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Machine learning the Kondo entanglement cloud from local measurements
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A quantum coherent screening cloud around a magnetic impurity in metallic systems is the hallmark of the
antiferromagnetic Kondo effect. Despite the central role of the Kondo effect in quantum materials, the structure
of quantum correlations of the screening cloud has defied direct observations. In this work, we introduce a
machine-learning algorithm that allows one to spatially map the entangled electronic modes in the vicinity of the
impurity site from experimentally accessible data. We demonstrate that local correlators allow reconstruction of
the local many-body correlation entropy in real space in a double Kondo system with overlapping entanglement
clouds. Our machine-learning methodology allows bypassing the typical requirement of measuring long-range
nonlocal correlators with conventional methods. We show that our machine-learning algorithm is transferable
between different Kondo system sizes, and we show its robustness in the presence of noisy correlators. Our
work establishes the potential machine-learning methods to map many-body entanglement from real-space
measurements.
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I. INTRODUCTION

Strongly interacting quantum many-body systems exhibit
a wealth of intricate physical phenomena. Quantum impu-
rity problems, and in particular the Kondo problem [1–3],
play a crucial role in capturing properties of the localized
interactions within a larger quantum system [4–6]. Such sys-
tems provide a paradigmatic framework for understanding the
correlation effects and related entanglement features in many-
body systems [7–10]. A hallmark feature of the Kondo effect
is the formation of a dynamic cloud of conduction electrons,
or “the Kondo screening cloud,” surrounding the impurity.
The Kondo cloud, which plays a crucial role in understanding
the Kondo problem [11], leads to electron entanglement at
mesoscopic scales [12,13]. Recent experiments have directly
confirmed the existence of the Kondo screening cloud [14];
however, the detailed structure of the quantum many-body
correlations remains elusive. Correlation effects are essential
for understanding the emergence of the Kondo effect and the
subsequent formation of the Kondo screening cloud [12,15–
18], motivating the development of more powerful strategies
to imaging the Kondo entanglement cloud.

Entanglement properties of quantum materials are re-
markably challenging to extract in experiments. From a
theory perspective, correlations in electronic systems can be
quantified by means of the von Neumann entropy obtained
from a one-particle density matrix, known as the correlation
entropy [19–24], a quantity that vanishes for any noninter-
acting electronic system. Experimental measurement of the
correlation entropy is greatly challenging as it requires knowl-
edge of all correlators in the whole system [25–27]. The
machine-learning methodologies algorithm offers a poten-
tial alternative strategy for extracting the correlation entropy

from a reduced set of measurements [28]. Machine-learning
methods have been demonstrated to be highly successful in
extracting Hamiltonians from experimental data [29–39], and
for automatic tuning of quantum systems without human
intervention [40–47]. However, its potential for extracting lo-
cal entanglement properties in homogeneous single-impurity
Kondo problems remains relatively unexplored.

In this work, we develop a machine-learning assisted al-
gorithm, which employs local measurements near a Kondo
magnetic impurity to predict the spatial entanglement in real
space. We demonstrate that a supervised machine-learning ap-
proach allows one to predict the spatially varying correlation
entropy density solely from local correlations. This method
enables one to extract the spatial structure of the quantum
correlations in the Kondo screening cloud, as well as the
overlap between two Kondo screening clouds created by two
Kondo impurities. We demonstrate this methodology in the
presence of noisy data, showing the potential of our approach
in an experimentally realistic scenario. This paper is organized
as follows. In Sec. II, we introduce the Kondo impurity model
and the formulation of correlation entropy density. In Sec. III,
we analyze the developed machine-learning methodology to
predict the correlation entropy density from measurable lo-
cal correlators, including its transferability and the impact of
noise. Finally, in Sec. IV, we summarize our conclusions.

II. MODEL

We consider the setup shown in Fig. 1(a). Two interacting
Kondo spins are coupled to the opposite sides of a noninter-
acting electron gas through Kondo coupling. These couplings
induce many-body correlations along the noninteracting gas,
at a length scale determined by the Kondo cloud length, and
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FIG. 1. (a) Schematic of the model. Two interacting spins on the
two sides of the noninteracting chain induces many-body correlation
via Kondo coupling. (b) Schematic of the workflow of the neural-
network model, taking as input spatially resolved local correlators,
and providing as output the spatial profile of the correlation entropy
density.

when the Kondo clouds overlap, they lead to entanglement
between distant Kondo sites. The Hamiltonian of the setup is
written as follows:

H =
[

Jk0S0 · s1 + U

(
n̂0↑ − 1

2

)(
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2

)]

− t
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2

)(
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)]
, (1)

where c(†)
jσ is the annihilation (creation) operator at site j with

spin σ , and n̂ jσ is the density operator at site j with spin
σ . For the interacting terms, Jk0 and Jkn are the Kondo cou-
pling strengths, U is the on-site interaction to induce charge
localization in the Kondo site, S0,n+1 is the spin-1/2 opera-
tor, and s1,n is the local spin operator of the noninteracting

chain. For the noninteracting chain, we consider nearest- and
next-nearest-neighbor hopping t and t ′, and the chemical po-
tential μ. We will focus on values of the Kondo couplings
corresponding to Kondo clouds smaller than the size of the
noninteracting electron gas to minimize finite-size effects.

To characterize the entanglement, we employ the one-
particle density matrix, also known as the correlation matrix
[19–21]. It provides information about the distribution of
electrons and their correlations in the system [48–51], and is
defined as

Css′
i j = 〈�0 |c†

isc js′ |�0〉, (2)

where |�0〉 refers to a fermionic many-body state. Its eigen-
solutions offer crucial information about the correlation effect
in the many-body state. The eigenvectors vk define a set of
natural orbitals [52,53], and the corresponding eigenvalues
0 � αk � 1 are their ground-state occupation numbers. The
existence of natural orbitals with eigenvalues 0 < αk < 1 sig-
nifies electronic entanglement. Filled and empty orbitals are
associated with occupation numbers of 1 and 0, and these
orbitals do not contribute to the mode entanglement. In the
Kondo impurity models, despite the near-macroscopic reor-
ganization of the Fermi sea, the entanglement in the Kondo
problem has a few-body character with only a handful of
natural orbitals with eigenvalues that significantly differ from
0 and 1 [54–56]. Considering the spatial feature of the induced
correlation, we define the correlation entropy density as fol-
lows:

scorr (r) = −
∑

k

(αk ln αk )|vk|2(r), (3)

where αk are the eigenvalues and the vk are the corre-
sponding eigenvectors of the one-body density matrix. The
full correlation entropy can be determined by integrating
over the correlation entropy density scorr through the entire
fermionic chain. The correlation entropy density serves as a
valuable tool for understanding the interaction-induced many-
particle correlations within the system. In the absence of
particle-particle interactions, all the natural orbitals are either
completely filled or empty, and the correlation entropy density
scorr vanishes. The orbitals with fractional population give rise
to a finite scorr, which also encode the spatial structure of the
correlations through vk .

The correlation entropy density scorr of a 20-site fermionic
chain, with 18-site noninteracting sites, is shown in Fig. 2.
The ground state of such a chain is determined by using
the tensor-network matrix-product state formalism [57–61],
which allows extraction of the different particle-particle cor-
relators in the full system and evaluation of the correlation
entropy density. The correlation entropy density with one
interacting spin for various strengths of the coupling constant
Jk0 is shown in Fig. 2(a). We can see that scorr is strongest at the
interacting spin site, and gradually reduces towards the center
of the noninteracting chain. The oscillation of scorr originates
from the oscillation of the particle-particle correlators within
a scale of the order of the Fermi wavelength. The horizontal
and vertical cuts of Fig. 2(a) for specific values of Jk0 and for
specific sites are shown in Figs. 2(c) and 2(e) separately.

For the case of two interacting spins, the correlation
entropy density scorr for various strengths of the coupling
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Correlation entropy density scorr of a 20-site (noninteract-
ing 18-site) model. (a) A heat plot for the case of the interacting spin
is located on the left of the noninteracting chain. (b) A heat plot for
the case of two interacting spins (with coupling constant Jk0 = Jkn) is
located on the two sides of the noninteracting chain. (c) Examples of
(a) for specific values of the coupling constant Jk0. (d) Examples of
(b) for specific values of the coupling constant Jk0. (e) Dependence
of scorr on Jk0 at different sites in the case of a single interacting spin.
(f) Dependence of scorr on Jk0 = Jkn at different sites in the case of
two interacting spins.

constant is shown in Figs. 2(b), 2(d) and 2(f). As one can see,
the correlation induced by the other interacting spin brings
changes to the profile of scorr. Two sources of correlation in
the noninteracting chain enhance scorr throughout the chain.
The decay of scorr towards the center of the noninteracting
chain is also slower than the case of a single interacting spin.
As the correlation entropy represents the complexity of the
correlation, the case of two interacting spins could provide
more insights for the quantum entanglement in such systems.

III. MACHINE-LEARNING CORRELATION
ENTROPY DENSITY

A. Local prediction of the correlation density

We first note that the straightforward experimental ex-
traction of the correlation entropy density scorr requires
measurement of all the particle-particle correlators. For an
n-site system, the number of associated correlators is 2n2

including long-range ones, a greatly challenging task for large
systems. This limitation can be bypassed by directly using
a machine-learning model to extract the correlation entropy
from a reduced set of local correlators. In particular, we ex
tract particle-particle correlators related to each specific site
by providing local correlators of the three sites around each
location (see the Appendix for details) [62]. At first glance,

such an approach leads to a significant information loss, as
all the nonlocal correlations required to extract the correlation
entropy are lost. This information loss is compensated by
providing the local density-density correlators,

f ss′
i j = 〈�0 |nisn js′ |�0〉, (4)

of the three neighboring sites. The inclusion of density-
density correlators provides further information that the
conventional calculation of the correlation entropy does not
have access to, but that our machine-learning algorithm can
exploit to reconstruct the correlation entropy. We will show
that these local particle-particle and density-density correla-
tors are enough to train a supervised learning algorithm to
predict the related correlation entropy density.

As an input, our algorithm assumes correlators around one
site and outputs the entropy density at that site. The training
data for the machine-learning model are generated accord-
ing to the following prescription. Solving the Hamiltonian in
Eq. (1) with randomly generated tight-binding parameters (t ′,
μ, Jk0, and Jkn) for a 32-site model enables us to compute the
correlation entropy density in Eq. (3), which is the quantity to
be predicted by the algorithm, exactly at each site. The input
of the machine-learning algorithm could be obtained by mea-
suring the relevant particle-particle correlators in Eq. (2) and
density-density correlators in Eq. (4). The input correlators
of the algorithms correspond to the average between the nth
preceding and subsequent sites around a specific site of the
fermionic chain.1 This leads to a 32-dimensional entry for pre-
dicting the correlation entropy density. We collected 40 000
examples for training purposes (see the Appendix for details).
The examples are generated with the following ranges of the
tight-binding parameters: Jk0, Jkn ∈ [0, 2t], μ ∈ [0, 2t], t ′ ∈
[0, t]. We use a principal component analysis [63], keeping
all components, to transform the data to an uncorrelated basis.
For training purposes, we use the Box-Cox transformation
[64] to reduce the potential large relative errors created from
the small values of scorr. With the transformed dataset, we
develop the neural-network structure containing 12 hidden
layers with 512 nodes, as shown in Fig. 1(b).

The comparison between the predicted and the actual val-
ues of scorr is shown in Fig. 3(a). The mean absolute error
(MAE) of the model is 0.001. The trained algorithm allows
us to predict the correlation entropy density at any site of a
model for any sets of tight-binding parameters. In Fig. 3(b),
the MAE is shown for each site of the fermionic chain for four
random fermionic chains. The error values remain at the same
levels for the majority sites. The prediction of each site of four
random fermionic chains is shown in Fig. 3(c) in logarithmic
scale and Fig. 3(d) in the original scale. As can be seen, the
predictions match very well with the values of scorr.

B. Transfer learning to various-size Kondo models

In the following, we show how an algorithm training on
a specific system size allows one to make a prediction for

1For edge sites the average is replaced for the single existing nth
neighbor.
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(c) (d)
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FIG. 3. (a) Comparison between predicted and actual values of
scorr . (b) Mean absolute error of scorr on each site of four random
fermionic chains. (c) Prediction on each site of the entire 32-site
chain of scorr in logarithmic scale for the four fermionic chains in
(b). (d) Prediction on each site of the entire 32-site chain of scorr for
the four fermionic chains in (b). Curves in (c) and (d) are shifted
along the vertical axis for clarity.

Kondo models of other systems sizes. The trained neural-
network model uses local correlators to predict the correlation
entropy density scorr. For a random site, the relevant corre-
lators are only associated with the preceding and subsequent
three sites, meaning that the machine-learning methodology is
local by definition. The model was trained before on a 32-site
fermionic chain, but for larger and smaller chains, the relevant
correlators are expected to show an analogous phenomenol-
ogy for larger and smaller chains. This built-in locality in the
machine-learning algorithm motivates analyzing the potential
transferability of the neural-network model. For this purpose,
we directly evaluate the trained neural-network model to pre-
dict scorr on a larger or smaller fermionic chain. We apply the
trained neural-network model on 24-, 28-, 36-, and 40-site
fermionic chains, each consisting of 5000 randomly generated
examples.

The site-specific MAE for scorr of the fermionic chains with
different sizes is shown in Fig. 4(a). The size-specific MAE
for scorr of the fermionic chains at different sites is shown
in Fig. 4(b). As can be seen, the average MAE gradually
increases for the larger and smaller fermionic chains, but it
remains in the error range of the 32-site fermionic chain.
Hence, the prediction is reliable for fermionic chains with
different sizes.

The accuracy of the model can also be examined by fidelity
defined as

F =
∣∣〈spred

corr · strue
corr〉 − 〈

spred
corr 〉 · 〈

strue
corr〉

∣∣√[〈(
strue

corr )
2
〉 − 〈

strue
corr〉2]

[〈(
spred

corr
)2〉 − 〈

spred
corr

〉2] . (5)

The previous quantity factors out the impact of different mag-
nitudes for the correlation entropy when computing the error,
leading to F = 1 if the prediction of the machine-learning
algorithm is flawless and F = 0 if the algorithm does not
have predictive power. The fidelity for different system sizes
and sites is plotted in Figs. 4(c) and 4(d), respectively. We

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Site-specific (a) absolute error and (c) fidelity of the
prediction of the neural-network model on fermionic chains with
different sizes. Size-specific (b) absolute error and (d) fidelity of
the prediction of the neural-network model on different sites of the
fermionic chains. Comparison of the actual and predicted values on
the (e) 24-site fermionic chain and (f) 40-site fermionic chain. For
clarity, the curves are shifted along the vertical axis in (e) and (f).

observe that the fidelity of the larger and smaller chains also
remains in the same range, despite the algorithm not having
been trained in those systems, and the neural-network model
is reliable on predicting different sizes of chains. As specific
examples, the prediction of the each site of four random ex-
amples of 24- and 40-site chains is shown in Figs. 4(e) and
4(f) separately. The small departures in the transfer learning
can be associated to slightly different finite-size effects in the
different systems. Overall, these results demonstrate that a
machine-learning algorithm of the correlation entropy based
on local correlators is transferable between different systems
sizes, further supporting the fact that the correlation entropy
can be determined locally.

C. Resilience to noise

In real experimental data, the extracted correlators may
contain a certain amount of noise. For this purpose, we now
address the robustness of the neural-network model by includ-
ing random numerical noise in the data.

We denote the particle-particle and density-density corre-
lators as �ss′,0

i j = {Css′
i j , f ss′

i j }, and introduce the noise in the
correlators as

�ss′
i j = �ss′,0

i j + χ ss′
i j , (6)

where χ ss′
i j is the random noise between [−ω,ω], and ω con-

trols the amplitude of the noise. The neural-network model
is trained on the 32-site fermionic chain for various degrees
of noise and tested for 5000 randomly generated fermionic
chains. The MAE and the fidelity are shown in Fig. 5(a) and
Fig. 5(b), respectively. It is observed that while the prediction
of the correlation entropy close to the Kondo impurity is
relatively robust, prediction of the correlation entropy density
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Effect of numerical noise on the prediction of the cor-
relation entropy density trained on the 32-site fermionic chain.
(a) Site-specific MAE of the correlation entropy density for various
values of the noise rate ω. (b) Site-specific fidelity of the correlation
entropy density for various values of the noise rate ω. (c) Horizontal
cuts from (a) for smaller values of ω. (d) Horizontal cuts from (b) for
smaller values of ω. (e) Total MAE as a function of the noise rate
ω. (f) A comparison between actual and predicted values of scorr for
larger values of ω = 0.05 and ω = 0 (inset).

far from the impurity requires accurate measurements of the
correlators. The error in the correlation density for specific
values of ω < 0.01 is shown in Fig. 5(c), and its associated
fidelity in Fig. 5(d). Analogous to Figs. 5(a) and 5(b), it is
observed that the entropy around the Kondo impurity can be
predicted accurately, whereas far from it the existence of noise
decreases the fidelity of the prediction. The total MAE as a
function of ω is shown in Fig. 5(e), where it is observed that
the error increases approximately linearly with the noise level.
As a reference, we show a comparison between the true and
predicted scorr for ω = 0.05 and ω = 0 in Fig. 5(f). Our results
suggest that predicting the correlation entropy featuring low
levels of correlation requires precise correlator data. In con-
trast, predictions of the entropy close to the impurities, which
in our calculation corresponds to a length comparable to the
Kondo cloud, are robust to the presence of noise.

IV. CONCLUSION

In this work, we demonstrated that a machine-learning al-
gorithm, assuming local correlators as an input, can accurately
predict the many-body entanglement structure of a Kondo
screening cloud as characterized by the correlation entropy.
Our methodology combines local single-particle and den-
sity correlators, showing that these quantities contain enough
information to reconstruct the correlation entropy in real
space. Our method demonstrates that machine learning allows

(a) (b)

FIG. 6. (a) Fidelity of the neural-network model as a function of
the nearest-neighbor sites considered in the training. The maximum
sample size of 40 000 is used in each case. It is observed that con-
sidering correlators in three neighboring sites provides high-quality
predictions. (b) Fidelity of the neural-network model as a function
of the sample size of the training data; the correlators are extracted
from three neighboring sites. It is observed that the accuracy of the
algorithm saturates at approximately 20 000 samples.

bypassing the need to obtain long-range correlators required
for direct methods. We showed that owing to the local nature
of the input data, our algorithm is transferable to different
system sizes. Thus, our methodology can be applied to sys-
tems not included in the training set. Finally, we demonstrated
the resilience of our algorithm to noise, showing that the
correlation entropy is reasonably robust in the presence of
sizable inaccuracies in the measured correlators. The extrac-
tion of real-space entanglement offers valuable insight into the
intricate interplay of correlations within the system, including
the determination of a spatial profile of the Kondo cloud. Our
results establish the potential of machine-learning methods
to reveal entanglement in many-body systems, including spa-
tially inhomogeneous quantum materials.
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APPENDIX: CHOICE OF LOCAL CORRELATORS
AND SAMPLE SIZE

Here, we address the accuracy of our algorithm as a
function of the number of neighboring sites from which cor-
relators were extracted, and the sample size of the training
set.

Figure 6(a) shows the fidelity F of the neural-network
model trained on correlators extracted from various numbers
of neighboring sites surrounding a given internal site of the
noninteracting chain. As it is observed, the accuracy of the
model is much lower for neighboring sites of less than three,
and improves as the number of neighboring sites is increased.
Increasing the number of included correlators significantly
increases the number of correlators that must be determined.
We find that satisfactory accuracy is attained with correlators
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extracted from three neighboring sites, and therefore we focus
on the three-neighbor case for training the optimal neural-
network model.

Figure 6(b) shows the fidelity of the neural-network model
as a function of the size of the training set. As it is observed,
the accuracy of the model increases as the size of the training
set increases. We find that the accuracy of the model saturates
for sample sizes larger than 20 000. Our calculations are

therefore in the regime where the training data is large enough
to saturate the accuracy of the algorithm.

Given the behavior described above, we focus the results
of our manuscript on a training set with 40 000 examples,
where the correlators are extracted from three neighboring
sites. This choice enables a modest number of correlators to
be determined, while maintaining satisfactory accuracy of the
neural-network model.
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