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Effects of periodically kicked Dirac mass term in the Chern insulators
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Floquet engineering offers a unique approach to generate nonequilibrium topological phases in which the
unbounded nature of a quasienergy band allows two kinds of topological edge modes, one of them traversing the
0 gap and another one traversing the π gap. Characterizing of these two modes is the main topic of Floquet
topological insulators, where they are usually characterized by different topological invariants. However, in
this paper, for a specific protocol of Floquet engineering where the Dirac mass term of the Chern insulator is
periodically kicked, its topological phases are characterized with the Floquet Chern number CF . Specifically, in
our illustrative example, the periodically kicked Qi-Wu-Zhang model, there are six different topological phases
in total, denoted as CF = {−10, −2, −1π , 1π , 2, 10}. Topological phases with larger topological number are
observed, i.e., CF = ±2, where the chiral edge modes traversing the 0 gap and those traversing π gap have
the opposite chirality. The mechanism of its topology is revealed by studying the corresponding low-energy
effective Dirac Hamiltonian, and the phase boundaries between different topological phases are explicitly found.
Additionally, we investigate the orders of phase transitions between different topological phases by studying the
von Neumann entropy of the Floquet steady state (FSS), where the FSS corresponds to a stationary state of the
Floquet system that is coupled to a Markovian environment. The hallmark of a periodically kicked Dirac mass
term is uncovered in this paper, which may inspire further explorations of the physical effects of periodically
kicked Dirac mass terms in other systems.
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I. INTRODUCTION

Topological phases are a class of states that have a ro-
bust conducting edge or surface modes, such as topological
insulators (TIs) and topological superconductors [1]. Despite
these static systems, engineering topological phases of matter
with periodic driving is also an important field, called the
Floquet system, in which the topological properties could be
either analogous or beyond its static counterpart [2]. Many
interesting phenomena are allowed in the periodically driven
systems, such as Floquet-Anderson insulators [3,4], Floquet
fractional Chern insulators [5], anomalous chiral edge states in
periodically driven systems [6], and extraordinary topological
phases in non-Hermitian Floquet systems [7–12].

The topological properties of periodically driven systems
are reflected by their Floquet operators [13,14], which cor-
responds to the generators of a time-evolution operator over
one period of driving, and its eigenvalue spectrum gives the
corresponding Floquet-Bloch band [15,16]. Interestingly, the
Floquet-Bloch band is unbounded, where one would expect to
have two inequivalent quasienergy gaps, the zero-quasienergy
gap (0 gap) and the π -quasienergy gap (π gap) [13], and they
are usually characterized with different topological invariants
[6,17]. Interestingly, the topological invariant of the Floquet-
Bloch band may become anomalous in some Floquet Chern
insulators, and edge modes exist even though the topological
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number of the Floquet-Bloch band is zero. In this paper we
find that the anomalous occurs only if the edge modes that
traverse the 0 gap (0 modes) and those traversing the π gap
(π modes) possess the same chirality, while the anomalous is
absent if they have opposite chirality.

In this paper the topological phases of periodically kicked
Chern insulators are studied in detail, where its Dirac mass
term is periodically kicked. We find that the anomalous is
absent, which is because the chirality of 0 modes is opposite
to the chirality of π modes. So the Floquet Chern number CF

is sufficient to characterize the topology of those systems. In
the illustrative example, the periodically kicked Qi-Wu-Zhang
(PK-QWZ) model, there are six different topological phases in
total, which corresponds to CF = {−10,−2,−1π , 1π , 2, 10}.
In the low-energy limit, the Floquet operator of the PK-QWZ
model reduces to a Dirac Hamiltonian, which shares a similar
algebraic structure with its static counterpart. This insight
allows us to establish the phase diagram by identifying the
number of skyrmions in the Floquet-Bloch band, and the tran-
sition lines between different topological phases are explicitly
found.

Beyond its topological structure, we also investigate the
orders of phase transition (OPT) between different topological
phases. The main problem is to find its ground state, which
is not a well-defined problem because the Hamiltonian is
time dependent. In this paper, such difficulties are resolved
by considering the steady state of the open quantum system,
which is analogous to the ground state of the static system. We
consider the situation where the PK-QWZ model is coupled to
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a Markovian environment in a specific way; then the system
will relax into a stationary state, called the Floquet steady state
(FSS). Finally, we can determine the OPT between different
topological phases in the PK-QWZ model by investigating the
von Neumann entropy of the FSS.

This paper is organized as follows. We briefly review the
concepts of the Floquet system in Sec. II. Then, in Sec. III we
introduce the PK-QWZ model, in which its Dirac mass term is
periodically kicked, and the corresponding topology is char-
acterized by the Chern number of the Floquet-Bloch band, CF .
In Sec. IV we study the topological phase diagram of the PK-
QWZ model, in which the number of skyrmions within the
Floquet-Bloch band is identified, and the phase boundaries are
explicitly found. In Sec. V we consider a situation where the
PK-QWZ model is coupled to the Markovian environment in a
specific way in which the OPT between different topological
phases are found by investigating the von Neumann entropy
of FSS. We conclude our work in Sec. VI, and some future
directions are discussed as well. The lengthy derivations are
provided in the Appendixes. Appendix A corresponds to the
expression of the Floquet operator for the PK-QWZ model,
and Appendix B corresponds to the matrix equation of FSS
for the free fermionic systems that are coupled to a Markovian
environment.

II. THE PERIODICALLY DRIVEN QUANTUM SYSTEMS

The temporal evolution of a system that has a time-
dependent Hamiltonian is quite intricate. Nevertheless, this
complexity is significantly reduced when the Hamiltonian is
periodic in time, denoted as H (t + T ) = H (t ). That long-time
behavior of the system can be characterized by a stroboscopic
time-evolution operator

U (T ) = T̂ exp

(
−i

∫ t+T

t
H (t ′)dt ′

)
, (1)

in which the Floquet state |ψεF 〉 of the system only picks up a
phase factor e−iεF T over one complete period of driving [18],
in other words,

U (T )
∣∣ψεF

〉 = e−iεF T
∣∣ψεF

〉
. (2)

From a stroboscopic point of view, |ψεF 〉 plays the role of
stationary states of U (T ) and with eigenvalues e−iεF T . The
factor εF , called the quasienergy, is uniquely defined up to
an integer multiple of 2π

T . In other words, an eigenvector
with quasienergy εF is associated with the eigenvectors with
quasienergy ε′

F = εF ± N 2π
T , in which N ∈ Z+. As the result,

the quasienergy is constrained within the interval [−π
T , π

T ).
In general, the stroboscopic time-evolution operator U (T )

can be effectively modeled with exp(−iHεT ), where the rig-
orous definition of Hε is given as

Hε = i

T
logε [U (T )]. (3)

The subscript ε is introduced to specify the branch cut,

logε eiφ = iφ, if ε − 2π

T
< φ < ε. (4)

Hε is an essential ingredient in the construction of topological
invariants for Floquet systems. Meanwhile, the quasienergy

εF corresponds to the eigenvalues of HF = Hε=π , called the
Floquet operator. In analogy to the static case, if there is
nontrivial topology in the quasienergy-band of HF , such as
a nonzero Chern number or nonzero winding number, then
protected edge modes at the boundary of system would be
expected.

Amazingly, one of the distinguishing features of Flo-
quet systems is the unbounded nature of their quasienergy
spectrum. In particular, there are two gaps between the
quasienergy band: one centered at zero quasienergy and
the other centered at π

T . Thus, both the edge modes traversing
the 0 gap or the π

T gap are allowed. Different from static cases,
the appearance of chiral edge modes in the Floquet systems
are related to the zero Chern number of the Floquet-Bloch
band, which is the anomalous chiral edge mode in the Flo-
quet systems. To characterize those edge modes, the winding
number Wε is introduced [6]:

Wε =
∫

dtdkxdky

8π2
Tr

(
U −1

ε ∂tUε

[
U −1

ε ∂kxUε,U −1
ε ∂kyUε

])
, (5)

where the modified time-evolution operator is defined as

Uε = U (t ) exp (iHεt ), (6)

and the ordinary time-evolution operator is U (t ) =
T̂ exp(−i

∫ t
0 H (t ′)dt ′). The winding numbers W0 and Wπ

respectively associated with the 0 gap and π gap, and the
Chern number of the lower Floquet-Bloch band (εF < 0) is
given as

CF = Wπ − W0. (7)

As a result, when W0 = Wπ = ±1, the corresponding edge
modes are anomalous. However, when W0 �= Wπ , the anoma-
lous chiral edge modes are absent. In this paper we find that
the anomalous modes appear only if the 0 modes and π modes
possess the same chirality; on the contrary, the anomalous
chiral edge modes disappear if the chirality of 0 modes and
π modes are opposite.

In this paper we focus on a scenario in which the system
experiences periodic impulses, leading to a Hamiltonian of the
form

H (t ) = H0 +
∑
l∈Z

δ(t/T − l )H1. (8)

This Hamiltonian gives rise to the time-evolution
operator [19],

U (T ) = exp (−iH0T ) exp (−iH1T ) = exp (−iHF T ). (9)

Then HF can be obtained by using the Baker-Campbell-
Hausdorff (BCH) formula (Appendix A). For simplic-
ity, we set T = 1 in the following discussions, that
U = e−iH0 e−iH1 = e−iHF .

III. THE PERIODICALLY KICKED
QI-WU-ZHANG MODEL

The topology in topological insulators is characterized by
the irreducible description of its Dirac mass matrix [20].
However, the question of how topology is modified when
the Dirac mass experiences periodic perturbations remains an
open issue. For instance, let us consider the QWZ model [21]
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FIG. 1. (a) Chern number CF as a function of u for u0 = 0.1π and u0 = 0.2π in the PK-QWZ model. The quasibands of the PK-QWZ
model for u = 0.1π (b), u = 0.3π (c), u = 0.6π (d), u = π (e), u = 1.3π (f), and u = 1.6π (g) are separate, where u0 = 0.2π , Ly = 20.
The boundary condition along the x direction is periodic. For the topological phases with CF = ±1, there are two chiral edge modes, either
traversing the 0 gap (marked in red) or traversing the π gap (marked in green). For the topological phases with CF = ±2, there are four chiral
edge modes. They are separated into two pairs, one pair traverses the 0 gap and the other traverses the π gap.

in which the Bloch Hamiltonian is

Hqwz(k) = sin kxσx + sin kyσy + (u0 + cos kx + cos ky)σz.

(10)

The Pauli matrices σx,y,z represent the internal degrees of
freedom in each unit cell; we assume it is the spin degrees
of freedom (↑,↓) in this paper. It is easy to find that Hqwz(k)
is particle-hole symmetric,

σxHT
qwz(−k)σx = −Hqwz(k), (11)

which belongs to class D and has Z classification in the
two-dimensional (2D) case. And its topology is captured
by the Chern number Cqwz, which is equal to the integra-
tion of the Berry curvature across the whole Brillouin zone
(BZ) for its lower energy band. Specifically, Cqwz = +1 for
0 < u0 < 2, Cqwz = −1 for −2 < u0 < 0, while Cqwz = 0 for
|u0| > 2 [21]. The Dirac mass matrix of the QWZ model is
σz. Then, assume that H0 = Hqwz(k) and H1 = uσz, where its
topology has been discovered in Refs. [22,23]. Here we study
it further by considering the topology of the Floquet band and
the details of topological phase transitions.

By substituting H0 and H1 in Eq. (9), one can find the
Floquet operator HF (k) of the periodically kicked QWZ (PK-
QWZ) model by using the BCH formula. Then, how the
topological properties of the system are affected can be un-
derstood by consulting the topology of HF (k). Interestingly,
it is easy to find that σxHT

F (−k)σx = −HF (k). Consequently,
the symmetry of HF (k) is the same as Hqwz(k), and it be-
longs to class D as well. Then the topology contained in the
quasienergy band of HF (k) can be extracted by a Chern num-
ber, CF , in which the Berry curvature is defined in its lower
quasienergy band (i.e., for εF < 0). Moreover, the topology
of HF (k) is decoded in its algebraic structure, which can be

formally written as

HF (k) = ξ (k)12×2 + n(k) · �σ . (12)

From the BCH formula, its evident that ξ (k) = 0. Then the
quasienergy spectrum of the PK-QWZ model is

εk =
√

[nx(k)]2 + [ny(k)]2 + [nz(k)]2. (13)

The Chern number corresponds the winding number of the
mapping from the BZ to the vector space n̂(k), defined as

k → n̂(k) = n(k)

|n(k)| . (14)

In geometric terms, this is equivalent to counting the number
of skyrmions in the manifold of vector space n̂(k), which can
be expressed as

CF = 1

4π

∫
d2k

(
∂n̂(k)

∂kx
× ∂n̂(k)

∂ky

)
· n̂(k). (15)

And because the unit vector n̂(k) resides on a unit sphere S2,
then CF is equal to the times that n̂(k) winds around S2 as
well.

Unfortunately, the exact expression of HF (k) is impossible
by using the BCH formula (Appendix A). Nevertheless, the
value of CF can be determined numerically, see Fig. 1(a).
When CF = ±2 (Wπ = −W0 = ±1), it is expected to find
four chiral edge modes. These edge modes form two pairs,
one pair traversing the 0 gap and another pair traversing
the π gap, as depicted in Figs. 1(c) and 1(f). Surprisingly,
there are two phases for CF = −1, denoted as −10 and −1π .
The edge modes traverse the 0 gap for the phase CF = −10
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FIG. 2. Quasienergy spectrum of the PK-QWZ model for
CF = 2 (a), where the boundary condition along the x direction is
periodic, Ly = 20, u = 1.3π , and u0 = 0.2π . Also presented are the
chiral edge modes traversing the 0 gap (b) and the chiral edge modes
traversing the π gap (c), where |ψ (y)|2 = |ψ (y)↑|2 + |ψ (y)↓|2. For
the right-handed edge modes, those traversing the 0 gap are localized
at y = 1 (b, red solid line), while those traversing the π gap are
localized at y = Ly (c, green solid line). And the left-handed chiral
edge modes (dashed line) are the other way around.

(Wπ = 0,W0 = 1), while the edge modes traverse the π gap
for the phase CF = −1π (Wπ = −1,W0 = 0), see Figs. 1(b)
and 1(d). And there are two phases for CF = 1 as well, de-
noted as 10 and 1π , see Figs. 1(e) and 1(g).

With the above observations, we can understand the
anomalous chiral edge modes in terms of Berry curvature as
well, where CF corresponds to the integral of Berry curvature
across the BZ for the lower quasienergy band (i.e., εF < 0).
However, the lower quasienergy band is the upper quasienergy
band of the chiral edge mode traversing the π gap, such
that the Chern number is zero if the 0 modes have the same
chirality as the π modes. In other words, if the chirality of the
0 modes are the same as the π modes, then the correspond-
ing signs of winding numbers for these two edge modes are
opposite. Fortunately, the anomalous chiral edge modes are
absent in the PK-QWZ model. When the 0 and π modes exist
simultaneously, their chiralities are different from each other.
Specifically, for the case CF = 2, we find two edge modes
which have opposite chirality; one of them traverses the 0 gap
and the other the π gap, as illustrated in Figs. 2 and 3.

For the sake of brevity, we will use Chern number CF to
characterize the topological phases of the PK-QWZ model in
the following discussions.

FIG. 3. Graphical representation of chiral edge modes in PK-
QWZ model for CF = 2.

FIG. 4. Phase diagram of the PK-QWZ model: the magenta
dashed lines represent the phase boundaries between the phase with
CF = −2 and those with CF = −1s, the red dashed lines are the
phase boundaries between the phase with CF = −1π and those with
CF = 1π , green dashed lines mark the phase boundaries between the
phase with CF = 2 and those with CF = 1s, and black dashed line is
the critical point of the static QWZ model, where u0 = 2, and where
s = 0 or π .

IV. PHASE DIAGRAM OF PERIODICALLY
KICKED QI-WU-ZHANG MODEL

The phase diagram of the PK-QWZ model is depicted in
Fig. 4, illustrating the variation of the Chern number CF with
respect to u0 and u. As mentioned before, the Chern number
is equal to the numbers of skyrmions (Nsky.) in the vector
space of n̂ [21], in which the base manifold is the BZ. In this
context, the phases CF = ±1 correspond to the situation that
the vector n̂ winds around the unit sphere S2 once, while the
phases CF = ±2 represent that the vector n̂ winds around the
unit sphere S2 twice. In other words, the phase diagram also
reflects the variation of Nsky. over the parameters u0 and u.
And the phase boundaries can be uncovered by investigating
the number of skyrmions in the vector space n̂.

Despite the absence of the exact expression for HF (k),
the low-energy effective theory is sufficient to capture the
topology of HF (k). In the low-energy limit, HF (k) reduces
to a Dirac Hamiltonian with the momentum matrices σx and
σy, while the mass matrix is σz (see Appendix A). Thus, Nsky.

is entirely determined by the variation of nz(k) over the BZ;
to be precise, Nsky. is equal to the number of times that the
sign of nz(k) changes in the BZ. There are two specific points
in the BZ that need consideration. The first one, denoted as
a 
-type point, corresponds to points (kx, ky) = (0, 0) and
(π, π ); the second one, denoted as a �-type point, is located
at (kx, ky) = (0, π ) and (π, 0). For the 
 type, we have

nz

,± = u + u0 ± 2, (16)

where “+” is for (0,0) and “−” is for (π, π ). For � type, we
have

nz
� = u + u0. (17)
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FIG. 5. Contour plot of nz(kx, ky ) for different values of u, where u0 = 0.2π . The presented cases are for u = 0.1π (a), u = 0.3π (b),
u = 0.6π (c), u = π (d), u = 1.3π (e), and u = 1.6π (f) separately. In these plots the gray areas represent regions where nz < 0. The phases
CF = ±1 are for the case that the sign of nz changes only once in the BZ (a), (c), (d), (f), while the phases with CF = ±2 are for the case that
the sign of nz changes twice in the BZ (b), (e).

As a result, Nsky. is obtained by identifying the variation
of nz


,± and nz
� as u0 and u are varied. When −2 < u + u0 <

π − 2, it is evident that nz
� > 0, nz


,+ > 0, and nz

,− < 0. In

this case, the sign of nz changes only once in the BZ, leading to
Nsky. = 1, corresponding to the topological phase with CF =
−10, as depicted in Fig. 5(a). When π − 2 < u + u0 < 2, we
find that nz

� > 0 and nz

,± < 0. In this situation, the sign of nz

changes twice in the BZ, resulting in Nsky. = 2, which corre-
sponds to the topological phase with CF = −2, see Fig. 5(b).
So the phase boundary between the phase CF = −10 and the
phase CF = −2 is u + u0 + 2 = π , as depicted in Fig. 4, in
which the π gap is closed at the point (kx, ky) = (0, 0). As
u + u0 increases, that 2 < u + u0 < π , we find that nz

� > 0,
nz


,+ < 0, and nz

,− > 0. In this case the sign of nz changes

only once in the BZ, leading to Nsky. = 1, which corresponds
to the topological phase with CF = −1π , see Fig. 5(c). Conse-
quently, the phase boundary between the phase CF = −2 and
the phase CF = −1π is u + u0 = 2, as presented in Fig. 4, in
which the 0 gap is closed at the point (kx, ky) = (π, π ).

As u + u0 increases further, that π < u + u0 < 2π − 2, we
find that nz

� < 0, nz

,+ < 0 and nz


,− > 0. In this case the
sign of nz changes only once in the BZ, leading to Nsky. = 1,
which corresponds to the topological phase with CF = 1π ,
see Fig. 5(d). Consequently, the phase boundary between the
phase CF = −1π and the phase CF = 1π is u + u0 = π , as
presented in Fig. 4, in which the π gap is closed at points
(kx, ky) = (0, π ) and (π, 0). With the same approach, all con-
figurations of nz


,± and nz
� for different topological phases are

uncovered, which is summarized in Table I. And the phase
boundaries are determined by the critical point where nz


,± or
nz

� changes sign, see Table II.

V. VON NEUMANN ENTROPY
OF FLOQUET STEADY STATE IN PK-QWZ MODEL

A quantum system never completely decouples from its en-
vironment so that the thermalization or the dissipation finally
leads the system relax to a stationary state. However, not much
is known about the stationary states of periodically driven
systems. Related research has been a very hot topic recently,
for example, the quantum time crystal [24,25]. Furthermore,
the study of the thermodynamic properties of the Floquet
system is of great importance; relevant research involves the
unique Floquet-Gibbs state [26–29] and the exceptional selec-
tion rules [30].

In this section we want to investigate the orders of the
topological phase transition in the PK-QWZ model. The dif-
ficulties in finding the ground state of the Floquet system are
resolved by considering the stationary state of the correspond-
ing open quantum system, which corresponds to a situation

TABLE I. The sign of mass nz at � points and 
 points for
different topological states, where “+” is for nz > 0, and “−” is for
nz < 0.

CF nz

,+ nz

� nz

,− Nsky.

−10 + + − 1
−2 − + − 2
−1π − + + 1
1π − − + 1
2 + − + 2
10 + − − 1
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TABLE II. The phase boundaries, the types of quasienergy gap (q. g.) that are closed, the points where the quasienergy gap is closed in the
BZ, and the order of phase transition (OPT) with respect to u and u0, respectively, where “\” means that the phase of FSS is not well defined.

Phase 1 & Phase 2 Phase boundary q. g. Transition point (kx, ky ) OPT vs u OPT vs u0

CF = −10 & CF = −2 u + u0 + 2 = π π 
+ 2 2
CF = −2 & CF = −1π u + u0 = 2 0 
− 3 3
CF = −1π & CF = 1π u + u0 = π π � 3 1
CF = 1π & CF = 2 u + u0 + 2 = 2π 0 
+ 2 \
CF = 2 & CF = 10 u + u0 = 2 + π π 
− 3 \
CF = 10 & CF = −10 u + u0 = 2π 0 � 3 \

where the periodically driven system is weakly coupled to
a Markovian environment and the system will finally relax
into a stationary state. Then the orders of topological phase
transition can be determined by studying the properties of
FSS.

If the Hamiltonian of an open quantum system is time
dependent, then the time evolution of the system can be de-
scribed with a time-dependent Lindblad master equation [31],

d

dt
ρ = −i[H (t ), ρ] +

∑
μ

(2L†
μρLμ − {L†

μLμ, ρ}), (18)

in which Lμ corresponds to the gain or loss of particles due
to the coupling to the environment. For a lattice model, the
general form of the Lindblad operator is

Lg
j =

∑
s

Dg
j,sc

†
j,s, Ll

j =
∑

s

Dl
j,scμ,s, (19)

where j is the site index and s corresponds to the internal
degrees of freedom for each lattice site.

Due to the Gaussian quadratic property of free fermionic
systems, its dynamics is described with the single-particle
correlation matrix [32,33],

i
d

dt
C(t ) = X (t )C(t ) − C(t )X (t )† + 2iMg, (20)

where Cmn = 〈c†
mcn〉, in which X (t ) is the time-dependent

damping matrix

X (t ) = −HT (t ) − i
(
Mg + MT

l

)
, (21)

where the non-Hermitian terms Mg and Ml are induced by the
coupling with the environment, where

(Mg)i j =
∑

μ

Dg∗
μiD

g
μ j, (Ml )i j =

∑
μ

Dl∗
μiD

l
μ j . (22)

In the case of a periodically kicked free fermionic system,
we found that its single-particle correlation matrix of FSS
satisfies a standard Sylvester equation (Appendix B),

eiX1T P− = eiX1T eiX0T CF,s − CF,seiX †
1 T eiX †

0 T , (23)

where CF,s is the single-particle correlation matrix of
FSS. Here, X0 = −HT

0 − i(Mg + MT
l ), X1 = −HT

1 , P− =
eiX0T Cs − CseiX †

0 T is related to the static stationary states Cs

(see Appendix B), and the superscript HT
0 represents the

transposition of H0. This equation is usually solved with the
iteration method [34,35]. Here, we numerically solve it by us-
ing the toolbox in MATLAB, the lyap, where the corresponding
algorithm is the iteration method. However, there is no reason

to expect that CF,s reduces to Cs as u = 0. This is because that
there is a time-evolution factor e−iX0T in the Sylvester equa-
tion (23) which distinguishes itself from the static systems.

We introduce the Lindblad operator as

Lg
j = √

γ c†
j,↑, Ll

j = √
γ c j,↓, (24)

where j is the site index. Due to the coupling with the envi-
ronment, the occupation of particles with up-spin is boosted,
while the particles with down-spin are dissipated away, as
presented in Fig. 6. Thus the non-Hermitian terms in X0 are

Mg = 1Lx×Ly ⊗
(

1 0
0 0

)
, Ml = 1Lx×Ly ⊗

(
0 0
0 1

)
. (25)

As a result, X0 = −HT
qwz − iγ1, which leads to

eiX1T eiX0T = eiHT
F T eγ T , (26)

eiX †
1 T eiX †

0 T = eiHT
F T e−γ T . (27)

It is obvious the that eigenvalues of eiHT
F T eγ T are distinct from

those of eiHT
F T e−γ T , so there have only one solution for the

Sylvester equation in Eq. (23) [36].
The single-particle correlation matrix CF,s is a key quantity

that has direct connections to various aspects of the system.
It is related to the occupation numbers of particles, the von
Neumann entropy, and the particle currents in the system.
Among these quantities, the von Neumann entropy is par-
ticularly significant, as it serves as an important measure
for understanding the phase transition in the FSS. The von

FIG. 6. Pictorial illustration of the PK-QWZ model weakly
coupled to the Markovian environment, where the occupation of
particles with up-spin is boosted while the particles with down-spin
are dissipated away. The geometry of system is a torus where the
boundary conditions are periodic both for the x and y directions.
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Neumann entropy is defined as S = −Tr(ρ ln ρ), which is
used to quantify the amount of quantum information con-
tained in a many-body quantum state. S = 0 for a pure state,
S = 1 for the maximally mixed state, while 0 < S < 1 for a
general mixed state. This information-theoretic entropy is a
good candidate for thermodynamic entropy [37], where the
singularities of S are also a good signature of phase transition.
In a free fermionic system, the von Neumann entropy of its
subsystem is related to the eigenvalues of its corresponding
single-particle correlation matrix Ci j = 〈c†

i c j〉, which is given
by [38]

S = −
∑

j

[ξ j ln ξ j + (1 − ξ j ) ln(1 − ξ j )], (28)

where ξ j are the eigenvalues of C. Then, by regarding ρ as a
subsystem of system ρs+E, Eq. (28) is valid to evaluate the von
Neumann entropy of ρ as well.

Thus when CF,s is obtained, the von Neumann entropy of
the FSS can be obtained by using Eq. (28). One thing to note
is that the bulk property is vital to reflect the main feature of
the phase transition. So the geometry of system is assumed
as a torus where both boundary conditions along the x and
y directions are periodic, as depicted in Fig. 6. Here we are
focus on the average value of von Neumann entropy,

S̄ = 1

2LxLy

S

ln 2
, (29)

where S is the von Neumann entropy of FSS, and Lx and Ly are
the length of torus along the x and y directions, respectively.
The factor 1/ ln 2 is introduced to normalize the von Neumann
entropy.

In Fig. 7 we present the dependence of average von Neu-
mann entropy S̄ of the FSS on the parameter u, where u0

is fixed. Notably, we observe a periodic behavior of S̄ as a
function of u, with a period of π . This periodic pattern is
a direct consequence of the periodic nature of the Sylvester
equation in Eq. (23), which possesses an intrinsic π period-
icity with respect to u. Furthermore, within the topological
phase characterized by CF = ±2, S̄ features a plateau. And
S̄ reaches the maximum value precisely at the critical points
marking the transition between phases with CF = ±10,π and
those with CF = ∓10,π , as presented in Fig. 7(a). Remarkably,
the discontinuities that emerge in the derivatives of S̄ with
respect to u precisely coincide with critical points separating
different topological phases. We find that ∂2

u S̄ is discontinu-
ous, both for the critical point that separates the phases with
CF = −10 and CF = −2, as well as the critical point between
the phases with CF = 1π and CF = 2, which means that they
are the second-order phase transitions with respect to u. Addi-
tionally, ∂3

u S̄ represents the discontinuities at the critical point
that separates the phases with CF = −1π and CF = −2, the
critical point between the phases with CF = 10 and CF = 2, as
well as the critical point between the phases with CF = ±10,π

and CF = ∓10,π , which implies that they are third-order phase
transitions respect to u. A comprehensive summary of the
phase transition can be found in Table II.

The dependence of average von Neumann entropy S̄ of
FSS vs u0 is studied as well, where u is fixed. The results
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FIG. 7. Average von Neumann entropy S̄ vs u0 (a) of FSS in
the toruslike PK-QWZ model, and the first-order (b), second-order
(c), and third-order (d) derivatives of S̄ with respect to u, where
u0 = 0.2π , γ = 0.002, and Lx = Ly = 30. It worth noting that S̄ is
periodic in u with a period of π .

reveal a decreasing tendency of S̄ as u0 is increasing, as
depicted in Fig. 8(a). Notably, it is observed that the phases
of FSS are well defined only if u0 � 2π − 2 − u. Otherwise,
the derivation of S̄ with respect to u0 exhibits chaotic be-
havior, and then phases of FSS are ill defined. We find that
∂u0 S̄ exhibits a discontinuity at the critical point between the
phases with CF = −1π and CF = 1π , indicating a first-order
phase transition with respect to u0, see Fig. 8(b). Additionally,
∂2

u0
S̄ exhibits a discontinuity at the critical point between the

phases with CF = −10 and CF = −2, marking a second-order
phase transition with respect to u0, see Fig. 8(c). Finally, ∂3

u0
S̄

exhibits a discontinuity at the critical point between the phases
with CF = −2 and CF = −1π , indicating a third-order phase
transition with respect to u0, see Fig. 8(d). These findings are
summarized in Table II.

The orders of phase transition are fixed either at the 


point [(kx, ky) = (0, 0) or (π, π )] or at the � point [(kx, ky) =
(0, π ) or (π, 0)] in the static TIs [39], while the orders of
phase transition versus u at the 
 point are different from
those at the � point. This is attributed to the structure of the
time-evolution operator in Eq. (9), that the time-dependent
term H1 is the Dirac mass term of the system, and the
low-energy expansion of momentum only involves the static
part H0. In the low-energy limit, the algebraic structures of
e−iH0T at the 
+ point are different from those at the 
−
point, for example, e−iH0T → e−i(u0+2)σz as (kx, ky) → (0, 0)
and e−iH0T → e−i[πσx+πσy+(u0−2)σz] as (kx, ky) → (π, π ). As a
result, the algebraic structure of the Floquet operator HF (k)
is different for different quasienergy gap closing points, and
thus the orders of phase transition are different, see Table II.
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FIG. 8. Average von Neumann entropy S̄ vs u0 (a) of FSS in
the toruslike PK-QWZ model, and the first-order (b), second-order
(c), and third-order (d) derivatives of S̄ with respect to u0, where
u = 0.2π , γ = 0.002, and Lx = Ly = 30. Moreover, S̄ decreases as
u0 increases, and well-defined phases only exist when u0 < 2π −
2 − u because the derivative of S̄ with respect to u0 becomes chaotic
beyond this limit.

VI. CONCLUSION AND DISCUSSION

Key features of the periodically kicked Dirac mass term in
the Chern insulators are revealed in this paper. We find that the
chirality of the edge modes traversing the 0 gap are opposite
to those traversing the π gap, such that the anomalous chiral
edge modes are absent in this system. As a result, there are six
distinct topological phases in the PK-QWZ model, denoted as
CF = {−10,−2,−1π , 1π , 2, 10}. Despite this, the mechanism
of its unique topology is uncovered with the effective low-
energy Dirac Hamiltonian, and the phase boundaries between
different topological phases are explicitly found. Additionally,
with the help of the time-dependent Lindblad master equation,
we derived a Sylvester equation (23) of FSS for the periodi-
cally kicked free fermionic system. Then, by studying the von
Neumann entropy of FSS in the PK-QWZ model, we unveil
the orders of phase transitions between different topological
phases, which are summarized in Table II.

As a step forward, the features of periodically kicked Dirac
mass in other topological matters is waiting to be discovered,
such as the Z2 TIs and topological superconductors, which is
our future research direction.
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APPENDIX A: APPROXIMATE EXPRESSION
OF FLOQUET OPERATOR

The Euler equation directly leads to

exp(iφn̂ · �σ ) = cos φ + in̂ · �σ sin φ. (A1)

We then express the Hamiltonian and the Floquet operator as

H0 = Ek(rxσx + ryσy + rzσz ), (A2)

HF = εk(n̂xσx + n̂yσy + n̂zσz ), (A3)

where rx = sin kx
Ek

, ry = sin ky

Ek
, rz = u0+cos kx+cos ky

Ek
, and (n̂x )2 +

(n̂y)2 + (n̂z )2 = 1. The energy of the QWZ model is Ek =√
sin2 kx + sin2 ky + (u0 + cos kx + cos ky)2, and εk is the

quasienergy of the system, εk ∈ [−π, π ). Then the time-
evolution operator in the PK-QWZ model can be rewritten as

U = exp [−iH0(k)] exp (−iH1)

= [cos (Ek ) cos u + rz sin (Ek ) sin u]

− iσz[cos (Ek ) sin u + rz sin (Ek ) cos u]

− iσx sin (Ek )[rx cos u + ry sin u]

− iσy sin (Ek )[ry cos u − rx sin u]. (A4)

For simplicity, we denote U (T = 1) as U . Furthermore, an
equivalent expression is U = exp(−iHF ), so U = cos εk −
i(n̂xσx + n̂yσy + n̂zσz ) sin εk. Thus we have the following
equations:

cos εk = cos (Ek ) cos u + rz sin (Ek ) sin u, (A5)

n̂x sin εk = sin (Ek )[rx cos u + ry sin u], (A6)

n̂y sin εk = sin (Ek )[ry cos u − rx sin u], (A7)

n̂z sin εk = cos (Ek ) sin u + rz sin (Ek ) cos u. (A8)

In the low-energy limit that Ek → 0+ as (kx, ky ) →
(0+, 0+), we have

cos εk � cos u + (u0 + 2) sin u, (A9)

n̂x sin εk � kx cos u + ky sin u, (A10)

n̂y sin εk � ky cos u − kx sin u, (A11)

n̂z sin εk � sin u + (u0 + 2) cos u. (A12)

Meanwhile, as the energy gap is closed, the 0 gap might be
closed (εk → 0+) as u → 0+, so that we have nx � kx + uky,
ny � ky − ukx, nz � u + u0 + 2. As a result, when the driving
force is the Dirac mass term of Chern insulators, the effective
low-energy theory of the Floquet operator is identical to its
static counterpart, where the momentum matrices are σx and
σy, and the mass matrix is σz.

However, the approximate formula of Floquet oper-
ator would provide more insights about the effective
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low-energy physics. Here the Baker-Campbell-Hausdorff formula is used:

eAeB = exp
[
A + B + 1

2 [A, B] + 1
12 [A, [A, B]] + 1

12 [B, [B, A]] + 1
24 [B, [A, [A, B]]] . . .

]
. (A13)

We then consider the following commutators:

i[−iHqwz(k),−iuσz] = −2u sin kxσy + 2u sin kyσx, (A14)

i[−iuσz,−[uσz, Hqwz(k)]] = 4u2 sin kxσx + 4u2 sin kyσy, (A15)

i[−iHqwz(k),−[Hqwz(k), uσz]] = −4u(sin2 kx + sin2 ky)σz + 4u sin kx(u0 + cos kx + cos ky)σx

+ 4u sin ky
(
u0 + cos kx + cos ky

)
σy, (A16)

i[−iuσz, [−iHqwz(k),−[Hqwz(k), uσz]]] = 8u2 sin kx(u0 + cos kx + cos ky)σy − 8u2 sin ky(u0 + cos kx + cos ky)σx. (A17)

Ignoring the higher-order terms, we have

nx � u sin ky

[
1 − u

3

(
u0 + cos kx + cos ky

)]
+ u sin kx

3

(
3

u
+ u + u0 + cos kx + cos ky

)
, (A18)

ny � −u sin kx

[
1 − u

3

(
u0 + cos kx + cos ky

)]
+ u sin ky

3

(
3

u
+ u + u0 + cos kx + cos ky

)
, (A19)

nz � u + u0 + cos kx + cos ky − u

3
(sin2 kx + sin2 ky). (A20)

As expected, the Floquet operator HF reduces to a Dirac
Hamiltonian in the low-energy limit, where the momentum
matrices are σx and σy, and the mass matrix is σz.

So there are two kinds of points in the BZ where the
quasienergy gap might close: the 
 type and the � type.
If the quasienergy gap is closing at (kx, ky) = (π, π ) and
(kx, ky) = (0, 0), the quasienergy gap is

nz

,± = u + u0 ± 2, (A21)

where “+” is for (0,0), while “−” is for (π, π ). And if the
quasienergy gap is closing at (kx, ky) = (π, 0) and (0, π ), the
quasienergy gap is

nz
� = u + u0. (A22)

By identifying the configuration of nz, the topological prop-
erty of HF is settled, as demonstrated in the main text.

APPENDIX B: SYLVESTER EQUATION
OF A PERIODICALLY KICKED, FREE

FERMIONIC SYSTEM

The Sylvester equation for FSS is based on Eq. (20).
However, because the Hamiltonian is time dependent, there
is no reason to require that ∂tCF,s = 0, where CF,s is the
stationary state of the Floquet open quantum system. Fortu-
nately, it is natural to require that CF,s is periodic in time, i.e.,
CF,s(t + T ) = CF,s(t ). We then introduce the matrix [40]

� =
(

X −2iMg

0 X †

)
, D =

(
1 C
0 0

)
, (B1)

and Eq. (20) can be rewritten as

i
d

dt
D = [�, D]. (B2)

There is a formal solution,

D(t ) = T exp

(
−i

∫ t

0
dτ�(τ )

)
D0T exp

(
i
∫ t

0
dτ�(τ )

)
,

= UF (t )DsUF (−t ), (B3)

where T is the time-ordering operator, and UF (t ) is the cor-
responding time-evolution operator. We are interested in the
time-evolution operator in a full period T ,

UF (T ) = e−i�0T e−i�1T , (B4)

where

�0 =
(

X0 −2iMg

0 X †
0

)
, �1 =

(
X1 0
0 X †

1

)
, (B5)

and X0 = −HT
0 − i(Mg + MT

l ), X1 = −HT
1 . Furthermore, �0

can be rewritten as

�0 =
(
1 −Cs

0 1

)(
X0 0
0 X †

0

)(
1 Cs

0 1

)
, (B6)

where Cs satisfies the Lyapunov equation,

X0C
s − CsX †

0 = −2iMg, (B7)

in which Cs is the single-particle correlation matrix of static
stationary states. After simple algebraic derivation, we find
that

UF (T ) =
(

e−iX0T e−iX1T P+e−iX †
1 T

0 e−iX †
0 T e−iX †

1 T

)
, (B8)

UF (−T ) =
(

eiX1T eiX0T eiX1T P−
0 eiX †

1 T eiX †
0 T

)
, (B9)

P+ = e−iX0T Cs − Cse−iX †
0 T , (B10)

P− = eiX0T Cs − CseiX †
0 T . (B11)
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Finally, if there is a FSS, it should be periodic in time with
period T , i.e.,

Ds = UF (T )DsUF (−T ). (B12)

Then, substituting Eqs. (B8) and (B9) into Eq. (B12), we
have a Sylvester equation,

eiX1T P− = eiX1T eiX0T CF,s − CF,seiX †
1 T eiX †

0 T , (B13)

where CF,s is the single-particle correlation matrix of FSS.
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