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Disentangling the physics of the attractive Hubbard model as a fully interacting model of fermions
via the accessible and symmetry-resolved entanglement entropies
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The complicated ways in which electrons interact in many-body systems such as molecules and materials
have long been viewed through the lens of local electron correlation and associated correlation functions.
However, quantum information science has demonstrated that more global diagnostics of quantum states like the
entanglement entropy can provide a complementary and clarifying lens on electronic behavior. One particularly
useful measure that can be used to distinguish between quantum and classical sources of entanglement is the
accessible entanglement, the entanglement available as a quantum resource for systems subject to conservation
laws, such as fixed particle number, due to superselection rules. In this work, we introduce an algorithm and
demonstrate how to compute accessible and symmetry-resolved entanglements for interacting fermion systems.
This is accomplished by combining an incremental version of the swap algorithm with a recursive auxiliary
field quantum Monte Carlo algorithm recently developed by the authors. We apply these tools to study the
pairing and charge density waves exhibited in the paradigmatic attractive Hubbard model via entanglement. We
find that the particle and spin symmetry-resolved entanglements and their related full probability distribution
functions show very clear—and unique—signatures of the underlying electronic behavior even when those
features are less pronounced in conventional correlation functions. Overall, this work provides a systematic
means of characterizing the entanglement within quantum systems that can grant a deeper understanding of the
complicated electronic behavior that underlies quantum phase transitions and crossovers in many-body systems.
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I. INTRODUCTION

Traditionally, the complexity of condensed-matter sys-
tems has been probed through the lens of correlation by
focusing on local order parameters and observables like
spin and charge correlation functions that are often directly
accessible from scattering experiments [1–3]. While local cor-
relations can characterize many important features of quantum
systems, such as their magnetic ordering and charge distri-
butions, in recent years, researchers have increasingly begun
to view quantum systems through the lens of quantum in-
formation theory [4–8], especially in the absence of local
symmetry breaking [9]. This new perspective emphasizes in-
formation metrics such as the entanglement entropy [10,11],
mutual information [12,13], and fidelity susceptibility [14,15],
providing complementary nonlocal measures to supplement
conventional probes. These approaches have also found trac-
tion across fields where they have been used to distinguish
between static and dynamic contributions to the correlation
energy in molecules [16–20] and assess correlation during
bond formation and breaking processes [21,22]. In condensed
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matter, quantum information metrics have provided key in-
sights into phases and phase transitions that do not fall
within the traditional symmetry-breaking framework, includ-
ing topological orders and related transitions [9,23–26].

Among the various notions in quantum information theory,
entanglement is among the most foundational, encapsulating
the nonclassical correlations in a quantum state [7,11]. For a
pure state, it can be quantified by the von Neumann and Rényi
entanglement entropies. For a many-body quantum system
described by such a pure state that has nonzero entanglement,
it is natural to ask if that entanglement could be used as
a resource for quantum information processing applications.
This question can be addressed via the accessible entangle-
ment, which quantifies the “useful” entanglement that can be
transferred to a quantum register in the presence of conserva-
tion laws [27–30] and can even be measured in experiments
in ultracold atoms [31,32]. This is an important problem, as
in many physical systems, certain properties are conserved
due to underlying symmetries or other physical constraints.
Such conservation laws restrict the set of possible local oper-
ations that can be performed on a system, imposing so-called
superselection rules [28,33–35] that limit the amount of en-
tanglement that can be extracted via local operations and
classical communication. For example, for particle number
conservation, the corresponding superselection rule precludes
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the extraction of quantum information generated from parti-
cle number fluctuations alone, thereby limiting the accessible
entanglement to less than the von Neumann or Rényi entan-
glement entropies [29,36]. In addition to its importance as
an experimentally relevant bound on the extractable entan-
glement, accessible entanglement, when compared with the
full entanglement, is more sensitive to the underlying par-
ticle statistics even in the absence of interactions [29] and
may display signals across quantum phase transitions [30,37]
in interacting systems. However, the definition of accessi-
ble entanglement hinges on the symmetry resolution of the
entanglement that is enforced by the presence of the corre-
sponding conservation laws [38–52]. Thus, the entanglement
symmetry resolution that defines accessible entanglement can
be employed to gain more insight into the entanglement char-
acteristics of a target state.

While these different approaches to quantifying entan-
glement may readily be quantified for noninteracting sys-
tems [29,50,53,54], in one dimension via tensor network
approaches [30], or via exact diagonalization for small in-
teracting systems [30,31], it is only in the past decade that
various quantum Monte Carlo techniques have been devised to
compute these quantities [55–63] that mostly rely on the swap
algorithm [64]. The swap algorithm forgoes the need for full
state tomography and the exact computation of density matri-
ces, recasting entanglement as the expectation value of a local
operator that can be measured as the ratio of special partition
functions. However, this usually comes at the cost of simu-
lating additional copies of the system (so-called replicas) and
thus exacerbates the inherent difficulties in accurately mod-
eling large interacting fermionic many-body systems beyond
one spatial dimension. Algorithms for computing the ac-
cessible (or symmetry-resolved) entanglement of interacting
systems have proven even more challenging, as they neces-
sitate the computation of properties subject to conservation
laws which lead to global constraints. For the case of particle
number conservation, this requires performing simulations
in the canonical ensemble [63,65,66] and most previous nu-
merical work has focused on noninteracting [29,36,67–69] or
low-dimensional interacting systems [30,70]. However, these
previous studies have broken considerable new ground, shed-
ding light on how fluctuations and full counting statistics
contribute to the entanglement of strongly interacting quan-
tum matter. However, a more complete picture of accessible
and symmetry-resolved entanglement near phase transitions
and crossovers in interacting systems beyond one dimension
and in the presence of multiple competing conservation laws
is still lacking.

In this paper, we introduce a formalism and algorithms
for quantifying the accessible and symmetry-resolved en-
tanglements of systems of interacting spinful fermions. We
show in particular how to compute spin- and particle-resolved
entanglements and their related particle number probability
distribution functions using auxiliary field quantum Monte
Carlo (AFQMC) [71,72] that can scale to systems sizes of
many tens to hundreds of sites. A strength of this approach
is the ability to implement designer partitions of the many-
body Hilbert space not constrained by the locality needed
in tensor network approaches. This allows us to disentangle
the relative contributions of configurations, local and nonlocal

constraints, and fluctuations of the interacting charge and spin
degrees of freedom to entanglement. To do so, we employ
an incremental version of the swap algorithm [55] and com-
bine it with a recursive algorithm recently developed by the
authors [66] that grants access to subsystem entanglements
corresponding to specific conserved quantum numbers. We
leverage these measures to study emergent electronic behavior
in the attractive Hubbard model (AHM), observing signatures
of pairing and charge density waves in not only the computed
entanglement entropies but also in the particle number and
magnetization probability distributions. Importantly, we show
that these entanglement signatures are often more pronounced
than those appearing in more conventionally studied pair cor-
relation functions and that they can exhibit multiple signs of
ordering at once. The computed symmetry-resolved entan-
glements highlight the specific charge and spin sectors that
contribute most to the entanglement and system fluctuations.
While the attractive Hubbard model is paradigmatic and well
understood, we use it as a benchmark case to demonstrate that
entanglement measures can provide additional information
into ordering, pairing, and quantum phenomena in many-body
systems with nontrivial electronic behavior.

We begin with a discussion of the theoretical formalism
that underlies the calculation of the Rényi entanglement en-
tropy and its accessible and symmetry-resolved counterparts
in Sec. II. We then proceed to describe how these measures
can be computed using a recursive AFQMC method that em-
ploys replicas of ensembles to calculate entanglements and
other quantum information metrics. After presenting these
formal and numerical details, in Sec. IV, we illustrate the
effectiveness of these measures by analyzing the pairing and
charge density waves in the attractive Hubbard model on quar-
ter and checkerboard partitions of the lattice at two different
filling fractions. We conclude with a discussion of potential
improvements to and advancements on the algorithms pre-
sented here in Sec. VI.

II. FORMALISM

The efficient AFQMC algorithms presented herein to study
spin- and charge-resolved entanglement entropies are based
on the computation of Rényi entanglement entropies. We thus
begin by introducing the formalism underlying the Rényi
entanglement entropy, before deriving its accessible and
particle- and spin-resolved variants. We then present the new
and statistically improved techniques required to converge
these quantities within a quantum Monte Carlo framework.

A. Rényi entanglement entropy

We focus on a d-dimensional finite lattice of size Ld = Ns,
where Ns denotes the number of sites that can be occupied
by some fixed number, N , of interacting spinful fermions
with filling fraction N/Ns. Given a pure state ρ = |�〉〈�| of
a quantum many-body system, the entanglement that exists
between a partition A and its complement Ā can be quantified
by calculating the reduced density matrix (RDM),

ρA = TrĀρ, (1)
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via a partial trace over the degrees of freedom in the comple-
mentary partition Ā. While there is no single unique measure
of nonclassical correlations, the entanglement can be quanti-
fied through the αth Rényi entanglement entropy,

Sα (ρA) = 1

1 − α
ln Trρα

A , (2)

where α is the Rényi index [8,29]. In this paper, we focus
on the α = 1 (von Neumann) and α = 2 Rényi entanglement
entropies because they can be most readily computed and
characterized.

B. Symmetry-resolved entanglement entropy

Despite its usefulness, Sα (ρA) summarizes the entangle-
ment information encoded in ρA in just a single number
that may not convey the full complexity of the entanglement
of a given system. In the presence of a conserved quantity
(conserved due to superselection rules which restrict certain
quantum superpositions), measured by the operator Q̂ such
that [ρ, Q̂] = 0, one can gain more insight into the entangle-
ment structure by determining the entanglement in each of the
conserved sectors. In such circumstances, the reduced density
matrix ρA has a block-diagonal structure, where each block
can be directly associated with the quantity q contained in par-
tition A. Common physical examples include the conservation
of the total number of particles or magnetization which cannot
change through local fluctuations. Accordingly the reduced
density matrix for partition A can be decomposed as

ρAq =
∑

q

�̂AqρA�̂Aq , (3)

where �̂q is a projection operator that fixes q in A. Con-
sequently, ρα

A is also block-diagonal in q, permitting the
resolution of Trρα

A over q as

e(1−α)Sα (ρA ) = Trρα
A =

∑
q

Tr�̂Aqρ
α
A�̂Aq . (4)

Thus, the relative contribution of sector q to Trρα
A can be

captured by the effective probability distribution

Pq,α = Tr�̂Aqρ
α
A�̂Aq

Trρα
A

, (5)

which converges to the distribution Pq = Tr�̂AqρA�̂Aq in the
limit α → 1.

While Pq,α provides information about the contributions of
the different q sectors to Trρα

A , it does not directly describe the
entanglement content in each of the q sectors. Fortunately, this
entanglement can be obtained by normalizing each projected
density matrix as ρAq = [�̂AqρA�̂Aq ]P−1

q and applying the
Rényi measure to each of them, where the symmetry-resolved
entanglement is defined by

Sα (ρAq ) = 1

1 − α
ln Trρα

Aq
. (6)

Employing the fact that the definitions of both Pq,α and
Sα (ρAq ) depend on Tr�̂Aqρ

α
A�̂Aq , we can write

Pq,α = Pα
q e(α−1)[Sα (ρA )−Sα (ρAq )]. (7)

This shows that Pq,α depends on both Pq and the differences
between the total entanglement entropy and the symmetry-
resolved entanglement entropy where we define the difference

�Sα (ρAq ) := Sα (ρA) − Sα (ρAq ), (8)

as an entanglement measure resolving the q sector. It can be
calculated as

�Sα (ρAq ) = 1

α − 1
ln

Pq,α

Pα
q,1

(9)

and the symmetry-resolved entanglement entropy of different
conserved quantities can be obtained in this way. Below we fo-
cus on two of the most commonly conserved quantities: fixed
total particle number and fixed total spin (magnetization).

C. Accessible entanglement entropy

Wiseman and Vaccaro introduced the idea of the accessible
entanglement, which refers to the quantum entanglement that
can be extracted from a many-body state and then trans-
ferred to a quantum register while a superselection rule is
in place [27]. For fixed total particle number, the accessible
entanglement is defined as the weighted sum of the symmetry-
resolved entanglement entropies introduced in the previous
section where the quantity, q, is taken to be the local particle
number in partition A, nA. For the von Neumann entropy, the
accessible entanglement has a simple definition,

Sacc
1 (ρA) =

∑
q

PqS1
(
ρAq

)
, (10)

where Pq is the probability of partition A having nA = q parti-
cles,

Pq = Pq,1 = Tr
(
�̂AqρA�̂Aq

)
. (11)

For α > 1, the accessible Rényi entropy has been shown to
take the form [29]

Sacc
α (ρA) = α

1 − α
ln

⎡
⎣∑

q

Pqe
1−α
α

Sα (ρAq )

⎤
⎦, (12)

which reduces to Sacc
1 in the limiting case α → 1. Although

Eq. (12) has a rather complicated form, it can be simplified
and associated with Sα (ρA) via a decomposition [29,36],

Sα (ρA) = Sacc
α (ρA) + H1/α ({Pq,α}), (13)

where H1/α denotes a generalized Shannon entropy of the
probability distribution Pq,α with index 1/α that captures the
contribution to the entropy from fluctuations [29]

H1/α ({Pq,α}) = 1

1 − α
ln

∑
q

(Pq,α )1/α. (14)

While H1/α can be defined as a function of any probabil-
ity distribution, in the remainder of the paper, we focus on
H1/α ({Pq,α}) whenever referring to or plotting H1/α . Note that
Eq. (13) demonstrates that the overall entanglement entropy
may be decomposed into the sum of an accessible component
and the generalized Shannon entropy, which can be viewed
as the entropy stemming from “classical” q fluctuations. This
implies that the accessible entanglement may be accessed
by subtracting the Shannon entropy from the entanglement
entropy, as we do in the following.
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While the accessible and symmetry-resolved entangle-
ments may be defined and computed for any value of α, here,
we focus on the α = 2 case and the related Rényi-2 entropies,
which are easier to obtain numerically.

D. Computing symmetry-resolved and other entanglement
entropies using auxiliary field quantum Monte Carlo

In this section, we illustrate how to compute S2(ρA) and
Pq,α for α = 1, 2 (and their symmetry-resolved counterparts)
using the AFQMC method, thereby gaining access to the
symmetry-resolved and accessible entanglement measures for
strongly interacting fermionic systems. Since we do not em-
ploy any constraints, the AFQMC we use is equivalent to
determinant quantum Monte Carlo [73].

1. Computing the Rényi-2 entropy

As demonstrated by Grover [58], Rényi entanglement en-
tropies of interacting fermion systems can be computed using
QMC methods. One such method that has been shown to be
highly accurate for strongly correlated lattice models and is
particularly well suited for computing the associated entropy
is AFQMC [72,74,75]. In AFQMC, a Hubbard-Stratonovich
(HS) transformation [76–78] is introduced to decouple the
many-body interactions such that the imaginary-time propa-
gator acts on a trial wave function |φT 〉 over an imaginary
projection time � and can be written as a path integral over
auxiliary fields s,

e−�Ĥ |φT 〉 =
∫

Ds psÛs|φT 〉. (15)

The effective one-body propagator Ûs is determined from
the underlying Hamiltonian [72,79] and ps is a probability
measure. In our modeling below, we use a discrete HS trans-
form for the Hubbard Hamiltonian, where a local two-body
operator propagated by a imaginary time step �τ can be
decomposed as

e−�τUn̂↑n̂↓ = 1

2

∑
s=±1

eγ s(n̂↑−n̂↓ )e− �τU
2 (n̂↑+n̂↓ ), (16)

with cosh(γ ) = e
�τU

2 . Here, ps becomes a Bernoulli distribu-
tion, B( 1

2 ), and Ûs is a combined propagator from the above
decomposition and the remaining one-body kinetic part of
the Hamiltonian. The exact ground-state wave function is
obtained in the limit of infinite projection time � as |φ0〉 =
lim�→∞ e−�Ĥ |φT 〉. It should be noted that Eq. (15) implies
that any two-body propagator can be re-expressed as an inte-
gral over weighted one-body propagators, which signifies that
properties of an interacting system, like the entanglement, can
be obtained by integrating over their noninteracting counter-
parts appropriately, a fact that we will make extensive use of
below.

To facilitate derivations in subsequent sections, we recast
the ground-state average of any operator Ô in a form reminis-
cent of a thermal average,

〈Ô〉 =
∫
Ds Zs〈O〉s

Z
. (17)

In contrast with a typical thermal average, where statistical
weights are given by the partition function, Zs and Z represent

the overlaps of the trial wave function with itself after propa-
gation by Ûs and e−�Ĥ , respectively, i.e.,

Zs := 〈φT |Ûs|φT 〉
〈φT |φT 〉 , Z := 〈φT |e−�Ĥ |φT 〉

〈φT |φT 〉 . (18)

Note that Zs/Z can be interpreted as the probability distri-
bution for the field configuration s, but could take negative
values, which gives rise to the sign problem [73].

Grover proved [58] that the reduced density matrix can be
decomposed into the same form as Eq. (17)

ρA =
∫
Ds ZsρA,s

Z
, (19)

where, for each configuration s, one obtains an RDM associ-
ated with an entanglement Hamiltonian ĤA that only contains
one-body, local terms

ρA,s = det
(
I − Gs

A

)
e−Ĥ s

A , (20)

where I is the identity operator and

Ĥ s
A = ĉ† log

[(
Gs

A

)−1 − I
]
ĉ. (21)

Here, ĉ†
j (ĉ j ) are fermionic creation (destruction) operators

such that {ĉi , ĉ†
j } = δi j and the equal-time Green’s function

(Gs
A)i j = 〈ĉ†

j ĉi 〉s is defined such that i, j are restricted to sites
in subsystem A.

As a result, the Rényi-2 entropy S2(ρA) = − ln Tr [(ρA)2]
can be evaluated using two independent replicas as

e−S2(ρA ) =
∫
Ds1Ds2 Zs1 Zs2 det gs1,s2

A

Z2
, (22)

where the Grover matrix gs1,s2
A is defined as a functional of Gs1

A
and Gs2

A , gs1,s2
A := Gs1

A Gs2
A + (I − Gs1

A )(I − Gs2
A ). Previous stud-

ies [80,81] have shown that this independent replica structure
can result in significant statistical fluctuations, as infrequent
pairs of (s1, s2) often lead to large values for det gs1,s2

A and
contribute significantly to the evaluation of Eq. (22). To sup-
press these large statistical fluctuations, various algorithms
have been introduced that show enhancements over Grover’s
initial method, including the swap [55,80,82] and incremental
[83,84] algorithms.

In this work, we utilize a recently proposed incremen-
tal algorithm [85] that is both more numerically stable than
Grover’s method and more efficient than other incremental
algorithms and extend it to allow for the computation of
symmetry-resolved quantum information measures. This ap-
proach is analogous to thermodynamic integration, where an
auxiliary parameter 0 � λ � 1 is introduced. One then defines
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a function Z (λ) via

Z (λ) =
∫

Ds1Ds2 Z (s1, s2, λ)

=
∫

Ds1Ds2Zs1 Zs2

(
det gs1,s2

A

)λ
, (23)

such that the Rényi-2 entropy can be computed incrementally
across a grid that ranges between λ = 0 and λ = 1:

e−S2(ρA ) = Z (λ = 1)

Z (λ = 0)

= Z (�λ)

Z (0)

Z (2�λ)

Z (�λ)
· · · Z (1)

Z (1 − �λ)
. (24)

Defining Nλ = 1/�λ, each auxiliary ratio can be computed
with QMC as

Z[(k + 1)�λ]

Z (k�λ)
=

∫
Ds1Ds2Z (s1, s2, k�λ)

(
det gs1,s2

A

)1/Nλ

Z (k�λ)

= 〈(
det gs1,s2

A

)1/Nλ
〉
Z (k�λ), (25)

where sample fluctuations are suppressed by introducing
a new estimator (det gs1,s2

A )1/Nλ . A suitable choice of Nλ,
which can be determined through several trial runs, makes
the fluctuations of this estimator of the order 1 such that
δ[(det gs1,s2

A )1/Nλ] ∼ 1 [85]. In Appendices A and B, we ana-
lyze the accuracy and sampling efficiency of this incremental
algorithm and demonstrate that it exhibits reduced statistical
noise compared to the more conventional swap algorithm.

2. Probability distributions for symmetry sectors

Since measuring Pq,α necessitates conducting QMC simu-
lations with α replicas, evaluating Pq,1 is relatively straight-
forward as it can be performed within the regular AFQMC
framework for a single replica

Pq,1 =
∫
Ds Zs〈Pq,1〉s

Z
. (26)

Importantly, computing the estimator 〈Pq,1〉s in the presence
of a conservation law for different q values necessitates a
canonical ensemble algorithm that can determine observables
for fixed q values. To accomplish this task, we leverage the
recursive canonical ensemble algorithm we have previously
developed [66], which enables the measurement of this es-
timator for all allowable q values simultaneously using the
recursive relation

〈Pq,1〉s = p(1)
i

〈
P

{λ(1)}\λ(1)
i

q−1,1

〉
s + (

1 − p(1)
i

)〈
P

{λ(1)}\λ(1)
i

q,1

〉
s, (27)

where {λ(1)} is the exponential of the effective entanglement
spectrum under the fields s, which can be obtained by diago-
nalizing the propagator matrix e−Hs

A ,

Diag({λ(1)}) = Q−1
1

Gs
A

I − Gs
A

Q1. (28)

Here, p(1)
i is the corresponding level occupancy for the ith

eigenvalue, p(1)
i = λ

(1)
i

1+λ
(1)
i

.

Similarly to the calculation of S2(ρA), resolving Pq,2 re-
quires two replicas. We first rewrite Eq. (5) for α = 2 as the

ratio of two partition functions,

Pq,2 :=
Z (2)

Aq

Z (2)
A

, (29)

where Z (2)
Aq

is defined as the normalization of the squared
reduced density matrix projected onto the q-particle symmetry
sector, such that

Tr
[
�Aqρ

2
A�Aq

] =
Z (2)

Aq

Z2
. (30)

Under the assumption that there exists an auxiliary
field decomposition for this normalization, Z (2)

Aq
=∫

Ds1Ds2 Z (2)
Aq

(s1, s2), then Eq. (29) can also be expressed in
terms of auxiliary fields

Pq,2 = 1

Z (2)
A

∫
Ds1Ds2 Z (2)

Aq
(s1, s2)

= 1

Z (2)
A

∫
Ds1Ds2

Z (2)
Aq

(s1, s2)

Z (2)
A (s1, s2)

Z (2)
A (s1, s2), (31)

which enables QMC sampling via the estimator

〈Pq,2(s1, s2)〉Z (2)
A

:=
〈

Z (2)
Aq

(s1, s2)

Z (2)
A (s1, s2)

〉
Z (2)

A

. (32)

To evaluate Pq,2(s1, s2), we need to project the product of the
field-dependent RDMs

ρA,s1ρA,s2 = det
(
I − Gs1

A

)
det

(
I − Gs2

A

)
e−(Ĥ

s1
A +Ĥ

s2
A ) (33)

onto the symmetry sector q, according to Eq. (5). Similarly to
Eq. (27), this can be accomplished recursively via

〈Pq,2(s1, s2)〉Z (2)
A

= p(2)
i

〈
P

{λ(2)}\λ(2)
i

q−1,2 (s1, s2)
〉
Z (2)

A

+ (
1 − p(2)

i

)〈
P

{λ(2)}\λ(2)
i

q,2 (s1, s2)
〉
Z (2)

A
, (34)

based on the eigendecomposition of the matrix e−(Hs1
A +Hs2

A ),

Diag({λ(2)}) = Q−1
2

Gs1
A

I − Gs1
A

Gs2
A

I − Gs2
A

Q2, (35)

and the corresponding level occupancy p(2)
i = λ

(2)
i

1+λ
(2)
i

.

III. ILLUSTRATIVE SYSTEM: THE ATTRACTIVE
HUBBARD MODEL

To illustrate how symmetry-resolved entanglements can
provide additional information beyond the unresolved Rényi
entanglement, we examine how they behave in different pa-
rameter regimes of the attractive (negative-U ) Hubbard model
[86,87]. This model describes the pairing of electrons of
different spins and may capture some of the physics oc-
curring in superconductors and Bose-Einstein condensates.
The Hamiltonian of the attractive Hubbard Model may be
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expressed as

Ĥ = − t
∑

〈i, j〉,σ
(ĉ†

i,σ ĉ j,σ + H.c.)

− |U |
∑

i

(
n̂i,↑ − 1

2

)(
n̂i,↓ − 1

2

)
, (36)

where ĉ†
i,σ (ĉ j,σ ) are anticommuting fermionic cre-

ation(annihilation) operators such that ĉi ĉ†
j + ĉ†

i ĉ j = δi j and

n̂i,σ = ĉ†
i,σ ĉi,σ is the local spin-resolved density; 〈i, j〉 denotes

nearest-neighbor sites, t is the hopping parameter, and U
represents the interaction strength. For our ground-state
simulations in the canonical ensemble, it is not essential to
consider the fully particle-hole symmetric form of Eq. (36)
because there is no sign problem for the spin-balanced
systems we model in this paper.

Unlike the repulsive Hubbard model, the electron-electron
interaction in the attractive Hubbard model is constrained to
be negative (U < 0), meaning that electrons on the same site
favor pairing. We focus on two spatial dimensions on the
square lattice for which there is no finite-temperature phase
transition in the model (i.e., Tc = 0) at half filling (〈ni,σ 〉 = 1)
[86]; however, long-range charge density wave and pairing
orders coexist in the ground state. The lack of any finite-
temperature ordering at half-filling can be understood in terms
of the well-known mapping of Eq. (36) to a two-dimensional
Heisenberg model. However, away from half-filling, the exis-
tence of a finite hole density manifests as an effective external
magnetic field in the spin model which effectively reduces
the spin dimensionality allowing for a Kosterlitz-Thouless
transition at finite T . Recent determinant QMC simulations
[87] mapped out an interaction vs filling phase diagram, and
demonstrated the importance of carefully understanding the
subtle interplay of finite-size effects with the emergence of
pairing and charge density wave correlations. Motivated by
this work, we take the AHM as a paradigmatic model for
which entanglement measures may provide additional infor-
mation over conventionally measured correlation functions.

In the remainder of this paper, we set t = 1 and fix the total
number of fermions to N with zero total magnetization M = 0
(equal contributions from both spin flavors). We vary |U |/t at
T = 0 to study how the AHM’s symmetry-resolved entangle-
ment entropies and fluctuation probability distributions vary
with pairing strength and filling fraction.

IV. RESULTS AND DISCUSSION

Although the AFQMC formalism presented above is gen-
eral and can operate at finite temperature, here we focus on
the ground state as the entanglement measures we consider
are well defined for pure states. This is achieved using an
imaginary projection time of � = 18 for the probability dis-
tributions and � = 50 for the entanglements. The latter is
required due to the higher sensitivity of the Rényi-2 entropy to
discrepancies between the propagated trial wave function and
the true ground-state wave function [66]. We have confirmed
that both projection times are adequate for converging the
corresponding observables to the ground state. For the trial
wave function, we use the ground state of the Hartree-Fock

(a) (b)

FIG. 1. The two subsystem partitions (shaded regions) used in
this work: (a) a contiguous 8 × 2 quarter-partition and (b) a checker-
board half-partition.

Hamiltonian, which we found is more numerically stable than
a BCS trial wave function in replica sampling and employ
a Trotter step of �τ = 0.1, unless otherwise specified. We
present results for a finite AHM with Ns = 8 × 8 = 64 sites.

A. Joint and marginalized probability distributions
for a quarter-partition

To illustrate the power of our symmetry-resolved formal-
ism to resolve correlations among interacting fermions, we
begin by analyzing the joint probability distribution functions,
P(NA↑,NA↓ ),α , of the attractive Hubbard model at two differ-
ent fillings (〈ni,σ 〉 = 1, 1/2) for a contiguous partition of the
lattice containing Ns/4 sites [as seen in Fig. 1(a)]. The distri-
butions P(NA↑,NA↓ ),α contain information about charge and spin
fluctuations and their contribution to the total and accessible
entanglement as introduced in Sec. II. In particular, P(NA↑,NA↓ ),1

describes the likelihood of observing NA↑ spin-up and NA↓
spin-down electrons in the 8 × 2 quarter-partition, A, of our
system. These probabilities reflect the fact that, while the fill-
ing of the entire system remains fixed, the number of spin-up
and spin-down electrons in the partition may fluctuate. As we
further illustrate below, different partitions may be selected
to highlight different competing orders [see Fig. 1(b)]. How-
ever, we begin with the simplest contiguous partition which
illustrates how electrons fluctuate in and out of a uniform area
of the lattice. At sufficiently large interaction strengths |U |,
the fluctuations in the population of spin-up and spin-down
electrons in the partition are not random, but instead reflect
the underlying strong correlations.

In Fig. 2(a), we present heatmaps of the logarithm of the
joint probability distributions as a function of the number of
spin-up and spin-down electrons in a quarter partition for a
range of interaction strengths: |U | = 1, |U | = 4, and |U | = 8.
All of the distributions are centered around NA↑ = NA↓ =
N/8, which stems from the fact that, for a quarter-partition
and assuming translational symmetry, one expects an average
of 1/4 of the total N/2 electrons of each flavor to occupy the
partition. On the left of the figure, we present the joint proba-
bility distribution functions for Rényi index α = 1, while the
right shows those for α = 2. The α = 2 cases are significantly
more peaked and anisotropic than the corresponding α = 1
distributions. This remains true even in the absence of inter-
actions where the α = 2 distributions are proportional to the
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(a) (c)

(b) (d)

FIG. 2. Various probability distribution measures plotted in an 8 × 2 quarter-partition of a 8 × 8 Hubbard model at [(a) and (c)] half-filling
and [(b) and (d)] quarter-filling with different |U | values. [(a) and (b)] Joint (unresolved) probability distributions as a function of the spin-up
(NA↑) and spin-down (NA↓) electron numbers. Left panel: P(NA↑,NA↓ ),1, the α = 1 distribution. Right panel: P(NA↑,NA↓ ),2, the α = 2 distribution.
The color bar represents the range of probabilities on a log scale. [(c) and (d)] Charge-resolved (left panel) and spin-resolved (right panel)
probability distributions as a function of local charge (nA = NA↑ + NA↓) and spin number (mA = NA↑ − NA↓). Both the left panel and its insets
demonstrate the enhanced pairing effect reflected in fluctuations for even and odd charge numbers as |U | increases.
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square of the α = 1 distributions. The α = 2 distributions thus
show enhanced resolution, regardless of |U | [29].

The increased sharpness of these α = 2 distributions
makes them more sensitive to correlations. As can be seen
for attractive interactions as small as |U | = 4, the α = 2 plots
show larger probability amplitudes along the diagonal from
small particle numbers (small NA↓, NA↑) to large particle
numbers (large NA↓, NA↑). This diagonal character is a man-
ifestation of the electron pairing expected in the attractive
Hubbard model; as the number of spin-up electrons in the
partition increases, so does the number of spin-down elec-
trons because they are more likely to reside in the partition
as pairs. As one might anticipate, the diagonal character of
the distribution increases significantly with |U |, becoming
almost completely diagonal for |U | = 8 and indicating an
increased preference for pairing. Indeed, while all of the distri-
butions reach their maxima at NA↑ = NA↓ = N/8, we see that
with increasing |U |, this maximum becomes increasingly pro-
nounced, indicating that pairing favors a net magnetization of
0. While this trend toward pairing is evident in both the α = 1
and α = 2 probability distributions, its clearer manifestation
in the α = 2 distributions demonstrates their greater ability to
infer subtle electron-electron interactions.

Looking more closely at the |U | = 4 and |U | = 8 distribu-
tions, it can be observed that they are nonmonotonic for fixed
NA↓ and varying NA↑ (or vice versa). For example, NA↓ = 10
is more likely to be accompanied by NA↑ = 8 or NA↑ = 10
than NA↑ = 9, resulting in even-odd oscillations in the proba-
bility distribution. This illustrates a preference toward integer
magnetization: pairs of electrons, even if they do not possess
opposite spins, are more likely to reside in the partition than
unpaired electrons.

Although obtaining these joint distributions represents an
algorithmic achievement and they reveal fascinating, multi-
dimensional correlations, it is often easier to analyze their
marginalized, one-dimensional versions. Marginalization also
grants us access to the individually charge- and spin-resolved
quantities by summing over all possible total spin (magneti-
zation) values given a fixed charge (particle number) and all
possible charge values given a fixed total spin. In Fig. 2(b),
we show the charge- (Pn) and spin-resolved (Pm) distributions
on the left and right, respectively. For each |U | value, we plot
both the α = 1 and α = 2 marginalized distributions to further
highlight their differences.

From these plots, it is even more evident that Pn,2,
the charge-resolved distribution for α = 2, and Pm,2, the
spin-resolved distribution for α = 2, are more peaked than
their α = 1 counterparts. Also evident is the fact that the
spin-resolved distributions tend to be more highly peaked
than the charge-resolved distributions; the model overwhelm-
ingly prefers a net magnetization of 0, in concert with the
highly diagonal joint distributions described earlier. In gen-
eral, the charge distributions tend to be wider, suggesting
that the model, which does not possess any direct charge-
charge interactions, admits larger charge fluctuations than spin
fluctuations. Nonetheless, as |U | grows, even the charge distri-
butions become increasingly narrow, pointing to higher-order
terms that effectively cause the tightly bound electron pairs
to repel one another. Indeed, in the limit of infinite |U |, one
expects the model to be equivalent to a hard-core boson model

[88], in which the paired spins act like bosons that effectively
repel one another because they cannot occupy the same sites
at the same time. In the absence of any explicit intersite
interactions in Eq. (36), the tightly bound bosons can freely
fluctuate between empty neighboring sites.

The Pn,2 distributions also demonstrate nonmonotonic be-
havior for strong interactions as seen in the insets of Fig. 2(b)
where oscillations around the most probable occupancy of
nA = 16 are visible at |U | = 4. These oscillations show that
odd numbers of particles—which would necessarily have to
be unpaired—are highly unlikely to be found in the partition.
While the Pn,1 distributions do begin to show hints of non-
monotonicity at |U | = 8, the fact that these features are far
more prominent in the Pn,2 distribution further demonstrates
the value of this new measure.

To probe their sensitivity to filling fraction, in Figs. 2(b)
and 2(d), we present the same joint and marginalized distri-
butions for a quarter-filled attractive Hubbard with the same
contiguous quarter partition. These distributions bear many
of the same features as seen in Figs. 2(a) and 2(c) at half-
filling, despite the fact that the quarter-filled model is not
expected to exhibit any charge density wave ordering. The
joint distributions possess similar widths and maxima but are
centered around NA↑ = NA↓ = 4 because only half as many
electrons reside in the partition on average. The trend that
the α = 2 case has sharper features is also maintained, and
the marginalized distributions manifest oscillations at similar
|U | values. This suggests that, while the contiguous quarter
partition can provide insights into the pairing present in the
model, it cannot discern potential charge density wave order-
ing. We will discuss a different partition specifically designed
to identify this ordering in Sec. IV C.

B. Symmetry-resolved and accessible entanglement entropies
for a quarter-partition

With these charge- and spin-resolved distributions in hand,
we can now leverage Eqs. (6), (13), and (14) to compute
the Shannon and accessible entanglement entropies. As de-
scribed above, the generalized Shannon entropies, H1/α , can
be viewed as measures of the entropy stemming from local
fluctuations of a globally conserved quantity in and out of the
partition. In the top panel of Fig. 3(a), we plot the charge- and
spin-resolved Hn,1/2 and Hm,1/2 entropies as a function of |U |
for the half-filled attractive Hubbard model on a contiguous
quarter partition. In line with the previously discussed proba-
bility distributions, we see that the charge-resolved Shannon
entropy is consistently larger than the spin-resolved Shannon
entropy. This means that the particle number fluctuates more
readily than the spin, consistent with the narrow peak seen in
Pm,1 [Fig. 2(b)]. Both entropies are also observed to generally
increase as U approaches 0, the noninteracting limit in which
the particles have the most freedom to fluctuate and the least
correlation. At larger values of |U |, the electrons have much
less freedom to unpair and their contributions from fluctua-
tions to the entropy are reduced.

Based on Eq. (13), the Rényi entanglement entropy and
the Shannon entropies grant us access to the Rényi acces-
sible and symmetry-resolved entanglement entropies. These
are plotted in the middle panel of Fig. 3(a) along with the
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FIG. 3. Entanglement measures plotted at (a) half-filling and (b) quarter-filling against interaction strength |U | for an 8 × 8 lattice with a
contiguous 8 × 2 partition. Upper panel: Generalized Shannon entropies resolved according to both the charge and spin. Middle panel: Rényi-2
entropy plotted alongside the charge- and spin-resolved accessible entanglement entropies. Lower panel: Symmetry-resolved entanglement
entropy for three distinct partition occupancies (charges): (a) nA = 16, 17, 18 and (b) nA = 8, 9, 10 and the magnetization at mA = 0. The inset
heatmap depicts the contribution from different charge sectors to the overall Rényi-2 entropy, P2

nA,1e−S2,nA , on a log scale.

unresolved entanglement, which is largest as expected due to
the additional constraints these symmetry-resolved entangle-
ments reflect. For small interaction strengths (0 � |U | � 1.0),
all entanglement measures slightly increase with |U |, but
beyond |U | ≈ 1.0 all entanglement measures monotonically
decrease with increasing |U |, indicating that the electrons are
most entangled at smaller |U | values. The increased pairing
at larger |U | suppresses the available degrees of freedom
resulting in decreased entanglement overall. In Fig. 3(a), it
can furthermore be seen that the charge- and spin-resolved
accessible entanglements follow roughly the same trends but
are smaller overall because they report on only the accessible
contributions (i.e., the entanglement solely due to fluctuations
is removed). Because the charge-resolved Shannon entropy
was previously seen to be larger than the spin-resolved en-
tropy, the charge-resolved accessible entanglement ends up
being smaller than the spin-resolved accessible entanglement.

In the bottom panel of Fig. 3, we show a detailed compar-
ison of the particle number-resolved and total entanglement
entropies by considering the difference between them: �S2, as

defined by Eq. (9). We consider the particle number-resolved
entanglements for specific particle numbers in the partition,
nA, with the aim of identifying which particle numbers con-
tribute most to the entanglement. Our ability to analyze
the contributions to the entanglement entropy from differ-
ent charge and spin sectors is a highlight of the algorithms
presented here that affords highly detailed information regard-
ing the underlying origin of the observed entanglement. For
example, for small interaction strengths, all �S2 values are
similar, but as |U | increases, clear differences emerge. Of the
particle number-resolved plots in orange, the �S2(ρnA=16) and
�S2(ρnA=18) values remain the largest irrespective of |U | be-
cause the entanglement for those particle numbers is smallest
since the electrons are strongly paired at those occupations.
In contrast, �S2(ρnA=17) rapidly decreases as |U | increases
because the entanglement in that sector remains large due
to unfavorable occupancies resulting in particle fluctuations.
�S2(ρmA=0) also slightly decreases with increasing |U | due
to the reduced width of the spin-resolved distribution, as ob-
served in Fig. 2(d). However, the preference toward pairing
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prevents fluctuations in the net spin, resulting in �S2(ρmA=0)
remaining sizable, even at |U | = 8.

To more thoroughly ground this discussion in the for-
malism presented in Sec. II, recall that the particle number-
resolved reduced density matrix, ρnA , is still subject to
magnetization fluctuations and can be further resolved as

ρnA =
∑
mA

�̂AmρnA�̂Am

=
∑
mA

P(mA|nA)ρnA,mA , (37)

where P(mA|nA) is the corresponding conditional probability
and nA and mA must have the same parity. This suggests that,
in the strong pairing regime, the magnetization resolution
of the RDMs ρnA=16 and ρnA=18 is dominated by the RDMs
ρnA=16,mA=0 and ρnA=18,mA=0, respectively. Thus, the contribu-
tion from the magnetization fluctuations to the corresponding
entanglement is suppressed. In contrast, the magnetization
resolution of RDM ρnA=17 contains contributions from odd
mA only, but with equal contributions from the positive and
negative mA sectors. If only the contributions from mA = ±1
are considered, then the resulting entanglement will be ln 2
greater than the entanglement content of ρnA=17,mA=1. In addi-
tion, because of the strong pairing between the electrons, the
RDM ρnA=17,mA=1 is expected to have more entanglement than
ρnA=18,mA=0 due to the assured presence of at least one cor-
related broken pair across the partition boundary. The above
discussion indicates that strong pairing between the electrons
could produce oscillations in the symmetry-resolved entangle-
ment due to changes in the parity of the particle number.

Perhaps most telling is the inset of the middle panel of
Fig. 3(a) in which we plot the different contributions to the
trace of ρ2

A on a log scale,

Trρ2
A = e−S2 =

∑
nA

P2
nA,1e−S2,nA , (38)

which reflects a combination of the P2
n,1 and S2,nA components.

As is evident from the heat maps, at |U | = 0, the contributions
from different nA sectors are slowly varying. By increasing
|U |, we observe a peaked distribution at nA = 16 which begins
to develop oscillations by |U | = 4. However, as we have seen
in Fig. 2(b), Pn,1 does not develop oscillations even at |U | =
8, which strongly indicates that the sources of the observed
oscillations are the symmetry-resolved entanglements, S2,nA .

Similar behavior is again seen in the corresponding
quarter-filled AHM shown in Fig. 3(b), indicating that many
of the same mechanisms that give rise to the half-filled physics
are also at play at quarter-filling. One noticeable difference is
that the discrepancy between �S2(ρnA=16) and �S2(ρnA=18)
in the half-filled case is significantly larger than that between
�S2(ρnA=8) and �S2(ρnA=10) in the quarter-filled case, where
�S2(ρnA=8) and �S2(ρnA=10) are almost equal. We speculate
that this is a signature of the influence of the charge density
wave ordering in the half-filled case. Based on a previous
argument, the main contributions to S2(ρnA=16) and S2(ρnA=18)
are from ρnA=16,mA=0 and ρnA=18,mA=0, respectively. While the
RDM ρnA=16,mA=0 is favored by charge density wave order-
ing (ρnA=16,mA=0 describes 8 pairs of electrons in the quarter
partition), the RDM ρnA=18,mA=0 violates such ordering by

including an extra pair of electrons, which is expected to in-
crease S2(ρnA=18). While this provides a possible justification
for the observed differences in the plots of the symmetry-
resolved entanglements, it cannot be considered definitive
evidence for the presence of charge density wave ordering at
half-filling. This suggests that other partitions may be nec-
essary to unambiguously identify the charge density wave
ordering expected to be present at half-filling.

C. Probability distribution functions
for a checkerboard partition

In the previous sections, we presented results for the gener-
alized entanglement entropies of the attractive Hubbard model
on a partition defined by a contiguous block of a quarter of
the lattice sites. One of the benefits of studying entanglement
entropies is that they can be calculated for different partitions
which can be engineered to probe different underlying phys-
ical phenomena. At half-filling, the electrons in the attractive
Hubbard model experience a competition between pairing
and charge density wave ordering in the ground state. To
study the emergence of charge density wave order, which was
demonstrated to be difficult to discern based on the quarter-
filled partitions analyzed above, in the following, we examine
the same probability distribution functions and entanglement
entropies, but on a checkerboard partition that includes ev-
ery other site (see Fig. 1): If a pure checkerboard ordering
emerges, all of the electrons will either occupy the partition
or its complement (due to translational symmetry). Because
charge density wave order should be less favorable at lower
fillings, one would not expect the checkerboard partition to be
particularly informative at quarter filling. The checkerboard
partition should hence be able to distinguish between half-
filled and quarter-filled physics.

In Fig. 4, we plot the particle number-resolved probability
distribution functions for the checkerboard partition for dif-
ferent interaction strengths: |U | = 1.0, 4.0, and 8.0. In the
top panel, we show the Pn,1 distributions at quarter- (dashed
curves) and half-filling (solid curves). At quarter-filling, the
distributions remain roughly Gaussian around nA = 16 for all
|U | values. The |U | = 1 distribution is the most peaked with
the distributions broadening with decreasing U because of the
buildup of positive correlations among the electrons as they
start to form pairs. The absence of odd nA versus even nA

oscillations, as were observed in the contiguous partition, can
be attributed to the much larger boundary of the checkerboard
partition: Four sites of the complementary partition surround
each site in the checkerboard partition. Thus, any broken
electron pair at any site will result in an odd nA contribution
to the distributions, reducing the magnitude of the oscillations
observed. Taken together, these features signify that no par-
ticular ordering emerges within the checkerboard partition at
quarter-filling.

In contrast, the distributions at half-filling exhibit a flat-
tening with increasing interaction strength. These broad
distributions are indicative of the emergence of charge density
waves. In particular, at |U | = 1, at which minimal charge
ordering would be expected to occur, most of the probabil-
ity density is located between nA = 16 and nA = 48, while
at |U | = 8, well into the regime in which charge ordering
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FIG. 4. Charge-resolved probability distribution functions (Pn,1

and Pn,2) as a function of local charge for an 8 × 8 Hubbard model at
half-filling (solid lines) and quarter-filling (dashed lines) measured
using the checkerboard bipartition. For clarity, the error bars are
represented as ribbons around the curves.

should manifest, the probability density is distributed between
nA = 2 and nA = 62. The Pn,1 distributions presented in the
top panel of Fig. 4 overwhelmingly appear smooth. However,
as shown in the bottom panel, the high resolution provided
by Pn,2 shows that these distributions do in fact possess
fine features—namely the even-odd oscillations discussed in
Sec. IV A and even finer features unique to the checkerboard
partition. Interestingly, different even occupations, even for
moderate nA values, are observed more or less frequently than
others, suggesting that not only is pairing preferred, but very
specific types of pairing are favored that maintain the emerg-
ing charge density wave ordering. These Pn,2 distributions can
thus uniquely capture competition between two forms of order
in a single measure.

As shown in Fig. 5, differences reflected by the use of a
checkerboard partition may also be observed in the entangle-
ment entropies. S2 as a function of |U | decays in a similar
manner as in the contiguous quarter partition but starts at
larger values at |U | = 0 owing to the checkerboard partition’s
larger area. More tellingly, the contributions to the entangle-
ment entropy resolved by the charge in the partition assume
a different form than observed with the previous partition.
As the heatmap in the inset depicts, the contribution to the
entanglement is smallest for small |U | and increases for large
|U |. As discussed before, this reflects a balance between

(a)

(b)

FIG. 5. Rényi-2 charge- and spin-resolved accessible entangle-
ment entropies as a function of |U | for an 8 × 8 attractive Hubbard
model at (a) half-filling and (b) quarter-filling with a checkerboard
partition. For clarity, The inset heatmap depicts the log scale contri-
bution from different charge sectors to the overall Rényi-2 entropy,
P2

nA,1e−S2,nA . For the heatmap in (b), the right half is blank as the local
electron number can only reach a maximum of 32 at quarter filling.

contributions from S2 and P2
n,1. In this case, the entanglement

is large for small |U |, which decreases the magnitude of the
contributions to the heatmap in the weak interaction limit. At
larger |U |, the entanglement decreases, increasing the con-
tributions to the heatmap. The larger intensity region of the
heatmap also broadens at larger |U | due to the wider Pn,1

distributions observed at these values.
Overall, the results on the checkerboard partition illustrate

the utility of being able to define a variety of partitions that can
report on different facets of the system’s propensity towards
cooperative order. In this case, the checkerboard partition
highlights differences that could not be fully observed using a
contiguous partition, or even, certain correlation functions, as
will be discussed below.

V. COMPARING THE INFORMATION CONTENT IN
SYMMETRY-RESOLVED ENTANGLEMENT ENTROPIES

AND CORRELATION FUNCTIONS

Given the complexity and computational expense that
accompanies computing entanglement entropies, a natural
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question is whether they have the potential to add anything
new to our understanding beyond what can be learned from
conventional local correlation functions. In particular, for
the attractive Hubbard model that exhibits pairing, and at
half-filling, a charge density wave, we seek to understand
whether entanglement entropies on designer partitions can
signal larger and/or more rapidly developing features on the
emergence of different types of ordering.

To make this comparison, we analyze three local correla-
tion functions and their corresponding structure factors. These
include the charge-charge correlation function,

C(r) = 1

Ns

∑
i

〈ni+rni〉, (39)

the pair correlation function,

g(r) = 1

Ns

∑
i

〈c†
i+r,↑c†

i,↓ci+r,↓ci,↑ + H.c.〉, (40)

and the spin-resolved pair correlation function,

g↑↓(r) = 1

Ns

∑
i

〈ni+r,↑ni,↓〉. (41)

Their Fourier transforms (structure factors) are denoted as
C(k), G(k), and G↑↓(k), respectively. As shown in Fig. 6,
the correlation functions at half-filling capture the emergence
of charge ordering in the system in the form of oscillations.
The magnitude of these oscillations grows with |U |, as is also
reflected in the associated structure factors at wave vector
(π, π ) plotted in the insets. These oscillations are additionally
observed in the spin-resolved pair correlation function (bot-
tom panel), which indicates that spins also alternate from site
to site as part of the pairs formed, although with a smaller
magnitude than the charges. The pair correlation function
provided in Eq. (40) (middle panel) measures the correlation
of pairs of spin-up and spin-down electrons at increasing sepa-
rations between the paired fermions. As one would anticipate,
these pairs are most correlated at zero separation and for larger
|U | values. The correlation decays with increasing distances
between the electrons in the pairs, but seemingly plateaus to
finite values that grow with |U |. These plateaus suggest that
long-range order is stabilized and the pairs of electrons begin
to approximate hard-core bosons at large |U |. The Fourier
transforms of all of the order parameters presented in the
insets all correspondingly grow with |U |.

In Fig. 7, the same correlation functions and structure
factors are plotted but for the AHM at quarter-filling. These
correlation functions do not manifest persistent oscillations,
substantiating the expectation that charge ordering does not
emerge at quarter-filling.

Altogether, these plots confirm the emergence of charge
density waves and pairing only at half-filling, as also observed
in the entanglement entropies described above—albeit based
on very different signatures. The correlation functions and
structure factors provide important information about how
the electrons arrange themselves in real and reciprocal space.
In contrast, the symmetry-resolved entanglements computed
above provide information about how certain collections of
particles (e.g., with fixed numbers or magnetizations) behave
in concert and thereby are most entangled. Within our for-
malism, spatial information can only be gleaned from the

FIG. 6. Correlation functions and structure factors for an 8 × 8
attractive Hubbard model at half-filling. The charge-charge, pair, and
spin-resolved pair correlation functions are measured along a triangle
path in the lattice. The insets depict the corresponding structure fac-
tors as a function of interaction strength |U | measured at k = (π, π ),
(0,0), and (π, π ), respectively.

entanglements if it is reflected in the partition. Thus, the
correlation functions and symmetry-resolved entanglements
lie on two ends of the information spectrum: Correlation
functions average over all types of configurations but pro-
vide useful spatial information, while the symmetry-resolved
entanglement entropies average over spatial information but
provide useful configurational information. These measures
hence provide complementary perspectives and choices can
be made as to which to use based on the features to be
highlighted.

VI. CONCLUSIONS

In this paper, we have introduced a numerical method
based on auxiliary field quantum Monte Carlo to compute the
accessible and symmetry-resolved entanglement entropies of
interacting systems of fermions, as well as their associated
joint and marginalized probability distributions that capture
fluctuations of local degrees of freedom subject to a global
constraint. We apply this method to the two-dimensional at-
tractive Hubbard model in the presence of fixed total particle
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FIG. 7. Correlation functions and related structure factors for the
quarter-filled attractive Hubbard model.

number and magnetization to probe how quantum information
measures may capture signatures of pairing and emergent
charge density wave order in the ground state of a strongly
interacting fermionic system. Key to being able to apply
these methods to the attractive Hubbard model was the use
of a recursive algorithm that enables the calculation of ob-
servables at fixed particle numbers [66] and an incremental
swap algorithm for computing the Rényi-2 entanglement en-
tropy with improved statistical convergence [85]. Using the
flexibility provided by our simulation method, we studied
different spatial bipartitions of the two-dimensional square
lattice. We found that, while a contiguous quarter partition
was useful for seeing evidence of pairing, a checkerboard
partition was important for seeing evidence of charge density
waves. The ability to compute entanglements symmetry-
resolved into different charge and spin sectors allowed for
novel insights into which superselection sectors contribute
most to the entanglement. Interestingly, the α = 2 probability
distributions and entanglement entropies showed enhanced
detail, exhibiting greater signatures of the underlying cor-
relations and ordering than their α = 1 counterparts. This
is important as higher order Rényi entropies can be read-
ily computed using quantum Monte Carlo methods (as well
as in cold atom experiments [32,89–91]), in contrast with

the von Neumann entropies that often require full state
tomography.

Overall, the symmetry-resolved and related entanglement
measures studied here provide a complementary picture
to that exhibited by traditional correlation functions. For
example, while conventional correlation functions provide
information about relatively local physics and ordering, en-
tanglement measures provide access to nonlocal information
about collections of particles with conserved total charge
and magnetization. The ability to create custom partitions
of the many-body quantum state in combination with the
projection of entanglement into different symmetry sectors
provides direct access to the relative importance of fluctu-
ations vs configurations of the relevant degrees of freedom.
This valuable information sheds a bright light on the underly-
ing energy-entropy competition responsible for nonclassical
ordering phenomena.

While the formalism presented here provides new means of
measuring entanglement in the study of many-body systems
(including, potentially, in experiments on ultracold lattice
gasses), many questions about its applications remain. First,
we showed how it can be crucial to define different types of
partitions with different sizes and geometries for interrogating
various types of physical phenomena (e.g., charge ordering
and pairing). This is analogous to constructing appropriate
correlation functions that are sensitive to different types of
local ordering. How these partitions can be engineered to
best and most efficiently illuminate different types of ordering
remains to be explored. For example, by designing ensem-
bles of two-site partitions, it may be possible to construct an
“entanglement matrix” analogous to conventional correlation
matrices consisting of the two-site correlation functions be-
tween all pairs of sites; two-site measures of entanglement
have recently revealed different signatures of order in the
two-dimensional Hubbard model [92]. Such a matrix would
provide valuable insights into the distance scaling of different
forms of entanglement.

In this work, we focused on a paradigmatic model dis-
playing coexistent ordering in its ground state but lacking
any topological character. Given that the entanglement is a
more global measure of electronic behavior, it is likely that the
accessible and symmetry-resolved entanglements studied here
would provide even greater insights into order emerging near
phase transitions that induce long length-scale fluctuations
and topological order invisible to local correlation functions.
Indeed, one could imagine using these entanglement measures
to probe the subtle onset of ordering that may appear in
only select charge or spin sectors on approaching different or
multiple phase boundaries. The fact that the particle number
distributions on the checkerboard partition are simultaneously
sensitive to both charge density wave order and pairing is
a signal that these entanglement measures could potentially
probe and resolve the competition among multiple emergent
orders in the same measure. This would be particularly useful
for analyzing models and materials that exhibit both strong
electron correlation and topology, such as correlated topolog-
ical insulators [93].

All codes, scripts, and data needed to reproduce the results
in this paper are available online [94,95].
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FIG. 8. Comparison of the Pn,2 (left panel) and Pm,2 (right panel) distributions obtained using replica sampling and exact diagonalization
(ED) for the 4 × 3 Hubbard model at quarter filling, in which the subsystem is chosen as a 4 × 1 strip. The inset shows the estimated generalized
Shannon entropy compared to ED for various |U | values.
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APPENDIX A: REPLICA SAMPLING STATISTICS

In this Appendix, we demonstrate the numerical stabil-
ity of our replica sampling technique for estimating Pq,2,
as described in Eq. (34). For validation, we compare QMC
estimates of Pq,2 and the derived Shannon entropies (H1/2)
with exact results obtained from Exact Diagonalization (ED).
This comparison is conducted on a 4 × 3 Hubbard model
at quarter filling. To minimize Trotter errors, we employ a
small Trotter step (�τ = 0.01) and set the projection time to
� = 20, which we find sufficient for ground-state projection.
The QMC data presented are averaged over 5,120 independent
samples, with Shannon entropies estimated through the Jack-
knife resampling method. For the AFQMC implementation,
we integrated essential numerical stabilization routines from
the SmoQyDQMC.jl package, ensuring robust and reliable
calculations [96].

Figure 8 reveals near-perfect agreement between QMC and
ED for Pn,2 and Pm,2 within QMC error bars. However, a
small discrepancy is observed in the spin-resolved Shannon
entropy, Hm,1/2, at |U | = 8. This discrepancy arises because,
in the strong |U | regime, only the mA = 0 sector contributes
to Hm,1/2 due to the strong electron pairing. As PmA=0,2

asymptotically approaches 1, the precision with which QMC
can reproduce this value diminishes due to error propagation,
leading to an observable deviation of the estimated Hm,1/2

from the exact result. Furthermore, reducing the error bar

through replica sampling is inherently more challenging than
plain sampling. This is due to the fact that the computa-
tion of the statistical weights for the field-dependent RDM,
Z (2)

A (s1, s2), necessitates the sampling of two independent aux-
iliary fields. The fluctuations in these samples cover the space
of two joint auxiliary fields, resulting in a probability distri-
bution with a heavier tail, which in turn leads to an increased
error bar.

APPENDIX B: COMPARISON OF INCREMENTAL
AND SWAP ALGORITHM STATISTICS

In this Appendix, we conduct a comparative analysis of
the sampling efficiency between two algorithms that enhance
Grover’s initial method for estimating Rényi entropies: the
incremental algorithm, as used in the main text and detailed
in Eqs. (23)–(25), and the swap algorithm. To make this
discussion self-contained, we first present an outline of the
swap algorithm, and more detailed information can be found
in Refs. [55] and [80]. Similarly to the incremental algorithm,
the swap algorithm first rewrites e−S2(ρA ) as a ratio of partition
functions

e−S2(ρA ) =
∫
Ds1Ds2ZA,2(s1, s2)∫
Ds1Ds2Z2(s1, s2)

, (B1)

with the shorthand ZA,2(s1, s2) = Zs1 Zs2 det gs1,s2
A and

Z2(s1, s2) = Zs1 Zs2 . As the fluctuations in Grover’s method
comes from the unboundedness of the determinant of the
Grover matrix, det gs1,s2

A , the swap algorithm re-expresses
Eq. (B1) as the ratio of transition probabilities

e−S2(ρA ) = 〈pZ2→ZA,2
〉Z2

〈pZA,2→Z2〉ZA,2

, (B2)

where the transition probabilities are defined as

pZ2→ZA,2
(s1, s2) = min

[
1,

ZA,2(s1, s2)

Z2(s1, s2)

]
, (B3)

pZA,2→Z2 (s1, s2) = min

[
1,

Z2(s1, s2)

ZA,2(s1, s2)

]
, (B4)
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and their expectation values are computed as

〈pZ2→ZA,2
〉Z2 =

∫
Ds1Ds2Z2(s1, s2)pZ2→ZA,2

(s1, s2)

Z2
, (B5)

〈pZA,2→Z2〉ZA,2 =
∫
Ds1Ds2ZA,2(s1, s2)pZA,2→Z2 (s1, s2)

ZA,2
. (B6)

The fluctuations from the unbounded det gs1,s2
A are therefore

reduced because the transition probabilities are bounded from
above by 1. In practice, one conducts two separate simulations
that sample the ensemble of two independent replicas with
weight Z2(s1, s2) and the ensemble of “fused” replicas with
weight ZA,2(s1, s2), respectively. The transition probabilities
can be interpreted as the probabilities of swapping the random
walk from one ensemble to another in the context of path inte-
gral Monte Carlo. Rényi entropies can therefore be estimated
from the ratio of transition probabilities.

In Fig. 9, we present histograms of 1024 uncorrelated
Monte Carlo samples obtained from both the swap and in-
cremental algorithms to compare their sampling efficiencies.
The same model as described in the main text is utilized,
specifically an 8 × 8 attractive Hubbard model at half-filling,
with a contiguous 8 × 2 partition. The on-site interaction
strength is fixed to |U | = 8.0, a level sufficiently strong to
induce significant fluctuations in the value of det gs1,s2

A . As
observed in the left panel of Fig. 9(a), despite the extreme
values of det gs1,s2

A being capped at 1 through probability map-
ping, the frequency of these extreme values is notably high
at strong interaction strengths. This results in a heavy-tailed
distribution. In contrast, using the incremental algorithm, the
distribution tails decay more rapidly across all incremental
values, λ. Consequently, the statistical errors are smaller in

FIG. 9. Histograms of 1024 uncorrelated samples for estimating
S2 using (a) the swap algorithm and (b) the incremental algorithm.

In the swap algorithm, S2 is estimated as
〈pZ2→ZA,2

〉
〈pZA,2→Z2 〉 , while in the

incremental algorithm, it is estimated as
∏〈Z (λ + �λ)/Z (λ)〉.

the incremental algorithm. Therefore, we have opted to use
the incremental algorithm for all Rényi-2 entropy calculations
presented in the main text.
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