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Effective theory for graphene nanoribbons with junctions
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Graphene nanoribbons are a promising candidate for fault-tolerant quantum electronics. In this scenario,
qubits are realized by localized states that can emerge on junctions in hybrid ribbons formed by two armchair
nanoribbons of different widths. We derive an effective theory based on a tight-binding ansatz for the description
of hybrid nanoribbons and use it to make accurate predictions of the energy gap and nature of the localization
in various hybrid nanoribbon geometries. We use quantum Monte Carlo simulations to demonstrate that the
effective theory remains applicable in the presence of Hubbard interactions. We discover, in addition to the
well-known localizations on junctions, which we call “Fuji”, a new type of “Kilimanjaro” localization smeared
out over a segment of the hybrid ribbon. We show that Fuji localizations in hybrids of width N and N + 2
armchair nanoribbons occur around symmetric junctions if and only if N (mod 3) = 1, while edge-aligned
junctions never support strong localization. This behavior cannot be explained relying purely on the topological
Z2 invariant, which has been believed to be the origin of the localizations to date.
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I. INTRODUCTION

The ability to engineer hybrid nanoribbons [1,2] has
opened up the possibility of using such systems to manufac-
ture quantum dots [3] and other advanced electronic devices.
A central aspect that drives the usefulness of these systems
is their ability to support localized electronic states that can
be achieved through careful doping of the ribbons. Various
models of nanoribbons exhibit edge-state localization with
a topological origin [4–7]. In Ref. [8] it was argued that
completely localized low-energy states occur at the junction
of two armchair graphene nanoribbons (AGNRs) that are
topologically distinct, forming so-called symmetry-protected
topological edge states that should depend only on the geo-
metrical, or topological, aspects of the system and not on the
details of any interaction. These states have electrons confined
not only to the edge of the ribbon, but concentrated around the
junctions.
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Reference [9] confirmed that this localization is robust
against the inclusion of an on-site Hubbard interaction via
nonperturbative calculations. The localization of states for
the 7/9 and 13/15 hybrid nanoribbon systems persisted for
a wide range of Hubbard interactions. Recently the authors
of Ref. [10] have also investigated the role of interactions
in ribbons with finite lengths using a mean-field prescription.
Other interesting phenomena occur when certain symmetries,
such as the sublattice or chiral symmetry, is broken in these
systems [11].

Although states in these hybrid systems demonstrate lo-
calization originating at junctions between different distinct
AGNRs, the exact asymptotic behavior of these localized
states has not been quantified. As a function of distance from
a junction wavefunctions may fall off exponentially (“strong
localization”) or with some power law (“weak localization”).
This distinction has ramifications for the engineering require-
ments for manufacturing ribbons that support localization.
As we show in this paper, ribbon junctions that support
wavefunctions with exponential decays on either side can be
constructed such that they are nearly gapless under the tight-
binding approximation. Further, localization in this case can
occur for a hybrid system with a single junction.

On the other hand, weak localization on either side of
the ribbon junction cannot support a zero mode. Using weak
localization to concentrate a state along a ribbon segment
requires ribbons with an even number of junctions.

These findings are easily understood through an effective
theory (ET) of the hybrid ribbons in one dimension (1D).
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FIG. 1. A symmetric 5/7-junction made from the intersection of a 5-AGNR and a 7-AGNR. The solid rectangles highlight the unit cells of
the two individual AGNRs, with two different but equivalent choices shown in the left and right panels. The junction resides between the two
unit cells shown, respectively. Note that the central junction has an additional lattice point residing on the blue sublattice compared to the red
sublattice in both cases, as described in the text. The central junction and the junction on the edge of the compound unit cell can be thought of
as a single unit cell divided in two.

We show how to construct such a theory, and demonstrate
how the parameters of this ET can be tuned to reproduce the
low-energy spectrum of hybrid ribbons, even in the presence
of nonperturbative interaction. Once tuned, it is much simpler
to use this theory to ascertain the behavior of the low-energy
spectrum of these systems for different ribbon lengths. Indeed,
we use this ET to make predictions on the specifications of
hybrid ribbons that lead to a (nearly) gapless system. We
verify the predictions of our ET by comparing directly with
calculations on the original hybrid systems.

Our paper is organized as follows. In Sec. II we review
ribbons of uniform width and their noninteracting dispersion
relations; whether a given width is gapped or not controls
how electronic states are localized around the junctions of
hybrid ribbons, which we demonstrate in Sec. III. If a uniform
ribbon is gapped the wavefunction decays exponentially on a
segment of that width near a junction, while if the uniform
ribbon is not gapped the wavefunction decays only with an
inverse power law. From this understanding we develop and
test an effective one-dimensional tight-binding Hamiltonian
with two hopping amplitudes in Sec. IV. We show how the
effective hopping amplitudes depend on the specific geome-
tries of the hybrid ribbons, identifying low-energy constants
(LECs) that depend on the width of the ribbon segments but
not on their lengths. After fitting these LECs we demonstrate
how our ET predicts ribbon widths and lengths that have a
nearly gapless spectrum. We extend the validity of the ET
to hybrid ribbons with Hubbard interaction by introducing an
additional LEC and verify correctness using quantum Monte
Carlo simulations. After commenting on hybrid ribbons not
aligned along their centers, we recapitulate in Sec. V.

II. RIBBONS OF UNIFORM WIDTH

Armchair graphene nanoribbons (AGNRs) are carbon
nanostructures defined by their edge terminations and can be
seen as a portion of an infinite honeycomb lattice with inter-
ion spacing a. The ribbons enjoy a translational symmetry
along their length, which generates a lattice momentum k. The
width N of an AGNR is the number of ions along a zigzag
path across the ribbon, and a single unit cell consists of two
neighboring transverse zigzags. A ribbon of m unit cells can
be compactified with periodic boundary conditions at its ends.
Figure 1 shows two ribbon segments of widths 5 and 7 joined
at a junction. Clearly both segments as well as the complete
hybrid ribbon have a bipartite structure where ions of one
triangular sublattice (colored blue) have neighbors only on the
other sublattice (colored red) and vice versa.

In order to understand how the geometry influences the
strength of electronic state localizations, we have to inves-
tigate the energy spectra of the different armchair ribbons
themselves. Of interest will be the state that is closest to zero
energy, since this state will govern the long-range correlations.
A gapped system has a finite correlation length while an
ungapped system has infinite correlations, cut off in practice
by the physical length of the ribbon.

With nearest-neighbor-hopping amplitude κ these systems
are described by the Hamiltonian

H = −κ
∑
〈x,y〉

(ψ†
x ψy + ψ†

y ψx ) + interactions, (1)

where ψx destroys an electron at site x, with x and y are on
different sublattices, and we suppress spin labels here and
henceforth. When the interactions are neglected, H is just the
tight-binding Hamiltonian used to describe the band structure
[12,13] and we can find energy eigenstates by diagonalizing
the adjacency matrix.

The dispersion relations of armchair ribbons of widths 5
to 8 described by this Hamiltonian are shown in Fig. 2. The
armchair ribbons with widths N = 5 and N = 8 are gapless
while the widths N = 6 and N = 7 have finite gaps. This
reflects the well-known fact that armchair ribbons are gapless
if and only if their width is

N ≡ 2 (mod 3). (2)

A general analytic description of the spectrum of these rib-
bons in the tight-binding model can be found in Ref. [4]. The
noninteracting many-body state has all the negative energy
states filled.

The authors of [8] enumerated four distinct types of AGNR
edge terminations based on ribbon width and inversion and
mirror symmetries. They showed that the nanoribbons have
an associated binary conserved quantity, the so-called Z2 topo-
logical invariant.

III. HYBRIDS RIBBONS AND JUNCTIONS

Finite ribbon segments of different width can be joined
together to form a hybrid ribbon. The interface of two ma-
terials can support surface modes [14], in this case modes
localized along the hybrid ribbon’s length. We mention two
out of the multitude of possible shapes that hybrid ribbons can
have: two semi-infinite segments with only a single junction
and repeated segments of alternating widths, with a junction
at every width change. If the alternation is regular the two
alternating segments form one compound unit cell, which
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FIG. 2. Dispersion relations of infinitely long (i.e., mN = ∞) armchair ribbons with widths N = 5, 6, 7, 8 (top left to bottom right).

may be repeated L times along the hybrid ribbon’s length; we
reuse m to count the number of unit cells in a segment. The
compound unit cell will later be represented by two sites in
our effective theory, one site for each junction.

In Ref. [8] it was argued that the topology of these systems
preserved the localization of states even under the presence
of interactions. Their perturbative calculations corroborated
this claim. Consequently in Ref. [9] it was shown numerically
that this localization persisted in the nonperturbative regime.
In particular, [9] investigated the 7/9 hybrid (and the 13/15
hybrid) nanoribbon with nonperturbative stochastic methods
and found that localization indeed persisted in the presence of
a Hubbard interaction. One goal of this present paper is to bet-
ter quantify the nature of these localized states for not only the
7/9 geometry, but for other hybrid nanoribbon geometries. As
we show in later sections, the dynamics of these low-energy
states can be captured in a simple effective 1D model, which
in turn allows us to make predictions for a broader range of
hybrid nanoribbons.

For simplicity we only consider ribbons segments consist-
ing of a width-N armchair of length mN and a width-N + 2
armchair of length mN+2 with odd N . When ribbon segments
of different widths are aligned along their centers, as in Fig. 1,
so that the ribbon has a reflection symmetry, the junction
has a surplus of a single lattice site, belonging to one of the
sublattices (blue in the center of Fig. 1, red at the edge). In
this picture it is crucial to tile the hybrid ribbon with unit cells
of similar shape in both lattice segments. The two leftover
zigzags on the junctions can be understood as a single unit
cell divided. While in the left panel of Fig. 1 we choose unit
cells that are open at top and bottom, we can equivalently
choose all unit cells to be closed as in the right panel. In the

former case the surplus lattice site comes from the junction
zigzag of the broad segment while in the latter case the surplus
resides within the narrow segment, but it always belongs to the
same sublattice. This sublattice surplus locally breaks chiral
symmetry. We will find later that hybrid ribbons aligned at an
edge do not break chiral symmetry.

Figure 3 shows two compound unit cells of an example
7/9 hybrid nanoribbon, where we see the honeycomb lattice,
which forms the basis for extended carbon nanostructures.
A ribbon of width N = 7 has topological invariant Z2 = 0,
while a ribbon of width N + 2 = 9 has invariant Z2 = 1 (more

FIG. 3. (Bottom) The Fuji-localized state of a 7/9 hybrid ribbon
with (m7, m9) = (5, 8), shown with L = 2 two unit cells. The circles’
radii are proportional to the densities ρ (5) and their color indicates
the sublattice. (Top) We sum ρ along the width of the ribbon and
color each point colored according to sublattice. The green line is the
sum of both red and blue points along one zigzag cross section and
represents the total occupancy probability (integrated across the rib-
bon’s width) along the ribbon’s length.
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TABLE I. Topological invariant [8] (Table I therein) for the
narrower and broader parts of different junctions respectively. In a
hybrid ribbon with a symmetric junction (Figs. 1 and 3–5), the Z ′

2

invariant describes the topology in the narrow and Z2 the broader seg-
ment. In bottom aligned junctions (Fig. 12) both parts are described
by the Z ′

2 invariant. Reference [8] predicts localizations for junctions
with changing topology.

N 3 5 7 9 11 13 15 17 19 21

N + 2 5 7 9 11 13 15 17 19 21 23
Z ′

2(N ) 1 0 0 0 1 1 1 0 0 0
Z2(N + 2) 1 1 1 0 0 0 1 1 1 0

details in Table I); localization is conjectured to occur at the
junctions [8]. This system has been experimentally fabricated
[1,2].

Because the geometry controls the gap, a localized state
will decay differently on the two sides of the junction. A
localized electron’s wavefunction φ should decay with the di-
mensionless distance from the junction �x. With large enough
length segment length m, we expect the asymptotic decay to
be governed by the gap or gaplessness of the infinite ribbon
of the same width [15]. In a gapped segment we expect strong
localization and exponential decay

φ ∼ e−β�x, (3)

and in a gapless segment we expect monomial decay

φ ∼ �x−β, (4)

and only weak localization. In both cases β is some positive
width-dependent parameter independent of segment length m
and the number of compound unit cells L. This dependence
on width N has to be determined from fits to solutions of the
full problem.

In the bottom panel Fig. 3 we show the lowest positive-
energy single-electron tight-binding eigenfunction on a 7/9
hybrid ribbon where the width-7 segments have five unit
cells and the width-9 segments have eight unit cells each,
(m7, m9) = (5, 8). We take the eigenfunction φ and compute
the density normalized per unit cell

ρ(x) = |φ(x)|2, 1

L

∑
x

ρ(x) = 1. (5)

The radii of the circles are proportional to ρ and colored
according to their sublattice. In the top panel we show the
marginal densities ρ(x) summed over the width of the rib-
bon, again coloring according to sublattice. The green line is
obtained by adding both the red and blue marginal densities
along a transverse zigzag and represents the total occupancy
probability along the ribbon’s length. Both 7- and 9-armchair
ribbons are gapped since neither satisfy the gaplessness

FIG. 4. Similar to Fig. 3 but now the 13/15 hybrid with
(m13, m15) = (6, 8).

condition (2), so correlations decay exponentially on both
sides of each junction in Fig. 3.

That the N = 7 gap is larger than the N = 9 gap is apparent
by the faster decay on the width-7 segments. We observe that
on neighboring junctions the states are not only localized in
space but are also concentrated on one sublattice or the other.
The strong exponential localization allows these states to be
clearly delineated.

We remark that this junction also has changing topology
according to Ref. [8] (see Table I) and their prediction of lo-
calization therefore coincides with ours. The same occurs for
the 13/15 hybrid system, which we show in Fig. 4. However,
we will see that there are counterexamples to the otherwise
well-motivated conjecture put forth in Ref. [8] that the local-
izations are driven purely by the topological Z2 boundary. The
model we will develop in Sec. IV is generally applicable and
reliably quantifies localizations even in the cases that evade
the topological argument.

Figure 5 shows the low-energy states from 3/5, 5/7, and
9/11 hybrid ribbons. Each of these examples has a gapless
segment, since 5 ≡ 11 ≡ 2 (mod 3) satisfying the gapless-
ness condition (2), and on the gapless segment no sharp

FIG. 5. Lowest energy state densities of a 3/5 (top), a 5/7
(middle), and a 9/11 hybrid (bottom), all with segment lengths
(mN , mN+2 ) = (12, 16). These examples do not feature the two-
sided exponential Fuji localization on the junctions since width-5
and width-11 armchair ribbons have long range correlations. How-
ever, the states are trapped within those gapless segments, showing
Kilimanjaro localization.
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localization on the junction occurs. Instead, on the scale
shown the eigenstate looks essentially constant on the gapless
segments.

We distinguish these “Kilimanjaro-localized” states with a
large plateau from the sharply peaked “Fuji-localized” states
that have exponential decay on both sides of a junction [16].
We remark that the cumulated occupancy density shown in
green is not exactly constant in the plateau region. Instead,
the density increases towards the center. In fact, if the gapless
segment is very short, the localization can be very sharp, not
unlike Fuji localization. But, the state can also be meaning-
fully spread over vast regions if the gapless segment is long
enough.

Focusing on the 5/7 hybrid, as we make m7 larger the
low-energy state remains confined to the width-5 segments.
If we take m7 	 m5, we can effectively localize the density
into an arbitrarily small space compared to the total length of
the ribbon. Unlike the Fuji localization, in this limit there is no
sharp splitting between the two sublattices. The localization in
the gapless segment are only polynomial in nature and states
localized to the two sublattices at either end of the gapless
segment have a large overlap.

The 5/7 example, in particular, contradicts the claim in
Ref. [8] that a change in topology implies a Fuji localization.
However, we find that the reverse implication—localization
requires a change in topology—is consistent with the exam-
ples we have examined and the effective theory we present in
Sec. IV.

The findings of Ref. [8] are based on hybrid ribbons with
a single junction connected by semi-infinite ends, whereas
our investigations here involve hybrid ribbons with periodic
boundary conditions, which essentially models an infinite
number of junctions. A natural question is whether this differ-
ence accounts for the discrepancy between our findings. With
our numerical techniques it is not possible to model infinite
ribbons. However, instead of periodic boundary conditions at
the ends, we can use open boundary conditions and investigate
the nature of the localization as we extend the length of each
semiribbon. We show the length-normalized densities for the
lowest nonzero energy state [17] for increasingly long 5/7
hybrid ribbons with open boundaries in Fig. 6. The Kiliman-
jaro localization is prominent and remains so as the ribbons’
respective lengths increase. We therefore surmise that this
type of localization persists in the limit of semi-infinite ends.
This is perfectly in line with the expectations in our ET
framework and cannot be reconciled with the predictions in
Ref. [8].

IV. EFFECTIVE 1D TIGHT-BINDING MODEL

A. Formulation

An electron localized on a junction is smeared out over
many sites of one sublattice near by. We observe in Figs. 3–5
that at a junction the wavefunction is concentrated on the sub-
lattice with a surplus site. This sublattice symmetry breaking
and wavefunction concentration allows us to treat the 2L junc-
tions from L compound unit cells as the sites of our model.
Because the junctions alternate between having a surplus of
one of the honeycomb sublattices (and the corresponding

FIG. 6. Lowest nonzero energy state densities of the 5/7 ribbon
with open boundary conditions. The top panel has (mN , mN+2 ) =
(20, 20), middle (mN , mN+2 ) = (30, 30), and bottom (mN , mN+2 ) =
(40, 40). The states are again trapped within those gapless segments
and demonstrate Kilimanjaro localization.

wavefunction concentration), we arrive at a length L bipartite
lattice with a two-site basis. The two effective sites can be
thought of as the local surplus of one or the other sublattice.
Electrons hop between these effective sites via some hopping
amplitude controlled by the width and length of the segment
connecting them; a segment of width N and length mN lets
electrons tunnel with an amplitude controlled by the wave-
function overlap. If two junctions are separated by a strongly
localizing segment (3) of length m the wavefunction overlap
and thus the tunneling amplitude t will be exponentially small,

t ∼ e−βm, (6)

while two junctions separated by a weakly localizing segment
(4) will have polynomial overlap and tunneling amplitude

t ∼ m−β, (7)

redefining the dimensionless β.
An effective 1D tight-binding Hamiltonian that describes a

hybrid ribbon of alternating widths N and N + 2 is

H1D = −
L−1∑
x=0

(tN c†
2xc2x+1 + tN+2c†

2x+1c2x+2 + H.c.), (8)

where cx destroys a fermion at effective site x, and tN is
the tunneling (or hopping) amplitude across a ribbon seg-
ment of width N . It can be block-diagonalized by a Fourier
transformation yielding

H1D = −
∑

k

c†
k

(
0 tN eik + tN+2e−ik

tN e−ik + tN+2eik 0

)
ck ,

(9)

where the dimensionless momentum k is in terms of the
inverse lattice spacing and the creation and annihilation op-
erators in momentum space are two-dimensional vectors,

ck =
(

ck,A

ck,B

)
(10)

and the A and B indices indicate the two sublattices or equiv-
alently the two junctions.
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FIG. 7. Gaps of a 5/7 hybrid (left) and a 7/9 hybrid (right) used to fit the LECs (13) for N = 5 and N = 7, respectively. When fitting a
power law as a function of the length m5, the length m7 = 25 has been kept fixed and similarly for the exponential fit to m7 we fixed m9 = 25.

After diagonalizing the blocks we obtain the dispersion
relation

E (k) = ±
√

t2
N + t2

N+2 + 2tNtN+2 cos 2k (11)

for momenta in the reduced first Brillouin zone k ∈ [0, π ) and
the energy gap

� ≡ 2|E (π/2)| = 2
√

t2
N + t2

N+2 − 2tNtN+2 = 2|tN − tN+2|
(12)

between lowest positive and highest negative energies, which
will become very important in the following considerations.
Note that a hybrid ribbon with small tN and tN+2 necessarily
has a small gap. However, a small tN is a consequence of a
large pure-armchair gap since in this case it less likely to hop
between junctions. This effective theory predicts that joining
two strongly gapped ribbons leads to a very small overall gap.

Sharpening the scaling of the overlaps (6) and (7) into
quantitative predictions, the effective hopping amplitudes are

tN (m) =
{
κ α m−β with β ∼ 1, if N = 2 (mod 3),
κ α e−βm with β ∼ �N , otherwise,

(13)

with α another (apriori unknown) positive dimensionless pa-
rameter that can only depend on N , not on m and L and the
honeycomb κ (1) appears for dimensional reasons. In the first
case β is expected to be related to critical behavior and cannot
be predicted from first principles. In contrast, the exponential
decay is governed by the magnitude of the pure N-armchair
ribbon gap �N up to small corrections. We will use this ansatz
to fit the low-energy constants (LECs) α and β for different
values of N .

Concisely, the effective treatment predicts that an N/N + 2
hybrid ribbon of two armchair nanoribbons has Fuji-localized
states with close to zero energy if and only if the junction is
center aligned and N (mod 3) = 1 so that neither width fulfils
the gaplessness condition (2).

B. Determination of the low-energy constants

We now have all ingredients to fix the low-energy constants
(13) of our 1D effective theory (8). By considering a particular
N/N + 2 hybrid ribbon, we calculate the gap � (defined as

twice the lowest positive single-particle energy) of the hybrid
system for different ribbon lengths mN and mN+2. For the
sake of simplicity we choose one of the lengths very large,
say mN+2 	 mN , so that the N + 2-width ribbon segment is
long enough to be compatible with the thermodynamic limit.
Then the effects of this ribbon segment are negligible and the
junction gap (12) reduces to � = 2tN . We fit our results for
tN (mN ) to the form of the effective hopping (13), fixing the
parameters αN and βN . Two representative fits are shown in
Fig. 7, with a power-law fit in the left panel and an exponential
fit on the right.

We summarize the results of the fitted low-energy constants
in Table II for select values of N . Within either class, power
law or exponential, we observe the trend that both LECs α and
β decrease with growing N . While we do not have a direct
physical interpretation for the proportionality constant α, it is
clear that β has to follow this trend because the asymptotic
N → ∞ case of graphene is gapless. In particular, the expo-
nential case features decay coefficients β similar to the pure
armchair ribbon gap �N as expected.

Note how the 7/9-junction is special in the sense that it
is the smallest ribbon size with strong localization for both
widths. No Fuji localization is possible in narrower center-
aligned ribbons. We also remark that the 3-armchair ribbon
features such a strong exponential decay that it is virtu-
ally instant and (at least within double floating precision)
t3(m) = 0 for m > 0. Localized states do not penetrate into the
3-armchair at all.

TABLE II. Fitted low-energy constants (LECs) α, β from
Eq. (13) following the exponential (exp) or power (pow) laws
depending on the width N of the armchair ribbon. �N is the cor-
responding energy gap of the ribbon without junction. For N = 3 we
have β = ∞ and there is no value for α since the wavefunction is
exactly confined to the junction (see Fig. 5).

N 3 5 7 9 11 13 15 17 19 21

Decay exp pow exp exp pow exp exp pow exp exp
α 0.57 0.21 0.22 0.43 0.13 0.15 0.32 0.09 0.11
β ∞ 0.89 0.54 0.34 0.79 0.30 0.23 0.69 0.22 0.18
�N 0.83 0 0.47 0.35 0 0.26 0.22 0 0.18 0.16
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FIG. 8. Gap of a 7/9 hybrid ribbon given by the prediction
(14) and direct diagonalization of the underlying tight-binding
Hamiltonian shown in (1) (without interactions).

C. Application of our effective theory

Despite the simplicity of our effective theory, we can al-
ready use it to make predictions in cases where the original
system is more difficult to simulate. We can apply our ET,
for example, to predict the respective lengths at which the
gap of a hybrid nanoribbon (almost) vanishes. As an example
we return to our prototypical 7/9 hybrid system, but with the
desire to pick segment lengths so that the system is as close as
possible to gapless.

To minimize the gap (12) our ET provides the condition

t7
!= t9 ⇒ α7e−β7m7 != α9e−β9m9

⇒ m7 = β9

β7
m9 + ln

α7

α9
(14)

has to hold as best possible for integers m7 and m9. Using the
parameters given in Table II we find that (m7, m9) = (5, 8) is a
good tuple that nearly satisfies this constraint. This prediction
is confirmed in Fig. 8, which shows the hybrid ribbon’s gap
as a function of the width-7 segments’ length, holding the
width-9 segments at m9 = 8. The next three smallest tuples
that our theory predicts for this system are (22,35), (39,62),
and (56,89). For the 13/15 hybrid system our effective theory
predicts the following four smallest tuples giving a near zero
gap: (m13, m15) = (6, 8), (29,38), (52,68), and (75,98).

Note that in both these systems, both ribbon widths are
gapped and the localization is Fuji. For systems where one
width is gapped and the the other is not, our theory predicts
that such systems cannot support a (near) zero gap without
weakly localizing segments many orders of magnitude longer
than the strongly localizing segments. This is consistent with
all our simulations to date.

D. Incorporating interactions

So far we have focused on noninteracting tight-binding
dynamics, both within the hybrid nanoribbon and its effective
1D description. Including interactions, for example by adding
an on-site Hubbard interaction U that couples the spin-up ↑

FIG. 9. Interacting energy E0, depicted as points with error bars,
of the lowest state as a function of on-site Hubbard interaction U
obtained from QMC calculations in Ref. [9] for the 7/9 system with
(m7, m9) = (3, 5). The 7/9 simulations were performed with three
different values of inverse temperature β, where β = 8 (12) results
are slightly shifted to the left (right) to help visually differentiate the
points. The black point corresponds to the noninteracting result.

and spin-down ↓ electrons

HHubbard = U
∑

x

(
ψ

†
x,↑ψx,↑ − 1

2

)(
ψ

†
x,↓ψx,↓ − 1

2

)
(15)

to the underlying tight-binding Hamiltonian (1), precludes
simple diagonalization.

Reference [9] showed that the localization was robust
against the influence of the Hubbard interaction (15) via
stochastic Monte Carlo methods and that there is a nearly
quadratic dependence of the gap on U . Figure 9 shows this
dependence for the example of the 7/9 system.

Our 1D effective model (8) can easily incorporate these
results by including

ms(c
†
2xc2x − c†

2x+1c2x+1), (16)

where the effective staggered mass ms is an LEC and fit to
reproduce the quadratic dependence. The momentum-space
formulation (9) becomes

H1D = −
∑

k

c†
k

(
ms tN eik + tN+2e−ik

tN e−ik + tN+2eik −ms

)
ck ,

(17)

which can be easily diagonalized, giving

E (k) = ±
√

t2
N + t2

N+2 + 2tNtN+2 cos 2k + m2
s , (18)

and a gap

� = 2|E (π/2)| = 2
√

(tN − tN+2)2 + m2
s . (19)

The presence of this staggered mass does not change the scal-
ing behavior of the hopping terms (13) and therefore does not
affect the nature of the localization. For a given U simulated
with a particular tuple (mN , mN+2), the parameter ms can be
tuned so that our ET matches the energy of the underlying
theory, like that shown in Fig. 9. Once tuned, we can then
make predictions for the size of the gap for hybrid ribbons
with segments of the same widths but with different lengths.
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FIG. 10. Extracting ms from the underlying theory. Here stochas-
tic simulations of the full 7/9 hybrid system with tuple (m7, m9) =
(3, 5), L = 1 and inverse temperature β = 8 were performed at dif-
ferent values of U as labeled in the figure and shown as points with
error bars. The value of ms was fitted to each of these points, and
the resulting prediction of the gap provided by our ET [Eq. (19)]
for other tuples where m7 = 3 and m9 ∈ [1, 10] is plotted. The black
points are the noninteracting results.

The tuple that minimizes the gap will be the one that corre-
sponds to |tN − tN+2| ∼ 0. Since the staggered mass preserves
the scaling behavior of the hopping terms, the predicted tuples
that minimize the gap in the previous section when ms = 0
will also minimize the gap for ms �= 0. However, in this case
the minimum gap becomes � ∼ 2ms.

As an example of how we can extract ms, we perform
stochastic simulations of the underlying Hubbard theory on
the full 7/9 hybrid ribbon with tuplet (m7, m9) = (3, 5). The
details of our quantum Monte Carlo (QMC) simulations are
described in [9]. In short, we sample the electron configura-
tions from their quantum mechanical probability distribution
using a Markov chain with global updates. In the limit of
high statistics these simulations become exact. Given limited
computational resources, we arrive at a distribution of values
around the true result and we depict the standard error of this
distribution as error bars in Figs. 9–11.

The results of the gap for different values of Hubbard
coupling U are shown as points with error bars in Fig. 10. We
then fit our ET to these results, thereby extracting ms with the
values shown in Fig. 10. With ms in hand, we can predict the
value of the gap for other combinations of segment lengths,
shown by bands in the same figure.

To demonstrate the efficacy of our ET, we use these same
values of ms to plot our predicted gaps for completely different
7/9 geometries, with m9 = 8, in Fig. 11. Every band in Fig. 11
is a prediction given the low-energy constants α and β from
the noninteracting case and the effective staggered mass ms for
that Hubbard coupling. In particular, the (m7, m9) = (3, 5) hy-
brid geometry used to extract ms does not appear in Fig. 11 at
all. We then perform stochastic simulations of the underlying
theory of these systems and plot their resulting gaps, shown as
data points with error bars. We find good agreement between
our simulations and ET. We thus surmise that our ET with a

FIG. 11. Comparing our ET prediction with the underlying the-
ory. Using the values of ms extracted in Fig. 10, we plot our ET
prediction of the gap, shown as bands, for 7/9 geometries where
m9 = 8 and m7 ∈ [1, 10]. Superimposed on these bands are the gaps
obtained from stochastic simulations of the underlying theory of
these systems.

staggered mass captures both the dynamics and interactions of
the lowest energy spectrum of the hybrid nanoribbons.

More quantitative descriptions of interacting hybrid
nanoribbons, potentially going beyond Hubbard interactions,
are possible within our formalism. For example, the inclusion
of off-diagonal superconducting pairing terms, i.e., ckck and
c†

kc†
k , may be done with the aid of a Bogoliubov transformation

[18]. One could alter the dynamics of the system by including
next-to-nearest-neighbor hoppings, or extend the interaction
by considering on-site plus nearest-neighbor couplings (i.e.,
extended Hubbard). Such possibilities are the subject of future
investigations.

E. Misaligned hybrid ribbons

In the hybrid ribbons discussed so far the segments are
aligned along their center. In Fig. 12 we show junctions
aligned along the bottom edge. Unlike the center-aligned hy-
brids, the junctions of these edge-aligned hybrids do not have
surplus of one sublattice or the other and do not break the
local sublattice symmetry. This can be seen by tiling the entire
hybrid ribbon with similar unit cells (closed at top and bottom
as in the right panel of Fig. 1) so that no junction zigzag
remains. Strictly speaking, our ET breaks down in this case
because no effective lattice site is generated.

Because the sublattice symmetry is locally maintained,
there is no local surplus of either sublattice and we predict
that no Fuji localization is possible. This is indeed what we
observe in both cases of 7/9 and 9/11 edge-aligned junctions.
The latter has a change in topology as can be seen in Table I
and thus poses another counterexample to the conjecture in
Ref. [8]. We identify these states as another realization of
Kilimanjaro-localization; the state concentrates into the seg-
ment with the smaller gap.

For hybrids whose segments’ widths differ by more than 2
some offsets will maintain the sublattice symmetry and some

195135-8
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FIG. 12. Lowest energy state densities of a 7/9-junction (top)
and a 9/11-junction (bottom) with (mN , mN+2 ) = (10, 10) and
aligned at the bottom rather than the center. According to Ref. [8]
the 9/11-junction features a change in the topology of the respec-
tive armchairs (see Table I). Both cases are Kilimanjaro-localized
since the 9- and 11-armchair sides, respectively, exhibit long range
correlations.

will not. We leave a detailed study of these scenarios to future
work.

V. CONCLUSIONS

When two armchair graphene nanoribbons (AGNRs) of
different widths are joined symmetrically (see e.g., Fig. 3),
the combined system can feature a smaller band gap than
either of the AGNRs and the state with energy closest to zero
is localized at the junction. Such a localization can either be
strong with correlations decaying exponentially, or weak with
a mere power-law decay of correlations (typically not consid-
ered localized). We showed that the nature of this localization
depends solely on the band gaps of the AGNRs at either side
of the junction. More specifically, the localization is strong on
one side of the junction if and only if the AGNR on this side
has a nonzero gap. This in turn is the case if and only if the
ribbon is of width N �= 2 (mod 3).

We discovered that, in addition to localizations on junc-
tions, a different type of localization is also possible, namely
a state localized within a hybrid ribbon segment as shown in
Fig. 5. We dub the former type of localizations “Fuji” and
the latter “Kilimanjaro”. Fuji localizations require exponen-
tial correlation decay on both sides of the junction, therefore
they are only realized by symmetric N/N + 2 junctions with
N (mod 3) = 1. Kilimanjaro localizations are much more
common in that they appear in all N/N + 2 hybrid AGNRs
(symmetric and nonsymmetric, see Fig. 12) without Fuji
localization. We observed that these results often coincide
with the topology based conjecture for Fuji localizations put
forward in Ref. [8]; however, we have also identified coun-
terexamples to the predictions from topology arguments while

our description is more fundamental and rigorous for all
N/N + 2 hybrid AGNRs with odd N .

We have derived a very simple way to predict and accu-
rately quantify the different types of localized bound states
appearing in hybrid AGNRs. For this we reduce the initial
two-dimensional tight-binding problem to a one-dimensional
effective theory (ET) where the junctions of the hybrid AGNR
form the sites of the 1D lattice. The ET also relies on a tight-
binding Hamiltonian (8), which is diagonalized analytically
and the hopping amplitude between two junctions is defined
solely by the ribbon connecting these junctions. Equation (13)
summarises this dependence. The hopping decays exponen-
tially with ribbon length for gapped ribbons, signifying strong
localization, and it decays as a power law for gapless rib-
bons resulting in weak localization. We have identified two
parameters α, β, so-called low-energy constants (LECs), in
this description that depend only on the width of the AGNR
and cannot be determined other than through fitting. We have
performed these fits for odd ribbon widths up to N � 21 and
summarized the results in Table II. The same fitting procedure
can easily be extended to arbitrarily broad ribbons, limited
only by computing resources. Once the LECs are determined,
they can be used to predict the band gap in hybrid AGNRs, for
instance yielding tuples of respective ribbon segment lengths
with the smallest gap.

Finally, we put forth an extension of our ET in the presence
of Hubbard type interactions (15). Consistent with previous
findings [9], we predict the localizations to persist in the pres-
ence of interaction and we furthermore describe the quadratic
dependence of the gap on the Hubbard interaction using an
effective staggered mass term as a third LEC.

Localized Fuji-type states in armchair nanoribbons have
been proposed as qubit candidates for fault-tolerant quantum
computing before [1,3,8,9] (nicely explained and visual-
ized in Ref. [19]). Their stability against perturbations make
them very promising for this application. We now add that
Kilimanjaro-localized states are also well suited for the same
task and they even might have some advantages, for in-
stance that Fuji localizations come in alternating shapes
while all Kilimanjaro localizations are symmetric and thus
equivalent. Moreover, while localized Fuji states for a partic-
ular junction type always have the same extent, Kilimanjaro
states can be smeared out over virtually arbitrary lengths,
purely governed by the length of the confining ribbon
segment.
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