
PHYSICAL REVIEW B 109, 195131 (2024)

Phase diagram of a square lattice model of XY spins with direction-dependent interactions
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We study a generalization of the well-known classical two-dimensional square lattice compass model of
XY spins (sometimes referred to as the 90◦ compass model), which interpolates between the XY model and
the compass model. Our model possesses the combined C4 lattice and spin rotation symmetry of the compass
model but is free of its fine-tuned subsystem symmetries. Using both field theoretic arguments and Monte Carlo
simulations, we find that our model possesses a line of critical points with continuously varying exponents of the
Ashkin-Teller type terminating at the four-state Potts point. Further, our Monte Carlo study uncovers that beyond
the four-state Potts point, the line of phase transition is connected to the lattice-nematic Ising phase transition in
the square lattice compass model through a region of first-order transitions.
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I. INTRODUCTION

Spin models which have bond-direction-dependent
interactions, also called “compass models,” have provided
a novel perspective to important problems such as classical
frustration and the emergence of quantum spin liquids [1].
The most famous of these, the Kitaev honeycomb model,
displays both rich classical frustration [2] and anyonic
excitations in the quantum limit [3]. Recent interest in the
study of spin-orbit coupled Mott materials [4] has provided a
fresh impetus to understand such models in various contexts
that arise in experiments [5].

Perhaps one of the simplest examples of such a bond-
direction-dependent interaction is in the classical square
lattice compass model (CM) [1,6],

HCM = −J
∑

i

(
Sx

i Sx
i+x̂ + Sy

i Sy
i+ŷ

)
, (1)

defined with a two-component classical field �Si = (Sx
i , Sy

i ) on
the sites i of the square lattice. This model has some unusual
symmetries as compared to the standard internal and lattice
symmetries of statistical mechanics models. First, note that a
site-centered rotation of the lattice by π/2 is not a symmetry.
Neither is an internal rotation of the �S by π/2, i.e. (Sx

i , Sy
i )

→ (−Sy
i , Sx

i ) but combining these two lattice and internal
operations together results in a symmetry for the system. We
shall call this combined space-internal rotation, C4, which will
play an important role in our work. Such operations arise nat-
urally in spin-orbit coupled Mott insulators in which the spin
and space must be rotated together in the implementation of
physical space group transformations. In addition, the model
Eq. (1) has another family of striking “subsystem” symmetry
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operations in which Sx
i → −Sx

i on any one row and Sy
i → −Sy

i
on any one column. These operations clearly forbid traditional
spin-spin long-range order [7]. Numerical work and analytic
arguments have firmly established the thermal phase diagram
of the CM model. At high temperatures, the CM model has
the usual disordered phase. At low temperatures, however, it
enters a lattice nematic phase that spontaneously breaks the
rotation symmetry of the lattice. The two phases are separated
by a continuous transition in the Ising universality class, as
expected from the Z2 character of the nematic order parameter
[6,8].

While the subsystem symmetries are fascinating as a theo-
retical problem, from the point of view of magnetism in Mott
insulators, they do not appear naturally; their presence in a
model is a fine-tuned accident. Our goal thus is to find a simple
extension of the model, Eq. (1), which would model a generic
magnetic Mott insulator, i.e., one that has C4 of the square
lattice but without the extra subsystem symmetry. Here, we
propose to study the model,

HgCM = −
∑

i

(
J1Sx

i Sx
i+x̂ + J2Sy

i Sy
i+x̂

+J1Sy
i Sy

i+ŷ + J2Sx
i Sx

i+ŷ

)
, (2)

which for our purposes is a “generic compass model” (gCM).
The �Si = (Sx

i , Sy
i ) again a two-component unit vector spin

defined on lattice sites i (Fig. 1). The first line describes spins
interacting on x-oriented bonds, and the second on y-oriented
bonds. Generically our model possesses the C4 symmetry
of the compass model. In addition, the subsystem symme-
tries of the CM are now reduced to a global �S → −�S Ising
symmetry. We parametrize the exchange constants by setting
J1 = 1, J2 = 1 − α > 0. We are thus left with two tuning pa-
rameters, α and the temperature T . An interesting feature of
this generic compass model is that it has some well-known
limiting cases; when α = 0, the model reduces to the 2D XY
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FIG. 1. Illustration of the XY model with generic direction-
dependent interactions, Eq. (2). On the sites of the square lattice is
a two-component classical XY spin. The bond-direction-dependent
interactions in this model are given by J1Sx

i Sx
i+x̂ + J2Sy

i Sy
i+x̂ in the x

direction and J2Sx
i Sx

i+ŷ + J1Sy
i Sy

i+ŷ in the y direction. This form of in-
teraction possesses a symmetry operation that combines both internal
and spatial C4 transformations, where neither the spatial operation
nor the internal operation alone are symmetries of the system.

model, whereas when α = 1 it is the standard square lattice
CM [1,6].

The goal of this paper is to establish, using both numer-
ical and field-theoretic arguments, the phase diagram of this
model. We will show that relaxing the fine-tuned symmetry
makes a dramatic change to the phase diagram. The phase
transitions, in particular, are very rich with critical phenomena
that have continuously varying exponents analogous to the
Ashkin-Teller (AT) model (for pedagogical reviews, see, e.g.,
Refs. [9–11]). We find, in addition, that the manner in which
this phase diagram connects to the well-studied limiting cases
of α = 0 and 1 is rather intriguing.

The paper is organized as follows. In Sec. II, we give an
overview of the main results of this paper–the phase diagram
of the model Eq. (2) and its two regimes of transitions, the
line of continuous critical points and the first-order regime.
We then turn to the technical details: Sec. III gives a summary
of our Monte Carlo numerical method and the observables
we study. Section IV presents RG arguments in the small α

regime and numerical evidence that the KT transition of the
XY model at α = 0 evolves into a critical line with continu-
ously varying exponents of the Ashkin-Teller type and Sec. V
presents evidence that the transition for larger α eventually be-
comes first order before meeting up with the compass model at
α = 1. Finally, we provide a summary and outlook in Sec. VI.

II. RESULTS: PHASE DIAGRAM

Before turning to the details of how our conclusions were
obtained, we discuss the main result of this work: the phase
diagram of our model and the nature of the phase transitions,
which are summarized in Fig. 2(a) [Fig. 2(b) is a detail of
Fig. 2(a) in the region close to α = 1]. Our results are obtained
using both Monte Carlo numerical simulations and some gen-
eral field-theoretic arguments, as described in detail in the
subsequent subsections.

Let us start with the well-known limiting cases. When
α = 0, the model becomes the 2D XY model, which goes

FIG. 2. The main result of this work: the phase diagram of the
generalized compass model, Eq. (2). In panel (a), we show the phase
diagram for our model. The critical region of the BKT phase is
denoted by a solid red line, while the BKT phase transition point is
indicated by a red star marked KT. The nematic phase of the compass
model is represented by a solid blue line, with the nematic transition,
which has been shown in previous works to be an Ising transition
marked by a blue star (NI). The continuous order-disorder phase
transition with continuously varying critical exponents of the AT type
is depicted by a solid black line; the first-order phase transition is
illustrated by a dashed black line. The decoupled Ising (DI) point
is marked by a green star. Panel (b) is a closer examination of the
phase diagram within the range α = 0.9 ∼ 1. The four-state Potts
point (4P) is marked by an orange star.

through a Berezinskii-Kosterlitz-Thouless phase transition
(BKT) [12–14] at a finite temperature TC = 0.8935(1)[15].
The BKT phase transition point is marked with a red star in the
phase diagram. As is well known, it separates a high-T phase
with exponential spin-spin correlations from a low-T phase
with power-law correlations; the latter is indicated by the bold
red line and labeled “KT phase.” When α = 1, our model
becomes the CM, which as a function of temperature goes
from a high-T disordered phase to a low-T nematic ordered
phase that breaks the C4 symmetry but preserves the �S → −�S
symmetry. The transition takes place at a finite temperature
TC = 0.14621(2) [8] and has been demonstrated to be in
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the Ising universality class. The compass transition point is
marked with the blue star in the phase diagram.

Our contribution is the phase diagram in the interior region,
α ∈ (0, 1). First the vast region labeled “spin-lattice clock
phase” corresponds to a phase where both C4 and the �S →
−�S symmetry are spontaneously broken. We use the word
“clock,” since the Z4 symmetry group being broken here is
analogous to the clock model. However we include “spin-
lattice” to emphasize here that this symmetry is realized as
both an operation on spin and lattice (in contrast to the clock
model, where the Z4 symmetry is realized as simple onsite
operations). The phase transition from this ordered phase to
the high-T disordered phase has two different regimes. For
0 < α � α4P the transition is continuous but with continu-
ously varying exponents, of the kind found in the AT model,
in which the order parameter anomalous dimension η = 1/4
throughout but the exponent ν varies from ∞ at the KT tran-
sition to ν = 2/3 at α4P ≈ 0.963 when the transition is in the
universality class of the four-state Potts model. Interestingly,
for a special value αDI ≈ 0.885, the critical point is described
as a fixed point of two decoupled Ising models. In contrast
to the AT model or the four-state clock model, where such
a fixed point is reached because the models microscopically
become two decoupled Ising models, in our model, there is
no microscopic decoupling and we find that the decoupling
is an emergent phenomenon that results from renormalization
group flow. Finally, in the interval α4P < α < 1, we find the
transition is first order. The first-order transition must be-
come very weak for both α4P and 1 to match the continuous
transitions at these couplings. Our numerical data uncovers
an unexpected aspect of this phase diagram, that the order-
disorder transition (at which both C4 and the �S → −�S break
spontaneously) merges with the Ising-nematic transition (at
which C4 is broken but �S → −�S is part of a quasilocal sym-
metry and hence cannot break) in the compass model. Naively,
one might have expected instead that the transition split into
two Ising transitions with an intermediate nematic phase, but
we do not find this in our numerical study.

III. NUMERICAL METHOD

We perform Monte Carlo simulations using hybrid updates
[8] with both Wolff clusters [16] and the ordinary Metropolis
method. Several observables are used to describe the proper-
ties of the phases and critical behaviors.

The magnetic order parameter is defined as

〈m2〉 = 〈
m2

x

〉 + 〈
m2

y

〉
, (3)

where

m2
x =

(
1

N

∑
i

Sx
i

)2

, m2
y =

(
1

N

∑
i

Sy
i

)2

. (4)

The Binder cumulant of the magnetic order parameter is then
obtained:

Um = 2 − 〈m4〉
〈m2〉2

. (5)

Following Wenzel et al. [8], we also define the energy
difference order parameter describing the nematic ordered

phase

〈D2〉 = 〈(Ex − Ey)2〉, (6)

where

Ex = 1

N

∑
i

Sx
i Sx

i+x̂, Ey = 1

N

∑
i

Sy
i Sy

i+ŷ (7)

are the x-component energy along the x direction and the y-
component energy along the y direction, respectively.

We define a Binder cumulant based on D:

UD = 1

2

(
3 − 〈D4〉

〈D2〉2

)
. (8)

The spin-spin correlation is defined as

CS (�r) =
〈

1

N

∑
i

�Si · �Si+�r

〉
. (9)

Similarly, we define the correlation of the nematic order pa-
rameter:

CD(�r) =
〈

1

N

∑
i

DiDi+�r

〉
, (10)

with Di = Sx
i Sx

i+x̂ − Sy
i Sy

i+ŷ. We often present the maximum
distance correlation which is defined as

CS ≡ CS (L/2) = CS

(
L

2
x̂ + L

2
ŷ

)
(11)

and

CD ≡ CD(L/2) = CD

(
L

2
x̂ + L

2
ŷ

)
. (12)

IV. CONTINUOUS TRANSITION: 0 < α � α4P

A. Field theory for α � 1

We start our analysis by studying the α � 1 limit, in which
we perturb around the XY model. The effective theory of the
XY model is written in terms of two continuum fields, the
θ (x) the “spin field” and its dual φ(x) the “vortex field.” In
terms of these fields, the action is well known [17] to take
the form SSG = ∫

d2x[ K
2 ( �∇θ )2 + λv cos(2πφ)], where K is

the stiffness and λv the vortex fugacity. The RG flows of this
theory are now widely accepted to have a low-T (large-K)
region in which λv is irrelevant, sometimes called the “KT
phase,” and a high-T phase at which λv is relevant separated
by a critical coupling, Kc = 2/π . While the high-T phase with
exponential decaying correlations is generically expected to
be stable for small α, the fate of the low-T power-law phase
needs investigation. We can frame this as an RG picture by
asking whether the leading perturbation introduced by the
anisotropy of the HgCM is relevant or irrelevant at the XY
fixed point, which is itself described by the spin-wave ac-
tion S0 = K

2

∫
d2x( �∇θ )2 with K > Kc = 2/π . Expanding the

lattice model for α � 1, we find that the leading anisotropic
perturbation is

Sa = λa

∫
d2x[(∇xθ )2 − (∇yθ )2] cos(2θ ). (13)
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As expected, the term changes sign under either π/2 rotations
of space or spin but is invariant under a combination of the
two, exactly as is expected for a lattice model with C4. Simple
power counting at the spin wave fixed point established that
[λa] = −1/(πK ) is irrelevant throughout the low-T phase,
so it cannot by itself destabilize the power law phase. How-
ever, in the usual Wilsonian RG, λa can generate the more
symmetric term in RG flow,

S4 = λ4

∫
d2x cos(4θ ). (14)

This term is the continuum version of the fourfold magnetic
field, which is exactly marginal at the KT phase transition.
Since S4 is generated by Sa and is much more relevant, we
make the reasonable assumption that we can neglect Sa and
the effective action for the criticality is simply given by SSG +
S4. The SSG + S4 theory has been analyzed extensively (see
Ref. [18] for the original idea and, e.g., Ref. [19] for a more
recent study), S4 completely destroys the power law phase,
replacing it with a fourfold “clock” phase. The RG flows for
this theory for small λ4 feature a line of critical points with
continuously varying exponents of the AT type that separate
the clock phase from the high-temperature disordered phase
[18]. In our model, because of the spin-lattice locking cap-
tured by Sa, the breaking of spin symmetry triggered by S4

also breaks the lattice symmetry. In this way, Sa does not
affect the critical behavior, but it does affect the details of the
ordered phase.

We provide evidence supporting the hypothesis of the
above RG picture for our lattice model HgCM in two steps;
first, we show that at α �= 0 the KT power-law phase is de-
stroyed, and there is a direct order-disorder transition. This
demonstrates in our lattice model that λa, although formally
irrelevant in the KT phase, generates couplings that are rel-
evant: even though there is no long-range order in the KT
phase, this turns on immediately for α � 1 (as shown in
Fig. 2); then in the second step we study the nature of the
transition in detail and present various pieces of evidence for
the AT criticality, including continuously varying exponents
of the correct form predicted by the AT theory.

We start with the first step, where we show numerically that
the power-law phase gives way to a “spin-lattice clock phase”
once α �= 0, as shown in our phase diagram Fig. 2. Figure 3
shows the finite-size behaviors of the Binder cumulants Um

and UD at α = 0.5. Interestingly, while Um exhibits peculiar
characteristics (we attribute this to crossovers that arise from
the proximity to the power-law KT phase, which is riddled
with notoriously complicated finite-size corrections; this lim-
its our ability to study smaller α), with its value appears to
be very close to one across different system sizes at low tem-
peratures, UD demonstrates clearly crossing points, showing
typical behavior associated with a continuous phase transition.
In particular at α = 0.5, we find no evidence of a negative dip
in the Binder cumulant close to the transition, a feature which
is often taken as a necessary but not sufficient signal of an
incipient first-order transition.

To further elucidate the absence of a KT power-law phase
at finite-α, we have employed a numerical flow-diagram anal-
ysis of the flow of our model, as depicted in Fig. 4. The x axis
represents the Binder cumulant Um, while the y axis represents

(a)

(b)

FIG. 3. Binder cumulants as functions of temperature for
(a) magnetic order Um and (b) nematic order UD for various sys-
tem sizes L at α = 0.5. While UD clearly exhibits a crossing point,
showing a distinct signature of a continuous phase transition at Tc ≈
0.649(5), it is observed that Um has a phase transition at the same Tc,
though a clear crossing point is absent. We interpret this as arising
from crossovers from the KT physics. We note that a clear crossing
point does emerge for both Um and UD at larger α; see Fig. 6. The
analysis in Fig. 4 presents alternate evidence for a direct transition in
the magnetic order parameter at the same Tc within errors at α = 0.5.

the spin correlation CS . For our model, in the disordered phase
(high temperature), the flows converge towards the disordered
fixed point with Um = 0 and CS = 0 as the system size L tends
to infinity. In the ordered phase (low temperature), the flows
converge towards the magnetically ordered fixed point with
Um = 1 and CS > 0 as L approaches infinity. At the critical
point (TC ≈ 0.650), the flow converges towards the nontrivial
fixed point with Um ≈ 0.98, while CS (L/2) = 0 as L tends to
infinity. In contrast, for the 2D XY model (shown in the lower
panel of Fig. 4), in the disordered phase (high temperature),
the flows also converge towards the disordered fixed point
with Um = 0 and CS = 0 as L tends to infinity. However, in
the KT critical region (low temperature), the flows converge
towards different points on the x axis, with Um taking on a
finite value while CS = 0, as expected in the power law phase.
While we expect that the same behavior is valid at arbitrary
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(a)

(b)

FIG. 4. Finite-size scaling data showing evidence for a direct
magnetic order-disorder transition. The data is presented as a flow
diagram at (a) α = 0.5 and (b) α = 0 (2D XY Model), with x axis
representing the Binder cumulant Um and the y axis representing the
spin correlation CS . Each set of connected circles represents a fixed
T and sizes L = 2, 3, 4, . . . , showing a numerical RG flow to fixed
point values in the thermodynamic limit. (a) The flow at T = Tc ≈
0.650 is denoted by red solid circles. The maximum lattice size is
Lmax = 704 for temperatures ranging from T = 0.61 to 0.65, while
for other temperatures, Lmax = 448 or smaller. The flows at temper-
atures lower than Tc converge towards locations where Um = 1 and
CS takes on a finite value. Conversely, flows at temperatures higher
than Tc converge towards locations where Um = 0 and CS = 0. This
behavior indicates the presence of an order-disorder phase transition.
The arrows indicate the direction of increasing L. Panel (b) illustrates
the numerical RG flow diagram for the 2D XY model (α = 0). The
flow at T = TKT is also marked with red solid circles. The maximum
lattice size is Lmax = 224. Flows at temperatures lower than TKT

converge towards locations with finite Um, while CS = 0, consistent
with the power law KT phase.

small α based on our RG argument, we cannot reach large
enough lattices for α < 0.5 to demonstrate this convincingly
numerically because this regime is dominated by crossover
behavior, which is expected from the fact that the RG gener-
ated λ4 is expected to be very small, so it requires very large
lattices to observe its relevance. Interestingly, the behavior of
the model for α �= 0 differs from the 2D XY model, which

has a critical phase when T < TKT. It is also different from
the 2D 90◦ compass model, which has a nematic-ordered
low-temperature phase but not a magnetically ordered phase
[6,8]. Indeed, the spin-lattice clock phase is a unique phase
that has both spin and lattice rotation symmetry breaking.

We now turn to the details of our analysis of the phase
transition that separates the spin-lattice clock phase and the
high-T disordered phase, which we conclude is of the AT type
with continuously varying exponents. Since this analysis has
many different aspects, we have broken it up into subsections.

B. Locating transition points

The first step in studying the critical behavior is to locate
the phase transition. According to standard finite-size scaling
theory [20,21], the Binder cumulant Um(L) converging to 1
with increasing system size indicates the existence of mag-
netic order while tending to zero with increasing system size
implies that the system is in the magnetic disordered phase.
The crossings of curves for different sizes indicate a critical
point separating the two phases.

We adopt the standard (L, 2L) crossing analysis for the
Binder cumulant to estimate the critical point and critical
properties; see, e.g., the Supplemental Material of Ref. [22].
The crossings point Tc(L) of the Binder cumulant (both Um

and UD) U (T, L) and U (T, 2L) is expected to converge to the
critical point Tc in the following way:

Tc(L) = Tc +
∑

i

aiL
−1/ν−ωi , (15)

where ν is the correlation length exponent, ωi > 0 are irrele-
vant exponents, and ai are unknown coefficients.

As discussed for α = 0.5, finding the crossing points for
Um (shown in Fig. 3) proves to be challenging. Since the
crossing of UD is more well-defined, we have employed the
standard (L, 2L) crossing analysis for UD and determined
TC = 0.649(5). The data of the crossing points Tc(L) as a
function of the inverse size 1/L, along with the fitting line, are
presented in Fig. 5. Since the crossing points first increase and
then decrease with L, we have to use two irrelevant exponents
in Eq. (15) to fit the data [23]. The fitting window used is
L = 10 ∼ 128, yielding a reduced χ2 = 1.03.

We apply similar analyses for different α and obtain critical
points T I

C , as listed in Table I.
The crossing points of Um for different sizes L become

evident as the parameter α increases. This phenomenon can
be observed in both Um and UD when α reaches a sufficiently
large value, as shown in Fig. 6, which displays the Binder
cumulant for α = 0.9. As a result, the conventional (L, 2L)
crossing analysis can also be applied to Um when α is suffi-
ciently large. The critical points obtained are listed in Table I
as T II

C .

C. Critical exponents: Evidence for Ashkin-Teller criticality

We now present evidence for Ashkin-Teller criticality
along the line of critical points by studying three critical
exponents η, ν and ηD, the anomalous dimension of �S, the
correlation length exponent and the anomalous dimension of
the nematic order parameter D. The most striking feature of
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TABLE I. Critical temperatures TC and exponents η and ν for various α obtained using different methods. T I
C is the critical temperature

obtained by performing a crossing analysis of the Binder cumulant UD of pairs of sizes L and 2L. T II
C is the critical temperature determined

using the crossing points of the curves for Um. We first got η(Tc ), η(T (−)
c ), and η(T (+)

c ), which are anomalous exponent η obtained by calculating
spin correlation at T I

c , T I
c − σ , and T I

c + σ , respectively, with σ the statistical error of T I
c . Then gives us η and its associated error. T III

C and
1/ν are obtained by fitting the data collapse of UD (except for α = 0.5 where we use m2L1/4, see Table II for details). ηD is the anomalous
dimension of the nematic order parameter D.

α T I
c T II

c T III
c η 1/ν ηD

0 0.8935(1)[15] 0
0.2 0.8104(2) 0.23(4) 0.89(2)
0.5 0.649(5) 0.649(2) 0.245(13) 0.37(2) 0.85(3)
0.6 0.594(3) 0.5975(4) 0.255(10) 0.49(3) 0.79(4)
0.7 0.5292(6) 0.531(5) 0.253(4) 0.60(3) 0.75(2)
0.8 0.4546(7) 0.4555(1) 0.245(15) 0.75(6) 0.642(7)
0.9 0.3596(3) 0.35957(6) 0.36019(7) 0.225(25) 1.07(2) 0.48(2)
0.95 0.29175(5) 0.29173(3) 0.29185(2) 0.22(3) 1.38(2) 0.32(2)
1 0.14621(2)[8] 1

the criticality is the existence of continuously varying critical
exponents as one moves along the critical line, which are all
controlled by a single parameter gR, the coupling constant in
a Coulomb gas description. An exception is the critical expo-
nent associated with the Ising field of the Ashkin-Teller model
η = 1/4, which is constant along the line and independent of
gR. We shall verify these features in our numerical study of
the model HgCM.

1. η

As discussed above, in the AT universality class, the
exponent η = 1/4 is a constant throughout. We now present
our numerical evidence for this behavior in our model.
At the estimated critical points, we calculate the spin
correlation CS (L/2). From the decay of CS (L/2) we can de-
termine the anomalous scaling dimension η according to the
following finite-size scaling formula CS (L/2) ∝ L−η. Since
the estimated Tc has statistical errors, we calculate CS (L/2)
at the upper bound, center value, and the lower bound of the

FIG. 5. Crossing data analysis of UD to obtain T I
C for α = 0.5.

Since the crossing points first increase, then decrease with L, the
scaling form Eq. (15) with two powers are used and T I

C = 0.649(5)
is estimated, with the fit windows L = 10 ∼ 128.

estimated Tc for each α. The powers η found by fitting the
power law to the data at the three values thus lead to a
reasonable estimate of η and its error bars. For example,

(a)

(b)

FIG. 6. Binder cumulants (a) Um and (b) UD as functions of
temperature T at α = 0.9. Both Um and UD exhibit distinct crossing
points for different sizes L, indicating the presence of a continuous
phase transition.

195131-6



PHASE DIAGRAM OF A SQUARE LATTICE MODEL OF XY … PHYSICAL REVIEW B 109, 195131 (2024)

FIG. 7. Estimate anomalous exponent η using spin correla-
tion. The longest distance spin correlation CS (L/2) at T (−)

C =
0.644, T I

C = 0.649, T (+)
C = 0.654 of α = 0.5 are shown on a log-

log scale. The Monte Carlo simulation data are indicated by open
circles, and the straight lines are the power law fits to the data.
The power law fits are statistically sound for T = 0.649, with η =
0.2427(2) and a reduced χ 2 value of 1.06, over the fit window
L = 24 ∼ 256; for T = 0.644, with η = 0.2336(2) and a reduced
χ 2 = 0.955, over the fit window of L = 24 ∼ 256; for T = 0.654
with η = 0.258(1) and a reduced χ 2 value of 1.04, over the fit
window L = 80 ∼ 256.

for α = 0.5, we calculate CS (L/2) for several system sizes
L at T = 0.644, T = 0.649, and T = 0.654, as shown in
Fig. 7. The circles are Monte Carlo data. The lines are fit-
ted functions. We then obtain η = 0.2336(2) at T = 0.644,
η = 0.2427(2) at T = 0.649, and η = 0.258(1) at T = 0.654
from fits to the data.

We have done similar analyses for other α. The estimates
of η and the errors are listed in Table I. From this table,
we conclude that along the transition line, η ≈ 1/4 does not
change, and thus, the spin operator should be identified with
the Ising field of the AT model.

2. ν

In contrast to the constancy of the η of the spin field, the
exponent ν varies continuously in the AT model. We present
an analysis of the behavior of this exponent in our model.

According to finite-size scaling theory, UD(T, L),
m2(T, L)Lη is expected to behave in the standard way,
UD(t, L) = f1(tL1/ν ) and m2(T, L)Lη = f2(tL1/ν ), where
t = (T − Tc)/Tc is the reduced temperature. f1(x) and f2(x)
are two scaling functions and can be expanded to polynomials
near the phase transition points, fi = ∑

P=0 a(i)
P xP with

i = 1, 2 denoting the two scaling functions, respectively.
Thus, we can simultaneously obtain TC and ν by using
polynomial fit for the scaling functions. Instead of fitting
all our data to this asymptotic form, we attempt to take
into account finite size corrections by fitting the scaling
functions using data from different pairs of systems (L, 2L)
to obtain TC (L) and ν(L). We then obtain our best estimates
for TC and ν through extrapolation using the following forms,
TC = TC (L) + a1/Lb1 , and 1/ν = 1/ν(L) + a2/Lb2 . Figure 8

(a)

(b)

FIG. 8. The finite-size analysis of TC (L) and 1/ν(L) to estimate
T III

C and 1/ν at α = 0.5. Panel (a) shows TC (L) and panel (b) shows
1/ν(L) obtained by polynomial fit of the scaling function f1(tL1/ν )
up to P = 3 for pairs of sizes L and 2L. The solid lines are power-law
fits to TC (L) and to 1/ν(L), respectively.

illustrates a finite-size analysis of TC (L) and 1/ν(L), obtained
by polynomial fits of the scaling function m2Lη under the
assumption that η = 1/4, for α = 0.5. This method can be
applied to different values of α. The results for 1/ν from both
quantities are collected in Table II. Finally, we present the
data from UD in Table I as T III

C and 1/ν (except for α = 0.5
for which we used the m2Lη estimates since they have smaller
errors).

TABLE II. A comparison of 1/ν fit from UD and m2L1/4.

α 1/ν(UD ) 1/ν(m2L1/4)

0.2 0.23(4) 0.22(6)
0.5 0.38(15) 0.37(2)
0.6 0.49(3) 0.43(3)
0.7 0.60(3) 0.57(2)
0.8 0.75(6) 0.71(2)
0.9 1.07(2) 1.04(2)
0.95 1.38(2) 1.40(3)
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As shown in Fig. 12, we find the value ν = 1 as we
approach α = 0.885. This value of ν = 1 and η = 1/4 is
exactly what one expects for the Ising model. This is not a
coincidence. Indeed it is well known that a point along the
Ashkin-Teller line with the Ising exponents can be described
as the fixed point of two decoupled Ising models at criticality
[24]. While in the Ashkin-Teller model this decoupling is
microscopic, no special microscopic symmetry is expected
close to α = 0.885. Hence, in our model, the decoupling of
the Ising fixed points is emergent, that is it is not present
microscopically, but appears only in the long distance limit.

3. ηD

We now turn to the scaling of the nematic order param-
eter D and its anomalous dimension, ηD. We have seen that
the anomalous dimension of the spin field �S of the gCM
remains constant at η = 1/4 and can be identified with the
scaling dimension xh of the individual Ising variables of the
Ashkin-Teller model. We identify the nematic order parameter
D with the so-called “polarization” operator (in the usual
representation of the AT model as two coupled Ising models,
this corresponds to the product of the two Ising variables)
with scaling dimension xp, which, like the thermal scaling
dimension xt , varies along the line of transitions. While xp

and xt are distinct, they both are determined by the same
Coulomb gas parameter gR [10]. These operators have the
scaling dimensions

xt = 2

gR
, xh = 1

8
, xp = 1

2gR
. (16)

These scaling dimensions can be straightforwardly
related to three exponents in our numerical simulations of
the gCM. The correlation length exponent, 1/ν = 2 − xt = 2
(1 − 1/gR), the anomalous dimension of the spin field
�S is η = 2xh = 1/4, and the anomalous dimension of the
nematic order parameter ηD = 2xp = 1/gR. Combining these
relations, we find the relation ηD = 1 − 1

2ν
, which is a non-

trivial test of the identification of the nematic order parameter
with the polarization operator and the general Ashkin-Teller
criticality picture in our model. By using the same method as
the one used to obtain η, we obtain ηD through Monte Carlo
data of CD(L/2) at Tc. The estimates of ηD and the errors are
listed in Table I. The expected relations between ηD and 1/ν

are shown in Fig. 9, which show a good agreement.

D. Four-state Potts point

We have presented detailed evidence for AT criticality de-
scribed by a line of fixed points with ν continuously varying
from ∞ at α = 0 to a decreasing finite value as α is in-
creased. The behavior in the AT model was shown to arise
from an effective mapping to a Gaussian model, which even-
tually becomes unstable at the four-state Potts point (ν = 2/3)
due to the emergence of another relevant operator [24]. We
present various pieces of evidence that this happens around
α = 0.96 ± 0.01. We first attempt to locate this four-state
Potts point in our model using the peak value Cmax of the
specific heat, which is well known to have characteristic log-
arithmic corrections at the critical point [25–27]. Figure 10
shows the finite size behavior of Cmax. For reference, we have

FIG. 9. Comparison of the dependence of ηD on 1/ν from Monte
Carlo studies on the gCM model along the line of continuous phase
transitions (shown as data with error bars), with the behavior ex-
pected from the Coulomb gas description of Ashkin-Teller criticality
ηD = 1 − 1

2ν
(solid line). Note that the Coulomb gas prediction has

no fit parameters! The good quantitative agreement (critical expo-
nents at all α studied are at most within a few error bars from the
Coulomb gas prediction) establishes the Ashkin-Teller criticality in
our gCM model and the correct identification of the microscopic spin
and nematic order parameters.

also shown the same quantity for the four-state Potts model.
This analysis gives the results that the four-state Potts point is
around α = 0.96 ∼ 0.97.

Next, we analyze the Binder cumulant and the exponent
ν; since they both have universal values, they can identify
the four-state Potts point. Figure 11 shows the comparison of
Binder cumulant Um of the four-state Potts model, which gives
the results that the four-state Potts point is around α ≈ 0.95.

FIG. 10. Peak value Cmax of the specific heat (suitably scaled) for
the gCM model for different α and a comparison of the same quantity
for the four-state Potts model. For Potts criticality it is expected
that asymptotically, Cmax = aL(ln L)−3/2, where a is a nonuniversal
number. Therefore graphing Cmax(ln L)3/2/L (as done above) should
result in a constant value for large L. From our data it is apparent that
the four-state Potts point is observed around α = 0.96 ∼ 0.97.
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FIG. 11. Binder cumulant crossing points U ∗
m(L) comparison

with the four-state Potts point. This figure illustrates the crossing
points (L, 2L) of the Binder cumulant U ∗

m(L) as the size L increases.
Markers of different colors represent data for various values of α.
The black solid pentagon marker is the U ∗

4P(L = ∞) = 0.792(4)
for the four-state Potts model [28,29]. While reliable extrapolations
to the thermodynamic limit are difficult, it is clear that in the region
α ∼ 0.96 ± 0.01 our data extrapolates to values very close to the
known four state Potts point, U ∗

4P, providing further evidence for the
four state Potts point in this regime.

The results for ν at different α are shown in Fig. 12. From
the data in Table I, we have obtained ν through data collapse
using polynomial fitting. The data for α = 0.2 ∼ 0.9 are fitted
using UD, while the data for α = 0.95 ∼ 0.98 are obtained

FIG. 12. The dependence of ν on α, and estimation of αDI and
α4P. The green points represent ν from Table I. The dashed black
horizontal lines indicate ν = 2/3, 1 which are the universal values
for the four-state Potts model and Ising model. The data are fitted
using a linear function f (x) = ax + b (shown as a black solid line)
and a quadratic function f (x) = ax2 + bx + c (shown as a red solid
line) over the range α = 0.8 ∼ 0.98, which give consistent estimates.
The linear fit gives α(ν = 1) = αDI = 0.885(23), which gives an
estimate for the point at which HgCM can be described as a pair
of decoupled Ising fixed points (marked in Fig. 2). We can locate
α4P similarly, α(ν = 2/3) = α4P = 0.963(22), in general agreement
with the estimates from Cmax and U ∗

m.

(a)

(b)

FIG. 13. Comparative study of Binder cumulants at (a) continu-
ous transition at α = 0.95 and (b) first-order transition at α = 0.97.
Panels (a) and (b) show the Binder cumulants Um as a function of
temperature T for various system sizes L at α = 0.95, 0.97, respec-
tively. Um show negative peaks approaching larger negative values as
the lattice size increases near the phase transition point for α = 0.97,
indicating a first-order phase transition, while staying positive in
the whole temperature region for α = 0.95, typical for a continuous
transition.

from Um. A linear fit of the data yields the four-state Potts
point at α = 0.963(22).

All of these indicators are consistent with our identification
that α4P = 0.96 ± 0.01.

V. FIRST ORDER: α4P < α < 1

Once we cross the four-state Potts point, the line of
transitions with continuously varying exponents must end due
to the instability of the Gaussian fixed point theory. Beyond
this, the nature of the phase transition changes; we present nu-
merical evidence now that there is still a direct order-disorder
transition, but it becomes first order.

Figure 13 shows the Binder cumulants Um as a function
of temperature T for various system sizes L at α = 0.95
and 0.97, respectively. We can see that the Binder cumu-
lants near the phase transition point are negative and tend to

195131-9



FAN ZHANG, WENAN GUO, AND RIBHU K. KAUL PHYSICAL REVIEW B 109, 195131 (2024)

FIG. 14. 2D histogram of �m at α = 0.97 and α = 0.5. The x
axis represents mx , while the y axis represents my. The color in the
figures represents the probability density, with brighter colors indi-
cating higher probabilities. Panels (a) and (b) display the histograms
at α = 0.97 for L = 64 at T = 0.256 and 128 at T = 0.255, respec-
tively. The histogram reveals a coexistence of ordered and disordered
phases, suggesting the possibility of a first-order phase transition.
Panels (c) and (d) depict the histograms at α = 0.5 for L = 64 at
T = 0.72 and T = 0.74, respectively. There is no phase coexistence
found, indicating a continuous phase transition, in contrast to the
histograms shown in panels (a) and (b).

approach larger negative values as the lattice size increases for
α = 0.97, indicating a first-order phase transition [30].

To further determine the property of the transition at
α = 0.97, we calculated and compared the histograms of �m
for α = 0.97 and α = 0.5, as shown in Fig. 14. At α = 0.97,
the histogram reveals a coexistence of ordered and disordered
phases, suggesting the possibility of a first-order phase transi-
tion when α is close to 1.

The 1D version of the m2 histogram P(m2) at α = 0.97
is presented in Fig. 15. Specifically, Fig. 15(a) displays the
m2 histogram at the temperature where the probability of the
ordered and disordered phases is equal for various system
sizes. We can see that the probability density of the disordered
phase tends to be infinity with the increase of L. Figure 15(b)
displays m2

max(L), which has the maximum probability of the
ordered phase in the m2 histogram for system size L. Poly-
nomial fit to the data up to the second order gives a finite
value m2

max(L = ∞) = 0.308. We have repeated this analysis
for α = 0.98, 0.99 (not shown) and found very similar signals
of first-order behavior with only quantitative changes, leading
us to reasonably speculate that the direct first-order behavior
continues all the way up to α = 1.

VI. SUMMARY

In summary, we have introduced a simple model HgCM

for a square lattice compass model with a tuning parameter
α, which has the generic feature of spin-lattice rotational

FIG. 15. Finite-size analysis of the 1D histogram at α = 0.97.
The inset shows the 1D m2 histogram at the temperature where
the probabilities of the ordered and disordered phases are equal for
various system sizes. In the main panel, the blue solid dots show
m2

max(L) having the maximum probability in the ordered phase in the
m2 histogram. The blue line is a polynomial fit to the data, giving
a value m2

max(L = ∞) = 0.308. While we are not concerned the
precise value of m2

max(L = ∞), our analysis unambiguously indicates
it is nonzero, allowing us to infer a first-order transition for this α.

symmetry but does not have any accidental subsystem sym-
metries. For α = 0 HgCM becomes the XY model, and for
α = 1, it is the compass model. Generically away from these
limiting values, our model has an ordered phase at low tem-
peratures, which breaks the spin-lattice rotational symmetry.
The thermal phase transition between the ordered phase and
the high-temperature disordered phase is found to be both
continuous and first order in different regions of the α param-
eter. The region that is continuous displays Ashkin-Teller-like
criticality with continuously varying exponents as expected
theoretically this line terminates at the four-state Potts point
and then for larger α the transition turns first order. From our
numerical studies, we find that the first-order transition line
connects the four-state Potts point to the well-known Ising
criticality of the compass model at α = 1. This part of the
phase diagram is intriguing and merits further investigation.

Our gCM model joins a list of diverse statistical mechanics
models which show this kind of novel AT critical behavior,
including (but not limited to) the eight-vertex model [9], the
XY model with four-fold anisotropy [18], the J1-J2 Ising
model [29], models of mixtures of dimers with monomers and
squares [31,32], and thermal transition of VBS order [33].

In future work, it would be of interest to study the phase
diagrams of three-dimensional versions of our model, as well
as the phase diagram of the quantum version of HgCM.
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