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Stability and noncentered PT symmetry of real topological phases
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Real topological phases protected by the space-time inversion (PT ) symmetry are a current research focus.
The basis is that the PT symmetry endows a real structure in momentum space, which leads to Z2 topological
classifications in one and two dimensions (1D and 2D). Here, we provide solutions to two outstanding problems
in the diagnosis of real topology. First, based on the stable equivalence in K theory, we clarify that the
2D topological invariant remains well defined in the presence of nontrivial 1D invariant, and we develop a
general numerical approach for its evaluation, which was hitherto unavailable. Second, under the unit-cell
convention, noncentered PT symmetries assume momentum dependence, which violates the presumption in
previous methods for computing the topological invariants. We clarify the classifications for this case and
formulate the invariants by introducing a twisted Wilson-loop operator for both 1D and 2D. A simple model
on a rectangular lattice is constructed to demonstrate our theory, which can be readily realized using artificial
crystals.
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I. INTRODUCTION

Space-time inversion (PT ) symmetry protected topological
phases have been attracting increasing interest. The topolog-
ical classifications of these phases are determined by the KO
theory [1,2]. Particularly, for spinless systems with (PT )2 =
1, we observe Z2 classifications for both one- and two-
dimensional (1D and 2D) gapped systems. The physical origin
is that under PT symmetry the wave functions over the Bril-
louin zone (BZ) are essentially real in contrast with the usual
complex wave functions [3]. Hence, the topology should be
described by characteristic classes for real vector bundles, like
the Stiefel-Whitney classes [4], rather than the Chern classes
for complex vector bundles [5–7]. Under the general frame-
work, various PT -symmetric real topological phases have
been discovered [3,8–12], along with intriguing effects such
as non-Abelian braiding structures [13], unconventional bulk-
boundary correspondence [12], and possibility to switch the
spin classes [14]. In terms of physical realizations, graphyne
and graphdiyne have been revealed as material candidates
for 2D real topological insulator and three-dimensional (3D)
real topological semimetal states [15–19], and the novel
nodal-line semimetal with twofold topological charges has
been realized by acoustic crystals with projective symmetry
[20–27].

However, two critical issues remain in the general theoret-
ical framework. First, there is no general method to calculate
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the 2D topological invariant w2 (also known as the real Chern
number) when the 1D (weak) topological invariant w1 is non-
trivial. In fact, it was not clear whether w2 is still well defined
in such a case. Second, in the classification framework, it
is standard practice to adopt the unit-cell convention for the
Fourier transform [28–31], under which the PT operator is
presumed to be constant in momentum space. However, this
condition is not fulfilled when the PT operation is noncen-
tered [32], i.e., the inversion center not coinciding with the
unit-cell center, which are not uncommon in real systems.
Then, the conventional Wilson-loop method fails, and the
classification itself would be called into question. These two
outstanding problems appear as the only obstacles in com-
pleting a general theory of PT -symmetric real topological
phases.

In this Letter, we provide solutions to both problems under
the K-theoretical framework. For the first problem, based
on the stable equivalence in K-theory [2], we show that
w2 remains well defined in the presence of nontrivial w1,
and we develop a working approach to separate w2 from
w1 for its evaluation. For the second problem, we justify
the invariance of the classification for noncentered PT sym-
metries by the equivariant K theory [33] and construct a
twisted Wilson-loop operator (tWLO) to formulate the topo-
logical invariants. We demonstrate our new approaches in
a simple rectangular lattice model, which exhibits interest-
ing topological boundary modes. By blowing away the two
clouds over the horizon of real topological phases, our work
completes the fundamental picture of these phases and pro-
vides the theoretical tools to explore them in a much broader
scope.
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FIG. 1. Examples of spectral flows of Wilson-loop operators.
(a) A nontrivial two-band diagram with w1,y = 0. (b) The two-band
diagram with w1,y = 1. (c) The generic three-band diagram with
w1,y = 1.

II. SEPARATION OF WEAK AND STRONG
TOPOLOGICAL CLASSIFICATIONS

Let us start by reviewing the meaning of the real topolog-
ical invariants. As pointed out in Ref. [3], for a constant PT
operator, one can always choose a global basis in momentum
space, such that P̂T̂ = K̂ with K̂ the complex conjugation, and
the invariants w1 and w2 can be deduced from the Wilson-loop
operator of the real valence states. Consider a 2D gapped
system and denote the real orthonormal valence states at mo-
mentum k as |ψR

a (k)〉 with a = 1, 2, . . . ,N and N being the
number of valence bands. The real Wilson-loop operator is
defined as

D(kx ) := P exp

[∫ π

−π

dkyAR
y (kx, ky )

]
∈ O(N ), (1)

where [AR
j (k)]ab = 〈ψR

a (k)|∂k j |ψR
b (k)〉 is the non-Abelian

real Berry connection, and P indicates path ordering. We
assume that each |ψR

a (k)〉 is differentiable in the bulk of BZ
and periodic along kx.

The 1D invariant w1,y is simply defined as

(−1)w1,y = det[D(kx )] =
N∏

a=1

eiθa (kx ), (2)

where eiθa are eigenvalues of D(kx ) [34]. In either case of w1,y,
the loop D(kx ) has a further Z2 topological classification for
N > 2, i.e., whether the loop can be continuously deformed
into a constant loop [35]. This corresponds to the 2D invariant
w2 [3].

If w1 = 0, the spectral flow, or more specifically the band
structure formed by θa(kx ) ∈ [−π, π ), offers a way to derive
w2. As explained in Ref. [10], w2 is equal to the parity of the
number Cπ of linear crossing points on θ = π [see Fig. 1(a)],

w2 = Cπ mod 2. (3)

This is numerically viable, because the spectral flow can be
calculated from the numerical Wilson-loop operator W (kx ),
which, unlike the real Wilson-loop D(kx ), does not require a
specific gauge. For each kx, W (kx ) is related to D(kx ) by a
unitary transformation U (kx ) [16,36,37],

W (kx ) = U (kx )D(kx )U †(kx ). (4)

Clearly, U (k) is an uncontrolled transformation in numerical
calculations. Nevertheless, the important point is that W (kx )

and D(kx ) share the same spectrum for each kx, such that w2

can be derived using W (kx ).
For the case of w1,y = 1, a serious problem arises in ap-

plying this numerical method, that there is always a flat θ

band at θ = π . For instance, in the case of N = 2, the two
θ bands must be flatly fixed at θ = 0 and π , respectively [see
Fig. 1(b)]. For N = 3, one θ band is flatly fixed at θ = π ,
and the other two generically form a complex-conjugate pair
[Fig. 1(c)]. Higher numbers of valence bands follow a similar
pattern. Evidently, w2 can no longer be inferred from counting
the crossing points at π [38], and it was suspected that w2 may
not be well defined for such a case.

Our solution to the problem is inspired by looking into the
fundamental K-theoretical classification over the 2D Brillouin
torus [1,29]:

K̃O(T 2) = (Z2 ⊕ Z2)w ⊕ (Z2)s. (5)

Here, the two components in the first bracket correspond to
w1,x and w1,y, the last component corresponds to w2, and the
subscript “w” and “s” refer to the weak and strong insulators
in 2D, respectively. It is significant to observe that from the
viewpoint of K theory, the topological structure in 2D is sep-
arable from that in 1D. This has two important consequences.
First, w2 must remain well defined regardless of the value of
w1. Second, the weak invariants w1,x and w1,y can be canceled
out by forming a direct sum with an appropriate Hamiltonian
which has trivial w2 but nontrivial w1,x and w1,y, so that w2 is
preserved under the operation.

The above idea leads to the following working procedure.
Let H(kx, ky) be the Hamiltonian of the 2D insulator sys-
tem with a nontrivial w1,y. We construct the direct sum of
H(kx, ky) with H(0,−ky) to obtain a composite Hamiltonian

H(k) =
[
H(kx, ky ) �

�† H(0,−ky)

]
. (6)

Here, � is a perturbation that couples H(kx, ky) and
H(0,−ky). It is needed to remove the flat bands at θ = π .
We must require � to preserve the PT symmetry, namely,
[�, P̂T̂ ] = 0. For example, we may simply choose it to be
λI , with λ a real number and I the identity matrix. Then, as
long as � is small enough that does not close the energy gap,
H(kx, ky) and H(kx, ky) share the same w2. But now, because
H(kx, ky) has a trivial w1,y [due to the cancellation between
H(kx, ky) and H(0,−ky)], we can directly apply the numerical
Wilson-loop method on H(kx, ky) to derive this w2.

Clearly, for a system with both nontrivial w1,y and w1,x, we
just need to further add H(−kx, 0) into the direct sum, along
with PT -preserving perturbation terms to couple the diagonal
blocks.

III. NONCENTERED PT OPERATORS AND THE TWISTED
WILSON LOOP

In analyzing topological invariants, it is standard practice
to adopt the unit-cell convention in the Fourier transform from
real space to momentum space [28,29]. In this convention,
only the distances R between unit cells appear in the Hamilto-
nian H(k), whereas the relative positions of sites within a unit
cell are gauged out, such that H(k) is manifestly periodic in
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FIG. 2. (a) A chain model. A and B sublattices have different
on-site energies and all hopping amplitudes are equal. Two inversion
centers are marked by blue and red dash lines. (b) A rectangular
model. The yellow shadowed unit cell is determined by the dimeriza-
tion pattern indicated by thick and thin bonds. Negative and positive
real hopping amplitudes are marked in red and blue, respectively.

momentum space. The periodicity is compatible with the fact
that BZ is topologically a torus, which is essential for defining
topological invariants [29].

However, an additional complexity arises when the spatial
symmetries are noncentered. Here, we demonstrate and elab-
orate this complexity by PT symmetry.

First of all, we stress that in practice, it is often necessary
to consider noncentered PT symmetry. First, there exist wide
range of lattices where choosing a primitive unit cell with
centered PT is simply impossible [39]. For example, it is the
case if each unit cell contains even number of sites with the
inversion center at one site. The 1D chain in Fig. 2(a) serves
as a simple example, and a 2D example investigated in detail
with our method can be found in Appendix A. Second, for
certain lattices, although it is possible to choose a unit cell
with centered PT , such a choice may not be compatible with
a given boundary geometry that we want to study. For exam-
ple, to study the 2D lattice in Fig. 2(b) with a flat edge, the
boundary-compatible choices of a cell must have noncentered
PT .

For all these cases, the momentum-space operator P̂T̂
acquires k dependence under the unit-cell convention [32].
This violates the presumption in the topological classification
scheme that requires a constant P̂T̂ operator in momentum
space [40]. To illustrate this point, let us consider the model
in Fig. 2(b). The P̂T̂ operator takes the following form:

P̂T̂ =
[

1 0

0 eiky

]
τ

⊗ σ1K̂, (7)

where τ and σ are two pseudospins corresponding to the row
and the column degrees of freedom of the four sites in a unit
cell, and the phase factor eiky comes from the fact that P maps
the two lower sites in the shadowed unit cell into its upper
neighbor, i.e., from the noncentered character of P. Note that
the fundamental algebra

(P̂T̂ )2 = 1 (8)

is still respected. Equation (8) indicates that locally at each
k we can always choose a basis which corresponds to a real
Hamiltonian, i.e., we can strip out the k dependence of P̂T̂
and transform it to P̂T̂ = K̂. However, the associated unitary
transformation V (k) must depend on k, and consequently the
transformed Hamiltonian H̃(k) = V (k)H(k)V †(k) is gener-
ally nonperiodic in momentum space. For Eq. (7), we have
V (k) = e−i(ky−π )/4eikyτ3/4e−iσ1π/4, and the transformed oper-
ator P̃T̃ = V P̂T̂V † = K̂. Although H̃(k) is nonperiodic, it
satisfies a twisted periodic boundary condition (tPBC):

H̃(kx, ky + 2π ) = 
H̃(kx, ky)
†, 
2 = 1. (9)

Here, 
 = eiαV (ky + 2π )V †(ky) is in general a real matrix for
some appropriately chosen α. For Eq. (7), 
 = τ3 ⊗ σ0 [41].

We now show that under the tPBCs (9), the topological
classification is still given by (5). Since 
2 = 1, the period
of H̃(k) is 4π for ky. With the 4π periodicity, the tPBCs (9)
are embodied as a Z2 group action:

λ : H̃(kx, ky) �→ H̃(kx, ky + 2π ) = 
H̃(kx, ky)
†. (10)

Clearly, λ2 = 1. Hence, the topological classification of H̃(k)
with ky ∈ [0, 2π ) under the tPBCs (9) is equivalent to the
classification of H̃(k) with ky ∈ [0, 4π ) under the PBCs and
the Z2 group action (10), i.e., the classification is given by the
equivariant orthogonal K group K̃OZ2 (T 2), where the torus
T 2 denotes the doubled BZ with ky ∈ [0, 4π ). It is important
to note that the Z2 group action λ is free on T 2, which leads to
K̃OZ2 (T 2) ∼= K̃O(T 2/Z2) [33]. Because T 2/Z2

∼= T 2 topo-
logically, it turns out that

K̃OZ2 (T 2) ∼= K̃O(T 2), (11)

and the classification is still given by (5) as claimed.
Although the topological classification is unchanged, the

formulation of the topological invariants has to be modified.
Here, we introduce the tWLO W (
) designated for the tP-
BCs (9), which systematically formulates both 1D and 2D
invariants.

Consider a 1D insulator (sub)system. We equally divide
the 1D BZ into N intervals, where the separation points
are labeled by i = 0, 1, . . . , N − 1. Recall that the ordinary
Wilson-loop operator W is evaluated by

W = lim
N→∞

N−1∏
i=0

Fi,i+1, (12)

with [Fi,i+1]ab = 〈a, ki|b, ki+1〉 [36]. Here, a and b label the
N valence bands, and therefore Fi,i+1 is an N × N matrix.
Note that [FN−1,N ]ab = 〈a, kN−1|b, k0〉, which stems from the
periodicity in momentum space.

Here, to accommodate the tPBCs (9), we need to modify
Eq. (12) by introducing the tWLO as

W (
) = lim
N→∞

(
N−2∏
i=0

Fi,i+1

)
× F (
)

N−1,N , (13)

with [
F (
)

N−1,N

]
ab

= 〈a, kN−1|
|b, k0〉. (14)

The difference from (12) lies in the last term. By inserting 
,
[F (
)

N−1,N ]ab corresponds to the desired infinitesimal transition

195116-3



YUE, LIU, YANG, AND ZHAO PHYSICAL REVIEW B 109, 195116 (2024)

amplitudes, because 
|b, k0〉 is an eigenvector of H̃(k⊥, ky +
2π ), as immediately seen from (9).

To see that the tWLO is well defined, we note that
W (
) transforms under the gauge transformation |a, ki〉 →∑

b U †
ba(ki )|b, ki〉 as

W (
) → U (k0)W (
)[U (k0)]†, (15)

which is exactly the same transformation rule for the ordinary
Wilson-loop operator. Moreover, in the basis of real valence
eigenstates |ψR

a 〉, it is easy to see from (9) that the real tWLO
D(
) satisfies

D(
) ∈ O(N ), (16)

which resembles Eq. (1). In numerical calculations with un-
controlled gauge, we can just use W (
) (instead of W ) to
evaluate the topological invariants w

(
)
1,2 , following the same

procedure as in (2) and (3).
In the presence of a nontrivial w

(
)
1 , w

(
)
2 can be extracted

by our method in Eq. (6), i.e., by forming the direct sum
H. It should be noted that the added perturbation term �

in (6) must satisfy the boundary condition H(kx, ky + 2π ) =
�H(kx, ky)�, besides the PT symmetry. Thus, we have the
following requirements:

[
,�] = 0, [P̃T̃ ,�] = 0. (17)

IV. MODEL AND BULK-BOUNDARY CORRESPONDENCE

To demonstrate our theory, we present a 2D insulator
model with (w(
)

1 ,w
(
)
2 ) = (1, 1). This model can illustrate

both our methods, namely, to shoot two birds with one stone.
More examples can be found in Appendixes B and C, includ-
ing a 2D model with centered PT and (w1,w2) = (1, 1), and
a 3D model of second-order real nodal-line semimetal.

We note that in contrast with w1 for centered PT , w(
)
1 does

not lead to boundary states [30]. This can be easily understood
from the 1D chain in Fig. 2(a). Here, the two w

(
)
1 values de-

termine whether the Wannier center is located at site A or site
B [42]. Since the Wannier center coincides with a lattice site,
the two cases correspond to two distinct atomic insulators.
Hence, w

(
)
1 does not have a direct boundary consequence.

Boundary states for such systems stem solely from w
(
)
2 .

As illustrated in Fig. 2(b), our model is an appropriately
dimerized rectangular lattice with only the nearest-neighbor
hopping. Under the unit-cell convention, the Hamiltonian is
given by

H(k) =
4∑

i=1

fi(k)�i + g1(ky)i�4�5 + g2(ky)i�3�5. (18)

Here, the coefficient functions are given by f1 = t1
x +

t2
x cos kx, f2 = t2

x sin kx, f3 = J+ sin ky, f4 = J+(1 − cos ky),
g1 = J− sin ky, and g2 = J−(1 + cos ky), where J± = (t1

y ±
t2
y )/2, and the t ′s are hopping amplitudes, as indicated in

Fig. 2. The Dirac matrices are chosen as �1 = τ0 ⊗ σ1, �2 =
τ0 ⊗ σ2, �3 = τ2 ⊗ σ3, �4 = −τ1 ⊗ σ3, and �5 = −τ3 ⊗ σ3,
which satisfy {�μ, �ν} = 2δμν14.

The noncentered PT operator is given in (7). Under the
aforementioned unitary transformation V (k), the Hamiltonian

FIG. 3. (a) Spectral flow of the tWLO. Here, t1
x = 1, t2

x = 5,
t1
y = 2, t2

y = 4.5. (b) Spectral flows of the tWLO for H. We choose
� = t01τ0 ⊗ σ1 + t31τ3 ⊗ σ1 with t01 = t31 = 2. (c) The second-order
topological phases for a rectangular-shaped sample with 20 × 19
sites. A PT -related pair of zero-energy corner modes are marked by
red (blue) dots on the diagonal (off-diagonal) direction when J− > 0
(J− < 0). (d) PT -related first-order helical edge states when J− = 0.

is converted to

H̃(k) = f̃1(kx )�1 + f̃2(kx )i�1�2

+ f̃3(ky)i�1�3 + g̃(ky)i�3�5,

where f̃1 = t1
x + t2

x cos kx, f̃2 = −t2
x sin kx,

f̃3 = −t1
y sin(ky/2) − t2

y sin(ky/2), and g̃ = t1
y cos(ky/2) −

t2
y cos(ky/2). One can easily check that the tPBC in (9) holds,

with 
 = τ3 ⊗ σ0.
As seen from Fig. 3(a), the tWLO along ky indicates

w
(
)
1,y = 1. Hence, to evaluate w

(
)
2 , we should follow Eq. (6)

to construct the H Hamiltonian. The allowed perturbation
terms � that satisfy Eq. (17) are real linear combinations
of τ0 ⊗ σ0, τ0 ⊗ σ1, τ0 ⊗ σ3, τ3 ⊗ σ1, and τ3 ⊗ σ3. Then, the
spectral flows of the tWLOs for H is shown in Fig. 3(b). As
one can see, the nontrivial strong topology w

(
)
2 is resolved

from the weak topology.
The strong topology w

(
)
2 = 1 will lead to a one-to-many

bulk-boundary correspondence as long as the PT symmetry is
preserved [12]. Particularly, two second-order boundary mode
configurations featuring a pair of PT -related corner states are
shown in Fig. 3(c). Moreover, without closing the bulk energy
gap, we observe a first-order case with a pair of PT -related
helical edge states as the critical state between the two second-
order phases [Fig. 3(d)].

V. SUMMARY AND DISCUSSION

Based on the K-theoretical framework, we resolve two
outstanding problems in the theory of real topological phases,
which significantly extends the physical relevance and the
scope of PT -symmetric real topological phases in real mate-
rials as well as in artificial systems. Furthermore, the ideas
underlying our solutions can be generalized into broader
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FIG. 4. A 2D lattice model. The thickness of each bond corre-
sponds to the magnitude of the hopping amplitude, and negative
and positive real hopping amplitudes are marked in pink and blue,
respectively. A unit cell is marked by the shadowed rectangle, which
contains six sites.

contexts. The method to separate topological invariants at
different levels (like w1 and w2) is applicable to all topological
classifications based on K theory, and the twisted Wilson loop
may be adapted to other momentum-dependent symmetry op-
erators, which are ubiquitous in crystals.
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APPENDIX A: 2D TOPOLOGICAL INSULATOR
WITH NONCENTERED PT SYMMETRY

It is not true that every PT -invariant lattice model has a
primitive cell whose center is also the inversion center. There
do exist PT -invariant lattices for which one can never find a
primitive unit cell satisfying the above condition. For exam-
ple, we can consider a lattice for which the unit cell contains
an even number of sites and the inversion center is at one of
the lattice sites. Suppose one can choose a primitive cell for
which the inversion center is also the unit-cell center, then
sites in the unit cell form inversion-related pairs except the
one at the center. This leads to an odd number of sites, which
is a contradiction. For this class of lattices, one has to adopt
our method to study the real topology.

In this Appendix, we consider a 2D topological insulator
with noncentered PT symmetry, which is shown in Fig. 4. Its
primitive cell contains six sites and the inversion center is on
one of the sites (indicated in the figure). Hence, this model
cannot have a primitive cell whose center coincides with the
inversion center. In other words, the PT symmetry here must
be noncentered. The inversion symmetry is represented as

P̂ =
[

1 0
0 eiky

]
⊗

⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦Î. (A1)

Combined with the time-reversal symmetry T̂ = K̂Î , the
space-time inversion symmetry is represented as

P̂T̂ =
[

1 0
0 eiky

]
⊗

⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦K̂, (A2)

which satisfies

(P̂T̂ )2 = 1. (A3)

We observe that the space-time inversion operator P̂T̂ is k
dependent.

The tight-binding Hamiltonian is given by

H(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 t1
x t2

x e−ikx T1 0 0

t1
x 0 t1

x 0 0 0

t2
x eikx t1

x 0 0 0 T2

T ∗
1 0 0 0 t1

x t2
x e−ikx

0 0 0 t1
x 0 t1

x

0 0 T ∗
2 t2

x eikx t1
x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A4)

with T1 = −t2
y + t1

y e−iky , T2 = t1
y − t2

y e−iky .
Since the PT symmetry is noncentered with k dependence,

we have to adopt the twisted Wilson loop method to calculate
the Stiefel-Whitney numbers. By the unitary transformation,

V (ky) =
[

1 0

0 e−iky/2

]
⊗

⎡⎢⎣− i√
2

0 i√
2

1√
2

0 1√
2

0 1 0

⎤⎥⎦, (A5)

the PT operator in Eq. (A2) can be transformed to

P̃T̃ = V (ky)P̂T̂V †(ky) = K̂. (A6)

The Hamiltonian in Eq. (A4) is transformed by V (ky) to

H̃(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q1 −Q2 0 S1 −S2 0

−Q2 Q1

√
2t1

x S2 S1 0

0
√

2t1
x 0 0 0 0

S1 S2 0 −Q1 −Q2 0

−S2 S1 0 −Q2 Q1

√
2t1

x

0 0 0 0
√

2t1
x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A7)

with Q1 = t2
x cos(kx ), Q2 = t2

x sin(kx ), S1 = (t1
y − t2

y ) cos
(ky/2), S2 = (t1

y + t2
y ) sin(ky/2). Since V (ky) is not 2π peri-

odic, the real Hamiltonian H̃(kx, ky) is not 2π periodic in ky

but satisfies

H̃ (kx, ky + 2π ) = 
H̃ (kx, ky)
†, (A8)

where 
 is given by


 = V (ky + 2π )V †(ky) =
[

1 0
0 −1

]
⊗

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦.

(A9)
We plot the spectral flow of the twisted Wilson loops of ky

subsystems along kx in Fig. 5(a) with t1
x = 1, t2

x = 5, t1
y = 2,
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θΛ

(k
x)

θΛ
(k

x)

kx

(a)

(c)

(b)

(d)
kx

π π

π π

0 0

0 0
-π
-π -π

-π

FIG. 5. (a) The twisted Wilson-loop spectral flow for the Hamil-
tonian in Eq. (A7), which shows a nontrivial 1D invariant. The
parameters are set as t1

x = 1, t2
x = 5, t1

y = 2, t2
y = 4.5. (b) The twisted

Wilson-loop spectral flow for the auxiliary Hamiltonian in Eq. (A10).
The parameters t1

x , t2
x , t1

y , t2
y are the same in panel (a), and the param-

eters of the perturbation are given in Eq. (A11). (c) The second-order
topological phases for a rectangular-shaped sample with 20 × 19
sites. A PT -related pair of zero-energy corner modes are marked by
pink (blue) dots on the diagonal (off-diagonal) direction when t1

y > t2
y

(t1
y < t2

y ). (d) PT -related first-order helical edge states when t1
y = t2

y .

t2
y = 4.5. Note that this model has six bands, and the two lower

bands are chosen as valence bands. We observe that the 1D
topological invariant is nontrivial. To obtain w2, we construct
the auxiliary Hamiltonian

H(kx, ky) =
[

H̃ (kx, ky) �

�† H̃ (0,−ky)

]
, (A10)

with the perturbation matrix

� =
[

1 0
0 0

]
⊗

⎡⎣10 0 0
0 10 5

√
2

0
√

2 6

⎤⎦
+

[
0 0
0 1

]
⊗

⎡⎣−1/2 0 0
0 3/2 0
0 0 −1

⎤⎦. (A11)

The corresponding twisted boundary condition is given as

� =
[

1 0
0 1

]
⊗

[
1 0
0 −1

]
⊗

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦, (A12)

and the corresponding space-time inversion operator is repre-
sented as PT = K̂, which is k independent.

The spectral flow of the twisted Wilson loop for H(kx, ky) is
plotted in Fig. 5(b), from which we see that the 2D topological
invariant w2 is nontrivial. The corner states corresponding
to this nontrivial w2 are shown in Fig. 5(c). Particularly,
two second-order boundary mode configurations featuring a
pair of PT -related corner states. Moreover, we can perform
a symmetry-preserving deformation without closing the bulk

FIG. 6. A 2D model on a rectangular lattice. The pink bonds
and blue bonds represent negative and positive real hopping ampli-
tudes, respectively. The thick and thin bonds have different hopping
strengths. The unit cell is indicated by the green lines, which has
centered PT symmetry.

energy gap, so that the system is transformed to a first-order
topological phase with a pair of PT -related helical edge states
as the critical state between the two second-order phases
[Fig. 5(d)].

It is noteworthy that even for lattices with unit-cell center
being the inversion center, our method is still useful. This is
because such a unit cell may be not natural or not compat-
ible with the boundary conditions. To study bulk-boundary
correspondence, the choice of primitive cell cannot be arbi-
trary and has to be compatible with boundary conditions, and
such a compatible choice has no guarantee of centered PT .
Our proposed solution is essential for handling such cases as
well.

APPENDIX B: 2D TOPOLOGICAL INSULATOR
WITH CENTERED PT SYMMETRY

Our method to eliminate nontrivial 1D topological invari-
ants generally holds regardless of whether the protecting PT
symmetry is centered or noncentered. In this Appendix, we
provide a 2D model with centered PT symmetry to demon-
strate our method. The model is illustrated in Fig. 6. The unit
cell is marked by the shadowed parallelogram, and contains
four lattice points. The inversion center is marked by a solid
black ball, from which one can easily see that the inversion
center is also the unit-cell center. The inversion symmetry is
represented as

P̂ = τ1 ⊗ σ0 Î. (B1)

Combined with the time-reversal symmetry T̂ = K̂Î , the
space-time inversion symmetry is represented as

P̂T̂ = τ1 ⊗ σ0K̂, (B2)

which satisfies

(P̂T̂ )2 = 1. (B3)
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θΛ

(k
x)

(k
x)

kx kx

π

0

-π
π0-π

π

0

-π
-π

0 π

θΛ

(a) (b)

FIG. 7. (a) The Wilson-loop spectral flow for the Hamiltonian in
Eq. (B4), which shows a nontrivial 1D invariant. The parameters are
set as t1

x = 1, t2
x = 5, t1

y = 2, t2
y = 4.5. (b) The Wilson-loop spectral

flow for the auxiliary Hamiltonian in Eq. (B5), from which we can
extract w2 for the original model. The parameters are set as t1

x = 1,
t2
x = 5, t1

y = 2, t2
y = 4.5, t01 = t13 = 2.4.

Indeed, the space-time inversion operator P̂T̂ is k indepen-
dent.

The tight-binding Hamiltonian is given by

H(k) =
4∑

i=1

fi(k)�i + g1(k)i�4�5 + g2(k)i�3�5. (B4)

Here, the coefficient functions are given by
f1 = −t2

y + t1
y cos ky, f2 = −t1

y sin ky, f3 = (t2
x /2) sin kx −

(t1
x /2) sin ky − (t2

x /2) sin(kx + ky), f4 = −(t2
x /2) cos kx +

(t1
x /2)(cos ky − 1) + (t2

x /2) cos(kx + ky), g1 = (t2
x /2) sin kx +

(t1
x /2) sin ky + (t2

x /2) sin(kx + ky), and g2 = (t2
x /2) cos kx +

(t1
x /2)(cos ky + 1) + (t2

x /2) cos(kx + ky), where the t ′s are
hopping amplitudes, as indicated in Fig. 6. The Dirac
matrices are chosen as �1 = τ0 ⊗ σ1, �2 = τ3 ⊗ σ2,
�3 = τ2 ⊗ σ3, �4 = τ1 ⊗ σ3, and �5 = −τ3 ⊗ σ3, which
satisfy {�μ, �ν} = 2δμν14.

In Fig. 7(a), we plot the spectral flow of the ordinary
Wilson loops of ky subsystems along kx for the Hamiltonian
in Eq. (B4). The parameters are set as t1

x = 1, t2
x = 5, t1

y = 2,
t2
y = 4.5, and the number of occupied bands is taken as two.

We can see w1,y = 1. Thus, one cannot obtain the 2D Stiefel-
Whitney number w2 by the conventional method.

According to our method, we can eliminate the nontrivial
w1,y by constructing the Hamiltonian

H(kx, ky) =
[
H(kx, ky) �

�† H(0,−ky)

]
, (B5)

which preserves the 2D topological invariant w2 of the origi-
nal model. Here, the mixing perturbation term can be chosen
as

� = t01τ0 ⊗ σ1 + t13τ1 ⊗ σ3. (B6)

We show the spectral flow of the Wilson loop for H̃ (kx, ky)
in Fig. 7(b) with t1

x , t2
x , t1

y , t2
y being the same as the original

model and t01 = t13 = 2.4. One can readily observe that w2 is
nontrivial.

In fact, the generality of our approach stems from its K-
theoretical foundation, namely, the stability of K-theoretical
groups, which is certainly independent of the type of 1D
Stiefel-Whitney number. We have demonstrated the general

FIG. 8. (a) 3D graphite lattice model with flux π for each rect-
angle and no flux for each hexagon. Pink (blue) color marks bonds
with a negative (positive) hopping amplitude. Green point indicates
the noncentered space inversion. (b) Schematic figure for the phase
of nodal loop. Here, the 2D subsystem (blue plane) has a nontrivial
second-order SW number w

(
)
2 with two pair of corner state related

by the inversion symmetry. These 2D corner states form the hinge
Fermi arcs connecting the nodal loops. The position of hinge arcs
depends on the sign of J−.

applicability of our method by models in both cases of cen-
tered and noncentered PT symmetries.

APPENDIX C: 3D SECOND-ORDER REAL
NODAL-LINE SEMIMETAL

In this Appendix, we consider a 3D graphite lattice model
with noncentered PT symmetry, which was constructed in
Ref. [23] and is shown in Fig. 8(a). There is π flux for each
rectangle and no flux for each hexagon. The lattice has an
off-centered inversion symmetry, which is the combination of
the screw rotation Sπ and the reflection Mz. The screw rotation
Sπ is projectively represented as

Ŝπ =
[

0 1
eikz 0

]
⊗ σ1 Îxy, (C1)

with Îxy inverting the momentum of the x-y plane. Mz is
represented as

M̂z = τ1 ⊗ σ0 Îz. (C2)

Hence, the inversion symmetry is projectively represented as

P̂ =
[

1 0
0 eikz

]
⊗ σ1 Î. (C3)

However,we can recover it by the gauge transformation G
that reverses the sign of each site in the even rows, which is
represented as

G = τ3 ⊗ σ0. (C4)

So we are led to the G-dressed off-centered inversion symme-
try P̂ as

P̂ =
[

1 0
0 −eikz

]
⊗ σ1 Î. (C5)

By the time-reversal symmetry T̂ = K̂Î , the space-time inver-
sion symmetry is represented as

P̂T̂ =
[

1 0
0 −eikz

]
⊗ σ1K̂, (C6)
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which satisfies

(P̂T̂ )2 = 1. (C7)

By the unitary transformation

V (kz ) = 1

2

[
1 0
0 ie−ikz/2

]
⊗

[
1 + i 1 − i
1 − i 1 + i

]
, (C8)

the PT operator in Eq. (C6) can be transformed to

P̃T̃ = V (kz )P̂T̂V †(kz ) = K̂. (C9)

The constraint of P̃T̃ is also k independent. The tight-binding
Hamiltonian is given by

H(k) =
4∑

i=1

χi(k)�i + g1(kz )i�5�4 + g2(kz )i�5�3, (C10)

where χ1(k) + iχ2(k) = t
∑3

i=1 e−ik·ai with ai being the three
bond vectors for each hexagonal layer, χ3(k) = J+(1 +
cos kz ), χ4(k) = J+ sin kz, g1 = J−(1 − cos kz ), and g2 =
J− sin kz with J+ = (J1 + J2)/2 and J− = (J1 − J2)/2. The
Dirac matrices are given as �1 = τ0 ⊗ σ1, �2 = τ0 ⊗ σ2,
�3 = τ1 ⊗ σ3, �4 = τ2 ⊗ σ3, and �5 = τ3 ⊗ σ3, which satisfy
{�μ, �ν} = 2δμν . By the unitary transformation in Eq. (C8),
the Hamiltonian in Eq. (C10) can be transformed to

H̃ (k) = f̃1(k)�1 + f̃2(k)i�1�2

+ f̃3(kz )i�5�4 + f̃4(kz )i�5�3�2, (C11)

where f̃1(k) = t
∑3

i=1 cos(k · ai ), f̃2(k) = t
∑3

i=1 sin(k ·
ai ), f̃3(kz ) = (J1 − J2) sin(kz/2), and f̃4(kz ) = (J1 +
J2) cos(kz/2). In Ref. [23], a real Dirac semimetal is realized
without the dimerization, i.e., when J− = 0. For J− �= 0,
the Dirac points are resolved into real nodal loops in the
presence of the dimerization along the z direction. The
nodal loops have two topological numbers as the first and
second Stiefel-Whitney (SW) invariants. One of them is
inherited from the real Dirac point, and the other is the Berry
phase along the circle encircling the loop. They give rise to
hinge helical modes, as shown in Fig. 8(b). The 2D ky − kz

subsystem H2D(ky, kz ) parametrized by kx in the interval
connecting the two nodal lines is a 2D SW insulator. When
kx = π , the Hamiltonian of the subsystem is written as

H̃2D(ky, kz ) = H̃(kx = π, ky, kz ). (C12)

The twisted boundary condition along the z direction is given
by

H̃2D(ky, kz + 2π ) = 
H̃2D(ky, kz )
†, (C13)

where 
 is given by


 = V (kz + 2π )V †(kz ) = τ3 ⊗ σ0. (C14)

According to Eq. (2), one can get w
(
)
1 (kz ) = 0 and

w
(
)
1 (ky) = 1 as shown in Figs. 9(a) and 9(b), which plot

θ
(k

z)

θΛ
(k

y)

(a) (b)

(d)

π π

π π

0 0

0 0
-π-π -π-π

θ
(k

z)

kz

π

0

0
-π-π

θΛ
(k

y)

0

0
-π
-ππ π

kz ky

ky

(c) π

FIG. 9. Panels (a) and (b) plot eigenvalues of the twisted Wilson
loops along ky and kz for 2D ky-kz subsystems of Eq. (C12) with
kx = π , respectively. The parameters are set as t = 1, J1 = J2 = 1.
Panels (c) and (d) plot the eigenvalues for the twisted Wilson loops
along ky and kz for the Hamiltonian in Eq. (C16) with t = J2 = 2,
J1 = 1.0, and t01 = 1.5, respectively.

the eigenvalues of the twisted Wilson loop for Eq. (C12).
Figure 9(b) implies the first SW invariant depends on the
direction of Wilson loop, which signifies the existence of
weak topology. To stripping off weak topology, we follow
the procedure of the main text by making a direct sum of a
H̃2D(ky, kz ) and H̃2D(0,−kz ), and adding some perturbations
� such that

[P̃T̃ ,�] = 0, [
,�] = 0. (C15)

By this procedure, the corresponding space-time inversion
operator is represented as PT = K̂, whose constraint is k inde-
pendent, too. To be precise, we have the resultant Hamiltonian
as

H(ky, kz ) =
[
H̃2D(ky, kz ) �

�† H̃2D(0,−kz )

]
, (C16)

and the corresponding twisted boundary condition is given as

� =
[

 0
0 


]
, (C17)

with 
 given in Eq. (C14). After introducing the perturbation
� = t01τ0 ⊗ σ1, we calculate the eigenvalues of the twisted
Wilson loops for the resulting Hamiltonian in Eq. (C16) as
shown in Figs. 9(c) and 9(d). Compared with Fig. 9(b), the
strong topology is resolved from the weak topology along the
kz direction with w

(
)
2 = 1, i.e., the spectra of Wilson loops

cross π an odd number of times.
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