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Nonstandard Hubbard model and electron pairing
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We present a nonstandard Hubbard model applicable to arbitrary single-particle potential profiles and in-
terparticle interactions. Our approach involves a treatment of Wannier functions, free from the ambiguities of
conventional methods and applicable to finite systems without periodicity constraints. To ensure the consistent
evaluation of Wannier functions, we develop a perturbative approach, utilizing the barrier penetration coefficient
as a perturbation parameter. With the defined Wannier functions as a basis, we derive the Hubbard Hamiltonian,
revealing the emergence of density-induced and pair tunneling terms alongside standard contributions. Our in-
vestigation demonstrates that long-range interparticle interactions can induce a mechanism for repulsive particle
pairing. This mechanism relies on the effective suppression of single-particle tunneling due to density-induced
tunneling. Contrary to expectations based on the standard Hubbard model, an increase in interparticle interaction
does not lead to an insulating state. Instead, our proposed mechanism implies the coherent motion of correlated
electron pairs, similar to bound states within a multiwell system, resistant to decay from single-electron tunneling
transitions. These findings carry significant implications for various phenomena, including the formation of flat
bands, the emergence of superconductivity in twisted bilayer graphene, and the possibility of a metal-insulator
transition.
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I. INTRODUCTION

Electron pairing in solids has traditionally been attributed
to phonon-mediated attraction. However, a fundamental
question is whether repulsive particles can form pairs inde-
pendently of the presence of phonons. To explore this idea
further, we examine two interacting electrons within the same
site of a periodic structure, as described by the Hubbard model
[1]. When the on-site two-particle repulsive energy, denoted
as U , significantly exceeds the tunneling coupling �, single-
electron hopping to a neighboring site is strongly suppressed
due to the large energy mismatch. Concerning the tunneling
of an electron pair, the elastic two-electron hopping (known
as “cotunneling”) is also suppressed in the standard Hubbard
model. Indeed, the corresponding amplitude representing two
consecutive hoppings is a second-order process that involves
a large virtual energy variation ∼2�2/U [2], which decreases
with U . Even if weak, this second-order process survives for
any finite interaction U , so that the repulsive interaction can-
not completely localize the electron pair within the framework
of the standard Hubbard model.

*Corresponding author: matteo.zendra@unicatt.it
†Corresponding author: shmuel.gurvitz@weizmann.ac.il

However, it is evident that the standard Hubbard Hamil-
tonian fails to capture all the interaction effects [3–5]. For
instance, the cotunneling process can occur with both parti-
cles staying together, without changing their total energy, a
nonstandard Hubbard process known as pair tunneling (PT)
[3]. Even with increasing U , the latter can become a ma-
jor contributor to the cotunneling process [6]. Indeed, even
in the case of single-electron tunneling coupling suppres-
sion (� → 0), PT remains uninhibited, offering an effective
mechanism for electron pairing, independent of the attractive
interaction. A similar idea was proposed by Anderson in the
theory of cuprate superconductivity [7]. Inspired by this idea,
we demonstrate how this specific mechanism can be realized
within the framework of a nonstandard Hubbard model, which
includes both the pair tunneling term and the density-induced
tunneling (DT) term, also known as bond-charge interaction
[3–5,8–15]. While the influence of the PT term on super-
conductivity is rather obvious, the effect of the DT term
(with the adequate sign) also favors superconductivity. Indeed,
analytical demonstrations have highlighted the role of this
term in supporting the emergence of superconductivity within
models characterized by repulsive on-site interaction at half
filling [16]. Thus the DT and PT terms play a crucial role in
electron dynamics, both in terms of their magnitude and sign.
Specifically, we show that the DT term, in the presence of a
long-range interparticle interaction, has the ability to lower
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and even totally suppress the single-particle coupling, due to
an effective mean-field generated by the other particles, thus
providing stability of the electron pair.

An extension of the standard Hubbard model concerning
strongly correlated systems has been explored long ago in
[17]. However, only recently has the nonstandard Hubbard
model attracted more attention, particularly due to experimen-
tal results with ultracold atoms in optical lattices [3,5,18–
20], as well as because they have been shown to host many
different effects, ranging from superconducting pairing to
localization [21–29]. Currently, the accurate evaluation of
nonstandard Hubbard terms and the understanding of their
influence on the dynamics of correlated systems remain open
problems. Indeed, these terms are closely related to the over-
lap of Wannier functions (WFs) from adjacent sites, often
accurately represented by the corresponding orbital wave
functions. However, their overlap, crucially dependent on
their tails being situated in neighboring sites, significantly
affects both the magnitude and sign of nonstandard Hubbard
terms, on which consensus is yet to be reached [3,17,30].

In what follows, we present an approach for evaluating
the WFs in a multiwell potential, based on the two-potential
approach (TPA) to tunneling problems, originally developed
for tunneling to the continuum [31–33], which allows for an
accurate evaluation of nonstandard Hubbard terms. Specif-
ically, after a proper definition of the WFs of a multiwell
potential in Sec. II, we present the TPA in Sec. III and we
apply it to the case of a triple-well potential in Sec. IV.
Finally, in Sec. V we analyze the effect of the PT and DT
terms, for both a contact interaction and a long-range constant
interaction. Specifically, in Sec. V A we analyze the simple
case of a square double-well potential, showing that the DT
term can effectively suppress the total single-particle tunnel-
ing amplitude only in the presence of a long-range interaction.
In Sec. V B, we study the dynamics of two electrons with
parallel spins in a square triple-well potential. In particular,
we show under which conditions the nonstandard DT and PT
terms become significant and when the nonstandard Hubbard
model should be used instead of the extended Hubbard model
(which neglects DT and PT contributions).

II. WANNIER FUNCTIONS

Let us consider a particle placed in an N-site potential
chain

V (x) =
N∑

j=1

V j (x), (1)

where V (x) → 0 as x → ±∞. The exact eigenstates are ob-
tained from the Schrödinger equation (we take h̄ = 1)

H |ψk〉 ≡
(

−∇2
x

2m
+ V (x)

)
|ψk〉 = Ek |ψk〉 , (2)

with boundary conditions at infinity (x → ±∞) given by

ψk (x) ∼ e−√−2mEk |x| (3)

that uniquely define the bound state energy spectrum (Ek < 0)
of the exact Hamiltonian H. We assume that the N lowest

eigenstates form a band, well separated from the other eigen-
states of the spectrum.

We consider the corresponding tight-binding tunneling
Hamiltonian HN , which describes the lowest band of the exact
Hamiltonian H, given by

HN =
N∑

j=1

E j |� j〉 〈� j | +
N−1∑
j=1

� j (|� j〉 〈� j+1| + H.c.), (4)

where E j represents the single-site energy, � j is the nearest
neighbor tunneling coupling, while � j (x) = 〈x|� j〉 are the
WFs. In order to define E j and � j in a consistent way, we
identify the spectrum of the tunneling Hamiltonian in Eq. (4)
with the one of the lowest bands of the original Hamiltonian
H in Eq. (2). When employing such a procedure, unlike when
solving exactly the Schrödinger Eq. (2), we are neglecting
the influence of interband transitions on electrons’ motion. In-
deed, if the lowest band is sufficiently separated from the other
bands, the exact spectrum obtained from Eq. (2) and the one
of the tunneling Hamiltonian will produce the same dynamics.
Therefore, we diagonalize the Hamiltonian HN by a unitary
transformation R and then we apply the same transformation
to the lowest-band spectrum, namely Ek and |ψk〉, to obtain
the WFs. In particular, these are uniquely defined by

|�k〉 =
N∑

k′=1

Rkk′ |ψk′ 〉 . (5)

Notice that the exact eigenfunctions ψk (x) do not contain
uncertainty, as belonging to the bound-state spectrum of the
Schrödinger Eq. (2). In the following, we will illustrate the
unitary transformation given in Eq. (5) for the double-well and
triple-well potential cases (for details, see the Supplemental
Material [34]).

Let us exemplify this method considering the symmetric
double-well potential V (x) in Fig. 1(a), where the lowest band
contains two eigenstates ψ1,2(x), with corresponding eigenen-
ergies E1,2. The tunneling Hamiltonian of this system is given
by Eq. (4) for N = 2 and can be explicitly written as

H2 = E0

2∑
j=1

|� j〉 〈� j | + �0(|�1〉 〈�2| + H.c.). (6)

By diagonalizing H2 through the unitary transformation R
in Eq. (5), and identifying its eigenspectrum with E1,2 and
ψ1,2(x), we find

E0 = 1

2
(E1 + E2), �0 = 1

2
(E1 − E2), (7a)

�1,2(x) = 1√
2

[ψ1(x) ± ψ2(x)]. (7b)

In contrast with the “extended” eigenstates ψ1,2(x), the WFs
�1,2(x) are localized respectively in the left and right well,
although their tails are extended to the neighboring wells.

This procedure can be easily extended for the symmetric
triple-well potential (N = 3) in Fig. 2, where the lowest band
consists of three eigenstates ψ1,2,3(x) with energies E1 < E2 <

E3. The corresponding tight-binding tunneling Hamiltonian,
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FIG. 1. (a) Symmetric double-well potential V (x) = V1(x) + V2(x), with lattice depth V0. Dashed lines represent the first two lowest-band
energy levels E1,2. (b),(c) Single-well potentials V1,2(x), with classical turning points ∓ x, so that V1,2(∓ x) = E 0, the single-site ground state
energy. The separation point x0 is defined so that V1(x0) = V2(x0) = 0.

given by Eq. (4) for N = 3, can be explicitly written as

H3 = E0

3∑
j=1

|� j〉 〈� j | + �0(|�1〉 〈�2| + |�2〉 〈�3| + H.c.).

(8)

Following the same procedure, i.e., by diagonalizing H3 and
identifying the obtained spectrum with the exact lowest-band
one, we obtain

E0 = 1

2
(E1 + E3), �0 = 1

2
√

2
(E1 − E3),

�1(x) = 1

2
ψ1(x) + 1√

2
ψ2(x) + 1

2
ψ3(x),

�2(x) = 1√
2

[ψ1(x) − ψ3(x)],

�3(x) = 1

2
ψ1(x) − 1√

2
ψ2(x) + 1

2
ψ3(x). (9)

As in the previous case, the WFs �1,2,3(x) are respectively
localized in the left, middle, and right well, and are uniquely
defined. Let us point out that our approach for a consistent
determination of the tunneling Hamiltonian parameters and
the related WFs can be generalized for an arbitrary number
of potential wells N , regardless of the periodicity of V (x).
Additionally, we observe that, for a periodic potential V (x), in
the limit N → ∞, this procedure looks similar to the method

used to derive a set of localized WFs from the Bloch func-
tions, subjected to periodic boundary conditions, through a
unitary transformation. However, due to the additional “gauge
freedom,” the resulting WFs become strongly nonunique, so
that different choices of the gauge correspond to different sets
of WFs having different shapes and spreads. A widely used
approach to avoid the gauge freedom consists in a proper
choice of the unitary transformation of the Bloch functions
that enforces the maximal localization of the WFs (see [35] for
a detailed discussion). However, this procedure does not guar-
antee that the tunneling Hamiltonian dynamics corresponds to
that obtained from the exact solution of the original multiwell
Schrödinger equation.

In contrast, our approach is based on this correspon-
dence, which allows one to uniquely construct the tunneling
Hamiltonian and the WFs by assuming only the single-band
approximation. Notice that the resulting WFs, although lo-
calized at the corresponding site, exhibit tails penetrating to
neighboring sites. These tails play a crucial role in the eval-
uation of the nonstandard Hubbard terms, as we will show
in the following. On the contrary, the condition of maximal
localization of the WFs would decrease correspondingly the
contribution from these tails and therefore the amplitude of
the nonstandard Hubbard terms. Since our approach relates
the WFs to the exact Schrödinger eigenstates, in the next
section we present a consistent perturbative approach for their
evaluation in terms of single-site orbitals.

FIG. 2. (a) First three exact eigenfunctions ψ1(x) (blue curve), ψ2(x) (red curve), and ψ3(x) (green curve) of a square triple-well potential.
(b) Symmetric square triple-well potential. The three wells have width L and depth V0 and are separated by barriers of width b, where x1,2 are
the separation points. Dashed colored lines represent the first three exact energy levels of the system E1,2,3, corresponding to the eigenfunctions
shown in panel (a), which read E1 = −4.171, E2 = −3.897, and E3 = −3.545. Parameters: L = 2, b = 0.5, and V0 = 5, in arbitrary units.
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III. TWO-POTENTIAL APPROACH

Let us consider the symmetric double-well potential in
Fig. 1(a), given by the sum of two single-well potentials,
V (x) = V1(x) + V2(x), such that V1(x) = 0 for x � x0 and
V2(x) = 0 for x � x0, where x0 = 0 is the separation point;
see Figs. 1(b) and 1(c). The lowest eigenstates (orbitals) of
the left- and right-well Hamiltonians are obtained from(

−∇2
x

2m
+ V1,2(x)

)
�

(1,2)
0 (x) = E0�

(1,2)
0 (x), (10)

with the following boundary conditions:

�
(1)
0 (x) ∼ e

√−2mE0x as x → −∞,

�
(1)
0 (x) = �

(1)
0 (0)e−√−2mE0x as x � x0, (11)

and similarly for �
(2)
0 (x) = �

(1)
0 (−x). These orbitals can be

used as a basis to obtain the eigenstates ψ1,2(x) and the WFs
�1,2(x) ≡ �L,R(x), through a perturbative approach. For in-
stance, we could consider the left-well orbital �

(1)
0 (x) as the

unperturbed state and the right-well potential V2(x) as the
perturbation (or vice versa).

However, such a perturbative approach does not include a
small parameter, which makes the corresponding expansion
unusable. This issue can be solved by employing the TPA,
which uses an alternative expansion in powers of the orbitals
overlap β ≡ 〈�(1)

0 |�(2)
0 〉, a small parameter proportional to the

barrier penetration coefficient

T0 = exp

(
−

∫ x

−x
|p(x′)| dx′

)
� 1. (12)

Here, p(x) represents the (imaginary) momentum under the
potential barrier and ±x are the classical turning points, shown
in Figs. 1(b) and 1(c) (for details, see the Supplemental Ma-
terial [34]). Using this approach, we derive the tunneling
Hamiltonian parameters in Eq. (7a), which read

E0 = E0 + O(β2),

�0 = �0 + O(β2),

where E0 is given by Eq. (10), and

�0 = −
√

2|E0|
m

[�0(0)]2 ∝ T0 (13)

is a simplified (1D) version of the well-known Bardeen for-
mula [36]. Similarly, we obtain

E1,2 = E± + O(β2),

where E± = E0 ± �0. Consequently, all the parameters of
the tunneling Hamiltonian are completely determined by the
single-well orbitals. At first glance, we may expect to de-
rive the eigenstates ψ1,2(x) ≡ ψ1,2(E±, x) from Eq. (7b) by
replacing the WFs �1,2(x) with the corresponding orbitals
�

(1,2)
0 (x) ≡ �

(1,2)
0 (E0, x) given by Eq. (10), so that

ψ1,2(E±, x) � 1√
2

[
�

(1)
0 (E0, x) ± �

(2)
0 (E0, x)

]
. (14)

However, Eq. (14) exhibits an inconsistency between the en-
ergy arguments of ψ1,2(E±, x) and �

(1,2)
0 (E0, x). To solve

this issue, we introduce an energy shift in the orbital func-
tions by replacing the ground state energy E0 with a free

parameter E < 0. The resulting modified orbitals �
(1,2)

(E , x)
(normalized to unity) are obtained from Eq. (10) with the
substitution E0 → E and imposing the boundary condition at
infinity given in Eqs. (11). However, unlike �

(1,2)
0 (E0, x), the

modified orbitals �
(1,2)

(E , x) are defined respectively on two
different segments

X1 = (−∞, 0), X2 = (0,∞),

and vanish elsewhere. As a result, they are nonoverlapping
and therefore orthogonal. Replacing �

(1,2)
0 (E0, x) in Eq. (14)

with �
(1,2)

(E±, x), we obtain

ψ1,2(E±, x) = 1√
2

[�
(1)

(E±, x) ± �
(2)

(E±, x)], (15)

which gives the exact result for ψ1,2(E±, x), in contrast with
Eq. (14). Indeed, the exact treatment of the Schrödinger
Eq. (2) involves solving it on the two segments and combining
the results by imposing the continuity condition at the sep-
aration point. This condition is automatically satisfied if E±
are the energies of the symmetric and antisymmetric states,
respectively.

Substituting Eq. (15) into Eq. (7b), we obtain the exact left-
and right-well WFs, �L,R(x), in terms of the modified orbitals:

�L(x) = 1
2 [�

(1)
+ (x) + �

(2)
+ (x) + �

(1)
− (x) − �

(2)
− (x)],

�R(x) = 1
2 [�

(1)
+ (x) + �

(2)
+ (x) − �

(1)
− (x) + �

(2)
− (x)], (16)

where �
(1,2)
± (x) ≡ �

(1,2)
(E0 ± �0, x). Expanding the modi-

fied orbitals in powers of �0 and neglecting O(�2
0) terms

(since �0 ∝ β ∝ T0) we obtain

�
(1,2)
± (x) = �

(1,2)
0 (x) ± �0 ∂E�

(1,2)
0 (x), (17)

where

�
(1,2)
0 (x) ≡

{
�

(1,2)
0 (E0, x) for x ∈ X1,2,

0 elsewhere
(18)

and

∂E�
(1,2)
0 (x) ≡

(
∂�

(1,2)
(E , x)

∂E

)
E=E0

.

Substituting Eq. (17) into Eqs. (16), we get

�L(x) = �
(1)
0 (x) + �0∂E�

(2)
0 (x),

�R(x) = �
(2)
0 (x) + �0∂E�

(1)
0 (x), (19)

which represents our main result for the WFs. Looking at
Eqs. (19), we can observe that each WF consists of two
nonoverlapping terms, describing respectively the WF inside
the respective well (first term) and its tail penetrating into the
neighboring well (second term), which is ∝ �0 and therefore

much smaller than the first term. Since �
(1,2)

(E , x) are nor-
malized to unity for any E , we can explicitly demonstrate the
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orthogonality of the WFs by using

∂E

∫ 0

−∞
[�

(1)
(E , x)]2 dx = 0,

so that

〈�L|�R〉 = 2�0

∫ 0

−∞
�

(1)
0 (x)∂E�

(1)
0 (x) dx = 0. (20)

Equation (20) represents the overlap of the orbital �
(1)
0 (x),

which is nodeless, with the tail of the WF belonging to
the adjacent well; see Eqs. (19). From Eq. (20), it clearly
follows that the WF tail must change its sign, deeply af-
fecting the amplitudes of the nonstandard Hubbard terms.
Finally, we point out that Eqs. (19) are valid for an arbi-
trary multiwell system. In the next section, we exemplify
this by comparing the WFs given by Eqs. (19) with the
exact numerical results for a symmetric square triple-well
potential.

IV. TWO-POTENTIAL APPROACH FOR A
TRIPLE-WELL POTENTIAL

In this section, we explicitly demonstrate the accuracy
of our analytical approach by analyzing the WFs of the
symmetric square triple-well potential shown in Fig. 2(b).
Specifically, we evaluate the WFs by using the TPA and we
compare them with the exact WFs given by Eqs. (9), as well
as with the corresponding orbital functions. For simplicity, we
consider a square well potential, since its shape allows us to
obtain simple analytical expressions for the WFs, which will
be used for the evaluation of the nonstandard Hubbard terms,
highlighting their explicit dependence on the quantum well
parameters.

The triple-well spectrum, namely the eigenfunctions
ψk (x) ≡ ψk (Ek, x) and the eigenvalues Ek , is obtained by solv-
ing the Schrödinger Eq. (2) with boundary conditions given by
Eq. (3). We focus on the three lowest-band eigenstates (with
k = 1, 2, 3) displayed in Fig. 2(a). The corresponding exact
left-, middle-, and right-well WFs �L,M,R(x) can be obtained
from the lowest-band eigenstates through Eqs. (9). On the
other hand, we notice that the energy E0 in the tunneling
Hamiltonian in Eq. (8) corresponds to the energy of the lowest
orbital �0(x) given by Eq. (10) by considering the single-well
potential

V (x) = −V0 for − L

2
< x <

L

2
.

Specifically, the lowest single-well orbital can be written as

�0(x) = N0

⎧⎪⎪⎨
⎪⎪⎩

√
1 − |E0|

V0
eq0(x+ L

2 ) for − ∞ < x < − L
2 ,

cos (p0x) for − L
2 < x < L

2 ,√
1 − |E0|

V0
e−q0(x− L

2 ) for L
2 < x < ∞,

(21)

where p0 = √
2m(V0 + E0), q0 = √−2mE0, and N0 =√

2q0/(2 + Lq0) is the normalization factor. As a result, the
orbital functions for the triple-well system (respectively for

the left, middle, and right well) read

�
(1)
0 (x) ≡ �0(x + L + b),

�
(2)
0 (x) ≡ �0(x),

�
(3)
0 (x) ≡ �0(x − L − b). (22)

Substituting �0( L+b
2 ) into Eq. (13), we obtain for the tunnel-

ing energy

�0 = −
√

2|E0|
m

N 2
0

(
1 − |E0|

V0

)
e−q0b. (23)

For the single-well parameters used in Fig. 2, solving Eq. (10)
and Eq. (23) we obtain E0 = −3.8525 and �0 = −0.2216.
These values can be compared with those obtained from
the exact numerical solution of the Schrödinger equation for
the triple-well potential, namely E0 = −3.858 and �0 =
−0.2215. Their closeness confirms the high accuracy of the
TPA for a consistent determination of the tunneling Hamilto-
nian parameters.

Finally, let us evaluate the corresponding WFs that can
be obtained by extending Eqs. (19) to a triple-well system.
By following the same procedure of the square double-well
potential case, we construct the eigenstates ψk (x) through the
modified orbitals, with energy shift Ek − E0 ∝ �0. We then
obtain the WFs from the eigenstates ψk (x) via the unitary
transformation in Eq. (5). By expanding the resulting WFs
in powers of �0 up to O(�2

0) terms, we get a simple result
representing the straightforward extension of Eqs. (19), given
by

�L(x) = �
(1)
0 (x) + �0∂E�

(2)
0 (x),

�M (x) = �
(2)
0 (x) + �0

[
∂E�

(1)
0 (x) + ∂E�

(3)
0 (x)

]
,

�R(x) = �
(3)
0 (x) + �0∂E�

(2)
0 (x). (24)

As in the double-well case, �
(1,2,3)
0 (x) denote the left-,

middle-, and right-well modified orbitals, respectively coin-
ciding with �

(1,2,3)
0 (x) of Eqs. (22) on the intervals (−∞, x1),

(x1, x2), and (x2,∞), and vanishing elsewhere. The separation
points x1,2 are taken at the center of the interwell barriers, as
shown in Fig. 2(b).

Looking at Eqs. (24), we notice that the WFs for the
triple-well system are given by the same expressions of the
double-well system in Eq. (19). Indeed, the first term rep-
resenting the WF inside the respective well is given by the
orbital, while the second term (with derivatives) describing
the WF tails penetrating to neighboring wells is proportional
to �0. Let us remark that the latter represents the energy shift
(tunneling energy) for the double-well potential. Remarkably,
even if the energy shift in the triple-well case is different
(E1 − E0 = √

2�0), see Eqs. (9), the
√

2 factor cancels out
during the derivation, confirming that the WF tail is always
determined by the tunneling coupling to the neighboring well.
A detailed derivation for a generic multiwell system will be
given in a separate work.

In Fig. 3, we compare the WFs �L,M,R(x) in Eqs. (24)
obtained with the TPA (blue dashed curves) with the orbital
functions �

(1,2,3)
0 (x) in Eqs. (22) (black dashed curves) and

the exact results in Eq. (9) obtained via numerical calculations
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FIG. 3. Left-, middle-, and right-well WFs for the square triple-
well potential shown with dashed gray lines. Red solid curves
correspond to exact calculations in Eq. (9), blue dashed curves show
our analytical results obtained with the TPA in Eqs. (24), and black
dashed curves show the orbital functions �

(1,2,3)
0 (x) in Eqs. (22).

Parameters: L = 2, b = 0.5, and V0 = 5, in arbitrary units.

(red solid curves). We observe that the orbitals �
(1,2,3)
0 (x)

provide a close approximation to the corresponding exact WFs
�L,M,R(x) within each well, despite notable differences in
their tails into neighboring wells. Furthermore, the approxi-
mate results closely match the exact ones, even in the regions
of the tails (beyond the respective well), underscoring the
precision of the TPA. Ultimately, we notice that the tails of
the WFs into the neighboring wells are less pronounced for
the left and right wells compared to the middle well, due to
the slightly different boundary conditions for the modified
orbitals of the external wells, as described in Eqs. (11).

In the next section, we derive the nonstandard Hubbard
terms using our analytical expression for the double-well WFs
in Eqs. (19) and we show how these nonstandard Hubbard
terms can be used to suppress single-particle tunneling in the
presence of long-range interparticle interaction.

V. NONSTANDARD HUBBARD HAMILTONIAN

A. Distinguishable interacting particles in a symmetric
double-well potential

The interaction between two particles in a double-well
potential can be described by a two-body repulsive potential
V (x − y) > 0. Since the many-body basis for two distin-
guishable particles is given by the tensor product of the
single-particle WFs, the matrix elements of the interaction
term for two distinguishable particles in the tunneling Hamil-
tonian basis are given by

Vi′ j′i j =
∫

�i′ (x)� j′ (y)V (x − y)�i(x)� j (y) dx dy. (25)

Here, �i(x) is the WF at site i = L, R of the symmetric
double-well potential in Fig. 1(a). The interaction potential
in Eq. (25) can be decomposed into standard and nonstan-
dard Hubbard terms, corresponding respectively to diagonal
(i j = i′ j′) and off-diagonal (i j �= i′ j′) matrix elements. The
Hubbard terms can be further separated into the standard
Hubbard on-site interaction term Viiii ≡ U (for i = j) and the

extended Hubbard term Vi ji j ≡ U (for i �= j) [3], respectively
defined as

U =
∫

�2
L (x)V (x − y)�2

L (y) dx dy, (26a)

U =
∫

�2
L (x)V (x − y)�2

R(y) dx dy. (26b)

Similarly, the nonstandard Hubbard terms can be separated
into the DT (�1) and PT (�2) terms, with amplitudes respec-
tively given by

�1 =
∫

�2
L (x)�L(y)V (x − y)�R(y) dx dy, (27a)

�2 =
∫

�L(x)�L(y)V (x − y)�R(x)�R(y) dx dy. (27b)

The physical interpretation of these terms is evident: the DT
term (�1) represents a single-particle hopping (e.g., �LL →
�LR) caused by the interaction with the nontunneling particle,
while the PT term (�2) describes the direct (e.g., �LL →
�RR) and exchange (e.g., �LR → �RL) two-particle hopping.
In a double-well potential, the DT term in Eq. (27a) can
always be added to the single-particle tunneling, resulting in
an effective tunneling �eff ≡ �0 + �1 [3,5]. Therefore, in
principle, the effective tunneling can be suppressed by the
interaction when �1 = −�0.

For a repulsive contact interaction described by

V (x − y) = Vδ δ(x − y) > 0, (28)

the DT and PT terms can be evaluated directly by substituting
Eqs. (19) into Eqs. (27), obtaining

�1 = �0Vδ

∫ 0

−∞

[
�

(1)
0 (x)

]3
∂E�

(1)
0 (x) dx, (29a)

�2 = 2�2
0Vδ

∫ 0

−∞

[
�

(1)
0 (x)∂E�

(1)
0 (x)

]2
dx. (29b)

As expected, the DT term is proportional to �0, while the
PT term is proportional to �2

0. From Eq. (29a), we notice that,
if �1/�0 < 0, the effective tunneling coupling �eff could be
suppressed by a sufficiently large Vδ . However, comparing
Eq. (20) with Eq. (29a), we can see that this suppression
cannot occur for a contact interaction. Although this can be
easily checked numerically, in the following we show how
these results can be obtained by a careful analysis of Eq. (29a).
First, let us notice that the difference between Eq. (29a) and
the orthogonality expressed in Eq. (20) lies in the third power

of the orbital function [�
(1)
0 (x)]3. In the latter case, the orbital

function �
(1)
0 (0) > 0, while the WF tail �0∂E�

(1)
0 (x) changes

its sign inside the integral. Since the integral of their product
should be zero, both contributions should cancel each other
out. On the other hand, the negative contribution to the integral
in Eq. (29a) is amplified compared to the positive one, because

the value of the orbital �
(1)
0 (x) decreases as x → 0, where the

WF tail is positive. This implies that �1 < 0, so that the DT
term has always the same sign as �0 and consequently it can
only increase the effective single-particle tunneling |�eff |.
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FIG. 4. DT amplitude �1 (blue curve) and PT amplitude �2 (red
curve) as a function of the interaction range d for a symmetric square
double-well potential. Parameters: L = 2, b = 0.5, V0 = 5, and
�0 = −0.22. Interaction strength Vδ = 1, in arbitrary units.

This outcome undergoes a significant transformation when
considering instead of a contact interaction a long-range one

V (x − y) =
{

V for |x − y| < d,

0 elsewhere,
(30)

where d denotes the interaction range. For simplicity, in the
subsequent discussion we exclusively focus on this toy-model
interaction, even if similar results can be obtained using a
more physically realistic screened Coulomb interaction, as in
[37]. Moreover, this toy-model allows us to study the general
behavior of the nonstandard Hubbard terms as a function of
the system parameters. Indeed, from Eq. (27a), we notice that
�1, as a function of the interaction range, becomes positive
for d � L/2, where L is the well width. Indeed, the main con-
tribution to the integral in Eq. (27a) comes from x � −L/2, at
the maximum of the left-orbital function. In this case,

�1 ∝
∫ y2

y1

�L(y)�R(y) dy,

where y1,2 = −L/2 ∓ d . As a result, �1 � 0 for d � L/2
due to orthogonality; see Eq. (20). Subsequently, �1 starts to
increase for d � L/2, as the long-range interaction begins to
connect the central regions of the two WFs. This qualitative
argument has been tested numerically in Fig. 4, where the DT
and PT terms (�1 and �2) for two distinguishable particles
in a square double-well potential with long-range interaction
are shown as a function of the rescaled interaction range d/L.
For the sake of comparison with the contact interaction in
Eq. (28), in the calculations we kept Vδ = 2d V fixed. It is
clear that, in this way the results for the contact interaction
are obtained in the limit d → 0 and V → ∞. The amplitudes
are evaluated by substituting the exact WFs of Eq. (7b) in
Eqs. (27), by using the long-range potential in Eq. (30). As
expected, �1 undergoes a sign change for d � L/2. Given that
�0 < 0, see Eq. (7a), the effective single-particle tunneling
�eff can be always suppressed for some finite interaction
range d � L/2 and a sufficiently large interaction strength Vδ ,
since �1 ∝ Vδ .

In the next section, we will show how PT is still possible
even in the case of single-particle tunneling suppression, due
to a combined action of the nonstandard Hubbard DT term
and the long-range interaction.

B. Two interacting electrons with parallel spins in a square
triple-well potential

As we have discussed, the suppression of single-particle
tunneling coupling in the nonstandard Hubbard model arises
due to the interplay of long-range repulsive electron inter-
action and lattice potential. In principle, we would expect
that this suppression, similarly to what happens in a flat
band in twisted bilayer graphene systems [37–40], disrupts
the electron transport. However, instead of being suppressed,
transport can still occur via PT of localized electron pairs that
are not subjected to “decay” through single-electron tunneling
processes [7].

One can argue that, even in the context of the standard Hub-
bard model, single-electron hopping in a double-well potential
is suppressed for large on-site interaction (U ). For this reason,
it could be challenging to distinguish this suppression from
the one due to the nonstandard DT term. To avoid this issue,
let us consider two electrons with parallel spins so that they
cannot occupy the same well due to the Pauli principle. In this
case, the contribution of the long-range electron interaction
in neighboring sites, U � U , replaces the standard on-site
Hubbard term U . As a result, single-electron tunneling is not
suppressed by the on-site interaction, while the DT term can
still induce the suppression. Even in this scenario, similarly
to the double-well case, the DT term and the single-particle
tunneling term sum up to give an effective single-particle
tunneling term �eff . Therefore, if �0 is exactly opposite to the
DT term �1, the electron pair occupying two adjacent wells
becomes stable and moves coherently due to the PT term.

To show this mechanism explicitly, let us consider two
electrons with parallel spins in a triple-well potential, as
shown in Fig. 5(a). The corresponding lowest-band Hamilto-
nian can be written as

Ĥ = Ĥ3 + V̂ , (31)

where Ĥ3 is the noninteracting tight-binding tunneling Hamil-
tonian, given by Eq. (8), while V̂ represents the interparticle
interaction term. The noninteracting Hamiltonian can be
rewritten in the second quantization formalism as

Ĥ3 = E0

3∑
j=1

n̂ j + �0(â†
LâM + â†

MâR + H.c.), (32)

where â(†)
j destroys (creates) an electron at site j = 1, 2, 3 ≡

L, M, R, n̂ j = â†
j â j is the number operator, E0 is the site

energy, and �0 is the tunneling energy given by Eq. (23).
Since the Hamiltonian does not contain any spin-flip terms,
the number operators n̂ j involve only parallel spins, so that
the spin indices can be omitted.

In a similar way, the interaction operator V̂ can be written
in the second quantization formalism as

V̂ = 1

2

∑
i′ j′i j

Vi′ j′i j â
†
i′ â

†
j′ â j âi, (33)

where Vi′ j′i j is obtained by substituting in Eq. (25) the
triple-well WFs � j (x) ≡ 〈x|â†

j |0〉 given by Eqs. (9) and the
long-range potential interaction of Eq. (30). Thus, considering
only parallel-spin electron motion, Eq. (33) can be explicitly
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FIG. 5. (a) Coherent motion of two interacting electrons with parallel spins in a symmetric square triple-well potential, corresponding
to the PT process. Black dashed lines correspond to the single-site ground state energy E0, while d is the interaction range. (b) Occupancy
probabilities PLM (t ) (red curve) and PLR(t ) (blue curve) for L = 2, b = 0.5, V0 = 5, and �0 � −0.22. (c) Occupancy probabilities PLM (t ) (red
curve) and PLR(t ) (blue curve) for L = 4, b = 1, V0 = 5, and �0 � −0.0167. Interaction strength Vδ = 3 and interaction range d/L = 2, so
that U � 0.35, �1 � 0.0125, and �2 � 0.0012 in (b) and U � 0.19, �1 � 0.0027, and �2 � −6.4 × 10−6 in (c), in arbitrary units.

written as

V̂ =U (n̂Ln̂M + n̂Mn̂R) + �1(n̂Lâ†
MâR + n̂Râ†

MâL + H.c.)

− �2(n̂Mâ†
LâR + n̂Mâ†

RâL ), (34)

where U represents the nearest neighbor interaction term, ob-
tained in the triple-well case by replacing �R(x) with �M (x)
in Eq. (26b), so that

U =
∫

�2
L (x)V (x − y)�2

M (y) dx dy, (35)

while the last two terms describe respectively the DT and PT
processes, with amplitudes given by

�1 =
∫

�2
L (x)�M (y)V (x − y)�R(y) dx dy, (36a)

�2 =
∫

�L(x)�M (x)V (x − y)�M (y)�R(y) dx dy, (36b)

where �1 ≡ �M→R
1 = �M→L

1 and �2 ≡ �L→M,M→R
2 =

�R→M,M→L
2 . Notice that, in our calculations, we have chosen

the interaction range d in Eq. (30) so that the contribution
from the next-to-nearest neighbor term can be neglected. In
this way, the total Hamiltonian in Eq. (31) represents the
nonstandard Hubbard model, whereas the extended Hubbard
model arises simply by setting �1 = �2 = 0 in Eq. (34).
Finally, we observe that, in the presence of long-range
interaction, the DT term �1 changes its sign depending
on the interaction range, as illustrated in Fig. 4 for the

double-well system (for the triple-well case, see Fig. S2.1 in
the Supplemental Material [34]).

The effectiveness of our approach can be tested directly by
studying the quantum dynamics of the system. In particular,
let us consider as initial condition two electrons occupying
two neighboring wells j and j

′
. Their time-dependent wave

function can always be written as

|�( j j
′)(t )〉 =

∑
j< j′

b( j j
′
)

j j′ (t ) â†
j â

†
j′ |0〉 , (37)

where j, j′ = L, M, R, while the upper indices ( j j
′
) label the

initial state. Specifically, let us choose j = L and j
′ = M, so

that the left and middle wells are initially occupied. Then,
Eq. (37) can be explicitly written as

|� (LM )(t )〉 = [
b(LM )

LM (t ) â†
Lâ†

M + b(LM )
LR (t ) â†

Lâ†
R

+ b(LM )
MR (t ) â†

Mâ†
R

] |0〉 . (38)

By substituting Eq. (38) into the time-dependent Schrödinger
equation

i∂t |� ( j j
′
)(t )〉 = (Ĥ3 + V̂ ) |� ( j j

′
)(t )〉 , (39)

we obtain the following equations of motion:

iḃ(LM )
LM (t ) = (2E0 + U )b(LM )

LM (t )

+ (�0 + �1)b(LM )
LR (t ) + �2b(LM )

MR (t ),

iḃ(LM )
LR (t ) = 2E0b(LM )

LR (t )

+ (�0 + �1)
[
b(LM )

LM (t ) + b(LM )
MR (t )

]
,
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FIG. 6. (a) Occupancy probabilities PLM (t ) and (b) occupancy probabilities PLR(t ) obtained with the nonstandard Hubbard model (red
curves) and the extended Hubbard model (green curves), for the case of complete single-particle tunneling suppression. Parameters: L = 2,
b = 0.1, V0 = 1.1, and �0 � −0.32. Interaction strength Vδ = 22 and interaction range d/L = 2, so that U � 1.54, �1 � −�0, and �2 � 0.22,
in arbitrary units.

iḃ(LM )
MR (t ) = (2E0 + U )b(LM )

MR (t )

+ (�0 + �1)b(LM )
LR (t ) + �2b(LM )

LM (t ). (40)

Looking at Eqs. (40), we notice that the DT term �1 ap-
pears only together with the single-particle tunneling �0, thus
giving rise to an effective single-particle tunneling �eff =
�0 + �1 [3–5]. Equations (40) can be integrated numerically
to obtain the occupancy probabilities for all sites of the triple-
well system as a function of time. Specifically, the probability
to find the two electrons in the wells j, j′ is defined as

Pj j′ (t ) = 〈� (LM )(t )| n̂ j n̂ j′ |� (LM )(t )〉
= ∣∣b(LM )

j j′ (t ) − b(LM )
j′ j (t )

∣∣2
, (41)

while the probability to find one electron occupying the well
j is defined as

Pj (t ) =
∑
j′ �= j

∣∣b(LM )
j j′ (t )

∣∣2
. (42)

In Figs. 5(b) and 5(c), we show the probabilities PLM (t ) and
PLR(t ), derived from Eq. (41), for two different geometries of
the triple-well system at some fixed interparticle interaction
strength. Particularly, in Fig. 5(c), we adjust the geometry
of the system (by enlarging the well and barrier widths) to
produce a significant suppression of PLR(t ), if compared with
that in Fig. 5(b). This suppression suggests the emergence of a
propagating correlated electron pair within the system, show-
ing that single-particle tunneling can be suppressed induced
by modifying the well parameters. Note that a similar suppres-
sion is also observable within the extended Hubbard model
framework. Specifically, it is easy to show that the suppres-
sion of PLR(t ) in the extended Hubbard model occurs when
U � �0 (for details, see the Supplemental Material [34]).

Clearly, the nonstandard and extended Hubbard model
diverge significantly when complete suppression of
single-particle tunneling occurs, i.e., for �1 = −�0. To
show this explicitly, we adjust the geometry of the system
and the interaction strength to achieve complete suppression
of single-particle tunneling �eff . Results are shown in Fig. 6

for both nonstandard (red curves) and extended (green
curves) Hubbard models. As one can see, notable distinctions
between the two models’ predictions exist. Specifically, the
extended Hubbard model predicts a small, but not zero,
amplitude for PLR(t ) [see Fig. 6(b)], as well as a smaller
oscillation frequency of PLM (t ) compared to the nonstandard
Hubbard model [see Fig. 6(a)]. Given that in the nonstandard
Hubbard model the single particle tunneling is suppressed, the
enhanced transport efficiency, signaled by the high frequency
of oscillations of PLM (t ), is due to the presence of the PT
term.

Finally, one may wonder what is the region of parameters
in which the nonstandard and extended Hubbard model give
approximately similar outcomes. Within the validity of the
single-band approximation, a glance at Eq. (40) reveals that
the two Hubbard models are expected to give close results
when the �1 and �2 terms become negligible compared to �0,
namely for sufficiently weak interaction strength. A detailed
comparison between the two Hubbard models, as well as a
comparison with our analytical approach, is reported in the
Supplemental Material [34].

VI. CONCLUSIONS

In conclusion, we have explored the conditions governing
the suppression of single-particle tunneling coupling in peri-
odic systems, within the framework of a nonstandard Hubbard
model, including density-induced tunneling and pair tunnel-
ing terms. Our findings demonstrate that such suppression
cannot occur with a conventional contact repulsive interaction,
but only in the presence of a long-range repulsive interac-
tion. A better understanding of the mechanism underlying
the suppression of the single-particle tunneling could be a
significant issue in the theory of quantum transport in cor-
related systems. Indeed, as we have shown here, see Fig. 6,
in the presence of single-particle tunneling suppression the
dynamics is dominated by pair tunneling, which enhances the
transport efficiency.

The consequences of these effects are far reaching,
since single-particle tunneling suppression and pair tunneling
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dominated dynamics may lead to transport regimes char-
acterized by efficient and robust electron pair transport.
Indeed, within the nonstandard Hubbard model considered
here, increasing the interaction strength not only suppresses
single-particle tunneling but also enhances pair tunneling,
introducing a competition between these two effects. Such
interplay may lead to nontrivial transport regimes that could
potentially expand the paradigm of Mott-insulator transitions
[41] beyond the standard Hubbard model. In the future, we
plan to investigate the impact of the effects unveiled in this
manuscript in lattice models of different dimensions.
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