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Having previously been the subject of decades of semiconductor research, cadmium arsenide (Cd3As2) has
now reemerged as a topological material, realizing ideal three-dimensional Dirac points at the Fermi level. These
topological Dirac points lead to a number of extraordinary transport phenomena, including strong quantum
oscillations, large magnetoresistance, ultrahigh mobilities, and Fermi velocities exceeding graphene. The large
mobilities persist even in thin films and nanowires of Cd3As2, suggesting the involvement of topological surface
states. However, computational studies of the surface states in this material are lacking, in part due to the large
80-atom unit cell. Here we present the computed Fermi-arc surface states of a Cd3As2 thin film, based on a
tight-binding model derived directly from the electronic structure. We show that despite the close proximity of
the Dirac points, the Fermi arcs are very long and straight, extending through nearly the entire Brillouin zone.
The shape and spin properties of the Fermi arcs suppress both back- and side scattering at the surface, which we
show by explicit integrals over the phase space. The introduction of a small symmetry-breaking term, expected
in a strong electric field, gaps the electronic structure, creating a weak topological insulator phase that exhibits
similar transport properties. Crucially, the mechanisms suppressing scattering in this material differ from those
in other topological materials such as Weyl semimetals and topological insulators, suggesting a new route for
engineering high-mobility devices based on Dirac semimetal surface states.
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I. INTRODUCTION

Cadmium arsenide (Cd3As2) is a well-known semiconduc-
tor that has been thoroughly studied for the greater part of
a century for its remarkable transport properties [1]. More
recently, this material was predicted [2] and confirmed us-
ing angle-resolved photoemission spectroscopy [3–6] to be a
topological Dirac semimetal. A conventional Dirac semimetal
exists at the boundary between topological insulator (TI) and
normal insulator phases in a system possessing both time-
reversal and inversion symmetries, and hosts a Dirac node
at a time-reversal invariant momentum point in the Brillouin
zone (BZ) [7]. However, such a phase can also exist when the
crystal structure possesses a rotational axis [8], such as the
C4 rotation in Cd3As2, which can result in accidental band
crossings at the Fermi energy, leading to two topologically
protected Dirac points along the �-Z direction [2].

The properties of Cd3As2 have been well established
through a number of experimental works, in which it
served as a prototypical system for demonstrating the optical
conductivity [9–11], quantum oscillations [12–14], and elec-
tronic transport [15–21] of Dirac semimetal materials. Dirac
semimetals were additionally predicted to exhibit proximity-
induced superconductivity [22], and Cd3As2 was used in
experimental realizations of this effect [23–26].

Cadmium arsenide also received limited theoretical treat-
ment using models [2,27] and first-principles calculations
[2,28–31], which are inherently limited by the large number of
atoms (80) in its primitive unit cell. In particular, this makes
first-principles investigations of the surface state physics of
Cd3As2 especially difficult on account of the even larger su-
percells involved.

The Dirac points in Cd3As2 can be considered as composed
of opposite chirality Weyl points, which are connected by
Fermi arcs at the material surface [32]. It has been shown
that the Fermi arcs in Weyl semimetals can be highly con-
ductive [33], prompting the question of whether the Fermi-arc
states of Dirac semimetals can lead to similar transport ef-
fects. This question is particularly relevant for the case of
Cd3As2, which has been shown to exhibit extraordinarily high
electronic transport even in thin-film and nanowire geometries
[12,16,19,34,35], where surface effects would be expected to
dominate.

Here we perform a numerical study of the electronic trans-
port of Cd3As2 mediated by its Fermi-arc surface states. We
begin by empirically deriving a tight-binding model fit to the
first-principles electronic structure, and use it to construct a
40-layer slab supercell to extract the surface energy bands. We
show that in contrast to prior k · p models [2], the Fermi arcs
of Cd3As2 in our ab initio-based model are long and straight,
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extending across the entire BZ to connect across the zone
boundary. By performing explicit calculations of the phase
space available to electronic scattering we demonstrate that
two major scattering contributions become vanishingly small
regardless of the scattering mechanism. This can potentially
lead to very high conductance in thin films of Cd3As2. We
further extend this argument in the presence of an external
electric field, where we show that the induced symmetry
breaking results in a weak topological insulator phase, whose
surface states preserve the essential properties necessary for
high electronic mobility. We conclude by discussing how
these results might lead to next-generation electronic devices
based on the high electronic mobility of the surface states and
their potential hydrodynamic transport, and how such long,
straight Fermi arcs might be engineered in semiconductor
heterostructures.

II. MATERIAL BACKGROUND

Although research on the properties of Cd3As2 has been
reinvigorated by the confirmation of its topological electronic
structure [3], the material itself has been known to exist for
nearly a century [1]. At high temperatures, Cd3As2 adopts
an antifluorite structure (Fm3̄m, No. 225) with two cadmium
vacancies [1]. Upon cooling to ∼600 ◦C, the remaining cad-
mium atoms displace towards the ordered vacancies, resulting
in an intermediate structure (P42/nmc, No. 137) of the origi-
nal cubic structure [36]. Below ∼475 ◦C, the material settles
into its low-temperature phase, which is a superstructure with
a tetragonal unit cell with a = 12.63 Å and c = 25.427 Å
[31]. The exact nature of this low-temperature phase has
been somewhat controversial, initially being assigned to the
inversion-broken I41cd (No. 110) space group [37], which
was recently reexamined and found to actually be the cen-
trosymmetric I41acd (No. 142) [31]. This has important
consequences for the electronic structure, preserving the Dirac
crossings in the BZ, and enabling the possibility of tuning the
topological phase by breaking inversion symmetry.

The topological nature of the electronic structure in
Cd3As2 has been confirmed experimentally with transport
and angle-resolved photoemission spectroscopy (ARPES)
measurements.

Electronic excitations around the Dirac cones at the Fermi
level of Cd3As2 behave like relativistic Dirac fermions with
linear dispersion. These excitations have extremely large
Fermi velocities [16] and are expected to lead to large elec-
tronic mobilities, which have been observed experimentally
[16,18,19]. Surprisingly, these high electron mobilities persist
even in thin films and nanowires of Cd3As2 [16,27,34,35].
Bulk-boundary correspondence in topological materials [38]
implies that topological features in the bulk exist in tandem
with topologically protected surface states, which in the case
of bulk Dirac points take the form of Fermi arcs connecting
their projections on the surface. Such Fermi arcs are known to
be highly conductive for related Weyl semimetal systems [33]
and would be expected to dominate the transport properties of
Cd3As2 in thin-film and nanowire geometries.

ARPES measurements enable the direct observation of
bulk and surface states. This has allowed the linearly dispers-
ing Dirac cones at the Fermi surface to be directly observed

[3–6]. The derived k · p model [2] predicts the existence of
short Fermi arcs enclosing the � point, and later studies of
the Weyl-semimetal state in symmetry-broken Cd3As2 using
a model derived from Wannier interpolation also predict short
arcs [30]. However, the k · p model necessarily represents
only the behavior near the � point, poorly capturing the
electronic structure at the BZ edge, and experimental ARPES
measurements have yet to observe Fermi-arc surface states. It
has been suggested that the difficulty in observing Fermi-arc
surface states in Dirac semimetals might stem from their lack
of topological protection [39], and in fact there exist Dirac
systems that completely lack Fermi arcs [40].

Directly simulating these surface states from first prin-
ciples would be computationally prohibitive, as such a
calculation would require a slab supercell consisting of at
least several dozen enormous unit cells of Cd3As2. The in-
clusion of spin-orbit coupling in order to correctly capture the
topological electronic structure and the dense k-point grids
needed to obtain the Fermi surface would further complicate
this approach. On the other hand, a k · p model, while quick
to compute, would not be able accurately represent the elec-
tronic structure throughout the entire BZ. The most optimal
approach, which admits a trade-off of speed and accuracy, is
a tight-binding model.

III. ELECTRONIC STRUCTURE OF Cd3As2

We perform self-consistent density functional-based elec-
tronic structure calculation of Cd3As2 using the full potential
linear muffin-tin orbital method (FP-LMTO) including spin-
orbit coupling [41]. The LMTO basis contains s, p, and d
orbitals for Cd and for As with two different tail energies
taken at 0 and −13.6 eV. The nonspherical terms of the po-
tential and the density are expanded in spherical harmonics
till lmax � 6 inside the muffin-tin spheres and are represented
by 80 × 80 × 100 fast Fourier transform grid in the intersti-
tial region. The local density approximation of Ref. [42] is
utilized.

We plot the band structure along the Z-�-X direction in
Fig. 1. It clearly reveals the fourfold degenerate Dirac point
along the �-Z direction, which is protected by the C4 ro-
tational symmetry of the crystal [8] and is consistent with
previous studies of Cd3As2 [31]. The low-energy states are
primarily composed from the Cd − 5s and As-4p orbitals as
has been discussed in Ref. [2], and the nature of the band
inversion in this system can be understood in terms of the
4-orbitals involving Cd − 5s �6 and As − 4p �7 relativistic
states [2].

In order to numerically study the topological surface states
of Cd3As2 and their transport properties, a low-energy model
in the vicinity of the Fermi level is needed. Here we are
primarily interested in capturing a spin texture of the states
crossing the Fermi level, since the discovery of topologi-
cal insulators and the associated Weyl and Dirac semimetals
specifically emphasized the connection between the spin and
the momentum of the topological states, which has been at the
heart of our understanding properties of such systems [43,44].
This has been related to the spin momentum locking of the
surface Dirac cones seen in a vast majority of topological in-
sulators, as well as the all-in (all-out) structure of spins around
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FIG. 1. Electronic structure of Cd3As2 derived from first-
principles density functional-based calculation (black) and its
tight-binding fit (red).

the Weyl points in Weyl and Dirac semimetals leading to the
notion of negative (positive) chiral charges. It has also been
shown that the spin momentum-locking feature persists for the
Fermi-arc surface states, for which orbital effects, although
they exist, are not really significant, and the surface transport
phenomena are frequently discussed under the assumption of
the spin as a good quantum number.

Therefore, we derive a minimal two-band tight-binding
model by empirically fitting the electronic structure. Our
model captures the essence of the electronic behavior through-
out the BZ and accurately reproduces the fourfold topological
Dirac point along the �-Z direction as shown in red in Fig. 1.
(We describe the tight-binding fit and list the parameters of
the model in Appendix A.)

Using this tight-binding model we construct a 40-layer slab
in the 〈110〉 direction, by first extending the model over the
supercell and then forbidding hoppings between the top and
bottom surfaces. The relationship between BZs for the bulk
and the slab is shown in Fig. 2.

The resulting band structure can be plotted within the plane
spanned by the k〈1−10〉 = kxy and k〈001〉 = kz vectors, shown in
Fig. 3(a). The surface states arising from the topological Dirac
nodes are clearly visible as the only states crossing the Fermi
energy.

Plotting the Fermi surface of the slab calculation reveals
that the two Dirac point projections are connected by very
long, straight Fermi arcs [Fig. 3(b)]. In contrast to the k · p
calculations [2], these arcs do not enclose the � point, and
instead extend through the entire BZ to connect across the
BZ boundary. The main difference between our and previous
calculations can be understood from the range of the hopping
integrals: the k · p theory assumes periodization, that is, when
one replaces k by sin(k) and k2 by 1 − cos(k), which would

FIG. 2. Brillouin zone (BZ) of bulk Cd3As2 and its projection
along the 〈110〉 direction that is used for calculating the surface
states. The blue rectangle shows the portion of the surface BZ that
will be used in subsequent plots. The bulk Dirac points along �-Z and
their projections onto the surface BZ are indicated by small circles.

include nearest-neighbor hopping integrals only, while a good
description of the Fermi states in Cd3As2 requires rather
long-range hoppings up to the fourth nearest neighbor, as we
elaborate in Appendix A.

The origin of the arcs is revealed in terms of the ± chi-
rality Weyl points making up each Dirac point. Each pair of
Weyl points located at opposite momentum space k points
are connected by a single Fermi arc. The two Dirac points
of Cd3As2 can be thought of as two pairs of coincident Weyl
points of antialigned chiralities, with each pair having its own
Fermi arc. An important feature of the Fermi arcs is the spin
texture: spins along each arc point along opposite directions,
but rotating as they approach the Dirac node projections to
align with a local “all-out” arrangement around each point.

IV. TRANSPORT ANALYSIS

We now proceed to the analysis of the surface-mediated
transport in Cd3As2 from first principles. The relaxation rate
of the electrons due to impurities or phonons is related to
the matrix element of their scattering potential. This usually
results in a temperature-independent impurity contribution
to the resistivity of a metal often seen at very low tem-
peratures, with an electron-phonon contribution that scales
linearly with temperature, ρe−ph(T ) ∝ λtrT , where λtr is the
so-called transport coupling constant, which captures the scat-
tering processes of the electrons near the Fermi surface. It can
be obtained from an integral over the BZ λtr = ∑

q = λtr (q)
[45], of various scattering events subjected to the momentum
and energy conservation laws:

λtr (q) ∼
∑

k

(vkα − vk+qα )2|Vkk+q|2δ(εk )δ(εk+q). (1)

Here εk, εk+q are the energies and vkα , vk+qα are the Fermi
velocities at points k, k + q in the phase space. The delta
functions δ(εk ), δ(εk+q) constrain scattering to the Fermi sur-
face. The transport direction is set by α = x, y, z, while Vkk+q
is the matrix element taken over the spinor wave functions
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FIG. 3. Forty-layer slab calculation of the tight-binding model
fit for the Dirac semimetal phase of Cd3As2, showing the (a) band
structure and (b) Fermi-arc surface states. Note that the shown region
is stretched along the k〈1−10〉 direction in order to more clearly show
the arc shape.

−→
ψ k(r) of the electrons with a potential V (r) arising from ei-
ther impurities or atomic displacements induced by a phonon
with wave vector q:

= 〈−→ψ k|V |−→ψ k+q〉. (2)

Generally, electron-phonon resistivity calculations can be
carried out for real materials from completely first principles
[33,46]. The same is true for supercell simulations with im-
purities; however, the large unit cell of Cd3As2 expanded to a
40-layer slab contains thousands of atoms and would make
such direct approaches computationally intractable. Instead
we use the assumption that is in the heart of the physics of
topological materials, namely, that the spin is approximately a
good quantum number. This allows us to represent the spinor
wave function

−→
ψ k entering the matrix element, Eq. (2), with

spin and spatial degrees of freedom in a separable form:

−→
ψ k(r) =

(
χ (1)(k)
χ (2)(k)

)
φk(r) = −→χ (k)φk(r). (3)

The spin part −→χ (k) is given by

−→χ k =
(

e−iϕk/2 cos(θk/2)
e+iϕk/2 sin(θk/2)

)
. (4)

Here the angles ϕk, and θk describe the direction of the spin at
k in spherical coordinates and can be easily evaluated during
the course of the electronic structure calculation. As a result,
the matrix element Vkk+q for nonmagnetic scatterers has a
factored form

Vkk+q = 〈−→χ k
−→χ k+q〉〈φk|V |φk+q〉, (5)

where the spinor part

〈−→χ k|−→χ k+q〉 ≡ V spin
kk+q (6)

can be taken into account in the transport analysis without a
detailed knowledge of the scattering potential V (r).

Thus, we use our previously derived tight-binding fit to
perform the analysis of the phase space available to the
scattering using Eq. (1) with only the spinor contribution to
the matrix element, V spin

kk+q, and derive our conclusions based
on this phase space calculation. For a slab extended in the
〈110〉 direction, the BZ will be highly compressed along
k〈110〉, therefore we use a two-dimensional 800 × 800 k-point
grid for the integration in Eq. (1). Since the Fermi arcs are
very narrow along the k〈1−10〉 direction, the q-point region
for visualizing λtr (q) is selected to be a part of the BZ,
spanned by the corners (1/4,−1/4, 0), (−1/4, 1/4, 0) in the
(2π/a, 2π/a, 2π/c) units of the reciprocal space.

Before discussing the numerical results, we qualitatively
consider the behavior of the phase space available to scatter-
ing. We will be assuming a thin-film setup of Cd3As2 so that
the number of bulk carriers is relatively small and the arc to
bulk scattering can be neglected. This is essential, since in the
thermodynamic limit for the bulk, a spatially homogeneous
field will always produce a nonzero bulk current due to ther-
mal excitations, disorder, and electronic correlations even in
ideal scenarios with the Fermi level pinned at the Dirac points,
and this will overwhelm all surface effects. The main contribu-
tions to λtr (q) are known to be the backscattering processes,
since in this case the electronic velocities entering Eq. (1)
will be oppositely directed. The backscattering (k → −k)
occurs in every three-dimensional Fermi surface but would be
absent for a true Weyl semimetal since its Fermi arcs reside
on the different surfaces. However, this is no longer true in a
Dirac semimetal where both Fermi arcs appear at the same
surface. We, however, notice that aside from small regions
near the Dirac point projections, the spinor states on opposite
Fermi arcs are antialigned, as seen in Fig. 3(b). This makes
such backscattering processes strongly cancel each other for
nonmagnetic impurities or phonons due to the orthogonality
of spinors with opposite spins. To see this explicitly, we notice
that the spins of the surface electrons align entirely within the
surface [Fig. 3(b)]. This allows us to set ϕk = 0 in Eq. (4), and
V spin

kk+q is simplified to

V spin
kk+q =

√
1
2 [1 + cos(θk − θk+q)].

For the backscattering events, θk+q = θk + π, V spin
kk+q

vanishes.
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FIG. 4. Phase space calculation of scattering processes involving Fermi-arc electrons in Cd3As2. Case (a) is the double-delta integral,
(b) includes the velocity prefactor, and (c) includes both velocity and spin prefactors. Note that the normalization factor in (a) differs from the
other two plots so only (b) and (c) can be compared quantitatively.

In contrast, side scattering (k → k′) can occur between
any two momentum points along each Fermi arc. The mag-
nitude of this contribution depends on the Fermi velocity term
(vkα − vk+qα )2, where the velocities are oriented perpendic-
ularly to the arc. For the long, straight, Fermi arcs that we
find in Cd3As2, electrons are only scattered between states
with parallel velocities, thus reducing this contribution to zero,
much like the case for Fermi-arc states in a Weyl semimetal
such as TaAs [33] and NbAs [47].

These contributions can be visualized (Fig. 4) in the q
dependence of the phase space integral by adding each term
in the expression (1) iteratively. First, we evaluate the bare
contribution

∑
k δ(εk )δ(εk+q), shown in Fig. 4(a). The effect

of the dumbell-like structure of the Fermi arcs is apparent
here, forming two bright bands flanking a central bowtie shape
along the central strip of the q space. While this term lacks
the velocity prefactor of the full expression and cannot be
quantitatively compared to the other calculations, it clearly
shows all of the allowed transitions within the phase space.

Next we add the velocity contribution, computing the inte-
gral

∑
k(vkα − vk+qα )2|δ(εk )δ(εk+q), shown in Fig. 4(b). This

greatly reduces the amplitude of side-scattering processes
along the Fermi arcs extended in the qz direction, evidenced
by the disappearance of the central bowtie structure in the
phase space.

We can also quantitatively compare the effect of includ-
ing the spinor term

∑
k(vkα − vk+qα )2|V spin

kk+q|2δ(εk )δ(εk+q),
since for nonmagnetic scatterers this results in evaluating the
overlap between two spinor states of the electrons. The result
is shown in Fig. 4(c), where we also indicate the scales of
the obtained phase space functions since the integrals with
and without |V spin

kk+q|2 have the same units. As one sees, the
effect of including the spinor overlaps results in complete
suppression of the backscattering terms, making contributions
to λtr almost negligible throughout the entire phase space,
as evidenced in Fig. 4(c) and its comparison with Fig. 4(b)
(notice difference in scales). The only remaining contribu-
tions are faint regions at the edge, which correspond to weak
scattering terms between k points located near opposite Dirac
node projections.

The results obtained here can naturally explain recent low
temperature measurements of the resistivity of Cd3As2 [18],

where it was found that some samples below 5 K exhibit
very long transport life times which are 104 longer than the
quantum life times. The resistivity anisotropy was seen to be
20–30 in samples with large lifetime enhancements, and ultra-
high carrier mobilities have been measured that were claimed
to be protected by an “unknown mechanism” [18]. Although
such a behavior would indeed be unexpected for bulk Dirac
cone states in Cd3As2, it is easily understood if the surface
transport at very low temperatures is taken into account. At
temperatures below 5 K, we expect that thermally activated
carriers in the bulk Dirac band would essentially be absent.

It has been a remarkable property of the topological surface
states to be resilient to the defects at the surface, therefore we
do not anticipate that a small surface disorder will have a big
impact on the shape and spin texture of the topological Fermi
arcs. Thus, the Fermi-arc surface states should be contributing
to the conductivity in a realistic device setup, where strong
anisotropy and very large carrier mobility are expected to
occur as seen from our phase space calculation. There is,
however, a possibility that the bulk Dirac points are slightly
gapped due to some structural distortions that can naturally
occur during crystal growth or in the vicinity of the contact
with leads. We discuss the results of our calculations with the
structural distortions in the following section.

V. TOPOLOGICAL INSULATOR PHASE

Here we analyze the electronic structure of Cd3As2 in the
presence of structural distortions that can occur either by ap-
plying a strong electric field along the 〈110〉 growth direction
or due to the presence of the electrical contact. Such pertur-
bation will necessarily break the inversion and C4 rotation
symmetries of the system, and would expectantly introduce a
small gap at the Dirac points. This symmetry-breaking effect
can be modeled at the level of the crystal structure by intro-
ducing small opposite shifts of the Cd cations and As anions
along the 〈110〉 direction. It can be easily analyzed based on
4 × 4 k · p model Hamiltonian (see Appendix B for details).

Gapping a Dirac point along a high-symmetry line can
result in either a Weyl semimetal or topological insulator
(TI) [7]. We eliminate the first possibility by employing the
monopole mining method [48], which finds no sources or
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FIG. 5. Forty-layer slab calculation of the tight-binding model fit
for the topological insulator phase of Cd3As2, showing the (a) band
structure and (b) Fermi-arc surface states. Note that the shown region
is stretched along the k〈1−10〉 direction in order to more clearly show
the arc shape.

sinks of Berry curvature within the BZ. For the second case,
we determine the classification [38,49] of the TI phase by
explicitly computing the topological indices on each torus
using a discretized plaquette link method [50,51]. This iden-
tifies a weak TI phase, which is confirmed by our calculation
of the surface energy band states [Fig. 5(a)] with the Dirac
cone appearing around the zone boundary Z point of the BZ,
and of the Fermi surface sheets crossing the edges of the BZ
[Fig. 5(b)] instead of encircling the � point as they would for
a strong TI.

The Fermi surface of the Cd3As2 TI phase is qualitatively
very similar to the Dirac semimetal phase. It does not resem-
ble typical Dirac cones of topological insulators with circular
Fermi surface and helical spin alignments, which are seen
in, e.g., Bi2Se3. Here the Fermi surface sheets have long
straight regions extended in the �-Z direction, as well as the
antialigned spin structure at (k,−k) opposite k points. The
only deviations from this are slight spin rotations near the
� point, where the Dirac node projections were previously

located. This Fermi surface structure would suppress both
back- and side-scattering processes, resulting in a highly sup-
pressed scattering for all angles, just as in the Dirac phase. On
top of that, since the bulk Dirac points are gapped, no surface-
to-bulk scattering is anticipated, at least for the temperatures
lower than the gap induced by the structural distortions, and
this is another way to interpret low-temperature measurements
of the resistivity in Cd3As2 [18].

VI. CONCLUSION

In conclusion, based on our accurate numerical fits to the
electronic structure of Cd3As2 Dirac semimetal, its Fermi arcs
have been found to be stretching through the edges of the
Brillouin zone and producing very long and straight Fermi
surfaces. Their particular shape and spin structure results in
suppression of both back- and side-scattering effects in the
electronic transport, which was explicitly demonstrated by
calculating the available phase space to the scattering for the
Fermi-arc electrons of the Dirac semimetal phase. A simi-
lar suppression mechanism is expected for the surface Dirac
cones of a possible topological insulator phase, which can
be induced by an inversion-breaking perturbation. Ultra-high
carrier mobility and strong resistivity anisotropy at very low
temperatures naturally emerges from the present study, which
could explain recent resistivity measurements in Cd3As2.

Recently, a number of approaches have emerged for engi-
neering topological Dirac states in semiconductor heterostruc-
tures [52–54]. The mature fabrication methods developed
around these Group III, IV, and V semiconductors enable the
creation of heterostructures with precise control over layer
thickness, termination, doping, and strain. Since the shape of
Fermi-arc surface states is highly dependent on the crystallo-
graphic direction of the surface, atomic terminations, surface
strain, and material interfaces [55,56], these highly tunable
semiconductor heterostructures could be used to engineer
long, straight, Fermi-arc states with high mobilities for next-
generation electronic devices.
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APPENDIX A: REFINED TWO-ORBITAL TIGHT-BINDING
MODEL FOR Cd3As2

For a general 2 × 2 Hamiltonian

Hab(k) =
[

h1k vk
v∗

k h2k

]
,

the eigenvalues are given by

ε1,2(k) = h1k + h2k

2
∓ 1

2

√
(h1k − h2k )2 + 4|vk|2.
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If we start from the LDA band structure of Cd3As2, we have
two dispersive bands, therefore

ε2(k) − ε1(k) =
√

(h1k − h2k )2 + 4|vk|2.

To determine tight-binding parameters, we use the following
lattice translations of the body-centered tetragonal lattice (in
units of lattice constants a, a, c along the x, y, z axis):

A = (1, 0, 0), B = (0, 1, 0), C = (1/2, 1/2, 1/2).

Nearest-neighbor vectors from the origin are the following:

4:R1 = (±1, 0, 0), (0,±1, 0),

8:R2 = (±1/2,±1/2,±1/2),

2:R3 = (0, 0,±1),

4:R4 = (±1,±1, 0)

· · · .

We denote ε0 = h(0), ti = h(Ri ). Generally, for h(kx, ky, kz )
obeying full lattice symmetry, we expect that

h(kx, ky, kz ) =
∑

R

eikxRx eikyRy eikzRz h(Rx, Ry, Rz )

= ε0 + t1(eikxa + e−ikxa + eikya + e−ikya) + t2(eikxa/2eikya/2eikza/2 + · · · ) + t3(eikza + e−ikza)

+ t4(eikxa/2eikya/2 + eikxa/2e−ikya/2 + e−ikxa/2eikya/2 + e−ikxa/2e−ikya/2) + · · ·
= ε0 + 2t1(cos kxa + cos kya) + 8t2 cos kxa/2 cos kya/2 cos kza/2

+ 2t3 cos kza + 4t4 cos kxa/2 cos kya/2 + · · · .

According to the k · p result, we do not anticipate dispersion of vk along the 001 line because vk = λ(kx + iky). As a result,

Hab(0, 0, kz ) =
[

h1k 0
0 h2k

]

and

ε1(0, 0, kz ) = h1(0, 0, kz ), ε2(0, 0, kz ) = h2(0, 0, kz ).

Thus, the dispersion along 001 determines h(0, 0, kz )
Denoting ti = h(Ri ) we obtain along the 001 direction

h(0, 0, kz ) =
∑

R

eikzRz h(Rx, Ry, Rz ) = ε0 + 4t1 + 8t2 cos kza/2

+ 2t3 cos kza + 4t4 + 8t5 cos kza + 16t6 cos kza/2 + 8t7 cos kza + · · ·
= ε0 + 4(t1 + t4) + 8(t2 + 2t6) cos kza/2 + 2(t3 + 4t5 + 4t7) cos kza + · · · ;

for the k = (0, 0, 0)2π/a:

h(0, 0, 0) = ε0 + 4(t1 + t4) + 8(t2 + 2t6) + 2(t3 + 4t5 + 4t7);

for the k = (0, 0, 1)2π/a:

h(0, 0, 1) = ε0 + 4(t1 + t4) − 8(t2 + 2t6) + 2(t3 + 4t5 + 4t7);

for the k = (0, 0, 1/2)2π/a:

h(0, 0, 1/2) = ε0 + 4(t1 + t4) − 2(t3 + 4t5 + 4t7);

for the k = (0, 0, 1/4)2π/a:

h(0, 0, 1/4) = ε0 + 4(t1 + t4) + 8(t2 + 2t6)/
√

2;

and for the k = (0, 0, 3/4)2π/a:

h(0, 0, 3/4) = ε0 + 4(t1 + t4) − 8(t2 + 2t6)/
√

2.

We obtain the following connections between hopping
integrals:

ε0 + t1 + t4 = [h(0, 0, 0) + h(0, 0, 1) + 2h(0, 0, 1/2)]/16,

t2 + 2t6 = [h(0, 0, 0) − h(0, 0, 1)]/16,

t3 + 4t5 + 4t7 = [h(0, 0, 0) + h(0, 0, 1) − 2h(0, 0, 1/2)]/8,

ε0 + t1 + t4 = [h(0, 0, 1/4) + h(0, 0, 3/4)]/8,

t2 + 2t6 = [h(0, 0, 1/4) − h(0, 0, 3/4)]
√

2/16,

We now interpret the above described two-orbital model
as the two LDA energy bands that cross the Fermi level and
produce the Dirac point along the �-Z line of the BZ. We can
interpret these two orbitals in the spinor basis of | ↑〉 and | ↓〉
states. We use the LDA extracted values for the first band:

ε1(0, 0, 0) = 0.02 eV,

ε1(0, 0, 1) = −0.41 eV,

ε1(0, 0, 1/2) = −0.09 eV,

ε1(0, 0, 1/4) = −0.01 eV,

ε1(0, 0, 3/4) = −0.24 eV,

which produces

ε
(1)
0 /4 + t (1)

1 + t (1)
4 = −0.0356 eV,

t (1)
2 + 2t (1)

6 = +0.0269 eV,

t (1)
3 + 4t (1)

5 + 4t (1)
7 = −0.0262 eV.
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We need to use ε
(1)
0 > 0 so that there is gap everywhere in the

BZ except the Dirac point. Neglecting the fourth- and higher-
order hoppings, this gives us the set of on-site energies and
hopping integrals for the first orbital up to third order:

ε
(1)
0 = 0.1 eV, t (1)

1 = −0.0606 eV,

t (1)
2 = 0.0269 eV, t (1)

3 = −0.0262 eV.

Similarly, we use the LDA extracted values for the second
band:

ε2(0, 0, 0) = −0.02 eV, ε2(0, 0, 1) = 0.55 eV,

ε2(0, 0, 1/2) = 0.35 eV, ε2(0, 0, 1/4) = 0.05 eV,

ε2(0, 0, 3/4) = 0.50 eV,

ε
(2)
0 /4 + t (2)

1 + t (2)
4 = +0.0769 eV,

t (2)
2 + 2t (2)

6 = −0.0356 eV,

t (2)
3 + 4t (2)

5 + 4t (2)
7 = −0.0212 eV.

We need to use ε
(2)
0 < 0 for the fit so that there is a gap

everywhere in the BZ except the Dirac point. This gives the
second set of on-site energies and hopping integrals for the
second orbital up to third order:

ε
(2)
0 = −0.1 eV, t (2)

1 = 0.1019 eV,

t (2)
2 = −0.0356 eV, t (2)

3 = −0.0212 eV.

Finally in k · p theory, the off-diagonal parameter between
first (spin up) and second (spin down) orbitals is v(k) =
λ(kx + iky). The tight-binding representation that leads to this
is

v(k) =
∑

R

eikRv(R) = v(100)eikx + v(−100)e−ikx + v(010)eiky + v(0 − 10)e−iky

+ v(200)eikx + v(−200)e−ikx + v(020)eiky + v(0 − 20)e−iky

= λ1(eikx − e−ikx )/2i + λ1i(eikx − e−ikx )/2i + λ11(eikx eiky − eikx e−iky − e−ikx eiky + e−ikx e−iky )/(2i)2

+ λ2(ei2kx − e−i2kx )/2i + λ2i(ei2kx − e−i2kx )/2i

= λ1(sin kx + i sin ky) + λ2(sin 2kx + i sin 2ky).

Here we used

v(+100) = +λ1/(2i), v(−100) = −λ1/(2i),

v(0 + 10) = +λ1i/(2i), v(0 − 10) = −λ1i/(2i),

v(+200) = +λ2/(2i), v(−200) = −λ2/(2i),

v(0 + 20) = +λ2i/(2i), v(0 − 20) = −λ2i/(2i).

The best fit is obtained with the use of the parameters

λ1 = −0.24 eV, λ2 = +0.08 eV.

The above parameters are used in our tight-binding sim-
ulations of the surface states and the transport properties
described in the main text.

APPENDIX B: INVERSION BROKEN DISTORTED
STRUCTURE ALONG (110)

Here we want to describe a symmetry-broken phase as
caused by a perturbation along the 110 crystallographic line.
It could be due to the presence of the contact in an experi-
mental setup or strong electric field applied along (110). Such
a perturbation will break the inversion and leave only four
symmetry operations of the crystalline group including 180◦
rotation along (110) as well as reflections within basal and
(1–10) planes. Our density functional LDA calculation for
such a symmetry-broken phase involves moving the atoms of
Cd and As in the opposite direction along (110) to simulate
a compatible distortion. The result is plotted on Fig. 6, where
one can see a small gap opening in the vicinity of the Dirac
point.

We next analyze this result in terms of a generic k · p
model. For the Dirac semimetal, such a model has been
described many times in the literature (see, e.g., [2]). It
consists of two orbitals with k dispersions ±M(k), where
M(k) = M0 − M1(k2

x + k2
y ) − M2k2

z , that interact via the ma-
trix element A(kx ± iky). The parameters M0, M1, M2 should
be chosen negative to reproduce band inversion. The model
naturally respects all symmetry operations of the tetragonal
lattice as is the case of the undistorted tetragonal (I41/acd ,
No. 142) structure of Cd3As2.

FIG. 6. Electronic structure of the distorted Cd3As2 that shows
a gap opening in the vicinity of Dirac points and results in a weak
topological insulator phase.
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The lowest-order k · p Hamiltonian that illustrates this scenario reads

H (k) =

⎡
⎢⎢⎣

+M(k) A(ky + ikx ) 0 Bkz

A(ky − ikx ) −M(k) Ckz 0
0 Ckz +M(k) −A(ky − ikx )

Bkz 0 −A(ky + ikx ) −M(k)

⎤
⎥⎥⎦.

It describes the transition between Dirac semimetal (B = C = 0) and topological insulator (B,C �= 0) phases. If we keep off-
diagonal parameters B and C different, this describes lifting of the degeneracy along �Z (001) line of the BZ as seen in our
density functional calculation given in Fig. 6.

Next, we convert this k · p Hamiltonian to the refined four orbital tight-binding model. However, the diagonal 2 × 2 subblocks
of this Hamiltonian translate to the two-orbital tight-binding model that we already discussed for the Dirac semimetal phase. The
off-diagonal terms (the ones with the coefficients C and D) are periodized with the substitution of kz → sin kzc. The numbers
C and D are small and describe the perturbation that gap the Dirac points and result in the weak topological insulator state of
Cd3As2. We use its actual values C = D = 0.0068 eV for the plots presented in the main text.
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