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Topological solitons in a Su-Schrieffer-Heeger chain with periodic hopping
modulation, domain wall, and disorder
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A chiral symmetric Su-Schrieffer-Heeger (SSH) chain features topological end states in one of its dimerized
configurations. Those midgap zero-energy states show interesting modifications upon a periodic tuning of the
hopping modulations. In addition, more and more in-gap end modes appear at nonzero energies for further
partitioning of the Brillouin zone (BZ) due to increased hopping periodicity. These topological phases are
identified with a detailed analysis of the topological invariants, namely, winding number and Zak phases. The
spectra and topology of these systems with periodically modulated hopping are also studied in the presence of
a single static domain wall, separating two topologically inequivalent dimerized structures. The domain wall
causes additional in-gap modes in the spectrum as well as zero-energy domain-wall solitonic states for specific
hopping periodicities. We also study the effect of disorder, particularly the chirality breaking on-site ones, on the
edge and domain-wall states. Other than the SSH type, we also consider random, Rice-Mele, or Al-type disorder
to do a comparative analysis of the evolution of chirality and zero-energy states as the strength of disorder and
hopping periodicity is varied. Our findings can add important feedback in utilizing topological phases in various
fields including quantum computations, while the results can be easily verified in a cold atom setup within optical

lattices.

DOLI: 10.1103/PhysRevB.109.195124

I. INTRODUCTION

Topology in condensed matter [1-7] is a very hot topic
these days due to the renewed understanding and subsequent
discoveries both in theoretical [8—12] and experimental [6,13]
fronts identifying the robustness of the topological protections
and its possible implementation in various fields, including
quantum computations [14—16].

Today we often talk of graphene, whose discovery [17]
using the Scotch tape method in 2004 turned out to be a
milestone in the journey of topological condensed matter
systems for its Dirac-like excitations at low energies, high mo-
bilities, and topological stability [18]. From there, physicists
moved on to topological system synthesis and analysis via
the Haldane model [19], Kane-Mele model [20], topological
insulators [21], and then Weyl, Dirac semimetals [22], and so
forth.

Graphene has a staggered single bond-double bond struc-
ture (considering single resonance structure [23]) in a
hexagonal lattice. But before it became popular, scientists
were intrigued by the 1D conducting polymers involving the
same staggered bonding structures. That is when the (CH),
polyacetylene chain [24] became important to the science
community for its topological behavior, solitonic excitations,
and domain-wall (DW) structures [25-27].

A long chain of polyacetylene has a pair of degenerate
ground states for two different sets of dimerization [25].
For a finite chain, these two staggered arrangements are
topologically distinct, for the end site sees either a strong or
a weak bond. In the topological regime, end modes appear
as zero energy states (ZESs) that peak at the boundaries and
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die out exponentially away from there. One can call these
end solitons. In a half-filled system, their spectral weights are
equally shared between unoccupied conduction and occupied
valence bands. With electrons added to or removed from the
half-filled system, the end modes occupy with fractionalized
charges Fe/2. Strictly speaking, they are bonding and anti-
bonding small gap states and of mixed chirality. But linear
combinations of them can be considered to obtain a pair of
chiral ZESs that are located in single ends of the chain [28].

A Su-Schrieffer-Heeger (SSH) model that can correspond
to a polyacetylene chain is a 1D tight-binding model with
staggered hopping modulation [25] and can demonstrate
charge fractionalizations [29,30], the existence of zero energy
end states, and topological solitonic excitations [25,27]. Neu-
tral solitons with moving domain walls having S = :I:% are
obtained, as the excitations though charged solitons can also
found for a doped (CH),, system [26]. The SSH chain has chi-
ral symmetry and the chain features unit cells comprising two
adjacent sites. The staggered nature of the hopping brings in
this two-sublattice structure in the chain and, accordingly, the
chiral symmetry, here, is also familiar as sublattice symmetry.
It makes the Bloch Hamiltonian off-diagonal, which gives the
simplest route to derive the topological winding number, as
we also have elaborated on in this paper.

In this respect, it would not be ludicrous to add a discussion
on exotic Majorana fermions, that are their own antiparticles
which appear as quasiparicle excitations, called Majorana
bound states (MBSs) in some condensed matter systems with
defects [1-3]. Our system of concern—the SSH model can be
broken down to two independent Majorana hopping chains.
Similarly, in a spinless Kitaev chain with p-wave pairing [31],
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FIG. 1. Both the Kitaev chain (a) and SSH chain (b) can be
broken down to two independent Majorana hopping models. When
the weaker bond vanishes, end sites become disconnected from the
rest of the chain. While the Kitaev chain features two MBSs localized
at two ends, the SSH chain features two MBSs at each end which turn
them into electronic ZESs.

a pair of independent Majorana hopping chains appear and
single Majorana zero modes (MZMs) survive there at the
ends. The unconventional superconducting pairing can nullify
the effect of quantum zero point motion to pin the Majorana
states at the zero energy. Due to their non-Abelian exchange
statistics, they lead to decoherence-free quantum information
processing [14]. However, for the SSH model, the pair of
Majorana modes localized at each end turn them into elec-
tronic modes and we do not get any Majorana physics in this
system [32], but with interaction added, Majorana modes can
be incorporated in such systems.

The chiral symmetric SSH chain, with the Hamiltonian
shown in Eq. (1), features a topological phase for weak bonds
at the boundaries, and midgap zero energy states (ZES) with
fractional charge are obtained. Figure 1 demonstrates that
while in a Kitaev chain, end states are found to be Majorana
modes, in the SSH model the pair of Majorana modes at
each end produces electronic ZESs at two boundaries. It gets
interesting when the ZES gets redistributed or modified due
to a periodic variation of the hopping modulation that goes
beyond simple staggered hopping of the SSH chain. A similar
study has been initiated by one of the authors in Ref. [12]. In
this paper, we extend the calculations incorporating detailed
analysis of the winding numbers to identify the topological
(nontopological) end modes of this periodically hopping mod-
ulated system. In addition, here we also consider the effect of
domain wall (DW) and disorders. A static DW at the center
of a SSH chain break it into two topologically inequivalent
regime on its two sides and results in solitonic states in the
system. The consequence of having domain walls in the SSH
chain [33] and other related models [26,34-36] have been
probed to some extent in the literature. Here we find that the
presence of periodic modulation of hopping amplitude causes
additional in-gap modes to appear. In addition, one of the end
modes vanishes with new zero energy solitonic states appear-
ing at the DW position for specific periodicities of hopping
modulations. Furthermore, the addition of on-site disorder in
our model leads to immediate disappearance of the chiral
symmetry. We also consider random [37], Rice-Mele (RM),
and Al-type of disorder [38] for comparison, which reveals
that the disappearance of the ZES with disorder strength is

common in all of them, though a DW state approaches zero
energy for strong disorder of the Al type.

The paper is organized as follows. In Sec. II, we provide the
formulation of our SSH(-like) model with periodic hopping
modulation, also including a detailed analysis of symmetry
and topological invariant calculations, as well as the features
of spectra and end states. Next, in Sec. III, we additionally
introduce a single static domain wall at the center of a finite
chain and study its response on the ZES and energy spectra.
Section IV describes the effect of on-site and hopping disorder
in the periodically modulated chain with a domain wall which
affects the chirality of the system. Finally, we summarize our
results in Sec. V and discuss possible future directions of
work.

II. FORMULATION

The Su-Schrieffer-Heeger (SSH) model [25], proposed in
the context of polyacetylene is given by a one-dimensional
tight-binding Hamiltonian with staggered nearest-neighbor
(NN) hopping [thus, it shows a chiral (sublattice) symmetry]:

L-1

Hgsu = Z(t + 8i)cleivr + Hee. (1)

Here clT, ¢; denotes electron creation and annihilation oper-
ator, respectively, and the periodic modulation in hopping
strength (¢) is obtained by §; = A cos[(i — 1)0] in which
i=1,2,3,...,N. In general, for 6 = 27 /n, we get §;1] =
Acos(%) and the chain from an n sublattice structure.
Moreover, the system is represented by a n x n Hamiltonian
matrix with n number of eigenmodes. The transformation
ci = (—1)'c] gives Hssy — Hssy, implying the sublattice
or chiral symmetry [39]. For a model considering periodic
boundary conditions (PBCs), chiral symmetry also needs the
total number of sites to be even.
With the introduction of Majorana operators as

1 i
A= —(c;r +¢), Vip= —(C,T —¢i), (2)
y A \/i y B ﬁ

the Majorana representation of Eq. (1) becomes

L1
Hssn =Y i(t + 8)[Via¥is1.8 + Vir1.aVis). 3

1

The case of & = 7 corroborates the original SSH chain, which
has been studied thoroughly. Here we depict the cases of a few
other 0 values, that are commensurate to the finite chain.

A. Forf =7

Let us begin with a (finite) SSH(-like) chain with an open
boundary condition (OBC) for 6 = 7:

L—1
H = Z(l‘ =+ A)CzACi,B —+ ICZBCiaC

1

+(t = A)cfceip +iepeiia+He, @)
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FIG. 2. (a) Spectra of a SSH(-like) chain with L = 256 considering OBC as a function of A/t for & = 7. (b), (c) Corresponding low-energy
states for L = 256 with smaller and larger A /¢, respectively, while (d) represents low-energy spectra for an odd number of lattice sites with

L =1255.

where i denotes the unit cell. For PBCs, we can consider the
Fourier transform for the above Hamiltonian as

2 "
i = > i, 5)

keBZ

where o = {A, B, C, D} and 8 = {a, by, cx, di} refer to the
sublattice index and the corresponding Fourier modes, respec-
tively. Thus the Hamiltonian [Eq. (4)] in terms of the spinor
field Y = (ax, by, cx, di)T takes the form of

H =Y ¥Hai, ©6)

keBZ

where the Bloch Hamiltonian

0  @+4A) 0 te—tik
_le+A) 0 t 0
He=1"o ' 0o «-n) @
tetik 0 t—A) 0

The energy eigenvalues of the above matrix can be
calculated as

e(k) = i\/zﬂ + A2 £ 1/212 + 6A2 + 2(12 — A?) cos 4k.
®)

It essentially gives four bands in the energy spectrum. Note
that the energy gap closes for A = 0 at k = 0 as well as for
(A/t)> =2 atk = % /4. Of these, the first case is a result of
using the periodic boundary implied in our Fourier construc-
tion but the system gaps out there in a finite chain. However,
the second case indicates a gapless point even for the finite
chain and corresponds to the gap-closing topological phase

transition point. The bands cross linearly there (see Fig. 3),
making the low-energy modes behave as Dirac fermions [40].

The numerical energy spectra for SSH(-like) chain under
OBCs for & = /2 is shown in Fig. 2. The figure indicates
that the energy spectra is symmetric (up-down), i.e., for every
eigenstate with energy FE, its chiral symmetric partner having
energy —FE necessarily exists. Here, we get a four-sublattice
configuration yielding two in-gap nonzero energy states and
two ZESs. Zero-energy modes with L = 256 will no longer
subsist for —0.3 < A/r < 0.3 and for A/t 2> 1.4 or A/t 2,
—1.4 [see, e.g., Figs. 2(b) and 2(c)].

For an odd number of lattice sites, one gets an odd number
of zero-energy states. We examined that in a chain with an odd
number of sites, there are L modulo 4 number of extra ZESs
that are localized exactly at Mod(L, 4) end sites. For example,
for L = 255, with the spectra as shown in Fig. 2(d), there are
five (for |A/t| Z 0.25) or three (for |A/f| < 0.25) zero energy
modes (i.e., three extra ZESs) with the extra modes being
localized at sites No. 253-255 (it could have been at sites No.
1-3 on the other side of the chain, had the Hamiltonian matrix
taken the three extra bonds on that side).

1. Symmetry and winding number

Now we discuss a bit more on the symmetry of the SSH(-
like) chaiP for 6 = % By employing the chiral symmetric
operator § =1y =1, ® o, with I, as the 2x2 identity ma-
trix and o indicating the Pauli matrices, one can check that
{4, H} = 0. Hence, this Hamiltonian has a chiral symmetry
(of course, for a chain with even number of sites). Apart
from this, this Hamiltonian also respects the time-reversal
symmetry (7) as well as particle-hole symmetry (C) and falls
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FIG. 3. The dispersion plot corresponding to 6 = 7 and A/t = (a) V2 — 0.3, (b) +/2, and (¢) v/2 + 0.3, respectively. The bottom panel
shows the winding of Det(V) as k is varied through the reduced BZ, for these three cases in terms of dashed, solid, and dotted circles,

respectively.

in the BDI class universality in a tenfold way classification
(see Table I). Here T (C) commutes (anticommutes) with
the Hamiltonian H; which, in this spinless case, is given
by T=LLK C=L® 0,K), K denoting the complex-
conjugation). The relation § = 7'C is thus satisfied [41]. Due
to the chiral symmetry of Hamiltonian, the Bloch Hamiltonian
[Eqg. (7)] is expected to be off-diagonal. We should add here
that the presence of chiral symmetry does not necessarily
ensure 7 and C symmetry, as there is a symmetry class
called AIII that respects chiral symmetry alone. In fact, if we

TABLE 1. Periodic table of topological invariants. Here, 7,
C, and S denote time-reversal symmetry, particle-hole symmetry,
and and chiral symmetry operator, respectively. The value of the
corresponding single-particle operator indicates the presence of sym-
metry. The different dimensions d can host only trivial phases,
indicated by —, a theoretically infinite number of phases labeled by
an integer Z or two phases, labeled by Z,. This table is based on
Altland’s and Zirnbauer’s ten symmetry classes [42,43].

Class T C S d=1 d=2 d=3
A 0 0 0 - V4 -
Al +1 0 0 - - -
All -1 0 0 - 7, 7,
D 0 +1 0 7, V4 -
C 0 -1 0 - Z -
AIll 0 0 1 Z - Z
BDI +1 +1 1 Z - -
CI +1 -1 1 - - V4
DIII -1 +1 1 7, 7, V4
ClI -1 -1 1 Z 7,

consider the hopping amplitudes to be complex, instead of
real, then time-reversal symmetry no longer persists and Hssy
moves on to the AIIIl universality class [44]. The AIlI class, in
one dimension (1D), is always topologically nontrivial [42],
unlike the usual SSH chain (with & = ), and its topology is
described by a topological winding number.

There are two important corollaries of this chiral symmetry
for the eigenstates and energies of the Hamiltonian. First, the
energy spectrum of the SSH(-like) chain is always symmetric
(up-down symmetry) in nature. For each eigenstate v having
energy E, there is always another eigenstate (its chiral partner,
4 = ;) with energy —E. Second, states with zero energy
only occupy a single sublattice. When the total number of
particles is odd, chiral symmetry infers that there will be an
odd number of end modes having zero energy. Moreover, the
energy of the in-gap end states can also be non-zero, and
this symmetry implies that such states having nonzero energy
should be even in number and symmetrically positioned about
E =0.

The one-dimensional chiral models are identified by a Z
topological index/invariant - winding number WV which is an
integer (may be positive or negative) while in two dimen-
sions the equivalent index is Chern number [45]. The winding
number is a completely mathematical property defined for
any closed and smooth curve and is defined as the number
of rotations (or windings) of the winding vector (defined
below) about the origin [46] as one sweeps through the first
Brillouin zone (BZ). The method of calculating the winding
number is not only restricted to two-band models. It is much
more general and can further be defined for any multiband
Hamiltonian that obeys chiral symmetry [47]. It is not always
easy to determine the eigenvectors from Eq. (7) in its analytic
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form. But for chiral symmetric systems, the definition of W
can also be pertinent with the block off-diagonalized form of
the Hamiltonian in the sublattice basis [48,49].

Applying the unitary transformation, the Hamiltonian Hj
in Eq. (7) can be converted into block off-diagonal form

_ 0 VvV
H,=UHU '= <V* 0)’ ©)

where V (k)(VT(k)) is 2x2 square matrices defined on the
upper (lower) off-diagonal block of Hy, read

(t+A) te %k
t (t — A)) (10)

and U is the unitary matrix obtained by employing the chiral
basis as

Vik) = (

an

oo o
(= e R )
SO = O
-0 OO

Now, the calculation of the winding number can be given
by [45,47]

W=——| dipk)dk, (12)
2 BZ

with integration on the reduced BZ, k € [—r /4, 7 /4] [50].
Here ¢ is the phase of the complex number Det[V(k)] =
(% — A?) — 12e=%k = R(k)e'*™®. For a two-band model (see,
e.g., Refs. [46,51]), one does not need to consider the determi-
nant as V (k) is just a number. However, for systems with four
bands or more, this formula aims to give the topological index
without further diagonalizing the Hamiltonian Eq. (7) [52].
One can substitute In Det[V (k)] in place of i¢; in Eq. (12)
[45]. Now, the winding number Eq. (12), considering the
determinant, takes the form of [42,48,49,53,54]

W =

d—klak[ln Det[V (k)]] (13)
BZ 2mi

and the estimate comes out to be

1, 0< Az/t2 <2
W =40, A2 > 2 (14)
undefined, A/t =0.

The complex variable Det[V (k)] is called the winding vector
(it has a magnitude and phase angle in the complex plane, as
already mentioned) as its number of winding about the origin
as k varies in [—m /4, w /4] [50,55] determines the winding
number.

Equation (14) implies that one can get VW = 1 for small
A/t # 0, indicating the nontrivial topological phases (NTPs)
there. But A/t = 0 indicates an undefined ¥ and hence no
gap closing Lifshitz quantum phase transition (QPT) point. On
the other hand, W remains unity until 0 < |A/¢| < +/2 and
vanishes for |A/t| > /2. Thus, QPT occurs at A = £+/27 in
this case. We should add here that interchanging the Majorana
operators y; 4, ¥; g in Hamiltonian Eq. (3) has no significant
effect (other than an overall sign change) since our considered
model does not include the next-nearest-neighbor hopping

amplitudes and chemical potentials. Following the above pro-
cedure, we attain

t+A) t ) (15)

Vit = < tek (= A)

causing merely a sign change in the winding number:
W — —W.

It is worth mentioning that the sign changes in winding
number can occur by relabelling sublattices {A, B, C, D} <
{D,C, B, A} (or interchanging the Majorana operators). This
can also be visualized as a ‘choice’ of chiral symmetry opera-
tors. In the former case, it is § = 'y acting in the sublattice
basis while in the latter it is § = —I'y. Moreover, the sign
of the winding number is related to the winding direction of
winding vector Det[V(k)], which in turn leads to the type of
(unpaired) Majorana fermions residing at the boundary. This
change of signs makes no difference when one considers a
single chain, however, for multiple chains coupled to each
other, such liberty no more persists as the relative sign of the
individual chains becomes a relevant quantity of the system
topology and the Hamiltonian no more remains block off-
diagonal. Detailed illustrations of the same can be found in
Ref. [45].

To change the winding number from one value to another,
we are required to either close the energy gap or disturb the
chiral symmetry of the system, which is the pivotal symmetry
of the Hamiltonian. Moreover, breaking or preserving the
chiral symmetry after the implication of on-site and hopping
disorder, respectively, are discussed in Sec. IV.

The dispersion relation calculated from the bulk
Hamiltonian Eq. (7) is presented in the top panel of Fig. 3.
Notice that the plot indicates asymmetry of the dispersion as
A is varied about its critical value given by (A/t)? = 2—the
topological phase transition points.

In the spirit of Eq. (12), one obtains

1 1
W= = [p(r/4) — (=7 /4)] = ——A¢. (16)
T 2

So if Det[V(k)] takes m revolutions with A¢ = 2w m, Eq. (16)
leads to YW = m. The eigenstates are parameterized by ¢ =

—1 ¢ Im[Det(V)] oo .
tan™ (gaieiv)j - 1herefore, the direction of the winding vec-

tor Det[V(k)] in the complex space represents an eigenstate
and the magnitude of the same estimates its eigenvalue. The
trajectory of Det[V(k)] parameterizes the evolution of the
state as k is varied from —m /4 — m /4. The trajectories for
the asymmetric dispersion about the critical value (mentioned
above) may or may not encircle the origin, indicating nontriv-
ial or trivial topological classes, respectively.

The demonstration of the topological winding number for
the 1D SSH chain (two sub-lattices) can be found in Ref. [46].
In this context, the parametric plot of the winding number
in the complex plane is depicted in Fig. 3. The arrowhead
stipulates the direction of movement of Det[V(K)] as k is
varied from —m /4 — 7 /4. The sense of rotation is in the
counterclockwise direction for each of the closed contours.
The contour for A/t = +/2 — 0.3 encloses the origin making
W =1, indicating the NTP while that for A/t = V2403
does not enclose the origin and indicates a trivial topological
phase (TTP) with WW = 0. The contour for A/t = V2 touches
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the origin and indicates the gap-closing phase-transition point
[56]. This justifies our theoretical findings very well.

In Appendix A, we calculate the winding number in terms
of poles and zeros, and the Berry phase for this model is
studied in Appendix B [see Eq. (B1)]. Notice that the 1D
polarization is the Berry phase of the occupied Bloch states.
Electrostatics shows us that polarization is related to bound
charges and, in the SSH chain, the Berry phase thus estimates
the charges of the end modes that comes out to be +e/2 [57].

As a side mark, we mention here that the topological nature
of the phase can also be determined based on the availability
of the zero eigenvalues of the local in-gap Green’s function as
studied in Ref. [58].

2. Bulk-boundary correspondence

As mentioned, the bulk-boundary correspondence refers to
the connection between edge and surface states of a finite
system to the difference in bulk topological invariants across
the QPT [46,59-62]. The topological behavior is associated
with the existence of edge states on the boundary of open
systems [46], which in turn is complemented by a nonzero
Berry phase within the bulk (and vice versa). The edge modes
peak at the boundary and decay exponentially towards the
bulk. Generally, bulk-boundary correspondence is present in
most of the Hermitian systems. However, a more generalized
understanding of the same is required for more complicated
Hermitian and some non-Hermitian systems [63—-65].

For a system with chiral symmetry, one can find a chiral
partner for each of the states. For the topological insulators,
bulk-boundary relation refers to a one-to-one correspondence
between the number of gapless zero-energy end-modes in a
topologically nontrivial system and the topological invariant
(winding number). For instance, the number of conducting
edge states in a 2D quantum Hall system is the same as the
Chern number that appears in the transverse conductivity [56].
Unlike in the case of & = &, where end states are restricted
in single sublattices, here for 6 = /2 the end states are
restricted in two sublattices such that no two consecutive sites
see nonzero amplitude of them. In other words, the amplitude
of the end-state wave functions vanishes in alternate sites
(corresponding to two sublattices) while the rest of the sites
(corresponding to the other two sublattices) alternately see
positive and negative amplitudes, also indicating a gradual
decay of strength from the end of the chain towards the bulk.
The winding number is equivalent to the net number of end
states: Ny — Np, where N4 and Np are the number of end
states of sublattices A and D (that include the two end sites),
respectively, on sublattice A on the left end (see pp. 16 and
17 of Ref. [46]). The winding number is estimated from the
bulk Hamiltonian while the net number of end states can
be obtained by looking at the low-energy sector of the left
end. For the trivial case, A?/t> > 2, both are 0 and for the
topological case, 0 < A?/t> < 2, both are 1. This indicates
that there is one end mode localized in sublattice A and no
end mode localized in sublattice D, observed from the left.
The corresponding wave functions are shown to be highly
located near the ends. Since each chiral pair is connected with
opposite energies +e(k), the single end mode must obey it as
well, resulting in €(k) = 0. Interestingly, the wave functions

Eit
Eit

w2 -1 0 1 2
At

FIG. 4. Spectra of a SSH(-like) chain (considering OBCs) as a
function of A/t for 6 = % (b) represents the same zoomed in at low
energies. Both plots are for L = 300.

of the zero-energy end modes can be explicitly derived with-
out solving the eigenvalue problems and further studied as in
Ref. [66].

Edge states in BDI class are time-reversal symmetric and
there can be a phase factor of £1. Thus, one may require the
correct linear combination of degenerate edge states to notice
this symmetry [45].

In the following, we will discuss the cases for two other
commensurate 6 values. To make the paper precise, we only
mention the distinctive features of same.

B. For § = /3

The chiral symmetry of an odd-n SSH(like) model Eq. (1)
is obscured in momentum space, as found in Ref. [53]. Hence,
the winding number is also not well-defined for 6 = 27 /3.
Consequently, the chiral symmetry for this case does not
give directly to the nontrivial band topology via the winding
number. The possible way to make the chiral symmetry more
diaphanous is by assembling two neighboring unit cells of the
SSH(-like) model (for 6 = 2x /3) simultaneously to consti-
tute a six-band SSH model as documented in Refs. [53,65].
This six-band SSH model corresponds to n = 6 or 6 = 7 /3.
The corresponding Bloch Hamiltonian will be given by 6x6
matrix Hy as shown in Eq. (C1) of Appendix C.

The numerical spectra for this case is presented in Fig. 4.
We see from the plot that energy spectra is symmetric, i.e., for
every eigenstate with energy FE, its chiral symmetric partner
having energy —FE necessarily exists. Here, similar to 6 =
/2, we get a six-sublattice configuration and new gaps can
be found within the spectrum. Interestingly we get six in-gap
states in TTP while two in-gap states and two midgap ZESs
in NTP. Here, similar to & = 7 /2, ZES no longer exists for all
values of |A/t|, including |A/t| = 0, as shown in Fig. 4(b).
The energy gap closes (and reopens) at |A/t| =0, 2/+/3,
indicating three topological QPT points.

The above Hamiltonian has chiral symmetry and also
respects time-reversal and particle-hole symmetry. Thus, it
belongs to the BDI class in the tenfold-way classification (see
Table I). The chiral symmetry exhibits itself as 'H;I' = —H;
with T';; = (—1)i8,-j. The Hamiltonian Hy in Eq. (C1) can be
cast into block off-diagonal form as

He = (‘% g) )
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FIG. 5. (a) Spectra of a SSH(-like) chain with OBC as a function

of A/t with L = 256 for 6 = 7. (b) represents the same zoomed in
at low energies.

with
(t+A) 0 (t + 5)e ok
v=|t+% (-%) 0 . (18)
0 t—n (=%

Using a similar approach as shown for the 6 = 7 /2 case,
one can obtain the winding number for the winding vector
Det[V (k)] to be

I, 0>2>-2/V/30or2>2//3

W =
0, 0<% <2/V3or <-2/3.

19)

Now, in the parametric plot, similar to the case with 6 =
/2, the circular contour of winding vector Det[V (k)] for
13 —3tA%/4 4+ A3/4 > (<) 3 = 3tA%/4 — A3/4 would not
(would) encircle the origin, suggesting a TTP (NTP) with
winding number W =0 (1). And the contour should pass
through the origin for |A/f| =0, 2/+/3 indicating a gap-
closing phase-transition point.

C. For 0 =n/4

Now we consider a finite chain with 6 = 7 for which
one obtains an 8 x8 Bloch Hamiltonian H; [see Eq. (C2) of
Appendix C]. The numerical spectra for this case is presented
in Fig. 5. We see from the plot that the energy spectra is
symmetric, i.e., for every eigenstate with energy E, its chi-
ral symmetric partner having energy —E necessarily exists.
The spectra confirm eight in-gap states. Out of eight in-gap
states, six are found at nonzero energies while two are ZESs.
The existence of ZESs with variation of A/t is shown in
Fig. 5(b). The spectrum shows the gap-closing transitions

occur at |A/t] = \/2(2:|:«/§), which are indeed the four

topological QPT points in this case.
Just like in the previous cases, an unitary transformation
from there leads to the block diagonalization:

Hy — UHU " = (VOT ‘6) (20)
with
(t+A) 0 0 (t+ %)f&'k
. (r+ %) t ) 0 0
0 (t— 75) t—A) 0
0 0 (t— %) t

3y

This now helps in estimating the winding number and we
obtain

1, 0<2 <22-v2or % >202++2)
W=10, 22 —/2) < A2 <224+ 2)
undefined, A2/12 =22 ++/2).
(22)

One can again look at the parametric plot of Det[V(k)] in
the complex plane for all Brillouin zone vectors and find the
circular contour to enclose the origin for A? /t2 > (<) 22+
(—)~/2)1, signaling a NTP with winding number W = 1.

For the sake of completeness, we should mention here that
a winding number of W = —1 can be obtained in an extended
SSH model incorporating longer range hopping between dif-
ferent sublattices [66]. Interestingly, considering more than
one further neighbor hopping term, Pérez-Gonzélez et al.
(2018) demonstrated how an additional topological phase with
W = 2 can be obtained [67]. It shows two individual pairs of
topological edge states. Moreover, the topological phases with
larger winding numbers (say, up to YW = 4) are also found to
appear with the inclusion of multiple further neighbor hopping
terms [68].

D. End states for different 6’s

Features of the end states for different & were mentioned to
some extent in Ref. [12]. Here we give some further details
of same for 0 = m, m/2, n/3, and 7 /4. Deep within the
topological phase, the pair of chiral zero energy end states
are obtained for 6 = w that survive in single boundaries.
However, close to QPT, the end states in NTP survive at both
boundaries and in the sublattices containing the end sites. The
wave functions oscillate to gradually vanish within the bulk.
They are of mixed chirality, which can be combined linearly
to yield chiral end modes surviving at single ends of the chain
[28]. Similar trends are observed for other 6 values as well.
For 8 = 27 /n with n > 2, new in-gap states appear (n — 2 in
number, i.e., 0, 2 and 6 for n =2, 4, and 8, respectively) in
the NTP. They can be called end states as they peak near the
chain boundary (not necessarily at end sites though). How-
ever, we find only two in-gap states for n = 6 in the NTP.
Interestingly, there are a few states near the edge of these gaps
in the spectrum which show localized peaks near boundaries
[see right panel plots of Fig. 6(f)].

III. SSH(-LIKE) CHAIN WITH DOMAIN WALL

To embark on our exploration, we also introduce single
domain wall [37] in our SSH(-like) chain with the hopping
modulation now taking the form of

8; =d0tanh[l — 0
£/

P } cos[(i — 1)0], (23)
where dy, &€, and a are the amplitude of the DW, the width
of the DW, and the lattice spacing respectively. Here, iy is
a parameter that actually determines the position of the DW
(in the present study, we consider the location of the DW at
the center of the chain). This DW separates the two dimerized
phases and the Hamiltonian (we call it HSDSﬁ) exhibits fraction-
alized zero modes at the location of the domain wall [37]. We
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FIG. 6. The midgap ZES of a finite SSH(like) chain for
6 = (a) m, (b) 7 /2, (c) 7 /3, and (d) 7t /4. There are also in-gap end
states at nonzero energies, as can be seen for 0 = (e) 7 /2, (f) 7w /3,
and (g) 7 /4.

can add here that the boundaries of the SSH(-like) chain we
studied so far may be seen as domain walls with the vacuum
or surrounding.

In this paper, we probe such systems with a single static
domain wall for different values of 6. For instance, the energy
spectra of a SSH(-like) chain in the presence of a domain
wall as a function of domain wall amplitude d, for 6 = 7 and
different values of £ is presented in Fig. 7. We find the DW
results in additional in-gap states (often called bound states
[37]) other than the midgap ZES, and the gap reduces with
an increase of &/a. Interestingly, the zero modes disappear
for smaller and higher values of amplitude (dy). One gets
a NN tight-binding model at dy = 0, where no zero energy
state is there in a finite system. For small dy, on the other
hand, the availability of topologically protected zero modes
depends on the length of the chain. For a longer chain, one
gets a smaller dj cutoff that denies the existence of the zero
mode. The ZES vanishes for very large dj as well. In fact, the
decay of the end states away from the edges goes as ~| ;;Zg
[12], which indicates a slow decay for both small and large
dy values. These lead to hybridization of the two degenerate
end modes producing symmetric and antisymmetric linear
combinations that lie (slightly) above and below the zero
energy. The presence of a pair (E, —F) in the energy spectra

%00 002 004 006 008 010 012 0 10 20 30 40 50
d do

FIG. 7. Upper panels show the energy spectra of a SSH(-like)
chain with domain wall for L = 128 as a function of domain wall
amplitude dy with 8 = 7 for (a) £/a = 10 and (b) &/a = 20. The
bottom panels depict the low-energy spectra for (c) smaller and
(d) higher variations of dy with L = 128 and & /a = 20.

(see Figs. 7 and 8) ensures the persistence of chirality even
after the introduction of the DW [38]. The wave function
for zero modes for this case is shown in Fig. 9(a). The fig-
ure illustrates that one, among two zero modes, is localized at
the DW position and the other at one end of the chain (on the
different sublattice than where the domain wall resides). This
result implies that the domain walls, similar to the boundary
of the SSH chain, host zero-energy localized states. However,
the scenario changes for other values of 6.

For 6 = /2, there also appear additional in-gap states
including topological zero modes, presented in Fig. 8. Like in
0 = m, ZESs will no longer be present for small and very large
values of dy. More interestingly, for intermediate d values, we

FIG. 8. Top panels present the energy spectra of a SSH(-like)
chain with domain wall for L = 128 as a function of domain wall
amplitude dy for 0 = 7 /2 with (a) £€/a =10 and (b) &/a = 16,
respectively. The bottom panels show the corresponding low energy
states for (c) smaller and (d) higher d; for a chain with L = 512 and
&/a = 10.
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FIG. 9. Zero energy states of SSH(-like) chain in presence of
domain wall and for choice of parameters (a) 6 = m, dy = 0.7,
Ela= 16,L= 128 (b)0 = 7 /2,dy = 0.7,&/a = 16, L = 256,
(¢) 0= m/3,dy= 09, E/a= 16, L = 300, and (d) 6 = /4,
dy= 09,&/a= 16,L = 128.

find the zero modes to reappear within a small window of d
values [see Fig. 8(d)].

In Fig. 9, we show typical ZESs for 0 =m,7/2,
/3, /4. We find the localized states to appear at the
DW position only for & = 7, /3 values, whereas for 6 =
m/2, m/4 they appear only at the boundaries. In general,
these solitonic states appear for 6 = ﬁ with p taking all
integer values and they carry a fractional charge of +e/2
when electrons are spinless [28,57]. The +e/2 charged state
appears when a typical ZES is empty or occupied. In the
strong coupling limit (|A| = ¢t), there will be an unpaired state
on the DW at zero energy. They persist with the reduction of A
but perish at A — 0. Such typical ZESs are sometimes known
as domain wall solitons (kink) and are the physical realization
of ZESs found in a one-dimensional field theory proposed by
Jackiw and Rebbi (JR) [69].

The SSH model portrays free fermions on a lattice with
the hopping strengths alternating between weak and strong
bonds and the continuum limit of this model delineates a
massive Dirac fermion [70]. On the other hand, the JR model
[69] can be viewed as a one-dimensional system where Dirac
fermions can be coupled to a soliton field. One can intro-
duce a topological defect (domain wall) familiar as a soliton
in the former by changing the arrangements of the hopping
strengths (e.g., weak-strong to strong-weak) at a certain lattice
site while in the latter by tuning the mass of the fermion
such that it changes signs at a certain point. These solitons
mark an interface between a nontopological and a topological
phase and, accordingly, they have several notable features. For
instance, they host localized ZESs, which are characteristic
of a transition from nontopological to topological phases and
vice versa, and they also hold fractional charges [71]. In the
continuum limit, these soliton-induced charge fractionaliza-
tions can be ascribed to the local charge operators showing
fractional eigenvalues rather than just having fractional ex-
pectation values [72]. The ZESs can be called excitations on
top of this fractionally charged background and they can be
related to MZMs [73].

This soliton appears due to the presence of a single DW.
However, the introduction of another DW may lead to the
existence of an antisoliton resulting in a soliton and antisoliton
pair in the chain. Interestingly, in contrast to polyacetylene, a
single DW in graphene nanoribbons can support both a soliton
and antisoliton (for more details, see Ref. [28]).

Fascinatingly, the engagement of the DW can also show
sharp peaks at the DW position for the in-gap and bound
states.

IV. DISORDER

Nowadays, it has become very important to investigate the
effect of disorder in electronic systems. Several recent studies
have included the behavior of topological systems considering
random-dimer disorder [74,75], quasiperiodic disorder [76],
and strong disorder [37,77].

This section aims to study numerically the effect of on-site
disorder (diagonal) and hopping disorder (of diagonal) on the
chirality and zero energy states of the SSH(-like) chain. We
introduce on-site disorder via

L
HEoer =3 " eicfei, (24)
i=1

where ¢; can be a constant, random (taken from a uniform
distribution on [—-G, G] [37,77]), staggered (respecting the
original two sublattice structure of SSH chain), or inter-
polated potential. In Ref. [67], the authors considered the
on-site energies as the random numbers taken from a Gaussian
distribution centered at zero. However, the on-site disorder
considered herein is exceedingly similar to the strong disorder
mentioned in Refs. [37,77]. We find that the nontriviality of
the spectrum and states obtained due to the effect of disorder
on the SSH(-like) chain with a multisublattice structure is
worth mentioning and is distinct from the pioneer studies
[74—77]. The inclusion of the random potential disrupts the
chiral symmetry, resulting in the disappearance of fraction-
alization modes observed at the clean limit (i.e., G =0 or
€; = 0) [37]. Interestingly, however, the end states can retain
their chiral nature even for strong (random) on-site disorder
due to the effect of Anderson localization [37,78,79].

In this regard, it is worth mentioning RM DW or that
of Al class which consider staggered or interpolated on-site
potentials as disorder, respectively [38,80]. While SSH and
Al domain walls support chiral symmetr- protected ZESs,
the RM configuration features DW states at nonzero ener-
gies [38,80]. This section is thus devoted to investigating
how the chirality-preserving bound states of SSH(-like) chain
evolve with disorder of different kinds (i.e., constant, random,
staggered, or interpolated ¢;) in the presence of the periodic
hopping modulations. How the zero modes dissipate their
chirality with an increasing disorder strength (G/t or €;/t)
can be understood from the spectrum of the Hamiltonian
H = HQN + H3r and is reported in Figs. 10 and 11. The
contravention of chiral symmetry affects the energy spectrum
which is no longer symmetric, i.e., for every eigenstate having
energy E, its chiral symmetric partner with energy —E does
not necessarily exist.
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FIG. 10. The energy spectrum of a SSH(-like) chain in presence
of various on-site disorders [(a) constant, (b) random, (c) RM type,
(d) AI type] for € = 7 and a single DW at the center as a function
of disorder strength €;/t or G/t. Other choices of parameters are
L =256,&/a = 10,dy = 0.5. The inset in (d) shows the low energy
states.

We find for 6 = 7 and for L =256 and &/a = 10, the
spectrum is legibly divided into two bands with disorder
strength (see Fig. 10). The band separation increases (de-
creases) with ¢;/t for RM- and Al-type (random) disorder
and the ZES vanishes for nonzero disorder strength. How-
ever, for Al-type disorder, a DW state is observed close to
zero energy while a random disorder features fluctuating zero
modes [37]. Apart from ZESs, several other in-gap states also
appear between the two bulk bands for different choices of
parameters (such as dy, £/a, and L). In particular, increases
in DW amplitude and &/a, in turn, give rise to an increase
in the number of in-gap states. An infinite SSH chain can
have unpaired zero-energy states but a finite chain with open
boundaries always leads to paired zero-energy states [§1]. We
can mention here a related model called Shiozaki-Sato-Gomi
model that features constant NN hopping but staggered on-
site potentials and obeys a nonsymmorphic chiral symmetry.
In contrast to the SSH model, this model supports unpaired
zero-energy states at the position of a smooth DW and not at
sharp interfaces with vacuum (see Ref. [81]).

For 6 = /2, 6 = /3, or /4, we find that the period-
ically hopping modulated SSH model with Al DW disorder
retrieves the ZES with an increase in disorder strength ¢;/t

FIG. 11. The ordered energy eigenvalues of a SSH(-like) chain in
the presence of an Al-type DW /disorder for (a) 6 = /2 and (b) 60 =
/4 as a function of disorder strength ¢; /¢ with the same choice of
parameter as in Fig. 10. The insets show the low energy states.

(see Fig. 11). These ZESs are located at the position of the
DW. For random-type disorder, the energy gap closes with
the increase of G/t. The number of in-gap states as well as
the critical disorder strength of the closure of the energy gap
decreases as 6 is reduced in the commensurate manner as
considered in this paper. Considering the commensurate 6
values and taking into account the various on-site disorders,
one can see that there is no such remarkable change in the
energy spectrum.

Other than the on-site potential, disorder can come
as hopping parameters as well. The study of the chiral-
symmetry-preserving hopping disorder via the Hamiltonian

L—-1
Hyorder = % " (el yei + cfeinn), (25)

i=1

with 7; randomly generated from a uniform distribution, have
shown polarization, as a real space estimator of topological
invariance, to continuously reduce to zero with increasing
disorder strength for both edge and domain wall states, though
their localization remains intact for all disorder strengths [37].
Unlike the on-site disorder, the hopping disorder respects the
chiral symmetry. Consequently, the robustness of the DW
and edge states are expected in the presence of this kind
of disorder. However, notice that the Hamiltonian Hl‘ljé;‘)rder

merely renormalizes the hopping parameters of HS%VPVI. This
type of perturbation preserves sublattice symmetry which,
in turn, gives nonfluctuating zero-energy modes. A strong
hopping disorder, however, destroys their chirality, resulting
in fluctuating zero energy modes [37,77]. Here, we mention
the related AIII chiral-symmetric system which breaks its chi-
ral symmetry at critical disorder strength, resulting in abrupt
changes in winding number from 1 to O [77]. Moreover, this
abrupt change in winding number in the presence of strong
hopping disorder for the SSH chain with periodic modulated
hopping is worth studying and we will leave this issue for
future communication.

V. SUMMARY

In this paper, we have tried to accumulate important find-
ings on the SSH model spectra and topology as well as the
midgap zero energy states in the absence as well as presence
of DW and disorder and, at the same time, adding insights
into same while introducing additional periodic modulation in
the hopping parameter. First, without artificial domain walls
and disorder, we find that for hopping modulation with com-
mensurate frequency, new in-gap end-states appear—more
for smaller values of it. The topological regime shows an
interesting variation with 8. We find one, two, three, and four
topological phase transition points for § = &, 7w /2, 7 /3, and
7 /4, respectively. In the presence of a static DW that has
been put artificially at the center of a finite chain, one end
state gets depleted while one ZES appears at the position of
the DW for 6 = # for zero or an integer p value. Unlike
the SSH-type DW, an Al-type DW for the model doesn’t
support chiral symmetry-protected ZESs while an RM DW
shows both the edge and domain wall states to be at nonzero
energies. However, an on-site disorder always disrupts the sys-
tem’s chirality. With the commensurate reduction of 6, more
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in-gap states appear and the ZES of a clean system moves
to nonzero energies, though for Al-type disorder, the DW
state reaches close to zero energy with disorder strength. A
hopping disorder, on the other hand, doesn’t contribute much
new physics in this regard, as a weak hopping disorder still
respects the chiral symmetry.

One can verify these results of hopping-modulated SSH(-
like) chains in cold atom systems within optical lattices [82],
or maybe in specially designed graphene nanoribbons [83]
or topological acoustic systems [84]. Experimental confirma-
tion of similar outcomes can lead to further manipulation
of these periodically modulated hopping models to look for
more exotic behavior. Down the line, we also have plans to
study the-out of-equilibrium behavior of such an extended
SSH model, subjected to a quantum quench which has shown
to lead to an effective metal insulator transition for 6 = 7
[85]. For a high-frequency periodic quench, it would also be
interesting to do a Floquet analysis [86] and probe the com-
petition between the topology and the time periodic driving in
our SSH(-like) models.
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APPENDIX A: WINDING NUMBER IN TERMS
OF POLES AND ZEROS

The winding number can be defined in terms of poles and
zeros of Det[V(k)] = f (k) as a function of a complex variable
z(k) = e~ inside the unit circle. Accordingly, the winding
number becomes [87]

w=_L¢ [@,
2mi lz|=1 f@
Here, in the complex plane, the closed curve represents the
anticlockwise path around the unit circle. Considering the
number of zeros (Uy) and number of poles (Vy) of f(z)
enclosed by the curve, one can write, following Cauchy’s
argument principle of complex analysis [47,88],

W =U; — V.

(AD)

(A2)

Every zero and pole are weighted by their multiplicity [89]
and order, respectively. It is presumed that there are no zeros

J

APPENDIX C: BLOCH HAMILTONIAN MATRIX FOR 6§ = 5 AND 6 = }

The Bloch Hamiltonian in the case of 8 = 7 /3 is given in Eq. (C1), in which z = ¢

and poles on the curve. So, for this present case of 6 = /2,
we get f(z) = (t* — A?) +t?z. f(z) contains no poles, but it
has a zero of multiplicity one:

fI=(* — A*)/t*] = f(z9) = 0.

The zero is inside the unit circle if [t> — A?| < |t2|. Therefore,
Eq. (A2) gives

1-0=1, 0<A?/1*<2
W=U; -V =0, A?Jt? > 2 (A3)
undefined, A/t =0,

which is the same as Eq. (14). If A/t = 0, then the spectrum
is considered to be conducting and the representation of topo-
logical invariants is not well-defined. For this case, contrary
to the above conjecture, the zero of f(z) arises at zp = —1,
which is on the unit circle.

APPENDIX B: BERRY PHASE

Another topological invariant of this 1D system is the Zak
phase. The bulk-boundary correspondence affirms that the
presence of edge states is related to the nonzero topological
invariant of the bulk. In particular, the number of edge modes
on every edge is exactly equal to |[W|. The Zak phase y
[90-92] of the system corresponds to w )V (eventually, de-
pending on the convention, modulo 277). Closing of the energy
gap (for A/t = 0, in this case), and a subsequent reopening at
the Brillouin zone boundaries indicates that the system may
go through a topological phase transition. In addition, the
appearance of a nonzero topological invariant in one of the
gapped phases ensures the advent of nontrivial topology. This
topological invariant is expressed in terms of the Zak phase,
which is purely a bulk property of the system. Therefore, we
need to make sure of the accomplishment of the Born-von
Karman periodic boundary condition.

It is known that the 1D winding number in the SSH model
is closely related to the Zak phase [92], which is basically sim-
ilar to the Berry phase (y) [93] for 1D systems. Consequently,
it is related to the winding number as y = 7 W. So, the Berry
phase becomes

T, 0< Az/t2 <2
y =10, A?Jt? > 2 (BD)
undefined, A/t =0.

4

sublattices, so the size of the BZ boundary further reduces, i.e., k € [—7 /6, 7 /6]:

0 (t+A) 0
t+A) 0
H — 0 t+3%) 0
0 0 (t—
0 0 0
(t+ %)z 0 0

(t+2)

—6ik Here, the unit cell contains six
0 0 t+%)z
0 0 0
_A
0 (t—A) 0
(t—A) 0 t-%)
0 (t—2) 0
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The Bloch Hamiltonian for & = 7 /4 is calculated as in Eq. (C2). Here, eight sublattices are embedded in a unit cell which
can further partition the BZ boundary. Thus, in the reduced BZ, k € [—7 /8, 7 /8]:

0 (t+4) 0 0
(t+A) 0 Q+%) 0
0 (r+ %) 0 t
Y 0 0 ' 0
£ 0 0 0 (t—%)
0 0 0 0
0 0 0 0
(r+ J5)e** 0 0 0

0 0 0 (r+ J5)e ™

0 0 0 0

0 0 0 0
(r=%) 0 0 0

0 t—A) 0 0 (€
(t—A) 0 (t— %) 0

0 (r=%) 0 t

0 0 t 0
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