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Magnetic order and strongly correlated effects in the one-dimensional Ising-Kondo lattice
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We investigate the magnetic order and related strongly correlated effects in a one-dimensional Ising-Kondo
lattice with transverse field. This model is the anisotropic limit of the conventional isotropic Kondo lattice model,
in the sense that the itinerant electrons interact with the localized magnetic moments via only longitudinal Kondo
exchange. Adopting the numerical density-matrix renormalization group method, we map out the ground-state
phase diagram in various parameter spaces. Depending on the Kondo coupling and filling number, three distinct
phases, including a metallic paramagnetic, a metallic ferromagnetic, and a gapped spin-density wave phase, are
obtained. The spin-density wave is characterized by an ordering wave vector, which coincides with the nesting
wave vector of the Fermi surface. This makes the corresponding magnetic transition a spin analog of the Peierls
transition occurring in the one-dimensional metal. Moreover, by analyzing the momentum distribution function
and charge correlation function, the conduction electrons are shown to behave like free spinless fermions in
the ferromagnetic phase. We finally discuss the effect of the repulsive Hubbard interaction between conduction
electrons. Our paper enriches the Kondo physics and deepens the current understanding of the heavy fermion
compounds.
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I. INTRODUCTION

As one of the most important canonical models in con-
densed matter systems, the Kondo lattice model (KLM) is
used to describe the process where a conduction band, oc-
cupied by itinerant fermions, interacting with a lattice of
localized magnetic moments [1]. The KLM is relevant to
a wide class of real materials called heavy fermion system
[2–11], in which huge quasiparticle mass can emerge due
to the formation of Kondo singlets [12,13]. The study of
such heavy fermion materials is believed to be critical for
understanding diverse phenomena such as quantum critical-
ity [5,14–20] and high-Tc superconducting compounds [2–4].
While the well-solved single-impurity Kondo problem pro-
vides some useful concepts for the KLM, there are aspects
where the single-impurity results have no analog in the lattice
case [21–23]. For example, except for a few exact results in
certain limits [24–26], the dynamical details of the interplay
between the local Kondo physics and the nonlocal Ruderman-
Kittel-Kasaya-Yosida (RKKY) interaction remains elusive.
As a consensus that has been reached, under zero temperature,
the one-dimensional (1D) KLM presents three distinct mag-
netic phases: the antiferromagnetic phase (AFM) with fully
opened spin and charge gaps, the metallic paramagnetic phase
(PM) with RKKY correlations, and the metallic ferromagnetic
phase (FM) [3,27–32]. The AFM is stable down to zero Kondo
coupling when the conduction band is half-filled, whereas the
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PM-to-FM transition can occur only away from half filling
[33–35].

The KLM respects a SU(2) rotational symmetry due to the
isotropic Kondo interaction in the spin space. However, by
adding anisotropy between the Kondo couplings, numerous
interesting physics, which is beyond the isotropic model, can
emerge [36–38]. For example, the KLM with properly tuned
anisotropy has been utilized to understand the physics of the
dissipative two-state systems [39,40]. Moreover, it has been
shown that the ferromagnetic Kondo couplings with easy-
plane anisotropy may yield anomalous singlet formation [41].
Among various kinds of anisotropy introduced in the KLM,
the Ising-Kondo lattice model (IKL) with only longitudinal
Kondo coupling takes on a special role [42–52]. Its impor-
tance is due both to its simple Ising-type coupling form,
amenable to both analytical and numerical treatments [50],
and to its relevance to a series of real materials [46–49]. The
IKL was first proposed to describe the concurrence of large
specific heat jump and weak antiferromagnetism in URu2Si2

[46]. Recently, some thermodynamic properties of the IKL
[50], including the antiferromagnetic topological character
[51] and the emergent strange metal behaviors [52], were
discussed on two-dimensional lattices. However, a systematic
understanding of the magnetic order in the IKL under vari-
ous conduction electron concentrations, especially for the 1D
case, is still lacking.

In this paper, we investigate the ground-state properties
of the 1D IKL with transverse field by using the numeri-
cal density-matrix renormalization group (DMRG) method
[53,54]. The competition between the nonlocal RKKY mech-
anism and the local Kondo physics leads to the emergence
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of magnetic correlations and, consequently, various mag-
netic orders. Apart from the metallic PM and FM, a gapped
spin-density wave phase (SDW) with long-range order is un-
raveled. The ordering wave vector characterizing the SDW is
found to be nothing but the nesting wave vector of the Fermi
surface constructed by the conduction electrons, making the
SDW a Peierls-like insulator. We also discuss the effect of
repulsive Hubbard interaction imposed on the magnetic or-
ders. It is revealed that the Hubbard interaction influences the
magnetic phases in a way much like the Kondo coupling; it
can trigger both the PM-to-SDW and SDW-to-FM transitions,
depending on the filling number of the conduction electrons.

II. MODEL AND METHOD

The IKL in consideration can be described by the following
Hamiltonian (h̄ = 1 throughout):

Ĥ = −t
∑

〈i, j〉,σ
ĉ†

i,σ ĉ j,σ + J
∑

j

ŝz
j Ŝ

z
j + �

∑

j

Ŝx
j

+U

2

∑

j

n̂ j,↑n̂ j,↓, (1)

where ĉ†
j,σ (ĉ j,σ ) is the creation (annihilation) field operator

of the conduction electron with spin σ (=↑,↓) at lattice site
j. The conduction electrons can hop between adjacent sites
〈i, j〉 with the hopping rate t . Ŝz

j denotes the z component
of the spin-1/2 operator for the localized magnetic moment.
The spin operator ŝz

j for the conduction electrons is defined by

ŝz
j = ∑

τ,τ ′ ĉ†
j,τ σ

z
τ,τ ′ ĉ j,τ ′/2 where σ z is the Pauli-z matrix. With

these definitions, the second term of Hamiltonian (1) denotes
the longitudinal Kondo interaction between the conduction
electron and the localized moment at the same site j. The
interaction strength J is assumed to be positive, implying
an antiferromagnetic Kondo coupling. Note that for the IKL
considered here, the ferromagnetic coupling with J < 0 is
connected to the antiferromagnetic case through a simple spin
rotation, which is in contrast to the conventional isotropic
KLM. The latter can exhibit dramatic different Kondo physics
depending on the sign of the coupling strength [55,56]. A
transverse field �, introducing additional nonadiabaticity, is
applied on the localized moments [46]. The direct repul-
sive interaction between conduction electrons is also included
through the last Hubbard-U term. In this paper, our main
focus will be on the ground-state properties of the conduction
electrons. The local moments construct the same magnetism
with conduction electrons due to the longitudinal Kondo cou-
pling term ∼ŝz

j Ŝ
z
j . In the following discussion, we set the

energy scale by taking t = 1, and we also take � = 1 unless
otherwise specified.

The Hamiltonian (1), with vanishing transverse Kondo
couplings (i.e., ŝ−

j Ŝ+
j + H.c. → 0), represents essentially the

anisotropic limit of the conventional KLM [1]. In the adi-
abatic limit with � = 0, the IKL is exactly solvable since
the localized moment at each site is conservative obeying
[Ŝz

j, Ĥ ] = 0. The thermodynamic properties of the IKL un-
der this condition has been preliminarily touched by Monte
Carlo simulations [50]. A nonzero transverse field �, how-
ever, breaks the conservativeness of Ŝz

j and adds quantum

fluctuations to the localized moments. In this sense, the local-
ized moments in the IKL can be alternatively viewed as lattice
degrees of freedom, which impose dynamic potentials on
the conduction electrons. The interactions between fermions
and lattice degrees of freedom become specially important
in 1D due to the perfect Fermi surface nesting [57,58]. One
of the most noted consequences, for example, is the Peierls
transition, characterized by the formation of a charge-density
wave ordered at the nesting wave vector [59]. In light of the
Ising-type interaction between conduction electrons and local-
ized moments, in the IKL, we expect that an analogous SDW
instability of the conduction electrons can be reached through
similar mechanisms. This point will be further elucidated in
the subsequent sections.

The magnetic order of the conduction electrons can be
effectively characterized by the spin structure factor,

S(k) = 1

L

∑

l, j

〈
ŝz

l ŝ
z
j

〉
ei(l− j)k, (2)

where L is the number of lattice sites and 〈...〉 denotes the
ground-state average. The peak position in S(k), denoted
by an ordering wave vector kmax, characterizes the spatial
variation of spin orientations projected into the z direction.
Alternatively, we can characterize the magnetic order using
the spin correlation function in real space

s(r) = 1

L

∑

l

〈
ŝz

l ŝ
z
l+r

〉
, (3)

where r is the distance between different sites. The correlation
function s(r) has the advantage of intuitively showing the
spatial distribution of the spin correlations. The equivalence
between S(k) and s(r) can be clearly found by noting that they
constitute a Fourier transform pair. In the spirit of Landau’s
paradigm, the magnetic ordering is characterized by sponta-
neously broken symmetry at some ordering wave vector kmax.
This implies the existence of long-range order, which can be
identified by scaling the spin structure factor [60],

lim
L→∞

1

L
S(kmax) > 0. (4)

The long-range nature is also manifested in the correlation
function s(r) by limr→∞ s(r) 
= 0. Therefore, we can identify
different magnetic phases according to Eq. (4) by extrapo-
lating the spin structure factor to the thermodynamic limit
L → ∞. In this way, we may obtain the kmax-ordered SDW
for kmax 
= 0 and the FM for kmax = 0. If S(k)/L is extrapo-
lated to be zero in the thermodynamic limit, the corresponding
phase loses any magnetic long-range order and is thus termed
PM. We emphasize that, due to the space-inversion symmetry
of the system, any peaks in S(k), if exist, should be exactly
symmetric about k = 0.

Here, we perform state-of-the-art DMRG calculations to
compute the many-body ground state of the system, with
which various physical observable can be obtained. In our
numerical simulations, the filling number ρ = N/L is a good
quantum number, which can be varied from zero to one. Here
N is the total number of conduction electrons. We set lattice
size up to L = 60, and work with open boundary conditions.
For each lattice size, we retain 600 truncated states per DMRG
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FIG. 1. The correlation function s(r) for systems with ρ = 0.75,
L = 60, and a varying J .

block and perform 20 sweeps with a maximum truncation
error of ∼10−9.

III. MAGNETIC CORRELATIONS INDUCED
BY KONDO COUPLING

We first clarify the effect of the Kondo coupling J by
setting U = 0. Before showing the numerical results, some
qualitative insights can be gained by inspecting different pa-
rameter regimes. For the coupling strength comparable with
or less than the Fermi energy of the conduction electrons, the
dominant ordering force turns out to be the RKKY correlation
with Ising anisotropy, which compete with the quantum fluc-
tuations induced by the transverse field �. Increasing J further
to the intermediate coupling regime, the disorder created by
� is irrelevant and the interplay between the RKKY-type
interactions and the local Kondo physics becomes important.
At extremely strong coupling J � 1, the conduction electrons
and the local moments are tightly bound together to form
antiferromagnetic Ising pairs (AIPs). Similar to the Kondo
singlet formed in the isotropic KLM, the AIPs here are site
localized and may give rise to distinct local Kondo physics
[61]. We thus expect rich long-range magnetic orders may
emerge throughout the whole range of the coupling strength.

A. Phase transitions and long-range order

Let us discuss in detail the magnetic phase behaviors of the
IKL in different coupling regimes. Figure 1 shows the corre-
lation function s(r) with ρ = 0.75 and different J . When J is
relatively weak, the spin correlation rapidly decays to zero as
the distance r increases. For larger J , we observe a persistent
oscillation of s(r) instead. This nondecaying behavior of spin
correlation signals the emergence of a long-range magnetic
order.

The transitions between different magnetic phases be-
comes clearer if we investigate the corresponding spin
structure factor S(k). The left column of Fig. 2(a1)–2(c1) plot
S(k)/L for three different values of J with ρ = 0.75. The
results for different system sizes are labeled by lines with
different colors. The values of L → ∞ are obtained by the
standard finite-size scaling. The right column of Fig. 2(a2)–
2(c2) demonstrate the scaling details for three characteristic
wave vectors. We first focus on the weak coupling strength
with J = 2.0 [Fig. 2(a1)]. It is shown that S(k)/L develops
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FIG. 2. (a1)–(c1) The scaled spin structure factor S(k)/L and
(a2)–(c2) the corresponding finite-size scalings at three characteristic
wave vectors for systems with (a) J = 2.0, (b) J = 10.0, and (c)
J = 22.0. Different system sizes are characterized by lines with
different colors. In these figures, we set ρ = 0.75 and U = 0.

weak peaks at k = kmax = ±2kF for any finite-system sizes,
resulting from a RKKY-type correlation. Here kF = πρ/2
is the Fermi momentum of the conduction electron. As the
system size increases, however, the peaks become weaker and
weaker and eventually disappear in the thermodynamic limit
L → ∞. This implies that the magnetic correlations built up
in this regime is essentially short range, and consequently give
rise to the appearance of PM. Something interesting happens
if the coupling strength increases. The spin structure factor
with J = 10.0 is shown in Fig. 2(b1). It is found that, while
the structure with kmax = ±2kF still exists, the peaks become
much higher and sharper compared to J = 2.0. Accordingly,
the scaled structure factor S(k = kmax)/L is extrapolated to
a finite value in the thermodynamic limit [see the red line
in Fig. 2(b2)], indicating the existence of a SDW, which
is ordered at k = kmax. This is in sharp contrast with the
isotropic KLM. In that case, the conduction electrons lose
the true SDW order due to additional fluctuations, although
short-range magnetic correlations still exist [3]. Increasing J
further, the conduction electrons and localized moments start
to be bound together and the tendency of local AIP formation
overwhelms that of the RKKY-type correlation. As a result, a
sharp peak at k = 0 grows up whereas density waves at other
wave vectors are greatly suppressed, as shown in Fig. 2(c1).
This structure of S(k) unambiguously demonstrates the ferro-
magnetism. We thus find that as J increases, the system starts
from PM, and subsequently traverses the SDW, and eventually
evolves to the FM.
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FIG. 3. (a) The ordering wave vector kmax and (b) the ordering
strength Smax as functions of J with ρ = 0.75 and U = 0 .

To provide a more precise picture, we monitor the ordering
wave vector kmax as a function of the coupling strength for
ρ = 0.75. Considering the inherent inversion symmetry of
S(k) about k = 0, we here focus on the kmax � 0 part. As
shown in Fig. 3(a), kmax is not well defined for J < 5.8 due
to the general vanishing of S(k)/L in the limit of L → ∞,
which is the character of the PM. Increasing J above 5.8,
a well-defined kmax emerges at 2kF , and keeps at that value
until it drops to zero where the FM is formed. The feature that
kmax keeps constant before reaching FM is different from the
isotropic KLM, where the peaks in S(k) can move continu-
ously toward zero as J increases [56]. Figure 3(b) plots Smax,
which we dub ordering strength, in terms of J . Smax is the
maximum of the scaled spin structure factor limL→∞ S(k)/L
within the Brillouin zone. With this definition, we find the re-
lation Smax = limL→∞ S(kmax)/L applies in the ordered phase.
It follows that Smax, together with the value of kmax, serve as
complete order parameters characterizing the ordering process
of different magnetic phases. As shown in Fig. 3(b), while
Smax remains zero in the PM, it gradually increases from zero,
reaching the maximum, and then decreases until vanishes at
the critical point Jc = 16.4. Above Jc, the system enters the
FM with monotonically increased Smax.

The nonmonotonical behavior of Smax results from the
competition between the RKKY-type interaction and the AIP
formation. The details of this competition is partially man-
ifested in the correlation function between the conduction
electron and local moment,

Scf(r) = 1

L

∑

l

〈
ŝz

l S
z
l+r

〉
. (5)

As defined in Eq. (5), the correlation function Scf(r) measures
the nonlocal character of the antiferromagnetic Ising bond
between the conduction electrons and local moments [28].
Figure 4(a) plots Scf(r) with a varying values of J . At weak
coupling J = 2, the hybridization between the conduction
electron and local moment is ineffective, yielding a rather
weak signal in Scf(r). For larger J , Scf(r) increases in height
and it decays very slowly as r increases, reflecting a sizable
extension of the Ising bond. This long-range behavior of Scf(r)
signals the appearance of a regime where the RKKY mecha-
nism may work. Increasing the coupling strength further such
that J � 12, Scf(r) becomes more and more localized, imply-
ing that the size of the Ising bond reduces, and the RKKY
mechanism is suppressed. This point is further strengthen by
examining the on-site correlation Scf(0) versus J . As shown
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FIG. 4. (a) The correlation function Scf(r) for different J . (b) The
on-site value Scf(0) as a function J . The other parameters in these
figures are ρ = 0.75, U = 0, and L = 60. The red-dashed line in
(b) denotes the value of the perfect AIPs.

in Fig. 4(b), as J increases, Scf(0) approaches asymptotically
that of perfect AIPs −ρ/4 (the red-dashed line).

Up to now, our discussion is limited to a specific band
filling of the conduction electrons, namely ρ = 0.75. We have
observed that the ordering wave vector of the SDW in this
filling is fixed by the Fermi momentum of the conduction
electrons via kmax = ±2kF . In fact, this relation applies to any
fillings provided the system is within the SDW. To demon-
strate this, we plot kmax and Smax as functions of ρ with
J = 12.0 in Figs. 5(a) and 5(b), respectively. As an immediate
finding, while kmax keeps filling independent in the FM and
PM, it follows ρ linearly through kmax = ±2kF in the SDW
region [see Fig 5(a)]. Notice that the ordering wave vector 2kF

is exactly the nesting wave vector of the Fermi surface, which
characterizes the charge-density wave in an Peierls insulator
[59] . It is thus inferred that the appearance of the SDW in the
1D IKL can be traced back to the perfect Fermi surface nesting
effect. The latter drastically modifies the band structure of
itinerant electrons. From this point of view, the formation
of SDW in the IKL can be regarded as a magnetic analog of
the Peierls transition, which occurs in the charge degree of
freedom.

B. Phase diagram

With the understanding above, we map out the phase di-
agram in the J − ρ plane in Fig. 6. As can be seen, the
PM occupies most portion of the phase diagram for weak
coupling strength, due to the dominant quantum fluctuations
of the local moments. As J increases, the ordered phases,
including FM and SDW with various ordering wave vectors,
emerge. Whereas the SDW is more favored when the filling
number is closed to ρ = 1, the FM is formed away from
this half-filling case. The ordering process for J = 12.0 is

0.0 0.2 0.4 0.6 0.8 1.00.0
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FIG. 5. (a) The ordering wave vector kmax and (b) the ordering
strength Smax as functions of ρ with J = 12.0 and U = 0.
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FIG. 6. The phase diagram in the J − ρ plane with U = 0. The
phase boundaries have been extrapolated to the thermodynamic limit
L → ∞.

illustrated in Fig. 5(b), where we find Smax increases rapidly
as ρ approaches one. We emphasize that the SDW for ρ = 1
is an antiferromagnetic insulator characterized by a Néel con-
figuration with finite spin and charge gaps [50]. Increasing J
above 14.0, the PM generally disappears and the SDW region
starts to shrink. The antiferromagnetic insulator for ρ = 1,
however, remains stable against the ferromagnetization even
in the J → ∞ limit [50].

The mechanism of different magnetic structures closed to
and far away from half filling can be understood as follows.
As illustrated in Fig. 7(a), in the strong coupling regime
and around half-filling, each neighbor sites of the conduction
electron is likely to be occupied by another one, since double
occupancy of the conduction electrons on the same site would
elevate the energy by �E ∼ J/4. As a result, the hopping
between neighbor sites is forbidden by the Pauli exclusion
principle if the spins of conduction electrons align in the same
direction. However, if the spins form an antiferromagnetic
configuration, a virtual tunneling process can occur, which
lowers the kinetic energy of the conduction electrons by
�E ∼ 4t2/J , resembling closely the superexchange process
in the Hubbard model [60]. Far away from half filling, on the
other hand, the conduction electrons can freely move along the
lattice without costing any additional energy once their spins
are aligned parallel to each other [see Fig. 7(b)].

The above picture hints that the system is a gapped in-
sulator throughout the SDW (not only the half-filling case)
and becomes metallic when moving into FM and PM. This
proposition is corroborated by calculating the scaling of the
entanglement entropy between a block of size l and the rest
of the system, Sl = −Tr(ρl ln ρl ), where ρl = TrL−l |�〉〈�|
is the reduced density matrix corresponding to the block.
For 1D systems, gapped phases follows an area law, and the

FIG. 7. Schematic illustration of the magnetic structures when
the conduction electrons are (a) around and (b) far away from half
filling. In these figures, the red and blue balls denote the localized
moments and conduction electrons, respectively.
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FIG. 8. (a) The entanglement entropy Sl in terms of the block
size l , for representative points of PM (J = 2.0, ρ = 0.75), SDW
(J = 8.0, ρ = 0.75), and FM (J = 18.0, ρ = 0.5) with L = 60. The
scaling behavior for different phases are plotted by lines with dif-
ferent colors. (b) The finite-size scaling of spin gap δs for ρ = 0.75
and different J . In these figures, we fix the Hubbard interaction as
U = 0.0.

entanglement entropy Sl would saturate as l increases [62].
Sl in gapless phases, however, does not saturate but grows
logarithmically when increasing l [63]. The scaling of Sl for
three representative points in the phase diagram are shown in
Fig. 8(a). While the presence of a gap in the SDW is indicated
by the saturation of Sl , the FM and PM are both gapless since
Sl logarithmically diverges with the block’s size.

To better understand the gapped nature of the SDW, it is
instructive to compute spin gap directly in this phase. Given
that the global net magnetization of conduction electrons is
zero for both PM and SDW, the spin gap can be conveniently
defined for these states as

δs = Eg
(
sz

tot = 1
) − Eg

(
sz

tot = 0
)
, (6)

where Eg(sz
tot ) is the ground-state energy with invariant total

spin sz
tot of the conduction electrons. Figure 8(b) plots the spin

gaps δs as a function of 1/L for ρ = 0.75 and various J . For
relatively small J , δs extrapolates nicely to zero as L → ∞,
indicative of a gapless state. However, for larger coupling
strength (J > 6) at which the SDW is reached, the spin gap
δs extrapolates to a finite value as L → ∞. We emphasize
that such a nonzero spin gap was found throughout the SDW,
indicating the stability of this state against spin fluctuations.

C. Momentum distribution of the conduction electrons

The interplay of the localized and itinerant behaviors in
the IKL can be alternatively characterized by the momentum
distribution function of the conduction electrons,

n(k) = 1

L

∑

l, j

〈ĉ†
lσ ĉ jσ 〉ei(l− j)k . (7)

Figure 9(a) shows the variation of n(k) with increasing J for
ρ = 0.5. For small J , as expected, the Fermi surfaces of the
conduction electrons is clearly formed at kF = ±πρ/2. As J
increases, the conduction electrons start to be hybridized with
the local moments, which broadens the distribution of n(k)
and blurs the original Fermi surfaces. For even larger J , two
sharp edges in n(k), separating the occupied and unoccupied
states, appear at kL

F = 2kF = ±πρ. Further increasing J has
little effect on the structure of n(k), indicating that the system
has reached a strong coupling regime with a well-defined
large Fermi surface. The variations in the structure of n(k) is
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FIG. 9. (a) The momentum distribution function n(k) and (b) the
charge structure factor C(k) for systems with ρ = 1/3, U = 0,
L = 60 and a varying J .

accompanied by corresponding changes in the charge struc-
ture factor, defined by

C(k) = 1

L

∑

l, j

(〈n̂l n̂ j〉 − 〈n̂l〉〈n̂ j〉)ei(l− j)k . (8)

As shown in Fig. 9(b), we plot C(k) for the same values of
J as those used in Fig. 9(a). When J is small, C(k) exhibits
two cusps at kc = ±πρ, manifesting the free particle nature
of the conduction electrons. The cusps, however, is smoothed
at intermediate values of J , exhibiting characters of strongly
interacting fermions. Moving into the strong coupling regime
with larger J , two new cusps are formed at kL

c = ±2πρ.
Through a careful analysis of n(k) and C(k) for different
filling numbers, we find that the appearances of the char-
acteristic wave vectors kL

F and kL
c are always accompanied

by the formation of FM. The above signatures of n(k) and
C(k) strongly suggest that, in the strong coupling regime, the
conduction electrons behave like free spinless fermions.

To understand this, let us start from a half-filled IKL with
N (= L) conduction electrons. In the strong coupling regime,
each local moment tend to catch an electron to form an AIP,
ending up with a 1D liquid composed of L AIPs. Doping
away from half filling amounts to adding holes to the system.
Note that double occupancy of holes on the same lattice site
is naturally excluded by definition. As discussed above, when
the spins of conduction electrons are aligned parallel to each
other, the system can lower its energy by allowing the holes
freely moving on the lattice. Otherwise the hoping process of
holes may elevate energy due to the strong Kondo coupling.
Suppose now we have L − N holes (N < L) moving in the sea
of the AIP background. The Fermi momentum of these mobile
holes is thus kh

F = [1 − (L − N )/L]π = ρπ = kL
F , exactly at

the large Fermi surface.

IV. EFFECT OF THE REPULSIVE
HUBBARD INTERACTION

We proceed to discuss the effect of finite repulsive Hubbard
interaction U . Following the same manner used in Sec. III, we
present the phase diagram in the J − U plane for ρ = 0.75 in
Fig. 10(a). One of the direct impacts of the Hubbard interac-
tion is that the FM becomes more robust. As U increases, the
phase boundary between FM and SDW is persistently pushed
to lower value of J , until U ≈ 60, for which the SDW disap-
pears and the FM directly touches the PM. The stabilization of
FM by U is also predicted in the isotropic KLM [8,26] and can
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FIG. 10. (a) The phase diagram in the J − U plane with ρ =
0.75 and (b) the phase diagram in the ρ − U plane with J = 4.0.
The phase boundaries in (a) and (b) have been extrapolated to the
thermodynamic limit L → ∞.

be understood on physical grounds; the repulsive interaction
enhances the energy penalty costed by double occupancy of
the conduction electrons on the same lattice site, which pro-
motes the formation of the on-site AIP. The latter becomes
mobile if the lattice is doped far away from half filling, and
thus favors ferromagnetism through the Kondo mechanism we
mentioned at the last of Sec. III. It is interesting to find that
the critical value of J at which PM-to-SDW transition occurs
presents great dependence on the Hubbard interaction when
U is relatively small. As the Hubbard interaction increases,
however, this critical value appears to saturate at Jc ≈ 3.0,
showing no explicit dependence on U . The saturation value
of Jc terminates at U ≈ 60, above which the SDW disappears.

To see clearly the role of U in inducing various phase
transitions, we plot kmax and Smax as functions of U for two
different values of J in Fig. 11. It is to be seen that, depending
on the value of J , the repulsive interaction can drive various
magnetic phase transitions, including PM-to-SDW, SDW-to-
FM [Figs. 11(a1) and 11(a2)], and PM-to-FM [Figs. 11(b1)
and 11(b2)] transitions. We find again that the ordering wave
vector kmax in the SDW is independent of U and uniquely
specified by the Fermi momentum. As such, the phase tran-
sition driven by U is of course filling dependent. The general
result is summarized in the ρ − U phase diagram for J = 4.0
[see Fig. 10(b)]. We observe that the filling number influences
the phase transitions in a similar fashion as that in the J − ρ

phase diagram (see Fig. 6); the transition from PM to FM
turns out to be easier for low electron filling, and the SDW
is stabilized only closed to half filling.

Along the logic in Sec. III, let us examine the impact of U
on the momentum distribution function and charge structure
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FIG. 11. (a1)-(b1) The ordering wave vector kmax and (a2)-
(b2) the ordering strength Smax as functions of U for systems
with (a) J = 4.0 and (b) J = 2.5. In these figures, we set
ρ = 0.75.

factor. The variations of n(k) and C(k) with ρ = 0.5 and
J = 4.0 and a varying values of U are respectively shown
in Figs. 12(a) and 12(b). As depicted in these figures, when
increasing U , both n(k) and C(k) exhibit the same behaviors
as those shown in Fig. 9. Especially when U is sufficiently
large for which the FM is reached, the aforementioned large
Fermi surface is clearly formed at kL

F = ±πρ, suggesting a
ferromagnetic metal.

As can be found from above discussion, the role of repul-
sive Hubbard interaction presents great similarities with the
Kondo coupling J , hinting that it may work through renormal-
izing J . The full clarification of the connection between U and
J in the IKL may require some more sophisticated analytical
approaches, such as renormalization group and bosonization,
which is out of the scope of the present paper and merits a
separate study in the future.
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FIG. 12. (a) The momentum distribution function n(k) and
(b) the charge structure factor C(k) for systems with ρ = 0.42,
J = 4.0, L = 60, and a varying U .

V. CONCLUSIONS

In conclusion, we have studied the ground-state properties
of the 1D IKL by using the numerical density-matrix renor-
malization group (DMRG) method. Three distinct quantum
phases, including a metallic PM, a metallic FM, and a gapped
SDW, have been obtained. The SDW is characterized by an
ordering wave vector, which coincides with the nesting wave
vector of the Fermi surface. This makes the PM-to-SDW tran-
sition a magnetic analog of the Peierls transition, which occurs
in the charge degree of freedom of a one-dimensional metal.
Moreover, by analyzing the momentum distribution function
and charge correlation function, the conduction electrons are
shown to behave like free spinless fermions in the FM. The ef-
fect of the repulsive Hubbard interaction between conduction
electrons has also been clarified.
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