
PHYSICAL REVIEW B 109, 195128 (2024)

Universal structure of measurement-induced information in many-body ground states
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Unlike unitary dynamics, measurements of a subsystem can induce long-range entanglement via quantum
teleportation. The amount of measurement-induced entanglement or mutual information depends jointly on
the measurement basis and the entanglement structure of the state (before measurement), and has operational
significance for whether the state is a resource for measurement-based quantum computing, as well as for
the computational complexity of simulating the state using quantum or classical computers. In this paper, we
examine entropic measures of measurement-induced entanglement (MIE) and information (MII) for the ground
states of quantum many-body systems in one and two spatial dimensions. From numerical and analytic analysis
of a variety of models encompassing critical points, quantum Hall states, string-net topological orders, and Fermi
liquids, we identify universal features of the long-distance structure of MIE and MII that depend only on the
underlying phase or critical universality class of the state. We argue that, whereas in 1D the leading contributions
to long-range MIE and MII are universal, in 2D, the existence of a teleportation transition for finite-depth circuits
implies that trivial 2D states can exhibit long-range MIE, and the universal features lie in subleading corrections.
We introduce modified MIE measures that directly extract these universal contributions. As a corollary, we show
that the leading contributions to strange correlators, used to numerically identify topological phases, are in fact
nonuniversal in two or more dimensions, and explain how our modified constructions enable one to isolate
universal components. We discuss the implications of these results for classical- and quantum- computational
simulation of quantum materials.
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I. INTRODUCTION

Entanglement is a fundamental quantum phenomenon, that
serves as the resource for quantum computation, and of-
fers a powerful lens through which to classify ground-state
and dynamical phases and critical phenomena in quantum
many-body systems. The universal structure of entanglement
in quantum many-body ground states offers a quantum in-
formation theoretic fingerprint of various quantum orders
and critical phenomena. Since local Hamiltonian or quantum
circuit dynamics can generate and propagate entanglement
only at a finite speed, the long-distance structure of en-
tanglement is stable under such dynamics and is therefore
useful for characterizing and classifying quantum phases
[1,2]. By contrast, quantum measurement, an inherently
stochastic and nonunitary operation, can instantly generate
nonlocal entanglement—as famously illustrated by quantum
teleportation. This capability allows short-depth circuits with
measurements to generate certain types of long-range entan-
gled states [3–10]. Furthermore, preexisting entanglement in
many-body states can also serve as a computational resource
[11–16], and there is a close connection between the universal
phase structure of the premeasured state and its computational
power [17,18].

In this paper, we investigate the connections between the
phase of a various quantum many-body ground states in 1D
and 2D, and the amount of measurement-induced long-range

entanglement between distant regions, quantified by two
related quantities: measurement-induced entanglement [19]
(MIE) and measurement-induced information (MII), which
we define below. The paper is organized as follows. We begin
by reviewing and discussing the operational significance of
MIE and MII and related quantities for various classical and
quantum computational tasks. We then conduct a numerical
and analytic investigation of the universal features of MIE and
MII in a variety of 1D and 2D phases of matter and critical
points through a mixture of numerical and analytic methods.
We focus on states that have an efficient classical description
through exactly solvable models, including free-fermion de-
scriptions and stabilizer states. Despite their computational
simplicity, this class of states encompasses a wide range of
long-range entangled states including quantum critical points,
topologically ordered states, and Fermi liquids, and provides
a rich set of examples.

In 1D, we show that the leading long-range contribution to
MIE and MII have universal scale-invariant behavior at both
conformal and nonconformal (strongly disordered) quantum
critical points. By contrast, in 2D (or higher d), we argue
that the leading contribution to MIE is generally nonuniver-
sal, due to the existence of long-range measurement-induced
teleportation properties of short-depth 2D circuits, and dis-
cuss implications for other closely related quantities such as
strange correlators [20]. Despite this, we find that the sublead-
ing corrections to MIE and MII do exhibit universal features
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of topological orders and Fermi surfaces, and define modi-
fied notions of MIE that can directly extract these universal
components.

A. Definitions

Measurement-induced entanglement (MIE) is a tripartite
measure of how measurements affect the entanglement struc-
ture of a state |ψ〉. Partition space into three regions: A, B,
and their complement M = (AB)c. Consider measuring M in
a fixed basis b with outcome m, which results in the post-
measurement state |ψm〉 that occurs with Born probability
pm. Then, we define the measurement-induced entanglement
MIEb(A, B) of region A to be the entanglement entropy
S(A)[|ψm〉] of the postmeasured state averaged over measure-
ments,

MIEb(A, B)[|ψ〉] =
∑

m

pmS(A)[|ψm〉]. (1)

Here we have included a subscript b to emphasize that the
result depends (often qualitatively) on the choice measure-
ment basis. We will occasionally drop the measurement-basis
subscript where it is clear from the context.

Despite its title, MIE, does not necessarily reflect entan-
glement that is “induced” by the measurement, but also may
capture preexisting entanglement in the initial state before
measurement. To isolate the effects of measurement, we also
define the measurement-induced information (MII),

MIIb(A, B) =
∑

m

pmI (A, B)[|ψm〉] − I (A, B)[|ψ〉] (2)

where mutual information I is defined as

I (A, B) = S(A) + S(B) − S(AB). (3)

Unless otherwise specified, we will consider the case where
ABM is in a pure state, in which case the average mutual
information after measurement is simply related to the MIE
as

∑
m pmI (A, B)[|ψm〉] = 2MIE(A, B).

MII probes the average amount of mutual information be-
tween A and B that is induced by the measurement, but does
not exist before the measurement. Note that this quantity can
be either positive, zero, or negative depending on the state and
measurement basis. Measurements can increase information,
resulting in positive MII, for example, when bipartite informa-
tion purely between A and M and M and B gets “teleported” by
the measurement into entanglement between A and B. A sim-
ple example of this arises in a system with four site spin-1/2
chain, with A = {1}, M = {2, 3}, and B = {4}, |ψ〉 is a product
of singlets on sites 1,2 and 3,4 respectively, and M is measured
in the Bell basis of sites 2,3. However, measurements can also
reduce or collapse entanglement. A simple example is a three
qubit GHZ state, (|000〉 + |111〉)/

√
2, which has I = 2 log 2

information between any pair of qubits before measurement,
but collapses to a product state upon measuring any of the
three qubits in the computational (Z) basis, MIIZ = −2 log 2
(whereas MIIX = 0 for this example).

B. Significance for quantum and classical computing

In quantum information processing settings, MIE and
closely related quantities characterize how preexisting

quantum correlations in the state can be used as a resource
for generating entanglement by measurements. MIE and MII
also have implications for the quantum and classical complex-
ity of describing a quantum state. Here, we briefly review
and describe the operational significance of measures of
measurement-induced entanglement for computational tasks.

a. Localizable entanglement. The localizable entangle-
ment (LE) [21] is defined as the maximum over measurement
bases of the MIE, LE(A, B) = supb MIEb(A, B), for the spe-
cial case where regions A and B are single sites. The LE
upper-bounds correlation functions, thereby enabling the def-
inition of an entanglement length scale in many-body systems
that can probe nonclassical correlations and has an operational
meaning for contexts such as building quantum repeaters for
quantum networks, where one wishes to concentrate entan-
glement of a multipartite state into two subsystems [21]. The
maximization in the definition of LE makes it difficult to
compute, and it is most useful for establishing bounds.

b. Measurement-based quantum computing (MBQC). The
MIE also partially characterizes the utility of a state for
MBQC [22], where (adaptive) measurements on an entangled
resource state are used to propagate and process quantum
information. Long-range MIE between distant regions A, B
of a state is clearly a necessary condition for having a
measurement-propagable computational subspace in MBQC.
However, long-range MIE is not a sufficient condition for
MBQC as it does not address whether universal computations
can be performed on the propagated information via adap-
tively chosen sequence of measurements in region M. For
example, Haar random states have long-range MIE between
any subregions A, B, yet are well known to be useless for
MBQC based on single qubit measurements [23,24].

c. Measurement-induced phase transitions. Measure-
ments can also induce phase-transitions in the postmeasured
trajectories |ψm〉 [25–33]. In particular, 2D random circuits
were shown to exhibit a phase transition between short-
and long-range MIE tuned by the circuit depth [34] (the
teleportation fidelity order parameter used in this paper is
precisely the same as MIE and MII). This phenomenon was
dubbed a teleportation phase transition, and has since been
realized experimentally in superconducting qubit quantum
processors [35]. The existence of long-range MIE in “trivial”
states of matter (related by a finite-depth circuit to an
unentangled product state) will play an important role in our
discussion of universality of MIE and MII below. Analogous
to the absence of symmetry-breaking order in low dimensions,
this teleportation phase transition is believed to be possible
only in two or more spatial dimensions for finite-depth local
circuits.

d. Sign problem for Monte Carlo sampling. Recent study
[19] showed that a sign problem for Monte Carlo sam-
pling amplitudes of a state in the b basis arises when the
MIE is larger than the premeasurement mutual informa-
tion, MIEb(A, B) > I (A, B)[|ψ〉]. We note that MIE(A, B) −
I (A, B) differs from MII since for a pure state of AB,
I (A, B) = 2S(A) = 2S(B). This observation directly relates
the MIE to the complexity of classical simulations of quantum
states.

e. Strange correlators. MIE also arise in analytic and nu-
merical probes of topology of a state that arise in the so-called
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strange correlators [20],

〈ψm|OAOB|ψ〉
〈ψm|ψ〉 (4)

where OA,B are (charged) local operators in regions A, B re-
spectively, and |ψm〉 is a product state, for example, given by
the result of measuring the system in a given single-site basis.
In a path integral representation, strange correlators for topo-
logical states |ψ〉 are related to correlators of OA, OB at the
edge of |ψ〉, and hence probe the presence of topological edge
modes. Just as ordinary mutual information between regions
A and B sets an upper bound for correlations between local
operators in these regions, the MIE upper bounds the average
strange correlators of |ψm〉 (see Appendix D). Below, we will
show that MIE and conventionally defined strange correlators
are potentially dominated by nonuniversal contributions in
two and higher dimensions, and introduce modified defini-
tions of these that extract the leading universal components.

f. Complexity of quantum and classical tensor network
calculations. Tensor network states (TNS) provide efficient
compressed representations of low-entangled states, such
as the ground states of many local Hamiltonians. TNS
wave-function amplitudes are expressed as a contraction
of virtual bond degrees of freedom, 〈s1, s2, . . . sN |�〉 =
C[T s1 T s2 . . . T sN ], where T s

i jk... are tensors with s representing
the physical degree of freedom on each site, i, j, k, · · · =
1 . . . χ representing the virtual bond space, and C denoting
summing over virtual indices. As explained below, the MIE
structure of a state relates to measurement-induced phase tran-
sitions (MIPTs) in the bond space of certain tensor network
descriptions of the state, which informs both the design prin-
ciples for quantum circuit-based tensor network calculations
on quantum processors, and also the classical complexity of
computing properties of tensor network states.

Classical [36] and quantum circuit-based [37] methods for
sampling from tensor network state (TNS) wave functions
often involve simulating the transfer-matrix “dynamics” of
the virtual (bond) space of a codimension-one subsystem.
For example, a standard method to contract 2D TNS is to
represent the first row of the TNS as a 1D matrix product state
(MPS) in bond space, and contract the network by evolving
this MPS under the action of the row transfer matrices. For
isometric TNS (isoTNS), quantum algorithms for materials
simulation have also been introduced [38] and demonstrated
[39], in which quantum circuit dynamics together incorpo-
rating mid-circuit measurements are used to simulate the
nonunitary transfer matrix dynamics. In this context, the
exponential of the MIE between distant codimension-one
slices, A, B of the TNS reflects the typical classical memory
to sample wave-function amplitudes 〈s1, s2, . . . sN |�〉, with
s1 . . . sN representing the measurement outcomes. Similarly,
for isoTNS, the MIE itself represents the average (over values
s1, . . . sN ) quantum resources needed to sample wave-function
amplitudes with a quantum computer.

Further, when for TNS with spatial dimension larger than
one, the transfer matrix for calculating 〈s1, s2, . . . sN |�〉 in-
volves dynamics of a many-body system postselected on
measurement outcomes s1...N , which may exhibit distinct
phases with area- or volume-law entanglement (with respect
to the transfer-matrix dimension) that are separated by MIPTs

[34,40,41]. These MIPTs represent a classical computational
complexity phase transition in the difficulty of contracting the
TNS. We note that while such complexity phase transitions
may arise for sampling wave-function amplitudes or related
global properties such as strange correlators or wave-function
overlaps, for many practical purposes one is interested mainly
in correlation functions of local observables that have recently
been argued to not have a complexity phase transition for fixed
bond dimension [42].

C. Universal structure of MIE

These connections motivate the need to characterize the
universal features of MIE and MII in quantum many-body
states, particularly the ground states of local Hamiltonians.
For example, for short-range entangled states the MBQC
power is closely connected to the underlying symmetry and
topology of the phase to which the state belongs. Moreover, in
quantum simulation algorithms based on classical or quantum
tensor network methods, such relations could reveal how the
properties (symmetry, topology, correlation length, operator
scaling dimensions, etc.) of a state that one wishes to simulate
inform the circuit design principles for its quantum tensor
network representation, or the complexity to perform calcu-
lations with classical tensor network methods.

Specifically, we aim to understand what features of MIE
and MII for ground states are universal, i.e., which are in-
sensitive to perturbations to the parent Hamiltonian that do
not drive a phase transition, or equivalently, which cannot be
altered by a short-depth quantum circuit, and how are these
measurement-induced entanglement features related to the
phase or universality class of the state in question. To this end,
we explore, through analytical and numerical methods, the
universal structure of MIE and MII in a variety of states with
various types of topological orders or criticality. In particular,
we emphasize the difference between the universality in 1D
and higher dimensions, where a measurement-induced entan-
glement phase transition can occur at a finite circuit depth,
while premeasurement states remain in the same phase (see
Sec. III A). In the presence of such nonuniversal long-range
behavior, the universal properties only show in the subleading
contribution. The main results of the paper are summarized in
the Table I.

The paper is structured as follows. In Sec. II we explore the
universal behavior of MIE and MII in 1D ground states of both
gapped, short-range correlated systems and gapless, critical
systems. In Sec. III we discuss the measurement-induced en-
tanglement phase transition occurring at a finite circuit depth
and potential adjustment of the definition of MIE and MII.
Moreover, we study the universal parts of MIE and MII in
topological phases and metals.

II. MIE IN 1D SYSTEMS

We begin by exploring universal properties of MIE and
MII in 1D ground states of both gapped, short-range corre-
lated systems and gapless, critical systems. We review known
structure of MIE for gapped symmetry-protected topological
phases [17,46] and selected 1 + 1d conformal field theories
(CFTs) that were previously explored [19], add additional
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TABLE I. Mutual information and MIE behavior in different systems. D refers to the dimension of edge states for 1D symmetry-protected
topological (SPT) phases and the bond dimension for random multiscale entanglement renormalization ansatz (MERA). For the XX model
and random singlet phase, the configuration of MIE is shown in the inset of Fig. 1(a) and Fig. 2(a) respectively with η = x12x34/x13x24 and
r = x23. The configuration for the random MERA is given in Fig. 3 with η̃ = x12x34/x23x14. The configuration for the Chern insulator and 2D
metal is given in Fig. 6(b), and the layout for toric code is given in Fig. 9.

System I (A, B) Basis b MIEb(A, B)

1D SPT short ranged symmetry preserving log D
XX model η0.5 [43] σz η0.31

Random singlet r−2 [44] Bell log 2 or r−0.34

Random MERA with large D η̃log D arbitrary local extensive
Chern insulator short ranged occupation number r−0.9

2D metal r−2 [45] occupation number r−0.23

Toric code short ranged σz or σx log 2

examples of conformal and nonconformal critical points, and
investigate the stability to irrelevant perturbations.

A. Gapped 1D states

Absent fine-tuning, typical gapped 1D states and generic
measurement bases exhibit short-range MIE(A, B) that de-
cays exponentially with distance between A and B. This
follows from the MPS representation of gapped, 1D states,
〈s1, . . . sN |�〉 = trAs1 As2 . . . AsN , where As

i, j are χ × χ matri-
ces. For unique gapped ground states of local Hamiltonians,
the matrices A satisfy an injectivity property [47], which guar-
antees short-range correlations.

A notable exception arises for the symmetry-protected
topological (SPT) phases with measurements taken in an
appropriate symmetry-preserving basis [46], which exhibit
long-range limxA,B→∞ MIE(A, B) = log D where D is the di-
mension of the SPT’s edge states, and xA,B is the distance
between regions A, B. This property is directly related to the
fact that 1D SPTs can act as good “quantum wires” for MBQC
(i.e., are capable of coherently storing a quDit in the MBQC
context). By contrast, as argued in [46], measurements in
generic bases lead to exponentially decaying MIE. Viewed
from the perspective of the MPS transfer matrix dynamics,
this short-range MIE results from mixing between the pro-
jective and ordinary/linear (also known as “junk”) symmetry
blocks of of the bond space. We note that, despite this short-
range MIE for general measurement bases, it has been shown
that generic MBQC operations can be performed with arbi-
trary target fidelity by splitting a MBQC gate into many small
operations [17], implemented by a gradually evolving (and
adaptively chosen) measurement bases.

B. Gapless or critical 1D states

We next turn to gapless critical states with emergent con-
formal invariance, i.e., which are described in the continuum
limit by a conformal field theory (CFT). Previous numerical
investigations on select critical states of Ising-like spin chains
using density matrix renormalization group [19] demonstrated
that MIE of regions A = [x1, x2], B = [x3, x4], depend only on
the cross ratio,

η = x12x34/x13x24, (5)

and decayed as ηα for small η (i.e., distance between intervals
much larger than interval size).

While suggestive power-law decay behavior does not nec-
essarily imply universality. For example, there are other
closely related setups in which nonuniversal power-law be-
havior can arise. Namely, Ref. [48], observed power-law
dependence in Loschmidt echo of a CFT with a random time-
dependent noise applied to a boundary, where the power was
continuously tuned by nonuniversal parameters of the noise.
At first glance, this problem appears very different, yet, it is
described by a very similar field theory construction as MIE.
Specifically, a path-integral description of the Loschmidt echo
for the stochastically driven boundary CFT is related, via a
conformal mapping, to the path integral setup for calculating
a second version of Renyi entropy in a forced-MIE scenario in
which the measurement outcomes are “forced” to be equal to
the stochastic boundary drive. A potentially important differ-
ence between the average MIE and this stochastic boundary
drive is that in MIE the averaging is weighted by the Born
probability of the measurement outcomes, whereas in the
stochastic drive setting, it is externally imposed by the drive.
Does this weighting by Born probabilities restore universal-
ity? Or could it be that the observed power-law decays of
MIE for CFT states are more akin to the nonuniversal behavior
observed in the driven boundary CFT?

1. XX chain

To investigate this question, we numerically study the MIE
of an XX spin chain with periodic boundary condition,

HXX =
∑

i

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
, (6)

which can be mapped, by a Jordan-Wigner (JW) transforma-
tion, to a free fermion chain with nearest-neighbor hopping
J at half-filling, and exhibits Luttinger liquid ground state
described by a free-boson CFT. Specifically, we consider the
ferromagnetic interaction J = − 1

2 , and then the Hamiltonian
in free fermion language takes the form

H = −
∑

i

(c†
i ci+1 + c†

i+1ci ) + const. (7)

with periodic (antiperiodic) boundary condition when the to-
tal number of fermion is odd (even). For the free-fermion
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FIG. 1. Data collapse of MIE in XX chain vs cross ratio η =
x12x34/x13x24 with fill factor (a) nf = 0.5 and (b) nf = 0.375. Inset
in (a) shows the geometry of MIE regions where measured region is
in black. Data are averaged over 106 samples.

systems, the single orbital measurements (σz-basis measure-
ments in the spin picture) can be implemented based on
correlation matrix Ci j = 〈c†

i c j〉 (see Appendix A). The corre-
lation matrix for the ground state of Hamiltonian (7) is given
by (see Appendix B for the derivation)

Ci j = sin πn f (i − j)

L sin π (i− j)
L

, (8)

where n f is the fermion filling factor, which is 0.5 when there
is no external field. In Fig. 1(a) we show the data collapse of
MIE for L = 128 and L = 256 with η over several orders of
magnitude, giving α ≈ 0.3, which is much smaller α = 2 in
the forced measurement case [49]. Note that in the cross ratio,
the finite-size effect has been taken into account by replacing
xi j = |x j − xi| with the chord length L

π
sin( π |x j−xi|

L ).
To test the universality of power-law relation observed in

MIE, we perturb the idealized XX model with the chemical
potential μ

∑
i σ

z
i , which modifies the filling factor to n f =

arccos μ

π
and Eq. (8) still holds. In Fig. 1(b) the data collapse of

MIE with similar power-law exponent indicates the universal-
ity of MIE. On the other hand, the mutual information from
1 + 1D CFT calculation scales as ∼η

1
2 at the small-η limit

[43], thus MII is positive and dominated by the measurement-
induced part at the large distance limit.

For the measurement bases, such as σ x, that do not con-
serve the fermion parity, the method in Appendix A becomes
ineffective. In Appendix C, we apply the density matrix renor-

malization group (DMRG) method to simulate MIE of both
the XX model in the σx basis and XXZ model in the σz basis
for smaller system sizes (L = 48 and L = 64). A similar ex-
ponent α ≈ 0.3 is found for MIEσx , while for the XXZ model
the exponent α increases along with the increasing anisotropic
interaction parameter 	, which is consistent with the analyt-
ically understood increment of α in the mutual information
[43].

2. Random singlet phase

Phase transitions and critical phenomena in 1D disordered
systems often exhibit a flow to so-called infinite randomness
fixed points in which the long-distance low-energy behavior
are governed by rare-region effects leading to slow-glassy
dynamics, and strong differences between average and typical
correlation functions [50,51]. A classic example arises in a 1D
random antiferromagnetic Heisenberg spin- 1

2 chain,

H =
∑

i

JiSi · Si+1, (9)

where Ji ∈ [0, J] are random, and identically and indepen-
dently distributed for each bond. Up to RG-irrelevant local
dressing from quantum fluctuations, the ground state of this
model is a random singlet (RS) state in which each spin is
locked into a singlet state with an another partner. The dis-
tance r between a singlet pair satisfies the distribution ∼1/r2.
The entanglement in these long-range singlets produces a
logarithmic violation of area law, where the single-region
entanglement is proportional to the number of singlets starting
from an interval A of length l and terminating elsewhere
[52],

S(A) = log 2

3
log l + k (10)

where k is some nonuniversal constant. Similarly, the mutual
information between disjoint intervals A and B is proportional
to the number of singlets spanning between A and B [44],

I (A, B) = − log 2

3
log(1 − η), (11)

where η is the cross ratio defined in Eq. (5). For the case
small intervals A and B separated by a large distance r, I (A, B)
scales as ∼1/r2.

Now we consider the MIE and MII for such a RS state
between two premeasured disjoint intervals A and B. Measure-
ment in any product-state basis (e.g., the Sz basis) collapses
the entanglement from all singlets between A/B and M. The
only surviving entanglement arises from singlets that directly
connected A and B in the premeasured state, resulting in
MIESz (A, B) = I (A, B)[|ψ〉]/2 and MIISz (A, B) = 0.

On the other hand, measurement in the Bell basis thus
has the effect of “teleporting” singlets between A/B and M
into Bell pairs in A ∪ B, leaving local Bell pairs in M. We
denote the number of Bell pairs connecting regions A and
B by nA,B. Then the MII for Bell basis measurements of the
random singlet state is proportional to the number of Bell pairs
added to A, B by measurement, MIIBell = 2 log 2(nAB,M −
nA,B). Specifically we consider the Bell measurements on
nearest-neighbor spin pairs in a measurement region con-
taining an even number of spins. For the simplest case, i.e.,
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FIG. 2. Number of measurement-induced Bell pairs in a random
singlet state between A and B with x23 = x14 = r for (a) odd |A| = |B|
and (b) even |A| = |B| [geometry of the system is shown in the inset
of (a)]. Data are averaged over 106 random singlet configurations.

when the unmeasured regions A and B only contain single
sites, nAB,M has to be 1 since all other sites are paired after
Bell measurements and no existing pair can be eliminated.
As a result, MIEBell = log 2 and limL→∞ MIIBell = 2 log 2.
The similar long-range behavior is expected for odd number
of |A| and |B| (for random singlets, we have assumed total
system size is even), which is numerically verified in Fig. 2(a).
However, for the cases A and B containing even number of
sites, there is no guarantee for the formation of long-range
Bell pairs. Instead, measurements can either teleport an A/M
singlet into an A/B singlet contributing to MII, or they might
teleport the A/M singlet into a local singlet with both spins in
A, which does not contribute to MII. The ratio of these two
possibilities depends in a complicated fashion on the disorder
configuration and geometry of the regions but nevertheless
yields a universal scaling form. To investigate it, we perform
a numerical calculation using the strong-disorder renormal-
ization group method. We start from a random Heisenberg
Hamiltonian and apply Ma–Dasgupta rule for the renormal-
ization of the strongest bond until obtaining a random-singlet
ground state. Subsequently, we perform Bell measurements
on nearest-neighboring pairs, which effectively rearrange the
Bell pairs. The results shown in Fig. 2(b) demonstrate for even

number of |A| and |B| the MIIBell(A, B) features a power-law
decay ∼r−0.34.

3. Random MERA states

Another tractable model for computing MIE are random
multiscale entanglement renormalization (MERA) tensor net-
works [53,54]. MERA tensor networks can produce the states
with logarithmic entanglement. Consequently, they are often
used to model critical ground states that are described by a
CFT [55,56]. Entanglement features of MERAs with either
nonunitary Gaussian random tensors or Haar random unitaries
and isometries can be analytically computed by mapping
them, via a replica trick, to a classical statistical mechanics
model [57–62]. In the limit of large bond dimension, D → ∞,
the statistical mechanics model calculations become tractable
and reduced to pure geometric quantities that are identical to
the Ryu-Takanagi principle for computing entanglement via
holographic field theory/gravity duality [57].

In the statistical mechanics mapping [63], the entangle-
ment entropy of a boundary region A maps to the free energy
in the classical statistical mechanics. In this model, general-
ized “spins” sit on the vertices of the tensor network, with
ferromagnetic interactions of strength J = log D between
spins connected by edges of the network, and boundary “mag-
netic” fields of strength h = log D [57,58,61], which explicitly
break the replica permutation symmetry. For simplicity, we
describe the two-replica case where the model reduces to an
Ising model with two spin configurations ↑,↓ (for a general
number of replicas Q, the resulting model is Potts-like with Q
spin flavor, but the universal features inside the ordered phase
of the model at large-D are expected to be independent of Q).
The phase diagram of Ising models on graphs with hyperbolic
geometry has been studied both analytically [64] and nu-
merically [65]. Unlike Euclidean geometries, where boundary
conditions do not effect bulk critical properties, on hyperbolic
graphs, the boundary contains an extensive fraction of the
total number of sites, and the resulting phase diagram is sen-
sitive to boundary conditions. For fixed boundary conditions,
with an explicitly symmetry-breaking field at the boundary,
there is a single bulk order-to-disorder transition. In contrast,
for free-boundary conditions, the “ordered” phase splits into
two phases: a low-temperature uniformly ordered phase with
a single spontaneously chosen magnetization, and a mod-
erate temperature phase with a finite fraction of disordered
spins.

In the present context, the single-region entanglement S(A)
is given by the free energy cost having ↑ boundary fields
outside of A and ↓ boundary fields in its counterpart Ā, which
forces a domain wall (DW) into the system. Therefore, S(A)
corresponds to the fixed-boundary condition hyperbolic-Ising
model, and exhibits a single (dis)ordering phase transition at
a critical Dc. Below this critical bond dimension, there is only
a local cost to inserting a boundary domain wall resulting in
area-law entanglement [S(A) ∼ constant]. Above this critical
bond dimension, the bulk is ordered, and the DW tension
(energy cost per unit length) is proportional to log D/Dc. In
the following we consider the limit of large D, where the ef-
fective spin model will be in an ordered, ferromagnetic phase.
Here, fluctuations in the DW shape are strongly penalized and
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FIG. 3. (Left) Schematic figure for MERA tensor networks.
(Right) Mapped statistical mechanics model after Haar random aver-
age. Mini-cut domain wall is indicated by the orange wave line.

the DW follows a minimal cut of the interaction edges. For
a MERA tensor network with a 1D boundary, the minimal
cut connects the ends of the region A interval, dives down
into the bulk as shown in Fig. 3, and has a length ∼ log |A|.
which gives S(A) ∼ log D log |A|. The mutual information for
two disjoint intervals A = [x1, x2] and B = [x3, x4] is given by
the free energy of the two competing cut configurations for
S(A ∪ B),

I (A, B) = FA + FB + log(e−FA−FB + e−FAB ), (12)

where FA + FB ∼ log D log x12x34 [Fig. 4(a)] and FAB ∼
log D log x14x23 [Fig. 4(b)]. In the limit of D → ∞, I (A, B)
shows an abrupt jump as a function of η̃ = x12x34/x14x23,
which relates to the cross ratio defined in Eq. (5) as 1/η =
1/η̃ + 1,

I (A, B) ∼
{

log D log η̃ η̃ > 1

η̃log D η̃ < 1
. (13)

FIG. 4. (a),(b) Two possible minimal cuts for S(A ∪ B); (c) two
possible minimal cuts for MIE(A).

We now turn to average MIE and MII for this random
MERA. We note that the random nature of the tensors means
that the average MIE does not depend on the measurement
basis. The principal difference in the statistical mechanics
mapping is that the measured region M has free-boundary
condition, and thus exhibits a distinct, separate phase tran-
sition from that of the (fixed-boundary condition) statistical
mechanics model for entanglement (without measurement).
As a result of the free-boundary conditions, the DW ends
are no longer linearly confined to the ends of the bound-
ary of entanglement region, but can fluctuate into measured
regions. The cost to change the size of the minority spin do-
main encapsulating A from the minimum domain, to x > |A|,
scales as log D log x/|A|. This competes with an entropic gain
∼ log x from the fluctuations. The competition of energetic
vs entropic logarithmic factors is familiar from Kosterlitz-
Thouless (KT) transitions arising in 1D XY models and
discrete 1D spin chains with long-range interactions decay-
ing as ∼1/r2 with distance r. By analogy, there should be
a critical bond dimension D′

c > Dc at which the statistical
mechanics model for MIE changes from an ordered phase
(Dc < D < D′

c) with short-range MIE, to an ordered phase
(D > D′

c) with MIE(A, B) ∼ log |A| as discussed above. This
phase transition is analogous to the “finite-time” teleporta-
tion transition in 1D quantum circuits with power-law range
gates discussed in [34]. We will discuss the implications to
MIE for a related teleportation transition in finite-depth 2D
circuits below. There we will argue that the leading contri-
bution to MIE in the teleporting phase is long range and
nonuniversal.

In the large-D limit, such fluctuations are strongly sup-
pressed, and thus the leading order of MIE is given by

MIE(A, B) ∼ log D log (min{x12, x34}), (14)

which is equal to the minimum premeasurement of entangle-
ment entropy in A and B [min-cuts are given in Fig. 4(c)].
We note that this result holds even when the distance between
A and B becomes very large such that the premeasurement
I (A, B) ≈ 0. In such a case one has

MII(A, B) ≈ 2MIE(A, B) ∼ 2 log D log (min{x12, x34}).
(15)

This behavior of MIE qualitatively differs from that found
in the free fermion (XX chain) studied numerically in the
previous section. This deviation is a direct consequence of
the different phase diagrams for ferromagnetic spin models
on hyperbolic geometries with fixed- or free-boundary condi-
tions. For the CFT, MIE followed the behavior of a four-point
function, depending only on the cross ratio x12x34/x13x24. This
suggests a possible difference in the structure of MIE be-
tween holographic tensor network states and (minimal-model)
CFTs. This behavior contrasts with the premeasurement mu-
tual information I (A, B), which behaved like a four-point
function for both models.

III. MIE IN 2D

We next turn to investigating the structure of measurement-
induced entanglement in 2D states. Here, the existence of
teleportation phase transitions in finite-depth 2D circuits
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dramatically alters the structure and universality of MIE
[34,40]. Nevertheless, we find that universal signatures of
topology and nonlocal entanglement associated with Fermi
surfaces still arises as subleading corrections to MIE, and
discuss how to directly extract these universal signatures.

A. Trivial gapped states

A trivial gapped state is one that can be produced from
a product state by a finite-depth local circuit. Unlike 1D
systems, measurements in 2D (or higher dimensions) can
induce nontrivial entanglement phase transition with finite-
depth random circuits [34,40], i.e., after applying t > tc
layers of random circuits, arbitrary initial state can feature
extensive measurement-induced entanglement MIE(A, B) =
O(|A|). Therefore, the leading order of MIE in 2D is some
nonuniversally constant and on the other hand, universal be-
haviors, such power-law decay will be overshadowed.

1. Leading contributions to strange correlators are non-universal

The existence of extensive term in MIE also implies a
nonuniversal constant part in strange correlators in 2D, that
there exists two trivial states |ψ〉 and |ψm〉 giving long-ranged
strange correlator in Eq. (4) and thus overshadows the di-
agnosis of nontrivial topological states, which contributes a
power-law decay [20]. To show this explicitly, we consider
a 2D trivial initial state |ψ〉 with application of t > tc lay-
ers of random circuits, which does not have premeasurement
long-range correlation but is in the “teleportation phase” [34],
MIE(A, B) = O(|A|). Specifically, we consider local Hilbert
dimension D = 2, |A| = |B| = 1 separated by distance r and
the rest degrees of freedom are measured out. Then the post-
measurement state can be written as

|ψ〉AB = λ0|a0〉|b0〉 + λ1|a1〉|b1〉, (16)

where |a0/1〉 and |b0/1〉 are orthonormal local basis sup-
ported by A and B. In the “teleportation phase” MIE(A, B) =
−(λ2

0 log λ2
0 + λ2

1 log λ2
1) = O(1), which indicates λ0/1 are

both finite nonzero numbers. Then by choosing OA =
|a0〉〈a1|, OB = |b0〉〈b1|, and |ψm〉AB = |a0〉|b0〉, one can ver-
ify that the (connected) strange correlator between |ψ〉 and
|ψm〉 = |ψm〉AB|ψm〉M ,

〈ψm|OAOB|ψ〉
〈ψm|ψ〉 − 〈ψm|OA|ψ〉

〈ψm|ψ〉
〈ψm|OB|ψ〉

〈ψm|ψ〉 = λ1

λ0
, (17)

which is generally a nonvanishing number for finite
MIE(A, B), independent of the distance r. Note that the pre-
vious choice of OA, OB, and |ψm〉AB can be in arbitrary
local orthonormal basis if we consider the typical case un-
der random circuits, where each projector |a0/b0〉〈a1/b1| will
typically contribute with a prefactor O( 1

4 ), and then the (con-
nected) strange correlator will still have a finite long-range
behavior.

B. Isolating the universal features of MIE and strange
correlators

In this section we introduce two modified versions of MIE
(which can be readily adapted to strange correlators) that
isolate the universal contributions of MIE that depend only

FIG. 5. Schematic figure for the traced-MII. Mutual information
between A and B with green regions T traced out and grey regions M
measured out.

on the phase of matter for the pre-measured state, from the
nonuniversal ones arising from the teleportation transition.

a. Scaled MIE. To probe the universal behavior of MIE
or strange correlator, one must consider the subleading term
with power-law decay. Generally, the measurement-induced
nonuniversal effect is proportional to the size of postmeasure-
ment region A, thus to eliminate the nonuniversal extensive
term of MIE, one can redefine MIE as

M̃IE(A, B) = 2MIE1/2(A/2, B/2) − MIE(A, B), (18)

where MIE1/2(A/2) represents the MIE for a system scaled
by 1/2 in the particular direction of interest, not only for the
region A. With this definition, the extensive terms in MIE are
canceled, while the subleading power-law relation is retained.
A nonideal aspect of this difference between scaled MIE is
that it assumes a specific form of the subleading universal cor-
rections. In the next section, we introduce an alternative means
to isolate the universal aspects of MIE from the nonuniversal
teleportation transition ones, that is agnostic to the precise
scaling structure of the subleading universal terms.

b. Partially traced MII. Another possible solution is to
consider the quantity that is not affected by the measurement-
induced phase transition but still features the universal
behaviors. One candidate, shown in Fig. 5, is the partially
traced MII, where instead of considering the total mutual
information between two postmeasured regions A and B, we
consider the mutual information between two subregions A0,
B0 of them. In this case, the left region A/A0 ∪ B/B0 is traced
over (see Fig. 5) and thus imposes a definite spin configuration
in the statistical mechanics picture, which makes this quantity
always vanishing in the long-range limit for trivial initial
states.

For the models considered in the remainder of the paper,
we find that the ground states naturally lie in the nonteleport-
ing phase. For this reason, we do not need to explicitly modify
MIE to subtract a nonuniversal extensive piece.

C. Chern insulator

In Chern insulators, the strange correlator decays as a
power law (in particular, for the free-fermion case ∼r−1)
[20,66,67], which can be understood by mapping to the stan-
dard correlator in the one-dimensional CFT. Since in the CFT,
MIE is lower bounded by the averaged square of strange
correlators (see Appendix D), we expect the universal part of
MIE in Chern insulators to also feature a power-law behavior.

To investigate this question, we numerically study the
MIE in a two-band model on a square lattice introduced
by Ref. [68], which holds nontrivial Chern number. As
shown in Fig. 6(a), the model consists of two sublattices a
and b, where nearest-neighbor-hopping amplitudes are t1eiπ/4

along the arrow direction and next-nearest-neighbor-hopping
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FIG. 6. (a) Two-band model on a square lattice, where nearest-
neighbor-hopping amplitudes are t1eiπ/4 along the arrow direction
and next-nearest-neighbor-hopping amplitudes are t2 and −t2 along
the dashed and dotted diagonals. (b) MIE on a cylinder geometry
where grey region is measured out.

amplitudes are t2 and −t2 along the dashed and dotted diag-
onals. To compare the results with trivial insulator, we add
a staggered one-site potential, which is V for a sublattice and
−V for b sublattice. The total tight-binding Hamiltonian reads

H = −t1
∑
〈i, j〉

eiφi j c†
a,icb, j + H.c. − t2

∑
〈〈i, j〉〉

τi jc
†
a,ica, j

− t2
∑
〈〈i, j〉〉

τi jc
†
b,icb, j + V

∑
i

(c†
a,ica,i − c†

b,icb,i ), (19)

where 〈i, j〉 represents nearest neighbors and 〈〈i, j〉〉 rep-
resents next-nearest neighbors. φi j = π/4 (−π/4) if the
hopping is along (against) the direction of the arrow, and
τi j = 1 (−1) if the hopping is along dashed (dotted) diagonals.
For −4t2/t1 < V < 4t2/t1, the band features Chern number
C = 1, while for V > 4t2/t1 or V < −4t2/t1, the band is
trivial.

Specifically, we let t1 = 1 and t2 = 0.1 and consider the
MIE with measurements taken on the basis of occupa-
tion number on each site between two rings with width 2
that are separated by distance r on an L × L lattice with
cylinder geometry [Fig. 6(b)]. Since this is a free-fermion
system, similar numerical method discussed in Sec. II B and
Appendix A can be applied. As shown in Fig. 7(a), the MIE
for nontrivial Chern number (V = 0) features a power-law
decay ∼r−0.9 satisfying the lower bound given by the strange
correlator. As a comparison, in a trivial insulator (V = 0.8)
the MIE decays exponentially [Fig. 7(b)]. Since the ground
state of Chern insulators has short-ranged premeasurement
entanglement, the MII also features power-law decay.

D. Metals

As a final numerical example, we consider the MIE of a
noninteracting metal, with measurements taken on the basis
of occupation number on each site. Due to the presence of
a Fermi surface of gapless excitations, the metallic state has
a large entanglement before measurement, with entanglement
of a region of size L scaling as S ∼ kF L log L where kF is
the Fermi wave vector. We consider MIE in a free fermion

FIG. 7. MIE in the two-band model with cylinder geometry for
(a) V = 0 and (b) V = 0.8, where the result is averaged over 120
measurement realizations.

tight-binding model

H = −
∑
〈i, j〉

(c†
i c j + c†

j ci ), (20)

where 〈i, j〉 represents nearest neighbors on a two-
dimensional square lattice. The ground state of this Hamil-
tonian can be considered as a metal.

Similar to the Chern insulator case, we consider the MIE
between two rings with width 2 separated by distance r
on an L × L lattice with cylinder geometry [Fig. 6(b)] and
apply the free-fermion method discussed in Sec. II B and Ap-
pendix A. As shown in Fig. 8, the MIE features a power-law
decay ∼r−0.23, where corresponds to α ≈ 0.115 (consider-
ing η ∼ r−2 in the large distance limit), which smaller than
α ≈ 0.3 of the 1D case. Since the premeasurement 2D free-
fermion systems can be decoupled into 1D chains, the mutual
information scales as ∼η [45,69]. In contrast, the random
measurement outcomes break the translation invariance, such
that the MIE of the metal does not reduce to decoupled copies
of 1D free-fermion systems for each momentum parallel to the
measurement-region boundary. In particular, the MIE of the
2D metal decays with a different power of r than for the 1D
free-fermion system. Since this premeasurement mutual in-
formation decays much more rapidly than the MIE, the MII in
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FIG. 8. MIE in the 2D free fermion model on the square lattice
with cylinder geometry, where the result is averaged over 120 mea-
surement realizations.

large distance limit is dominated by the measurement-induced
part and scales as r−0.23.

E. Topological orders (String-net liquids)

While leading order of MIE in a trivial gapped state shows
no universal behavior, MIE of a topologically ordered state
contains a long-range (constant) term that depends only on the
topological information of the measurement scheme, namely
it depends only on the homological class of the measurement
region and is invariant upon deformation of the measurement
region.

Measurements of a subregion of a topologically ordered
state can be interpreted as imposing boundary conditions on
the unmeasured region. To see this, observe that after per-
forming a local measurement in a region M, the state in
M is in a tensor product state that has no topological order
while the unmeasured region remains topologically ordered.
Therefore the interface between the two regions is an interface
between topological order and trivial state. Boundaries of 2D
topological orders are well understood—they are in 1:1 cor-
respondence with different ways of condensing anyons of the
topological order. This classification and characterization of
boundary conditions allow us to analyze the postmeasurement
state of a topologically order state systematically.

1. Toric code on a torus

As a warmup example let us consider the toric code D(Z2)
on a torus T 2 modeled is a spin- 1

2 degree of freedom at each
link of a square lattice, with Hamiltonian

(21)

where v and p represent vertices and plaquettes, and Z, X are
Pauli operators. If the measurement region is contractable,

FIG. 9. MIE of toric code on a torus. The torus is divided into
regions A, B, M. The M region is then measured out and we are
interested in the MIE between A and B. Two noncontractable loops
l1, l2 are shown in blue and red.

then due to the topological nature of the system, there is no
long-range measurement-induced entanglement. Instead, we
consider measuring a noncontractable region M that sepa-
rates two unmeasured regions A, B as shown in Fig. 9. The
boundaries between measured and unmeasured region are on
noncontractable loops, which we call l1. The other noncon-
tractable loop intersects l1 once and is called l2. The ground
space of the toric code Hamiltonian on the torus is fourfold
degenerated and is invariant under the action of string (loop)
operators on l1, l2. The ground state is invariant under ap-
plication of string operators that are labeled by anyon types,
{e, m, f = e × m}. A generating set of string operators can be
chosen as e strings and m strings. An e string is a product
of Z operators along a path of the lattice while an m string
is a product of X operators along a path of the dual lattice.
We denote loop operators of type a = e, m on loops li=1,2

as W a
i . Then these operators preserve the ground space and

their eigenvalues can be used to label states in the ground
space. In the language of string-net condensation the ground
states are equal-weight superpositions of closed e-loop con-
figurations, where we define links with X = −1 as having an
e-loop segment. Then the fourfold degenerated states can be
characterized by the parity of number of loops along noncon-
tractable directions l1, l2. This way of labeling provides us
with a basis of the ground space, which we denote as |α, β〉SN

and call string-net basis, α, β = 0, 1 are the parities of number
of loops along l1, l2 respectively.

Now let us consider starting with a state with even parity
of loops of length l1, l2: |0, 0〉SN and measuring in the X
basis in region M. The measurement will then project onto
some fixed loop configuration in M, while the unmeasured
region remains a equal weight superposition of various loop
configurations. From the measurement outcomes we can infer
the parity of loops along l1 in M. If the measurements yield
a result such that the number of loops along l1 in M is even,
then we know that the total number of loops along l1 in A, B
must be even since the initial state has even parity of loops
along l1. This condition entangles the string-net configurations
in A, B; they can have either both even or both odd parity
along l1. Apart from this condition, the states in A, B are
still equal weight superpositions of all possible loop config-
urations. The postmeasurement state in region A, B is thus a
Bell pair with entanglement entropy log 2. On the other hand
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if the measurement projects onto a state in region M with
odd number of loops along l1, then the postmeasurement state
must have opposite parities of loops along l1 in A and B. In
this case the postmeasurement state is again a Bell pair and
has entanglement entropy log 2. Therefore, after averaging
over measurement outcomes with Born probability we have
MIE(A, B) = log 2. One can verify that starting with any of
the four states, |α, β〉SN will yield MIE(A, B) = log 2 if one
measures in the X basis.

A scheme dual to the above measurement scheme is to start
with a state having definite parities of dual loops along l1, l2
[71] and make measurements in the Z basis, which will also
give MIE(A, B) = log 2.

The above example illustrates that the MIE of a topological
order is a constant that is invariance under deformations of
the measurement region for certain measurement basis. But
several questions remain. How exactly is the MIE related to
the data of the topological order, such as quantum dimension
of anyons? Can the result for toric code be generalized to other
topological orders? We address these questions by reformu-
lating the above calculation in a way that makes it suitable for
generalization; along the way these questions will be resolved
automatically.

2. Minimally entangled states

Apart from the string-net basis |α, β〉SN discussed earlier,
there are other basis for the ground space of a topological
order on a torus. An important basis consists of the mini-
mally entangled states (MES) [72,73]. MES will be crucial
in obtaining the MIE for a general ground state of Abelian
quantum double models. Here, we briefly summarize their
construction. Consider all loop operators on a noncontractable
loop l1, these are generated by W e

1 ,W m
1 as an algebra. Since

these two operators commute, we can diagonalize them simul-
taneously within the ground space. The common eigenstates
of the loop operators on l1 can be labeled by anyon types,
|a〉, a = 1, e, m, f , with the property that the eigenvalue under
action by W a

1 is given by the braiding statistics of anyons,
W a

1 |b〉 = eiθ (a,b)|b〉. Here θ (a, b) is the braiding phase between
anyon a and b. The state |a〉 can be viewed as having an
anyon a threading through the center of the torus [74], then
the action of W b

1 is performing a braiding between a and b
in spacetime. The string-net basis is related to MES via a
linear transformation. To derive the transformation, notice the
effect of the operators W e,m

1 on the string-net configuration,
W e

1 creates a loop along l1 while W m
1 measures the parity of

loops along l2. We can then deduce the action of W a
1 on the

string-net basis,

W e
1 |0, 0〉SN = |1, 0〉SN , W m

1 |0, 0〉SN = |0, 0〉, (22)

W e
1 |1, 0〉SN = |0, 0〉SN , W m

1 |1, 0〉SN = |1, 0〉SN , (23)

W e
1 |0, 1〉SN = |1, 1〉SN , W m

1 |0, 1〉SN = −|0, 1〉, (24)

W e
1 |1, 1〉SN = |0, 1〉SN , W m

1 |1, 1〉SN = −|1, 1〉SN , (25)

from which we can form superpositions to obtain the (unnor-
malized) eigenstates of loop operators W a

1 : |1〉 = |0, 0〉SN +
|1, 0〉SN , |m〉 = |0, 0〉SN − |1, 0〉SN , |e〉 = |1, 1〉SN + |0, 1〉SN ,

| f 〉 = |1, 1〉SN − |0, 1〉SN . The inverse transformation is
|0, 0〉SN = |1〉 + |m〉, |1, 0〉SN = |1〉 − |m〉, |0, 1〉SN = |e〉 −
| f 〉, |1, 1〉SN = |e〉 + | f 〉.

Now consider taking an MES |a〉 as our initial state and
denote the postmeasurement state as Pm|a〉 where Pm is the
projection operator for a measurement outcome m. The state
Pm|a〉 remains topologically ordered in the unmeasured region
A, B, since the stabilizers Av, Bp are not altered by the mea-
surements for v, p in A ∪ B. A crucial observation is that the
postmeasurement state Pm|a〉 remains a common eigenstate
of loop operators W a

1 in region A, B. This is due to the fact
that the loop operators W a

1 are topological and can be freely
deformed to be supported entirely in region A or B without
changing their action on the states prior to measurement.
Therefore, since region A, B are not affected by the measure-
ments, the operators W a

1 commute with the projector P, and
Pm|a〉 remains an eigenstate of W a

1 with the same eigenvalues
as the initial state |a〉, i.e., W b

1 Pm|a〉 = eiθ (a,b)Pm|a〉
After measurement, the quantum state in M becomes a

trivial product state, therefore the A, B to M interfaces become
gapped boundaries of the unmeasured region A, B. Region
A, B now hosts topological order on cylinder with gapped
boundaries, whose ground space is finitely degenerated and
can be characterized by the action of W a

1 s. Similar to the situ-
ation on a torus, we can label the states in region A, B by anyon
types and they satisfy the relation W 1

b |a〉 = eiθ (a,b)|a〉. One can
again picture the state as having an anyon b threading through
the center of the cylinder. The fact that the postmeasurement
state Pm|a〉 remains an eigenstate of W b

1 with eigenvalues
eiθ (a,b) fixes the states in region A, B to be |a〉A, |a〉B. There-
fore, we conclude that for an MES,

P|a〉√〈a|P|a〉 = |a〉A ⊗ |a〉B ⊗ |φ〉M . (26)

This shows that for MES there is no MIE for any measurement
basis. The decomposition of postmeasurement state Eq. (26)
allows us to directly calculate MIE for a generic initial state
by expanding the initial state in the MES basis.

Let us reproduce the string-net states MIE using the MES
formalism. The state |0, 0〉SN can be expanded in MES as
|0, 0〉SN = 1√

2
(|1〉 + |m〉). Applying the projection operator

to the initial state and using the decomposition Eq. (26), we
conclude [75]

P|0, 0〉SN = 1√
2

(|1〉A|1〉B + |m〉A|m〉B)|φ〉M, (27)

which is a Bell pair with entanglement entropy log 2 regard-
less of measurement outcome. Therefore, MIEfor |0, 0〉SN is
log 2, in agreement with the result obtained earlier using the
string-net picture of the ground-state wave function.

3. MIEin Abelian quantum double models

The toric code analysis can be readily generalized to
general Abelian topological orders. From the decomposition
Eq. (26) we know that the MES has zero MIE. Therefore,
a nonzero MIE can only be obtained if one starts with a
non-MES state, such as the string-net states |SN, α, β〉 of the
toric code. We show that the string-net states of toric code
can be generalized to generic Abelian quantum double models
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FIG. 10. Definition of vertex and face operators in quantum dou-
ble models.

D(G), and their MIE contains information about the order of
the gauge group G. The Abelian quantum double model D(G)
with Abelian G, can be defined on the square lattice as follows
[76,77]. There is a |G|-dimensional Hilbert space on every
link of the lattice, with a natural basis |g〉, g ∈ G. The lattice is
endowed with an orientation of edges and the Hamiltonian are
built with two types of operators Ag

v, Bh
p, defined on vertices

and faces of the lattice respectively. Ag
v changes the states

on the four edges adjacent to v from |h〉 to |gh〉 or |g−1h〉,
according to whether the edge is pointing towards or away
from the vertex v. Bh

p forces the “flux” through the plaquette
p to be h. These operators are summarized in Fig. 10. The
Hamiltonian is then built from these two types of operators as
follows:

H = −
∑

v

Av −
∑

f

Bp, (28)

Av := 1

|G|
∑

g

Ag
v, Bp := Be

p. (29)

Av can be viewed of as the Gauss’s law constraint and B f

can be viewed as the zero-flux condition. The ground space
of the quantum double can also be described by the picture
of string-net condensation. However, one needs to use a basis
dual to |g〉 to express the ground state as a string-net liquid
on the direct lattice [78]. For any character of the group
G: χ ∈ Ĝ = hom[G,U (1)], define a dual basis on an edge
as |χ〉 := 1√|G|

∑
g χ (g)|g〉. This can be viewed as a group

Fourier transformation of the basis |g〉, with inverse transfor-
mation |g〉 = 1√|G|

∑
χ∈Ĝ χ∗(g)|χ〉. Then acting on dual basis

|χi〉, where i = 1, 2, 3, 4 labels four edges adjacent to v, we
have

Av ∼ 1

|G|
∑

g

χ
s1
1 (g)χ s2

2 (g)χ s3
3 (g)χ s4

4 (g), (30)

where si is the orientation of edge i with respect to v. From
properties of group Fourier transformation we have

1

|G|
∑

g

χ
s1
1 (g)χ s2

2 (g)χ s3
3 (g)χ s4

4 (g) = δ∏
i χ

si
i ,1. (31)

Hence, the vertex term Av enforces the product of characters
on edges adjacent to a vertex to be the trivial character. On the
other hand, the face term can be written in the |gi〉 basis as
Bp ∼ δg1g2g3g4,e = 1

|G|
∑

χ χ (g1g2g3g4). Therefore in the dual

basis we have Bp = 1
|G|

∑
χ Bχ

p , where Bχ
p changes the states

on the the edges of the face f from |χi〉 to |χχi〉. We see
that in the dual basis the roles of Av and Bp are interchanged.
Then one can now view Av as enforcing the condition that
in a ground state the characters flowing through any vertex
is 1. Bp terms then form a superposition of all possible such
configurations. We can now say that the ground state of the
Hamiltonian (28) is a string-net liquid on the direct lattice,
with string types labeled as characters of G.

We are now in place to define a string-net basis for a
general Abelian quantum double model defined on a torus.
In a given string-net configuration, the string type along
a noncontractable direction l1,2 is χ1,2. Then the ground
states with definite χ1, χ2 are called string-net states and
are denoted by |χ1, χ2〉SN . We now make connection to the
MES, defined for any topological order on a torus. The
MES are labeled by anyon types. For Abelian quantum dou-
ble models, the anyon types are labeled by pairs (g, χ ), g ∈
G, χ ∈ Ĝ, with self and mutual statistics given by θ (g, χ ) =
χ (g), θ ((g, χ ), (g′, χ ′)) = χ (g′)χ ′(g) [76,77]. χ -type anyon
is associated with violation of the vertex terms Av of the
Hamiltonian, g-type anyon is associated with violation of face
terms Bp. To find the transformation between MES |g, χ〉
and string-net states |χ1, χ2〉, we analyze the effect of loop
operators W 1

g,χ on the string-net states. The loop operator W 1
g,χ

moves an anyon (g, χ ) around l1. It is a ribbon operator with
support on a direct path and a dual path, both along l1. It
changes the states on the direct path from |χi〉 to |χχi〉, and
the states on the dual path from |gi〉 to |ggi〉. Therefore it acts
on the string-net states as W 1

g,χ |χ1, χ2〉SN = χ2(g)|χχ1, χ2〉SN .
To obtain MES, which are eigenstates of W 1

g,χ , we simply
perform Fourier transform to the first label of string-net states
and define |g, χ〉 = 1√|G|

∑
χ1

χ∗
1 (g)|χ1, χ2〉SN . One can verify

the states |g, χ〉 satisfy W 1
g′,χ ′ |g, χ〉 = χ(g′)χ ′(g)|g, χ〉. The

phase χ (g′)χ ′(g) is exactly the braiding between two anyons
(g, χ ) and (g′, χ ′). Thus the states |g, χ〉 are indeed the MES.
The inverse transformation is given by the inverse Fourier
transformation, |χ1, χ2〉SN = 1√|G|

∑
g χ1(g)|g, χ2〉.

Now using the decomposition of MES after measurement
(26), we have for string-net states

P|χ1, χ2〉SN = 1√|G|
∑

g

χ1(g)|g, χ2〉A ⊗ |g, χ2〉 ⊗ |φ〉M .

(32)

The entanglement entropy between A and B is therefore∑
g∈G

1
|G| log |G| = log |G| regardless of the measurement

outcome. We conclude that for string-net states we have
MIE = log G = log D. We used the fact that the quantum
double D(G) has total quantum dimension D = |G|.

IV. DISCUSSION

This exploration of measurement-induced entanglement
(MIE) and information (MII) in ground states of various
systems reveals the presence of universal features depending
on the topology or universality class for critical or gapless
systems. This universal structure provides distinct, comple-
mentary information from that contained in the single-interval
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entanglement entropy of the state. These quantities are rel-
evant for assessing the computational power of the state
for measurement-based quantum computing, and have oper-
ational significance for the classical and quantum complexity
of simulating that state. With the exception of gapped topo-
logical phases, our present understanding of MIE and MII
comes entirely from numerical simulations of piecemeal ex-
amples. To obtain a systematic understanding of the structure
of MIE and MII, analytic methods for computing these from
field theory descriptions would be highly valuable, and are
an important challenge for future work. For example, while
numerical simulations of the XX spin chain show that the
MIE behaves like a four-point correlation function, although
the scaling exponent does not appear to be simply related to
known bulk- or boundary-scaling dimensions. This suggests
that the MIE for 1 + 1D CFTs could, perhaps, be governed by
new classes of scaling operators that have not been previously
considered. An analytic understanding would be especially
valuable for studying higher-dimensional gapless systems,
such as non-Fermi liquids, and gapless quantum spin liquids,
where purely (classical) numerical methods are challenging to
implement at large scale.
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APPENDIX A: MEASUREMENTS IN GAUSSIAN
FERMION STATES

A Gaussian fermion state can be entirely captured by its
single particle correlation function Ci j ≡ 〈c†

i c j〉 [79]. Here we
consider the effect of single orbital measurements on Gaus-
sian fermion states, where the on-site projectors are given by

P1 = c†
aca, P0 = cac†

a = 1 − c†
aca, (A1)

with probabilities

p1 = Caa, p0 = 1 − Caa. (A2)

where a is the measured orbital.
When P1 is applied, the updated correlation matrix is

given by

C′
i j = 〈c†

acac†
i cic†

aca〉
Caa

=

⎧⎪⎪⎨⎪⎪⎩
1 if i = j = a

Ci j − CiaCa j

Caa
if i �= a, j �= a

0 otherwise

(A3)

and when P0 is applied, the updated correlation matrix is given
by

C′
i j = 〈cac†

ac†
i cicac†

a〉
1 − Caa

=

⎧⎪⎪⎨⎪⎪⎩
0 if i = j = a

Ci j + CiaCa j

1−Caa
if i �= a, j �= a

0 otherwise

(A4)

where multiparticle correlators can be decomposed to single-
particle correlators by Wick’s theorem. With the update rule,
one can easily obtain the postmeasurement correlation func-
tions satisfying Born probability.

APPENDIX B: CORRELATION MATRIX FOR THE 1D
FREE FERMION CHAIN

In this Appendix we derive the correlation matrix in
Eq. (8). For the 1D free fermion chain, the Hamiltonian can be
written in the momentum space H = −∑

k 2 cos kc†
kck . For a

ground state with filling factor n f , we have

〈c†
kck〉 =

{
1 if |k| < n f π

0 otherwise
. (B1)

Then the correlation matrix becomes

Ci j = 〈c†
i c j〉 = 1

L

∑
k

〈c†
kck〉eik(i− j) = 1

L

∑
|k|<n f π

eik(i− j). (B2)

Note that when applying Jordan-Wigner transformation to a
spin model with periodic boundary condition, the mapped
1D free fermion chain has periodic (antiperiodic) boundary
condition when the total number of fermion is odd (even).
Thus, we consider the correlation matrix for odd and even
number of fermion respectively.

When the total number of fermions, i.e., n f L, is odd, the
allowed momentum is in the form of 2nπ/L, where n is
integer. Then Eq. (B2) becomes

Ci j = 1

L
+ 2

L

∑
1�n� n f L−1

2

cos
2πn(i − j)

L

= 1

L
+ 2

L

sin π (n f L−1)(i− j)
2L

sin π (i− j)
L

cos
π (n f L + 1)(i − j)

2L

= sin πn f (i − j)

L sin π (i− j)
L

, (B3)

where we have used the identity

m∑
n=1

cos nx = sin mx
2

sin x
2

cos
(m + 1)x

2
. (B4)

When total number of fermions, i.e., n f L, is even, the
allowed momentum is in the form of (2n − 1)π/L. Then
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Eq. (B2) becomes

Ci j = 2

L

∑
1�n� n f L

2

cos
π (2n − 1)(i − j)

L

= 2

L

∑
1�n� n f L

2

cos
2πn(i − j)

L
cos

π (i − j)

L

+ 2

L

∑
1�n� n f L

2

sin
2πn(i − j)

L
sin

π (i − j)

L

= sin πn f (i − j)

L sin π (i− j)
L

, (B5)

where we have used Eq. (B4) and

m∑
n=1

sin nx = sin mx
2

sin x
2

sin
(m + 1)x

2
. (B6)

In conclusion, Eq. (8) holds for both odd and even total num-
ber of fermion.

APPENDIX C: DMRG CALCULATION OF MIE IN THE XX
MODEL WITH σx-BASIS MEASUREMENTS

AND THE XXZ MODEL

In this Appendix we calculate the MIE in the XX and XXZ
model with ground states obtained by the DMRG method
implemented in the TeNPy package [80]. The truncated bond
dimensions are 256 and 400 for L = 48 and L = 64 respec-
tively. As a benchmark, we first investigate the XX model
with the σz-basis measurements, which we have calculated
via the free-fermion method up to L = 256 in Sec. II B. As
shown in Fig. 11(a), the fitted exponent α ≈ 0.34 is slightly
larger than the α ≈ 0.31 (Fig. 1) obtained by the free-fermion
method. We interpret the discrepancy as a finite-size effect.
For the XX model with the σx-basis measurements, the fit-
ted exponent α ≈ 0.31 [Fig. 11(b)] slightly smaller than that
with the σz-basis measurements at the same system size,
but the discrepancy is too small to tell whether they will
drift to the same exponent at the large-L limit. For the XXZ
model, Figs. 11(c)–11(f) show that the exponent α increases
from 0.19 to 0.25 to 0.42 to 0.5, as the anisotropic interac-
tion parameter 	 varies from −0.9 to −0.5 to 0.5 to 0.9.
This trend is consistent with the analytically understood be-
havior in the mutual information where αMI = 1 − arccos 	

π

[43].

APPENDIX D: MIE UPPER-BOUNDS STRANGE
CORRELATORS

Mutual information between regions A and B upper bounds
connected correlators between operators supported in these
regions. In this section, we show that the MIE similarly upper
bounds strange correlators. Consider a state |ψ〉, which is
partitioned into three regions, A, B, and C,

|ψ〉 =
∑
a,b,c

φabc|abc〉, (D1)

FIG. 11. MIE calculated by DMRG for (a)/(b) the XX model
with the σz/σx-basis measurements and for the XXZ model with
the σz-basis measurements and (c) 	 = −0.9, (d) 	 = −0.5, (e)
	 = 0.5, and (f) 	 = 0.9. Data are averaged over 3 × 103 to 6 × 103

measurement realizations.

where a, b, and c label the local degree of freedom in A, B,
and C. We apply measurements on region C with outcome
|mc〉, and then the resulting wave function is

|ψc〉 = 〈mc|ψ〉√
pmc

=
∑
a,b

φabmc√
pmc

|ab〉, (D2)

with probability pmc = ∑
a,b |φabmc |2. The averaged MIE in A

is defined as

MIE(A, B) =
∑
mc

pmc SA(|ψc〉). (D3)

In the same setting, we can also define a strange correlator
between a postmeasurement product state |m〉 = |mambmc〉
and the interested state |ψ〉,

SC(OA, OB) = 〈m|OAOB|ψ〉
〈m|ψ〉 (D4)

where ma and mb are measurement outcomes in regions A and
B, which are not measured in the MIE setting, and OA and OB

are charged local operators in regions A and B.
To show the connection between strange correlators and

MIE, we first rewrite the MIE as the mutual information
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between A and B in the postmeasurement state |ψc〉,

MIE(A, B) = 1

2

∑
mc

pmc I (A, B)[|ψc〉]. (D5)

Then we can follow Ref. [81] to express the mutual informa-
tion as a relative entropy

I (A, B)[|ψc〉] = S
(
ρc

AB

∣∣ρc
A ⊗ ρc

B

)
, (D6)

where ρc
AB = |ψc〉〈ψc| and ρc

A/B = trB/A(|ψc〉〈ψc|). Then us-

ing the norm bound [82] S(ρ|σ ) � 1
2 ||ρ − σ ||21 and the trace

inequality ||X ||1 � tr(XY )/||Y ||∞, where || · ||p is the Schat-
ten norm, we can obtain

I (A, B)[|ψc〉] � 1

2

(
tr
(
ρc

ABY
) − tr

(
ρc

A ⊗ ρc
BY

))2

||Y ||2∞
. (D7)

Let Y = |mamb〉〈mamb|OAOB, then the right-hand side of the
inequality becomes

p2
mambmc

2||Y ||2∞ p2
mc

[SC(OA, OB)]2 (D8)

where we have used the fact that each changed local operator
has zero expectation value.

Combining Eqs. (D5)–(D8), we can obtain

MIE(A, B) � c0

∑
mc

p2
mambmc

pmc

[SC(OA, OB)]2 (D9)

where c0 is some nonuniversal constant depending on the
choice of |ma/b〉 and OA/B. Therefore, MIE is lower bounded
by the average of square of strange correlators weighted by
some nonuniversal joint measurement probability.
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