the
term in the square root of the dispersion relation which is
quadratic in T . This is consistent with the observation that
prethermalization in the Bose-Hubbard model can occur faster
(see, e.g., [22,58]). The speedup can be partially attributed to
the different dispersion relation of the Bose-Hubbard model,
where the square root also contains a contribution linear in the
hopping strength Tk.

In view of this comparably long timescale �t � 1/U ,
small corrections to this leading order might become impor-
tant because they could accumulate over time. Taking into
account the first nontrivial correction to this leading order,
i.e., the back-reaction of the quasiparticle fluctuations onto the
mean-field background, we found that this effect significantly
suppresses prethermalization, especially in lower dimensions.
As an intuitive picture, the joint coupling of all the quasiparti-
cle modes to the same mean-field mode introduces additional
coherences between them and reduces their dephasing.

We also included three-point correlations (i.e., further
higher-order effects) in our approach. Their impact tends to
enhance prethermalization (even stronger than the suppression
due to back-reaction), which can be explained by the fact that
they mediate nonlinear interactions between the quasiparticle
modes, which in turn can result in a more efficient scrambling
of their phases.

Note, however, that all these results are still within the
realm of prethermalization; i.e., none of these effects can
describe full thermalization. On the leading-order level of
the linearized quasiparticle evolution, this becomes evident
from the fact that the quasiparticle distribution functions do
not change after the quench—only their oscillations become

out of phase. Thus, unless these distribution functions are
accidentally thermal directly after the quench (which is not the
case here and would require a very finely tuned stimulus), the
steady state is not thermal. The same argument applies when
taking into account back-reaction because the quasiparticle
distribution functions change by only a global factor. Includ-
ing the three-point correlations complicates the situation a
bit, but the main conclusion remains correct: Even though
local quantities such as the double occupancy of a lattice site
approach a steady state, the expectation values of k-dependent
operators (which should be stationary in a thermal state) still
oscillate. For finite lattices with discrete k, these oscillations
can manifest as revivals.

Full thermalization occurs on much longer timescales on
which the quasiparticle distribution functions change via
Boltzmann-type collisions. Describing them requires incorpo-
rating the four-point correlations (cf. [52–54]).

In summary, we found that, depending on the involved
parameters, the relaxation dynamics of this strongly interact-
ing quantum many-body system can occur in several stages
in which different mechanisms play a role. As explained in
the Introduction, prethermalization is a quite generic phe-
nomenon, and thus, we expect that our results can, at least
qualitatively, also be found in other systems undergoing fast
switching processes. For example, other systems could also
feature relaxation times which are much longer than expected
at first glance, especially if not all parameters are of similar
magnitude. The back-reaction of the quasiparticle fluctuations
onto the background and the impact of higher-order correla-
tions should also play a role in other systems, and one might
even expect that their tendency to slow down or speed up
prethermalization is similar to what is found here. However,
this requires further studies which would then further com-
plete our understanding of relaxation phenomena.
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APPENDIX A: THREE-POINT CORRELATORS

We consider only the particular case when the momentum
dependence of the Fourier components of the correlators is
solely determined by the hopping matrix Tk. Then we can
employ for the correlators (26)–(28) the expansions

〈n̂λs̄K ĉ†
μsI ĉνsJ〉corr =

∫
k,p

gKIJ
s̄ss (Tk, Tp)eik·(xμ−xλ )+ip·(xν−xλ ),

(A1)

〈ĉ†
λ,sĉλ,āĉ†

μs̄I ĉνsJ〉corr =
∫

k,p
rIJ

s̄s (Tk, Tp)eik·(xμ−xλ )+ip·(xν−xλ ),

(A2)

〈ĉ†
λ,sĉ

†
λ,s̄ ĉμs̄I ĉνsJ〉corr =

∫
k,p

hIJ
s̄s (Tk, Tp)eik·(xμ−xλ )+ip·(xν−xλ ).

(A3)
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Employing the spectral density, we obtain for the source term
in (12) the expression

QIJ
s (ω)

=
∑

K

∫ T

−T
dω′σd (ω′)ω′[gIKJ

s̄ss (ω′, ω) − gJIK
s̄ss (ω,ω′)

]

+ (−1)I
∑

K

∫ T

−T
dω′σd (ω′)ω′[rKJ

s̄s (ω′, ω)+ hKJ
s̄s (ω′, ω)

]

− (−1)J
∑

K

∫ T

−T
dω′σd (ω′)ω′{[rKI

s̄s (ω′, ω)
]∗

+ [
hKI

s̄s (ω,ω′)
]∗}

. (A4)

For the first set of three-point correlators, the equation of
motion reads

(i∂t + [I − J]U )gKIJ (ω1, ω2)

= ω1

2

∑
L

gKLJ
s̄ss (ω1, ω2) − ω2

2

∑
L

gKIL
s̄ss (ω1, ω2)

+ (−1)K

4
ω1

[
f 0J
s (ω2) − f 1J

s (ω2)
]

− (−1)K

4
ω2

[
f I0
s (ω1) − f I1

s (ω1)
]

− 1

2

∫ T

−T
dω σd (ω)ω

∑
L

[
gKLJ

s̄ss (ω,ω2)

− gKIL
s̄ss (ω1, ω)

]
. (A5)

The last line ensures the sum rules
∫

dω σd (ω)gKIJ
s̄ss (ω,ω2) =∫

dω σd (ω)gKIJ
s̄ss (ω1, ω) = 0 which follow from the require-

ment that the three-point correlators have to vanish if two
sites coincide. The equation of motion for the second set of
three-point correlators contains bilinear couplings among the
two-site correlators. It reads explicitly

(i∂t + [I − J]U )rIJ
s̄s (ω1, ω2)

= ω1

2

∑
L

rLJ
s̄s (ω1, ω2) − ω2

2

∑
L

rIL
s̄s (ω1, ω2)

+
∑
K,L

(ω1 − ω2) f KJ
s (ω2) f IL

s̄ (ω1)

−
∑

L

[
(−1)I

(
D − 1

4

)
− 1

4
(−1)L

]
ω1 f LJ

s (ω2)

+
∑

L

[
(−1)J

(
D − 1

4

)
− 1

4
(−1)L

]
ω2 f IL

s̄ (ω1)

− 1

2

∫ T

−T
dωσd (ω) ω

∑
L

[
rLJ

s̄s (ω,ω2) − rIL
s̄s (ω1, ω)

]

−
∫ T

−T
dωσd (ω) ω

∑
K,L

[
f KJ
s (ω2) f IL

s̄ (ω)

− f KJ
s (ω) f IL

s̄ (ω1)
]
. (A6)

Again, the last two lines ensure the sum rules∫
dω σd (ω)rIJ

s̄s (ω,ω2) = ∫
dω σd (ω)rIJ

s̄s (ω1, ω) = 0. Finally,

FIG. 3. Prethermalization dynamics of the double occupancy D

following a quench in three dimensions as in Figs. 1 and 2, but
now for different values of T , with T/U = 0.1 (top), T/U = 0.2
(middle), and T/U = 0.3 (bottom).

we have for the third set of equations

(i∂t + [1 − I − J]U )hIJ (ω1, ω2)

= −ω1

2

∑
L

hLJ (ω1, ω2) − ω2

2

∑
L

hIL(ω1, ω2)
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+
∑
K,L

(ω1 + ω2) f KI
s̄ (ω1) f LJ

s (ω2)

+ ω1

∑
L

[
(−1)L

4
+ (−1)I

(
1

4
− D

)]
f LJ
s (ω2)

+ ω2

∑
L

[
(−1)L

4
+ (−1)J

(
1

4
− D

)]
f LI
s̄ (ω1)

+ 1

2

∫ T

−T
dωσd (ω) ω

∑
L

[
hLJ

s̄s (ω,ω2) + hIL
s̄s (ω1, ω)

]

−
∫ T

−T
dωσd (ω) ω

∑
K,L

[
f KI
s̄ (ω1) f LJ

s (ω)

+ f KI
s̄ (ω) f LJ

s (ω2)
]
. (A7)

Also, here, the last two lines ensure the sum rules∫
dω σd (ω)hIJ

s̄s (ω,ω2) = ∫
dω σd (ω)hIJ

s̄s (ω1, ω) = 0.

APPENDIX B: BANDWIDTH SCALING
IN THREE DIMENSIONS

By direct comparison, the plots in Fig. 2 allow us to study
the impact of Z and the scaling with Z , as well as the depen-
dence on T in two and five dimensions, but they do not display
the T dependence in three dimensions since T is kept constant
in the middle row. In order to amend this drawback, we plot
the T dependence in three dimensions in Fig. 3. As in Fig. 2,
the prethermalization dynamics accelerates for growing T ,
i.e., from top to bottom (as expected).

As another point, we may compare the prethermaliza-
tion dynamics in Fig. 3 with the timescales required for full
thermalization, which can be obtained from the Boltzmann
equation [50–54]. The precise Boltzmann thermalization dy-
namics depends on various details such as the (initial)
quasiparticle distribution functions, but we may obtain an
estimate via the well-known relaxation time approximation

(obtained by linearizing the Boltzmann equation) in the high-
temperature limit (where one expects a fast relaxation). From
the Boltzmann equation derived in [52,54] and using the
fact that the spectral density approximately behaves as a
Gaussian (see above), this procedure yields the relaxation
time

τ ∼ U 2Z3/2

T 3
. (B1)

For the values of T/U = 0.2 (middle panel in Fig. 3) and Z =
6 (cubic lattice in three dimensions), we find a rather large
relaxation timescale of Uτ ∼ 1800, which is outside the range
plotted in Fig. 3. This corroborates our earlier statement that
full relaxation takes a longer time.

The scaling of τ in Eq. (B1) can be understood in the
following way. After a hopping quench considered here, the
density of created quasiparticles (i.e., doublons and holons)
scales with T 2/U 2. Since Boltzmann relaxation dynamics
occurs via collisions between these quasiparticles, the cor-
responding rate is suppressed by this small density. Another
factor of T stems from the collisional cross section in the
Boltzmann equation [52,54], which explains the scaling of
τ with U 2/T 3. In order to understand the Z dependence
in Eq. (B1), we may consider the DMFT scaling where
T/Z in Eq. (1) is replaced by T/

√
Z . Using this scal-

ing and considering the DMFT limit Z → ∞, the resulting
behavior (such as τ ) does not depend on Z . Then, trans-
lating back to our scaling with T/Z in Eq. (1), we recover
Eq. (B1).

Note that the ability to disentangle the various timescales
for prethermalization in Fig. 3 from those of full thermaliza-
tion τ is a feature of the scenario considered here (hopping
quench within Mott phase). For other cases (e.g., interaction
quenches), this separation of timescales may be less devel-
oped, and thus, it may be much harder to disentangle the
various phenomena.
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