
PHYSICAL REVIEW B 109, 195126 (2024)

Chemical disorder induced electronic orders in correlated metals: Rekindled failed-order scenario
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In strongly correlated metals, long-range magnetic order is sometimes found only upon introduction of a
minute amount of disordered nonmagnetic impurities to the unordered clean samples. To explain such anti-
intuitive behavior, we propose a “rekindled failed-order” scenario of inducing electronic (magnetic, orbital, or
charge) order via chemical or lattice disorder in systems with coexisting local moments and itinerant carriers.
By disrupting the damaging long-range quantum fluctuation originating from the itinerant carriers, the electronic
order preferred by the local moment can be reestablished. We demonstrate this mechanism using a realistic
spin-fermion model and show that the magnetic order can indeed be recovered as a result of enhanced disorder
once the length scale of phase coherence of the itinerant carriers becomes shorter than a critical value. The
proposed simple idea has a general applicability to strongly correlated metals, and it showcases the rich physics
resulting from interplay between mechanisms of multiple length scales.
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I. INTRODUCTION

Typically, random disorder is expected to suppress long-
range orders in materials, especially those with a characteristic
length scale such as antiferromagnetic order, antiferro-orbital
order, or charge density order. This is in part because of the
damage to quantum phase coherence resulting from the inho-
mogeneity in density, in addition to the direct disruption of the
preferred spatial periodicity of the long-range order. Indeed,
in dirtier samples with more impurities, one usually observes
weaker magnetic [1–4], superconducting [5–7], and charge
[8–11] orders. Correspondingly, one often intuitively seeks
cleaner and more uniform samples for stronger long-range
orders.

However, some exceptional cases exist in which long-range
order, for example magnetic order, can emerge from the in-
troduction of disorders, such as nonmagnetic impurities. A
well-known example is the emergence of antiferromagnetic
(AFM) order in Sr2RuO4 [12–15] when a minute amount
(∼3%) of Ru4+ is substituted by nonmagnetic Ti4+ ions.
Similarly, iron-based superconductor LaFePO also devel-
ops antiferromagnetism upon As substitution of P [16–18].
Indications that AFM order could emerge from unordered sys-
tems also have been found in both hole- and electron-doped
cuprates via nonmagnetic Zn substitution of Cu [19–24]. Sim-
ilar phenomena are also found in Zn-doped heavy-fermion
material CeCoIn5 [25]. Such an anti-intuitive behavior ap-
pears to contradict the above fundamental consideration of
quantum phase coherence, and thus poses a great challenge
to our generic basic understanding.
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Theoretically, in a strongly correlated and highly polariz-
able environment, it is natural to expect the development of
local effective moments around even nonmagnetic impurities
[26–28]. Such an effective moment surely would have a large
impact on the local correlation, such as modifying its tem-
poral fluctuation or inducing a spatial standing-wave pattern
through reflection against impurities [29–32]. Nonetheless,
since these effects are primarily local in nature and cen-
tered around random location of the impurities, it is unlikely
that they can provide positive contributions to the formation
of long-range order, especially those with a characteristic
spatial period, such as an antiferromagnetic order. The lack
of geometric frustration in these systems also renders the
“order-by-disorder” scenario [33–40] inapplicable. Therefore,
a generally applicable mechanism for the observed seemingly
anti-intuitive behavior is desperately needed for such a long-
standing puzzle.

Here, we propose a generic “rekindled failed-order” sce-
nario of inducing electronic order via a small amount of
chemical or lattice disorder in strongly correlated metals.
Accepting that most of unordered correlated metals only fail
to order due to the influence of itinerant carriers [41,42], we
suggest that scattering against the impurities can suppress the
damaging carrier-induced long-range quantum fluctuation and
in turn allow the local moments to order. We demonstrate
this generic mechanism using a realistic spin-fermion model
derived from FeSe as a prototypical case with a failed antifer-
romagnetic (AFM) order [41]. Using the linear response as a
measure of the stability of the AFM ordered state, we find that
with a stronger disorder the long-range magnetic order indeed
establishes. Further analysis indicates that the main physical
effect of impurity scattering is equivalent to shortening the
length scale of carrier-induced quantum fluctuation, such that
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FIG. 1. Key question of the study: How can chemical disorder
induce electronic orders in materials? Our “rekindled failed-order”
proposal: Disorder induced scattering can suppress the damaging
long-range fluctuation of a failed order state and in turn allows the
intrinsic electronic order to emerge.

the correlation of local moments is no longer overwhelmed
at long range [41]. Our study demonstrates a typical example
of the rich interplay between mechanisms of multiple length
scales present in most strongly correlated metals, to which our
proposed simple idea can be applied in general.

II. REKINDLED FAILED-ORDER MECHANISM

Figure 1 illustrates our proposed scenario to resolve the
long-standing puzzle of electronic ordering upon the intro-
duction of chemical disorder in correlated metals. The key
theoretical question here is how disorder, a generic source
of incoherence, can induce a coherent long-range order. We
make use of the following two generic physical effects that are
well established both theoretically and experimentally over
the past decades: (1) gapless (metallic) itinerant fermionic
carriers induce slowly (power-law) decaying long-range fluc-
tuation in spin [43,44] (and charge [44]) channels, and
(2) translational symmetry-breaking disorders damage long-
range coherence of itinerant carriers and the fluctuations they
introduce [45–48]. Particularly, the first effect has been shown
[41] to naturally explain the experimentally well-known con-
sequence that (3) materials with d- or f -local moments
favoring strong antiferromagnetic correlation typically fail to
order magnetically given strong enough metallicity [49,50].

Our proposal is based on such a “failed-order” scenario
[41], shown in Fig. 1, in which the long-range order pre-
ferred by the correlation between local moments is disrupted
by the long-range quantum fluctuation induced by itiner-
ant carriers [42]. Such quantum fluctuation can be quite
effective in general since in contrast to the exponential de-
cay of the order-related correlation in three dimensions, the
carrier-induced fluctuation has generic power-law decay, due
to the discontinuity at the Fermi surface of the fermionic carri-
ers [46–48]. Therefore, by restricting the fluctuation to a short
enough finite length scale, we propose that the presence of
weak disorder can generally play a positive role in promoting
the long-range order of the local moments.

III. DEMONSTRATION

A. Spin-fermion model as a demonstration

Below we demonstrate this generic rekindled failed-
order mechanism using a representative realistic spin-fermion
model, whose family often emerges as the low-energy effec-
tive model for a wide range of higher-energy models, such
as the large-U regime of the one-band [51] and multiband
Hubbard models [52], and the charge transfer regime of the
periodic Anderson model [53]. (The previous study on Zn-
doped cuprates via t − J model [54] can also be considered as
a specific example of our general proposal.) In fact, upon inte-
grating out the higher-energy intra-atomic charge fluctuation,
most strongly correlated materials with strong intra-atomic
Coulomb interaction reduce to various forms of spin-fermion
models as their low-energy effective description.

As a generic example, consider a typical realistic spin-
fermion model consisting of coupled local moments affected
by itinerant carriers [41,42,55–58]:

H =
∑
i �=i′

Jii′Si · Si′ − JF

2

∑
imνν ′

Si · c†
imνσνν ′cimν ′

+
∑

j j′mm′ν

t jm j′m′c†
jmνc j′m′ν, (1)

where the local moments Si at site i and i′ couple via Jii′ such
that a magnetic stripe (π, 0) order is preferred by the local mo-
ments [41]. The nontrivial physics emerges when these local
moments couple to the itinerant carriers c†

imν of orbital m and
spin ν at the same site i via coupling constant JF, where σνν ′

are the Pauli matrices. This is because the itinerant carriers
can propagate between sites with kinetic parameter t jm j′m′ and
are thus able to mediate an effective long-range interaction
[46–48] between the local moments at longer timescale (or
lower energy) relevant to the slower spin dynamics. In this
general case, the fermion orbitals at sites j can reside at the
same site i as the local moments or those without (such as
ligand sites).

We proceed with the following steps. We first integrate out
the influence of the itinerant carriers to second order, which
associates their long-range fluctuation with the effective in-
teraction between the local moments. We then demonstrate
the system’s failed-order nature using the linear response of
the ordered state as a measure of its instability. After that,
we simulate the disorder effect numerically and confirm the
establishment of long-range order. Finally, we analyze the
various emergent length scales in our result and provide an
intuitive microscopic picture for the leading physics.

B. Integrating out itinerant carriers

The emergent magnetic interaction can be obtained by
integrating out the faster itinerant electron degrees of freedom.
For simplicity, we stick to the weak coupling regime where JF

can be considered a perturbation that renormalizes [41,42,56]
the linear spin-wave theory [59] (also see Appendix A) for the
preferred long-range ordered state. Represented in the second
quantized magnon creation operator a†

i associated with the
Holstein-Primakoff transformation [60], the resulting spin-
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wave Hamiltonian reads as

HSW =
∑

i

K̃ia
†
i ai +

FM∑
i �=i′

J̃ii′ (a
†
i ai′ + aia

†
i′ )

+
AF∑

i �=i′′
J̃ii′′ (a

†
i a†

i′′ + aiai′′ ), (2)

where K̃i = 2
∑AF

i′′ J̃ii′′ − 2
∑FM

i′ J̃ii′ ensures the preservation
of the Goldstone mode of the ordered system. Here for clar-
ity, the summation is split into those between the parallel
(FM) and antiparallel (AF) pairs of spins. The effective cou-
plings are renormalized by J̃ii′ = Jii′ + Aii′ and J̃ii′′ = Jii′′ +
Bii′′ , respectively, where Aii′′ and Bii′′ denote the (long-range)
magnetic coupling mediated through itinerant carriers.

C. Failed-order state

We now seek a failed-order state as the unordered state
prior to the introduction of chemical or lattice disorder. It
was recently suggested [41] that the semimetallic FeSe is
such a failed-ordered system whose AFM order only appears
under external pressure greater than 1 GP when the carrier
density decreases. In essence, the reduction of carrier density
weakens the carrier-induced long-range fluctuation and in turn
allows the long-range AFM order of the local moments to
emerge. The fact that the failed-order state can be overcome
by mere 1 GPa of pressure implies that the long-range fluc-
tuation is close to being overcome by the ordering, making
it an ideal model system for our demonstration. We thus
take the parameters of Eq. (1) from the previous density-
function based study [41], which incorporates t jm j′m′ of five
d orbitals and three p orbitals, JF = 0.8 eV, S = 1.7, and
J = 19 and 12 meV for the nearest and next-nearest neigh-
bors, respectively. A discrete 500 × 500 momentum mesh
and a 10-meV thermal broadening are used to ensure a good
convergence.

Let us first verify the failed-order state before introduc-
ing disorder scattering, by examining the stability of the
ordered state via its linear response. Figure 2(a) and its inset
show that in the absence of disorder, the obtained spin-wave
energy-momentum dispersion displays no positive-energy ex-
citation in the vicinity of (π ,0). Such lack of positive-energy
excitation in the linear response is a direct indication that
the assumed AFM ordered state is unstable, in this case due
to the carrier-induced long-range fluctuation that overwhelms
the correlation at length scale longer than 2π/�q. In other
words, we have verified that our starting point is indeed a
failed-order state, in which the local moments are unable
to establish long-range order even at the zero-temperature
limit [61].

D. Simulating disorder scattering

We now proceed to include the effect of disorder-induced
scattering on the itinerant carriers and investigate its effect
on the long-range order. Specifically, we aim to calculate the
linear response of the long-range ordered state by ensemble
averaging over a large number of chemically disordered con-
figurations. It is well established [46–48] that the main effect
of disorder on the magnetic quantum fluctuation of itiner-
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FIG. 2. An example of rekindled failed order. (a) In the failed-
order state, imaginary frequency (shown as negative energy) appears
near (π ,0) in magnon dispersion as magnified in the inset, indicating
that the (π ,0) AFM order is unstable due to carrier-induced fluctu-
ation at long range beyond 2π/�q. (b) Illustration of one disorder
configuration containing 1664 sites in a 80 × 80 grid, with randomly
sampled W (r) within [0,Wmax]. The orientation of periodicity of
each disorder configuration (represented by the tilted square) is ran-
domly chosen to suppress the associated artifacts. (c) Introduction
of disorder with strength Wmax = 20 meV weakens the long-range
fluctuation, allowing the correlation to extend to a longer 2π/�q
range. (d) By Wmax = 30 meV, all excitation energies become real
and positive (�q = 0), indicating that the preferred magnetic order
is a stable phase. In other words, the electronic long-range order is
induced upon introduction of weak disorder.

ant carriers is to introduce incoherent phase shifts along its
propagation without affecting its power-law spatial decaying
profile. We therefore approximate the incoherent phase shifts
in the fluctuation within each configuration according to [47]

J̃ii′ −→ J̃ii′ cos φii′ , (3)

where

φii′ = 2

h̄vF

∫ ri

ri′
dsW (r) (4)

accumulates phase shift from scattering against spatially ran-
dom potential W (r) along a straight path from position ri′ of
site i′ to position ri of site i (see the Appendix D for detail
on discretization of the disorder strength and its path integra-
tion). The strength of the disorder potential W (r) is randomly
sampled from a uniform distribution between 0 and Wmax. We
apply Eq. (3) to disorder configurations with large systems
(typically containing around 1600 sites) of various shapes and
orientations in the simulation [62–65]. [See Fig. 2(b) for an
example.] For each configuration containing different phase
shifted J̃ii′ for each pair of i and i′ [Eq. (4)], the magnon
spectral function is then calculated via numerical bosonic
Bogoliubov diagonalization [66] (see also Appendix B) of
HSW followed by the unfolding procedure [67] before being
averaged over the ensemble.

E. Rekindled failed order

Figures 2(c) and 2(d) give the resulting magnon energy-
momentum dispersion under increasing disorder strength.
Since the main effect of disorder is through the phase shift
of the carrier-induced long-range fluctuation, the physical
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broadening [62–65] in energy and momentum due to the lack
of translational symmetry is not apparent. Interestingly, at
Wmax = 20 meV [Fig. 2(d)] the momentum region without
positive frequency reduces to a smaller one, indicating an
increase of the length scale in which the ordering persists.
Most importantly, at Wmax = 30 meV [Fig. 2(d)] the magnon
spectrum shows well-defined positive frequency in the en-
tire momentum space, indicating that the proposed stripe
(π ,0) AFM order is a stable state of the system! This con-
firms our proposal (cf. Fig. 1) that by disturbing enough the
carrier-induced long-range fluctuation via disorder scattering,
a strong electronic order can emerge from the previous failed-
order state.

Figure 2 also shows a clear trend about the emergence of
long-range order. As the disorder increases, �q systematically
decreases, reflecting the fact that the correlation is able to
extend to a longer length scale ∼2π/�q. Associated with it
is the systematical reduction of the strength of the “negative”
frequency (representing imaginary frequency) associated with
the unstable magnon mode, indicating that the damaging long-
range fluctuation systematically becomes weaker. At the point
when the strength is no longer able to negate the magnon
frequency, �q becomes zero and the correlation can extend
to the system size and establish the long-range order.

F. Length scale analysis

To gain further microscopic insight on how disorder scat-
tering produces this unusual effect, notice that according to
Eq. (3), the main effect of the scattering is to induce a phase
shift proportional to the path integral. Therefore, one would
expect the coherence of the renormalization of J̃ii′ to suffer
systematically at longer range. Particularly, beyond a charac-
teristic length scale that emerges when the random fluctuation
of the phase reaches the order of 2π , the power-law tail of the
carrier-induced fluctuation should no longer be effective.

To verify this simple intuition, we investigate the effects of
finite length scale of the carrier-induced quantum fluctuation
and their influence on the magnon dispersion. Specifically, we
introduce a finite scattering rate 2η in the evaluation of Aii′

and Bii′ in a clean system (without disorder) to regulate their
effective length scales. Figure 3(a) summarizes the resulting
magnon dispersion for η = 1 to 7 meV. Indeed, the strength
of the imaginary frequency becomes weaker systematically as
the scattering rate increases, and eventually all magnon fre-
quency becomes positive at η > 5 meV, when the long-range
order becomes a stable phase. Notice that the momentum
region without positive frequency and its associated �q scale
reduces systematically, just like in the above cases with disor-
der. As expected, in the aspect of allowing the correlation to
grow in range and finally reach a long-range order, a reduction
in the length scale of carrier propagation leads to a suppres-
sion of the long-range fluctuation similar to that caused by the
disorder.

Figure 3(b) provides a more quantitative comparison be-
tween several relevant length scales in our results. First, notice
that in this length-scaled controlled picture, our results display
a well-defined qχ at which the magnon dispersion starts to
become “negative.” It turns out that its corresponding length
scale λχ = 2π/qχ follows perfectly the length scale of the

FIG. 3. (a) Magnon energy-momentum dispersion upon restrict-
ing the length scale of carrier propagation via controlled scattering
rate η. With shorter length scale of coherent propagation (larger scat-
tering rate), the region with imaginary frequency reduced, indicating
a longer 2π/�q correlation resulting from a shorter length scale
2π/qχ of the carriers’ damaging fluctuation. By η > 5 meV, the
excitation energy becomes fully real and positive, so the (π ,0) AFM
ordered state becomes stable. (b) In unit of the lattice constant a0,
the length scale of carrier-induced damaging fluctuation λχ = 2π/qχ

follows perfectly the scale of the mean-free path l̃MFP ∝ vF /η. It
also roughly corresponds to the length scale of the variation of the
emerged long-range coupling λ�J̃ , defined as ∂ J̃ (r, η)/∂η|r=λ�J̃ = 0.
The light green region hosts a stable (π ,0) AFM order.

carrier mean-free path ∝ vF /η ≡ l̃MFP. A similar consistency
is also found in the length scale of the variation of the
emerged long-range coupling (see Appendix E) λ�J̃ , defined
through ∂ J̃ (r, η)/∂η|r=λ�J̃ = 0. In essence, the limitation of
the coherent length scale of the carrier-induced fluctuation,
independent of its origin, leads to a similar suppression of its
effectiveness at long range, thereby allowing the correlation to
extend to a longer range and eventually establish a long-range
order [in the green region in Fig. 3(b)].

IV. DISCUSSIONS

Our proposed (purely quantum) mechanism is not to be
confused with the quantum adaptation [37,38] of the order-by-
disorder effect [33–40] illustrated in Fig. 4(a). In geometric
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FIG. 4. (a) Illustration of quantum order-by-disorder mechanism
vs (b) our rekindled failed-order mechanism. The former starts with
heavily degenerate states that get split by quantum fluctuation, while
the latter starts with a nondegenerate failed-ordered metallic state
that develops degenerate broken-symmetry states upon suppression
of long-range fluctuation via disorder scattering. Here E denotes the
typical energy of the system eigenstates with expectation value 〈O〉
of the order parameter. Notice that the energy scale of the long-range
fluctuation (acting on the red states) can be much weaker than the
short-range coupling J .
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frustrated spin systems, classical energy consideration would
suggest a heavily degenerate ground-state manifold, with each
spin pointing to arbitrary directions. However, as a conse-
quence of the level repulsion principle, quantum fluctuation
resulting from coupling within the degenerate manifold can
greatly lift the degeneracy to even just a few states. In contrast,
our proposal applies to metallic systems with nondegener-
ate failed-order ground states, as shown in Fig. 4(b). Upon
suppression of the long-range fluctuation of itinerant carriers
via introduction of chemical or lattice disorder, the ground
state becomes degenerate and the system settles in one of the
spontaneous broken-symmetry states.

In essence, our proposal uses the disorder-induced de-
coherence to defeat the long-range fluctuation such that
the short-range correlation’s tendency toward long-range
order can flourish. It is easy to verify (e.g., repre-
sentative models in the Appendix F) that the above
physical effects generally emerge: (a) strong itinerant
carrier-induced long-range fluctuation, (b) formation of the
failed-order state, and (c) the emergence of long-range or-
der upon suppression of range of coherence of the itinerant
carriers. Therefore, our proposal of rekindled failed order,
as illustrated in Fig. 1, is completely general, robust, and
insensitive to specific models or lattice structures.

Similarly, while the above example concerns only the
magnetic order, the underlying principles are generic to al-
most all symmetry-breaking ordering since they mostly make
use of only the general behavior of various mechanisms at
long length scales. For example, typical long-range orders
are driven by short-range many-body couplings that produce
a nonlocal correlation with an exponential decay at a long
range. On the other hand, due to the discontinuity associated
with the Fermi surface, the fermionic carrier-induced fluc-
tuations usually have a long power-law tail that trumps the
exponential decay of the above correlation. This makes our
proposed failed order more common than one might realize.
Indeed, in strongly correlated materials one often finds a rapid
demise of finite-momentum long-range order upon enhancing
metallicity, even though the correlations remain very strong at
short range. As long as the damaging carrier-induced fluctu-
ation only marginally overwhelms the ordering, our proposed
mechanism would apply. By suppressing via weak chemical
disorder the carriers’ ability to coherently interfere with the
ordering at long range, the system has a chance to reveal
its preferred long-range electronic order, in magnetic, orbital,
charge, or other channels. (Naturally, this mechanism is not
expected to apply when disorder becomes so strong that it
causes too much damage to the long-range coherence of the
ordering itself.)

V. CONCLUSION

In short, to resolve the long-standing puzzle of the emer-
gence of electronic order via the introduction of chemical
disorder widely observed in strongly correlated metals, we
propose a rekindled failed-order scenario and verify it through
a realistic spin-fermion model and a stability analysis based
on linear response of the ordered state. In essence, we propose
that many of these strongly correlated metals are in a failed-
order state, in which the preferred order of the local moments
is overwhelmed by carrier-induced long-range fluctuation.

The main effect of the disorder is to efficiently reduce the
coherent length scale of the damaging fluctuation and thereby
allow the intrinsic long-range electronic order to emerge. Our
study demonstrates a typical example of the rich interplay
between mechanisms of multiple length scales present in most
strongly correlated metals, to which our proposed simple idea
can be applied in general.
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APPENDIX A: LINEAR SPIN-WAVE THEORY

We review in this Appendix the linear spin-wave theory
[59] employed in our analysis for the stability of an ordered
state. While the theory is supposed to be accurate only in
the well-ordered regime, an unstable response revealed by
this theory is still qualitatively indicative to the physical
instability.

Start with the Heisenberg Hamiltonian

H loc =
∑
i �=i′

Jii′Si · Si′ , (A1)

where the local moment Si at site i couple with another spin
at site i′ via Jii′ ferromagneticlly (Jii′ < 0) or antiferromag-
neticlly (Jii′ > 0). If the spins in the system are collinear, it
is convenient to transform the spin operators from the local
frame to the laboratory frame via a spin rotation

Sx
i = S̃x

i , Sy
i = κiS̃

y
i , Sz

i = κiS̃
z
i , (A2)

where κi = eiQ·ri = ±1. The x and y components of the spin
operator have the relations to the raising operator S̃+

i and
lowering operator S̃−

i :

S̃+
i = S̃x

i + iS̃y
i , S̃−

i = S̃x
i − iS̃y

i . (A3)

The spin operator can be represented by the bosonic operator
via the Holstein-Primakoff (HP) transformation [60] up to the
leading order,

S̃z
i = S − a†

i ai, S̃+
i =

√
2Sai, S̃−

i =
√

2Sa†
i , (A4)

where S is the magnitude of spin, and a†
i is the creation oper-

ator. Therefore, we can obtain the quadratic linear spin-wave
Hamiltonian with bosonic operators

H loc =
∑

i

Kia
†
i ai +

FM∑
i �=i′

Jii′ (a
†
i ai′ + aia

†
i′ )

+
AF∑

i �=i′′
Jii′′ (a

†
i a†

i′′ + aiai′′ ), (A5)

where Ki = 2
∑AF

i′′ Jii′′ − 2
∑FM

i′ Jii′ ensures preservation of
the Goldstone mode of the ordered system. Here the sum-
mation is split into those between the parallel (FM) and
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antiparallel (AF) pairs of spins. The bosonic operators satisfy
the commutation relations

[ai, a†
i′ ] = δii′ , [a†

i , a†
i ] = [ai, ai′ ] = 0. (A6)

A simple one-band spin-wave Hamiltonian represented in
momentum q space is

H loc =
∑

q

JA(q)(a†
qaq + a−qa†

−q) + JB(q)(a†
qa†

−q + aqa−q ),

(A7)
where JA(q) is the coefficient after Fourier transformation
of a†

i ai′ (i = i′ or i �= i′) and JB(q) is the coefficient after
Fourier transformation of a†

i a†
i′′ . The corresponding spin-wave

dispersion is

ω(q) =
√

[JA(q)]2 − [JB(q)]2. (A8)

APPENDIX B: BOGOLIUBOV DIAGONALIZATION
OF GENERAL QUADRATIC BOSONIC HAMILTONIAN

This Appendix introduces a method to diagonalize a gen-
eral Bogoliubov Hamiltonian beyond the standard 2 × 2 size,
following the previous proposal [66]. Considering a general
quadratic bosonic Hamiltonian

H =
∑

i j

ti ja
†
i a j + τi ja

†
i a†

j + τ �
i jaia j, (B1)

where ti j is the hopping parameter, and τi j is the parameter
for creating two bosons with index i and j. Since Hamiltonian
is Hermitian, ti j = t�

ji and τi j = τ ji. The Hamiltonian repre-
sented in the diagonal basis is

H =
∑

i

εib
†
i bi, (B2)

where εi is the eigenvalues of index i. The new bosonic opera-
tors b†

i satisfy the bosonic commutation relations that same as
a†

i in Eq. (A6). There are relations between the new and old
bosonic operators,

b†
i =

∑
j

a†
j T

N
ji +

∑
j

a jT
A
ji , bi =

∑
j

a jT
N�
ji +

∑
j

a†
j T

A�
ji ,

(B3)
where T N

ji and T A
ji are the eigenvectors. Therefore, we can

define a redundant and overcomplete basis:

A†
I =

{
a†

i , I ∈ U
ai (i = I − No. ofi), I ∈ D

, B†
I =

∑
J

A†
JTJI ,

(B4)
where U and D mean the up and down channel, respectively.
TJI is the matrix of eigenvectors

TJI −→
(

T N
ji T A�

ji

T A
ji T N�

ji

)
. (B5)

Due to the bosonic commutation relations, there is

[BI , B†
J ] = cIδIJ , wherecI =

{
1, I ∈ U

−1, I ∈ D.
(B6)

Substituting Eq. (B4) into (B6), we can obtain the rule of
orthonormalizing eigenvectors∑

I ′J ′
[AI ′ , A†

J ′ ]T �
I ′I TJ ′J =

∑
K

cK T �
KI TKJ = cIδIJ . (B7)

The commutating result between Hamiltonian and B†
I is

[H, B†
I ] = cIεI B

†
I =

∑
J

A†
JTJI cIεI . (B8)

Equation (B8) also can be expressed using Eq. (B4) as

∑
K

[H, A†
K ]TKI =

∑
k∈U

⎛⎝∑
j

t jka†
j +

∑
j

(τ �
k j + τ �

jk )a j

⎞⎠TKI

−
∑
k∈D

⎛⎝∑
j

tk ja j +
∑

j

(τk j + τ jk )a†
j

⎞⎠TKI .

(B9)

Combining Eqs. (B8) and (B9), we find

TJI cIεI =
∑

K

MJK TKI , (B10)

where

MJK =
(

t jk −2τ jk

2τ �
jk −tk j

)
. (B11)

The non-Hermitian matrix M is the matrix that we should
diagonalize, and we can derive the eigenvalues εI and corre-
sponding eigenvectors by solving M.

APPENDIX C: INTEGRATING OUT THE CARRIERS

Here, we derive the effective linear spin-wave Hamilto-
nian via integrating out the influence of itinerant carriers
[41,42,56]. In general, the spin-fermion Hamiltonian contains
local moments and itinerant carriers

H = H loc + H it + HF, (C1)

where H loc is the spin Hamiltonian of local moments, H it is
the Hamiltonian of itinerant carriers, and HF describes the
coupling between local moments and itinerant carriers. For
simplicity, HF is Hund’s coupling-like, and we use the one-
band linear spin-wave Hamiltonian in Eq. (A7) as an example
to show how to integrate out the itinerant carriers.

We treat the Hund’s coupling JF between the itinerant and
local degrees of freedom as perturbation

HF = −JF

2

∑
imνν ′

Sic
†
imνσνν ′cimν, (C2)

where σνν ′ are the Pauli matrices and c†
imν represents creating

an itinerant carrier at site i of orbital m with spin ν. Applying
a canonical transformation to the Hamiltonian in Eq. (C1),

e�He−� = H + [�, H] + 1
2 [�, [�, H]] + · · · , (C3)
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results in the renormalized linear spin-wave Hamiltonian from
its quadratic components

HSW = H loc + 〈(HF)2 + 1
2 [�, (HF)(1)]〉e

=
∑

q

[J̃A(q)(a†
qaq + a−qa†

−q ) + J̃B(q)(a†
qa†

−q + a−qaq )]

(C4)

up to the second order of bosonic operators, where

J̃A(q) = JA(q) + A(q), J̃B(q) = JB(q) + B(q). (C5)

Here,

A(q) = J2
F S

2N

∑
kll ′

fl (k) − fl ′ (k + q)

El (k) − El ′ (k + q)

∣∣∣∣∣∑
m

U l ′�
m↓(k + q)U l

m↑(k)

∣∣∣∣∣
2

(C6)

and

B(q) = J2
F S

2N

∑
kll ′

fl (k) − fl ′ (k + q)

El (k) − El ′ (k + q)

×
∑
mm′

U l ′�
m↓(k + q)U l

m↑(k)U l�
m′↓(k)U l ′

m′↑(k + q), (C7)

where El (k) denotes the eigenvalues with momentum k
and band index l (that absorbs the spin index as well)
and U l

mν (k) denotes the eigenvectors in the basis of or-
bital m with spin ν =↑ or ↓. N denotes the number of
discrete momenta of the system. fl (k) = 1

1+eβ(El (k)−μ) is the
standard Fermi-Dirac distribution function for a given chem-
ical potential μ, and S the effective magnitude of the local
moments. Note that JA(q) contains the a constant correction
term JF

2N

∑
kl fl (k)

∑
mν ν|U l

mν (k)|2 that is from the Hund’s
coupling.

We also can get similar results using a dynamic method by
using the perturbation theory with Green’s function to inte-
grate out the carrier channel. The real part of the susceptibility
in momentum q space is

A(q) = J2
F S

2N

∑
kll ′

[ fl (k) − fl ′ (k + q)][El (k) − El ′ (k + q)]

[El (k) − El ′ (k + q)]2 + δ2

×
∣∣∣∣∣∑

m

U l ′�
m↓(k + q)U l

m↑(k)

∣∣∣∣∣
2

(C8)

and

B(q) = J2
F S

2N

∑
kll ′

[ fl (k) − fl ′ (k + q)][El (k) − El ′ (k + q)]

[El (k) − El ′ (k + q)]2 + δ2

×
∑
mm′

U l ′�
m↓(k + q)U l

m↑(k)U l�
m′↓(k)U l ′

m′↑(k + q). (C9)

The typical numerical broadening of δ = 0+ is not necessary
here since we are only interested in the zero-frequency limit
of the renormalization. We can investigate the effects of the
finite length scale of the carrier propagation on their quantum
fluctuation and in turn the influence on the magnon dispersion.
This is easily implemented by imposing a finite one-body
scattering rate η in Eq. (C8) via δ = 2η. Diagonalization of

0

2

4

6

0 2 4 6

r y
(a

0
)

rx(a0) W(r) (

0

5

10

15

20

meV)

FIG. 5. An example path integral of the disorder-dependent
phase factor in a discrete 8 × 8 lattice from light yellow site (1,2)
to dark yellow site (4,4). Along the straight path, it would pass a set
of squares with different depths of blue color which represent the
strength of potential energy W (r).

the spin-wave Hamiltonian gives the spin-wave dispersion

ω(q) =
√

[J̃A(q)]2 − [J̃B(q)]2. (C10)

APPENDIX D: WEAK DISORDER ON THE EMERGED
LONG-RANGE COUPLINGS

Here, we will show the procedure of introducing the weak
effect of charge disorder on the emerged long-range cou-
plings. It is well known [46–48] that the main effect of
disorder-induced scattering on the magnetic quantum fluctua-
tion of itinerant carriers is to introduce incoherent phase shifts
along its propagation without affecting its power-law spatial
decaying profile. When the Fermi wave vector kF is well
defined, the oscillations with weak nonmagnetic disorders can
be expressed as [47] J (r) cos (2kF · r + φr ), where J (r) is the
magnitude with power-law decaying, r is the vector different
between different positions in real space. In discrete lattice,
the renormalized linear spin-wave Hamiltonian in Eq. (C4)
can be represented in real space in terms of Eq. (A5) via
Fourier transformation with renormalized spin-spin coupling
parameter J̃ii′ . The renormalized spin-spin coupling parameter
contains the oscillating factor cos [2kF(ri − ri′ )] between dif-
ferent sites. However, in realistic systems, the Fermi surface
is typically not perfectly nested and thus the oscillation in
J̃ii′ is not with a fixed 2kF period, but instead, it displays
a rather complicated pattern. We therefore approximate the
disorder-induced phase shift via

J̃ii′ −→ J̃ii′ cos φii′ , (D1)

where J̃ii′ contains the power-law decaying term and oscillat-
ing term. The disorder-dependent phase is

φii′ = 2

h̄vF

∫ ri′

ri

dsW (r), (D2)

where W (r) denotes the strength of the spatial disorder ran-
domly sampled from a uniform distribution between 0 and
Wmax and the integration is along a straight path from position
ri of site i to position ri′ of site i′. Here vF is the Fermi velocity
and h̄ is 1 in the atomic unit. The Fermi velocity in our
calculation is estimated via the derivative of the Hamiltonian
concerning its momentum around Fermi energy. Then we will
show how to discretize the disorder-dependent phase factor
from a continuum space to a discrete lattice. An example of
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FIG. 6. Examples of disorder configurations with the maximum value Wmax = 20 meV in an 80 × 80 lattice. The black dotted squares
show disordered patterns which have different sizes and orientations.

discretizing the phase factor is shown as Fig. 5. Every site at
the lattice has different random potential energy from zero to a
maximum potential energy Wmax. We treat the potential energy
W (r) dominating a square range around the site ri. The total
phase factor is the summation of W (r) × ds from ri to ri′ . ds
is the length in the square range around the disorder site. We
generate random potential ri′ in lattice with different sizes and
orientations in the range of [0,Wmax]. Three kinds of disorder
configurations as examples are shown in Fig. 6.

APPENDIX E: LENGTH SCALE OF VARIATION
OF THE EMERGED LONG-RANGE COUPLING

As discussed in Appendix C, the resulting renormalized
spin-wave Hamiltonian is in Eq. (C4) with the coefficients
J̃A and J̃B including A(q) in Eq. (C8) and B(q) in Eq. (C9),
respectively. These coefficients become different with dif-
ferent scattering rates η, resulting in different long-range
couplings J̃ii′ in real space.

The dispersion of the pure FeSe in Fig. 2(a) shows the
magnetic order is unstable along the qy direction. Therefore,
we can summate the contributions of J̃i j along the x direction
and obtain the fluctuating decaying couplings along the y
direction.

Figure 7 shows the renormalized spin-spin interaction J̃
at long distances with different η = 1 and 7 meV for FeSe
as an example. The coupling is suppressed at long range

FIG. 7. Renormalized spin-spin interaction J̃ along y direction
at the range from 10a0 to 70a0 with scattering rate 1 and 7 meV.
J̃ is oscillating decaying. The two different lines across this range
that show the long-range coupling is suppressed when the disorder is
stronger.

and enhanced at short range with increasing damping energy.
Since lines with different η would cross with each other, we
can define a length scale λ�J̃ as ∂ J̃ (r, η)/∂η|r=λ�J̃ = 0. Such
a length scale can be estimated from the plot with an error bar.

APPENDIX F: MORE DEMONSTRATION
OF THE REKINDLED FAILED-ORDER MECHANISM

To verify the general “rekindled failed-order” mechanism,
we provide here two more rather generic examples: (1) a
one-band model on a square lattice with local spin-fermion
coupling, and (2) a decorated square lattice with nonlocal
spin-fermion coupling, to demonstrate the generality of our
proposal. All the examples display similar (a) strong itinerant
carrier-induced long-range fluctuation, (b) formation of the
failed-order state, and (c) the emergence of long-range order
upon suppression of the range of coherence of the itinerant
carriers, as the robust consequence of the underlying generic
physical effect mentioned in the paper. Example (1) can be
viewed as the example of one-band spin-fermion model, and
(2) is similar to the cuprate system that belongs to doped
charge transfer insulators.

1. One-band spin-fermion model

We construct a translational symmetric two-dimensional
one-band Hamiltonian for the itinerant carriers with the near-
est neighboring t = −0.2 eV by treating the out-of-plane
terms small. Here, we choose the filling factor 0.9 near the
half-filling case. The Neel AFM state is the reference mag-
netic ordered state with the parameter J = 2 meV for the
nearest neighbors of the local moments for S = 1. The Hamil-
tonian of the coupling between the local moments and the
itinerant carriers is the same with Eq. (C2), and the parameter
is JF = 0.6 eV. We use the method mentioned above in Ap-
pendix C to integrate out the carriers and obtain the magnetic
susceptibility of a failed-order state shown in Fig. 8(a). A
discrete 500 × 500 momentum mesh and a 100-meV thermal
broadening are used to ensure a good convergence.

As shown in Fig. 8(a), the obtained magnetic susceptibil-
ity displays no positive-energy excitation in the vicinity of
(π, π ) and (0,0) indicating the assumed AFM ordered state
is unstable. Since the carrier-induced long-range fluctuation
overwhelms the correlation at long range, the local moments
are unstable to establish long-range order at zero-temperature
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max = 6 meVmax = 0 meV

FIG. 8. Emergence of long-range magnetic order via the intro-
duction of disorder to a failed-ordered metal with large magnetic
moments. Magnetic susceptibility is shown here as a measure of
the stability of the preferred ordered state. (a) In the clean system
(Wmax = 0) imaginary (shown as negative) frequency appears near
(π, π ) and (0,0), indicating the (π, π ) AFM order is unstable due to
carrier-induced fluctuation at long range. (b) Introduction of disorder
with Wmax = 3 meV weakens the fluctuation, allowing the correlation
to extend to a longer range. (c) By Wmax = 6 meV, all excitation
energies become positive, indicating the correlation is now long
range and the preferred (π, π ) magnetic order is a stable phase. That
is, the electronic long-range order is induced by the introduction of
chemical disorder.

limit. When increasing disorder strength, for example at
Wmax = 3 meV [Fig. 8(b)], the momentum region without
positive frequency is reduced which indicates an increase of
the ordering length scale. At Wmax = 6 meV [Fig. 8(c)], the
magnon spectrum shows well-defined positive frequency in
the entire momentum space, indicating that the proposed Neel
(π, π ) AFM order is a stable state of the system!

2. Doped charge transfer insulator

For doped charge transfer insulators like cuprate, an ef-
fective spin-fermion model can be derived from a multiband
Hubbard model via integrating out the high-energy physics
[52]. The effective spin-fermion model in cuprates contains
two different orbitals for itinerant carriers residing on O and
the local spins at Cu. Different from the previous examples
mentioned above, the couplings between itinerant carriers and
local moments are nonlocal. For simplicity, we consider the
coupling between local moments and itinerant carriers as

HF = JF

2

∑
i jmνν ′

Si · c†
jmνσνν ′c jmν ′ , (F1)

where the local moments are at the copper site i and itinerant
carriers are located at the oxygen j. In this case, the carriers
are not renormalized by the AFM order state if the spins lack
quantum fluctuations.

Using the same method discussed in Appendix C, we can
derive the itinerant carrier-induced spin-spin couplings in real
space:

JF
0i = 2J2

F

N

∑
i,k1,k2,l,l ′

cos[ri(k1 − k2)]
fl (k2) − fl ′ (k1)

El (k2) − El ′ (k1)

×
∣∣∣∣∣∑

m

cos

(
k1,m − k2,m

2

)
U l ′�

m,↑(k1)U l
m,↓(k2)

∣∣∣∣∣
2

, (F2)

where N denotes the number of discrete momenta of
the system. When m = 1 or 2, the momentum k only

(0,0) (π,0) (π,π) (0,0) (π,0) (π,π) (0,0) (π,0) (π,π) (0,0)

0

2

)
Ve(

y
gre

n
E

max = 0.07 eV(a) (b) (c) max = 0.14 eVmax = 0 eV

FIG. 9. Emergence of long-range magnetic order via the intro-
duction of disorder to a failed-ordered metal with large magnetic
moments. Magnetic susceptibility is shown here as a measure of
the stability of the preferred ordered state. (a) In the clean system
(Wmax = 0) imaginary (shown as negative) frequency appears near
(π, π ) and (0,0) as magnified in the inset, indicating the (π, π ) AFM
order is unstable due to carrier-induced fluctuation at long range.
(b) Introduction of disorder with Wmax = 0.07 eV weakens the fluc-
tuation, allowing the correlation to extend to a longer range. (c) By
Wmax = 0.14 eV, all excitation energies become positive, indicating
the correlation is now long range and the preferred (π, π ) magnetic
order is a stable phase.

have the x or y component. The total contribution J̃0i contains
the bare coupling of the local moments J0i and the long-range
fluctuations JF

0i.
Having these necessary methods, we construct a trans-

lational symmetric two-dimensional two-band cupratelike
Hamiltonian for the itinerant carriers with the nearest-
neighboring hopping |t1| = 1 eV and the next-nearest-
neighboring hopping |t2| = 0.8 eV by treating the out-of-
plane terms small. 15% hole doping is chosen in this case.
The AFM ordered state with parameters J = 0.93 eV for the
nearest neighbors of the local moments. The AFM coupling
between local moments and itinerant carriers is JF = 0.5 eV.
The magnitude of spin is S = 1. A discrete 300 × 300 mo-
mentum mesh and a 100-meV thermal broadening are used
to ensure a good convergence. Using the methods including
integrating out the carriers, linear spin-wave theory, and the
introduction of disorder mentioned above, we can obtain the
magnetic susceptibility with and without disorder.

As shown in Fig. 9(a), the obtained magnetic susceptibil-
ity displays no positive-energy excitation in the vicinity of
(π, π ) and (0,0) indicating the assumed AFM ordered state
is unstable. Since the carrier-induced long-range fluctuation
overwhelms the correlation at long range, the local moments
are unstable to establish long-range order at zero-temperature
limit. When increasing disorder strength, for example at
Wmax = 0.07 eV [Fig. 9(b)], the momentum region without
positive frequency is reduced which indicates an increase of
the ordering length scale. At Wmax = 0.14 eV [Fig. 9(c)], the
magnon spectrum shows well-defined positive frequency in
the entire momentum space, indicating that the proposed Neel
(π, π ) AFM order is a stable state of the system!

In reality, the indications that AFM order could emerge
from unordered systems also have been found in hole-doped
cuprates via Zn substitution of Cu, as measured by muon
spin resonance (μSR) [21] and neutron scattering experiments
[20,22,23]. A strong electronic order can emerge from the
failed-order state via the introduction of disorder, and the
results are generic.

195126-9



JINNING HOU, YUTING TAN, AND WEI KU PHYSICAL REVIEW B 109, 195126 (2024)

[1] L. Shen, C. Greaves, R. Riyat, T. C. Hansen, and E. Black-
burn, Absence of magnetic long-range order in Y2CrSbO7:
Bond-disorder-induced magnetic frustration in a ferromagnetic
pyrochlore, Phys. Rev. B 96, 094438 (2017).

[2] S.-W. Cheong, A. S. Cooper, L. W. Rupp, B. Batlogg, J. D.
Thompson, and Z. Fisk, Magnetic dilution study in La2CuO4:
Comparison with other two-dimensional magnets, Phys. Rev. B
44, 9739 (1991).

[3] O. P. Vajk, P. K. Mang, M. Greven, P. M. Gehring, and J. W.
Lynn, Quantum impurities in the two-dimensional spin one-half
Heisenberg antiferromagnet, Science 295, 1691 (2002).

[4] J.-Y. P. Delannoy, A. G. Del Maestro, M. J. P. Gingras, and
P. C. W. Holdsworth, Site dilution in the half-filled one-band
hubbard model: Ring exchange, charge fluctuations, and ap-
plication to La2Cu1−x (Mg/Zn)xO4, Phys. Rev. B 79, 224414
(2009).

[5] R. Schneider, A. G. Zaitsev, D. Fuchs, and H. v. Löh-
neysen, Superconductor-insulator quantum phase transition in
disordered FeSe thin films, Phys. Rev. Lett. 108, 257003
(2012).

[6] A. P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler,
G. G. Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, Ex-
tremely strong dependence of superconductivity on disorder in
Sr2RuO4, Phys. Rev. Lett. 80, 161 (1998).

[7] K. Fujita, T. Noda, K. M. Kojima, H. Eisaki, and S. Uchida,
Effect of disorder outside the CuO2 planes on Tc of copper oxide
superconductors, Phys. Rev. Lett. 95, 097006 (2005).

[8] L. Sham and B. R. Patton, Effect of impurity on a peierls
transition, Phys. Rev. B 13, 3151 (1976).

[9] J. A. W. Straquadine, F. Weber, S. Rosenkranz, A. H. Said,
and I. R. Fisher, Suppression of charge density wave order
by disorder in Pd-intercalated ErTe3, Phys. Rev. B 99, 235138
(2019).

[10] A. Fang, J. A. W. Straquadine, I. R. Fisher, S. A. Kivelson, and
A. Kapitulnik, Disorder-induced suppression of charge density
wave order: STM study of Pd-intercalated ErTe3, Phys. Rev. B
100, 235446 (2019).

[11] A. Fang, A. G. Singh, J. A. W. Straquadine, I. R. Fisher, S. A.
Kivelson, and A. Kapitulnik, Robust superconductivity inter-
twined with charge density wave and disorder in Pd-intercalated
ErTe3, Phys. Rev. Res. 2, 043221 (2020).

[12] M. Braden, O. Friedt, Y. Sidis, P. Bourges, M. Minakata, and Y.
Maeno, Incommensurate magnetic ordering in Sr2Ru1−xTixO4,
Phys. Rev. Lett. 88, 197002 (2002).

[13] M. Minakata and Y. Maeno, Magnetic ordering in Sr2RuO4 in-
duced by nonmagnetic impurities, Phys. Rev. B 63, 180504(R)
(2001).

[14] K. Ishida, Y. Minami, Y. Kitaoka, S. Nakatsuji, N. Kikugawa,
and Y. Maeno, Evolution of normal-state magnetic fluctuations
by Ca and Ti substitutions in Sr2RuO4 : 87Sr − NMR study,
Phys. Rev. B 67, 214412 (2003).

[15] K. Pucher, J. Hemberger, F. Mayr, V. Fritsch, A. Loidl, E.-W.
Scheidt, S. Klimm, R. Horny, S. Horn, S. G. Ebbinghaus, A.
Reller, and R. J. Cava, Transport, magnetic, thermodynamic,
and optical properties in Ti-doped Sr2RuO4, Phys. Rev. B 65,
104523 (2002).

[16] S. Kitagawa, T. Iye, Y. Nakai, K. Ishida, C. Wang, G.-H. Cao,
and Z.-A. Xu, Relationship between superconductivity and an-
tiferromagnetism in LaFe(As1−xPx)O revealed by 31P-NMR,
J. Phys. Soc. Jpn. 83, 023707 (2014).

[17] K. T. Lai, A. Takemori, S. Miyasaka, F. Engetsu, H.
Mukuda, and S. Tajima, Evolution of the phase diagram of
LaFeP1−xAsxO1−yFy(y = 0 − 0.1), Phys. Rev. B 90, 064504
(2014).

[18] H. Mukuda, F. Engetsu, T. Shiota, K. T. Lai, M. Yashima, Y.
Kitaoka, S. Miyasaka, and S. Tajima, Emergence of novel anti-
ferromagnetic order intervening between two superconducting
phases in LaFe(As1−xPx)O: 31 P-NMR studies, J. Phys. Soc.
Jpn. 83, 083702 (2014).

[19] M. Hücker, V. Kataev, J. Pommer, J. Harraß, A. Hosni, C.
Pflitsch, R. Gross, and B. Büchner, Mobility of holes and sup-
pression of antiferromagnetic order in La2−xSrxCuO4, Phys.
Rev. B 59, R725(R) (1999).

[20] K. Hirota, K. Yamada, I. Tanaka, and H. Kojima, Quasi-
elastic incommensurate peaks in La2−xSrxCu1−yZnyO4−δ , Phys.
B Condensed Matter 241-243, 817 (1997), Proceedings of the
International Conference on Neutron Scattering.

[21] I. Watanabe, M. Aoyama, M. Akoshima, T. Kawamata, T.
Adachi, Y. Koike, S. Ohira, W. Higemoto, and K. Nagamine,
Possibility of an ordered state of spins and holes in single-
crystal La2−xSrxCu1−yZnyO4(x = 0.21, y = 0 and 0.01) studied
by μSR, Phys. Rev. B 62, R11985 (2000).

[22] H. Kimura, M. Kofu, Y. Matsumoto, and K. Hirota, Novel in-
gap spin state in Zn-doped La1.85Sr0.15CuO4, Phys. Rev. Lett.
91, 067002 (2003).

[23] A. Suchaneck, V. Hinkov, D. Haug, L. Schulz, C. Bernhard,
A. Ivanov, K. Hradil, C. T. Lin, P. Bourges, B. Keimer, and Y.
Sidis, Incommensurate magnetic order and dynamics induced
by spinless impurities in YBa2Cu3O6.6, Phys. Rev. Lett. 105,
037207 (2010).

[24] Risdiana, T. Saragi, W. A. Somantri, S. Pratiwi, D. Suhen-
dar, M. Manawan, B. J. Suroto, and I. Watanabe, Zn-induced
development of the Cu-spin correlation in electron-doped su-
perconducting cuprates of Eu2-xCexCuO4, J. Phys.: Conf. Ser.
1013, 012180 (2018).

[25] W. Higemoto, M. Yokoyama, T. U. Ito, T. Suzuki, S. Ray-
mond, and Y. Yanase, Direct measurement of the evolution
of magnetism and superconductivity toward the quantum crit-
ical point, Proc. Natl. Acad. Sci. USA 119, e2209549119
(2022).

[26] S. Wessel, B. Normand, M. Sigrist, and S. Haas, Order by disor-
der from nonmagnetic impurities in a two-dimensional quantum
spin liquid, Phys. Rev. Lett. 86, 1086 (2001).

[27] C. Yasuda, S. Todo, M. Matsumoto, and H. Takayama,
Site-dilution-induced antiferromagnetic long-range order in
a two-dimensional spin-gapped Heisenberg antiferromagnet,
Phys. Rev. B 64, 092405 (2001).

[28] J. Bobroff, N. Laflorencie, L. K. Alexander, A. V. Mahajan, B.
Koteswararao, and P. Mendels, Impurity-induced magnetic or-
der in low-dimensional spin-gapped materials, Phys. Rev. Lett.
103, 047201 (2009).

[29] J. H. J. Martiny, A. Kreisel, and B. M. Andersen, Theoretical
study of impurity-induced magnetism in FeSe, Phys. Rev. B 99,
014509 (2019).

[30] M. N. Gastiasoro and B. M. Andersen, Local magneti-
zation nucleated by non-magnetic impurities in Fe-based
superconductors, J. Supercond. Novel Magn. 28, 1321
(2015).

[31] B. Zinkl and M. Sigrist, Impurity-induced magnetic ordering in
Sr2RuO4, Phys. Rev. Res. 3, 023067 (2021).

195126-10

https://doi.org/10.1103/PhysRevB.96.094438
https://doi.org/10.1103/PhysRevB.44.9739
https://doi.org/10.1126/science.1067110
https://doi.org/10.1103/PhysRevB.79.224414
https://doi.org/10.1103/PhysRevLett.108.257003
https://doi.org/10.1103/PhysRevLett.80.161
https://doi.org/10.1103/PhysRevLett.95.097006
https://doi.org/10.1103/PhysRevB.13.3151
https://doi.org/10.1103/PhysRevB.99.235138
https://doi.org/10.1103/PhysRevB.100.235446
https://doi.org/10.1103/PhysRevResearch.2.043221
https://doi.org/10.1103/PhysRevLett.88.197002
https://doi.org/10.1103/PhysRevB.63.180504
https://doi.org/10.1103/PhysRevB.67.214412
https://doi.org/10.1103/PhysRevB.65.104523
https://doi.org/10.7566/JPSJ.83.023707
https://doi.org/10.1103/PhysRevB.90.064504
https://doi.org/10.7566/JPSJ.83.083702
https://doi.org/10.1103/PhysRevB.59.R725
https://doi.org/10.1016/S0921-4526(97)00727-8
https://doi.org/10.1103/PhysRevB.62.R11985
https://doi.org/10.1103/PhysRevLett.91.067002
https://doi.org/10.1103/PhysRevLett.105.037207
https://doi.org/10.1088/1742-6596/1013/1/012180
https://doi.org/10.1073/pnas.2209549119
https://doi.org/10.1103/PhysRevLett.86.1086
https://doi.org/10.1103/PhysRevB.64.092405
https://doi.org/10.1103/PhysRevLett.103.047201
https://doi.org/10.1103/PhysRevB.99.014509
https://doi.org/10.1007/s10948-014-2908-2
https://doi.org/10.1103/PhysRevResearch.3.023067


CHEMICAL DISORDER INDUCED ELECTRONIC ORDERS … PHYSICAL REVIEW B 109, 195126 (2024)

[32] S. Y. Song, J. H. J. Martiny, A. Kreisel, B. M. Andersen, and
J. Seo, Visualization of local magnetic moments emerging from
impurities in Hund’s metal states of FeSe, Phys. Rev. Lett. 124,
117001 (2020).

[33] J. Villain, Insulating spin glasses, Z. Phys. B 33, 31
(1979).

[34] J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, Order as an
effect of disorder, J. Phys. France 41, 1263 (1980).

[35] A. B. Harris, C. Kallin, and A. J. Berlinsky, Possible Néel
orderings of the kagomé antiferromagnet, Phys. Rev. B 45, 2899
(1992).

[36] J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, Hid-
den order in a frustrated system: Properties of the Heisenberg
kagomé antiferromagnet, Phys. Rev. Lett. 68, 855 (1992).

[37] A. Chubukov, Order from disorder in a kagomé antiferromag-
net, Phys. Rev. Lett. 69, 832 (1992).

[38] E. F. Shender and P. C. W. Holdsworth, in Fluctuations and
Order: The New Synthesis, edited by M. Millonas (Springer,
New York, 1996), pp. 259–279.

[39] D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, Order-
by-disorder and spiral spin-liquid in frustrated diamond-lattice
antiferromagnets, Nat. Phys. 3, 487 (2007).

[40] A. G. Green, G. Conduit, and F. Krüger, Quantum order-by-
disorder in strongly correlated metals, Annu. Rev. Condens.
Matter Phys. 9, 59 (2018).

[41] Y. Tan, T. Zhang, T. Zou, A. M. dos Santos, J. Hu, D.-X. Yao,
Z. Q. Mao, X. Ke, and W. Ku, Stronger quantum fluctuation
with larger spins: Emergent magnetism in the pressurized high-
temperature superconductor FeSe, Phys. Rev. Res. 4, 033115
(2022).

[42] Y.-T. Tam, D.-X. Yao, and W. Ku, Itinerancy-enhanced quantum
fluctuation of magnetic moments in iron-based superconduc-
tors, Phys. Rev. Lett. 115, 117001 (2015).

[43] M. A. Ruderman and C. Kittel, Indirect exchange coupling of
nuclear magnetic moments by conduction electrons, Phys. Rev.
96, 99 (1954).

[44] G. I. Japaridze and A. P. Kampf, Weak-coupling phase diagram
of the extended hubbard model with correlated-hopping inter-
action, Phys. Rev. B 59, 12822 (1999).

[45] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[46] A. Jagannathan, E. Abrahams, and M. J. Stephen, Mag-
netic exchange in disordered metals, Phys. Rev. B 37, 436
(1988).

[47] L. Bulaevskii and S. Panyukov, RKKY interaction in metals
with impurities, JETP Lett. 43, 240 (1986).

[48] J. A. Sobota, D. Tanasković, and V. Dobrosavljević, RKKY
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