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Non-Fermi liquids arise when strong interactions destroy stable fermionic quasiparticles. The simplest models
featuring this phenomenon involve a Fermi surface coupled to fluctuating gapless bosonic order parameter fields,
broadly referred to as “Hertz-Millis” models. We revisit a controlled approach to Hertz-Millis models that
combines an expansion in the inverse number (N) of fermion species with an expansion in the deviation of the
boson dynamical critical exponent z from 2. The structure of the expansion is found to be qualitatively different
in the quantum critical regime � � q and in the transport regime � � q. In particular, correlation functions in
the transport regime involve infinitely many diagrams at each order in perturbation theory. We provide an explicit
and tractable recipe to classify and resum these diagrams. For the simplest Hertz-Millis models, we show that
this recipe is consistent with nonperturbative anomaly arguments and correctly captures the fixed point optical
conductivity as well as leading corrections from irrelevant operators. We comment on potential applications of
this expansion to transport in more complicated Hertz-Millis models as well as certain beyond-Landau metallic
quantum critical points.
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I. INTRODUCTION

Over the past several decades, a growing number of met-
als have shown striking deviations from the predictions of

Landau Fermi liquid theory, one of the cornerstones of mod-
ern condensed matter physics. Examples include the normal
state of cuprate high temperature superconductors [1–7],
heavy fermion metals near a quantum critical point [8–12],
and more recently twisted bilayer graphene [13–15]. The most
robust feature shared by these materials is a T -linear resis-
tivity down to the lowest accessible temperatures, in contrast
to the T 2 resistivity seen in conventional Fermi liquids. Such
“strange metallic” transport signals the absence of stable elec-
tronic quasiparticles on the Fermi surface. Given that different
strange metals have distinct proximate phases and phase tran-
sitions, there is likely not a single unifying effective theory.
However, the destruction of quasiparticles requires strong in-
teractions between the fermions, which must be an essential
ingredient in any low-energy description.

A simple and natural route towards strong interactions
is to couple the Fermi surface to gapless bosonic modes.
When the bosons are mutually independent and only inter-
act with the Fermi surface, these models describe Landau
symmetry-breaking transitions in metals with the bosons play-
ing the role of coarse-grained order parameter fields (often
referred to as Hertz-Millis models after the pioneering works
of Refs. [16,17]). When there are multiple bosons with mutual
interactions, we get a wider class of models that can encom-
pass certain beyond-Landau metallic quantum critical points
(e.g., the Kondo breakdown critical point proposed for heavy
fermion metals [18–23]). In this paper, we will derive most
of our results in the simpler context of Hertz-Millis models
with scalar bosons and comment on generalizations towards
the end.

In 2+1 dimensions, Hertz-Millis models generically flow
to strong coupling in the infrared limit, thereby invalidating
a direct perturbative expansion in powers of the coupling
constant. This fundamental difficulty prompted the develop-
ment of various deformations of the Hertz-Millis model that
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FIG. 1. In a Hertz-Millis model, correlators in the quantum crit-
ical regime (� � q) control thermodynamic susceptibilities and
critical exponents, while correlators in the transport regime (� � q)
determine the conductivities of conserved currents. The structure of
any perturbative expansion can be qualitatively different in these two
kinematic regimes, which is a central challenge we must confront in
this paper.

introduce an additional small parameter, such that the original
Hertz-Millis action is recovered when the parameter is order
one [24–39]. Although many critical singularities can be cal-
culated to leading orders in these expansions, other important
physical properties like the electrical conductivity are more
difficult to compute.

The main objective of this work is to provide an efficient
framework for transport calculations within a controlled ex-
pansion that respects all the nonperturbative constraints from
symmetries and anomalies. The essential challenge we have
to confront is the failure of the low frequency and low mo-
mentum limit to commute. For a general bosonic correlation
function in the Hertz-Millis model evaluated at external fre-
quency � and momentum q, one can distinguish between the
“quantum critical regime” where � � q and the transport
regime where � � q. The former controls static suscepti-
bilities and critical exponents, while the latter determines
the uniform conductivity of various conserved currents (see
Fig. 1). Given an expansion in powers of some small param-
eter 1/N , the set of Feynman diagrams that contribute to the
correlation function at a fixed order in 1/N can be very differ-
ent in the two regimes and an expansion which is controlled
in one regime need not be controlled in the other. A concrete
example of this phenomenon occurs for the boson self energy
�(q,�) in the Yukawa-SYK expansion [35,36,38–42]. In the
quantum critical regime, the leading order diagram reproduces
Landau damping effects which are weakly dressed by higher
order corrections. But in the transport regime, the same dia-
gram gives a vanishing �(q = 0,�) as � → 0 which violates
the nonperturbative anomaly constraints in Ref. [42] when
the order parameter is odd under inversion. This example
shows that the interplay between these two regimes is subtle
in general and deserves a more careful study.

Motivated by the above phenomenon, we ask whether there
exists a controlled expansion in which bosonic correlation
functions can be reliably computed in both the “quantum
critical regime” and the “transport regime.” We answer this
question in the affirmative for the “double expansion” intro-
duced by Mross et al. in Ref. [28]. This expansion features N
species of fermions that interact strongly with a critical boson

whose kinetic term has a nonanalytic momentum dependence
|q|1+ε . A solvable limit can be obtained by taking N large, ε

small, with the product εN fixed. One can then construct a
systematic expansion order by order in ε (or equivalently in
1/N), where all calculations can be performed directly for the
full Fermi surface without passing to a multipatch approxima-
tion. Physically, the value of ε controls the spatial falloff of
long-range fermion interactions mediated by the boson. The
ε = 0 limit corresponds to a 1/r Coulomb interaction that nat-
urally appears in the Halperin-Lee-Read theory for composite
Fermi liquids in quantum Hall systems [43]. The ε = 1 limit
restores the analyticity of the boson kinetic term and identifies
the boson with a standard Landau order parameter.

In previous works [28,44], it has been understood that
this perturbative scheme provides an efficient and controlled
expansion for physical properties in the “quantum criti-
cal regime,” including dynamical critical exponents, fermion
anomalous dimensions, and 2kF singularities.1 However, it
was observed in Ref. [45] that even to leading order in the
1/N expansion, the boson self energy �(q,�) in the “trans-
port regime” � � q contains an infinite number of diagrams,
suggesting that there is no tractable expansion. In this work,
we show that this is not the case by rewriting the boson self
energy as a geometric series,

�(q,�) = 〈gq,�|WG(1 − K )−1 |gq,�〉 , (1.1)

where |gq,�〉 denotes the Yukawa interaction vertex, and
WG, K are kernels acting on pairs of particle-hole lines that
will be precisely defined in Sec. III. Surprisingly, we find
that the infinite set of diagrams for �(q = 0,�) get repack-
aged into finitely many diagrams for K at each order in
1/N . Moreover, we provide in Sec. III B a “surgery+suture”
recipe for constructing transport diagrams from quantum crit-
ical diagrams, thereby facilitating efficient calculations of the
electrical conductivity.

This formalism can be directly applied to several problems
in metallic quantum criticality. In the simplest case of a Fermi
surface coupled to a single order parameter field (e.g., ne-
matic or loop current order), we show that the leading order
diagrams in the transport regime reproduce the fixed point
optical conductivity derived using nonperturbative anomaly
arguments in Refs. [42,45,46]. Systematic corrections due to
irrelevant operators are captured by the same set of diagrams
that appear to leading order in the Yukawa-SYK expansion,
except that the dynamical critical exponent is set to z = 2 + ε

[47–51]. As emphasized in Ref. [49], the Yukawa-SYK ex-
pansion suffers from a potential instability for z > zc = 8/3.
Within the double expansion, this instability is avoided for
perturbatively small ε. The fate of this instability as ε is
extrapolated back to 1 is reserved for future studies.

In more complicated Hertz-Millis models where the
fermions carry spin (or more general internal degrees of
freedom) and the boson couples to some of the spin com-
ponents, we work out modifications to the structure of K
and identify the leading order diagrams that contribute to the

1Up to a potential double-log divergence at four-loop order identi-
fied in Ref. [37] that we will discuss in Sec. II B.
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spin-resolved conductivities. A detailed evaluation of these
diagrams in Ref. [52] gives critical incoherent transport in the
spin channel at the IR fixed point. It is our hope that the basic
analysis in this work provides a solid foundation for perturba-
tive studies of electrical transport in more general non-Fermi
liquids.

The rest of the paper is organized as follows. In Sec. II,
we set up the general Hertz-Millis action and review the basic
structure of the double expansion. This review is followed by
the identification of an infinite number of diagrams that con-
tribute to the boson self energy at leading order in the transport
regime. In Sec. III, we proceed to classify this infinite set of
diagrams and give a recipe for efficient calculations. The main
result is summarized in Sec. III B 2. In Sec. IV, we apply this
diagrammatic classification to several concrete models and
compare with results in the literature. We conclude in Sec. V
with the merits/potential caveats of our approach and point out
some future directions to explore.

II. REVIEW OF THE CONTROLLED EXPANSION

A. Setup and basic properties in the quantum critical regime

Consider a Fermi surface formed by fermions f coupled
to the long wavelength and low frequency fluctuations of
some bosonic order parameter φ. The Euclidean action for this
general Hertz-Millis model takes the form

S = S f + Sφ + Sint,

S f = −
∫

k,ω

f †(k, ω)(iω − εk) f (k, ω),

Sφ = 1

2

∫
q,�

φ∗
a (q,�)(λ�2 + K|q|2 + m2)φa(q,�),

Sint =
∫

k,q,ω,�

ga(k, q)φa(q,�)

f †(k + q/2, ω + �/2) f (k − q/2, ω − �/2), (2.1)

where εk is some generic fermion dispersion and m2 is the
boson mass which vanishes at the critical point. The Yukawa
interaction Sint couples the boson φa to a fermion bilinear
with a form factor ga(k, q). Important examples include the
Ising-nematic critical point with g(k, q) ∼ cos kx − cos ky and
fermions coupled to emergent gauge fields with g(k, q) ∼
vF (k) × q̂.

In 2+1 dimensions, the Yukawa coupling is a relevant
perturbation to the Gaussian fixed point. Therefore, the low-
energy properties of this model cannot be reliably extracted
from perturbation theory and a controlled calculation requires
deformations of the model with additional small parameters.
The simplest way to introduce a small parameter is to consider
the model with N identical species of fermions transforming
in the fundamental representation of U (N ) and perform an
expansion in powers of 1/N . Though tremendously success-
ful in zero-density quantum field theories, this “fundamental
large N” approach was shown to be uncontrolled in the pres-
ence of a Fermi surface in the pioneering work of Sung-Sik
Lee in Ref. [27]. The crux of the issue can be summarized

as follows: within the fundamental large N expansion, the
leading order fermion and boson Green’s functions take the
form

G(k, iω) ∼ 1

iω + C
N sgn(ω)|ω|2/3 − εk

,

D(q, i�) ∼ 1

|q|2 + γ
|�|
|q|

, (2.2)

where C, γ are constants. In the infrared limit, the boson
self energy is N-independent and takes the familiar Landau
damping form. However, the O(1/N ) term in the fermion
self energy dominates over the bare energy for ω � 1/N3

and the fermion Green’s function is enhanced by a power
of N as ω → 0. When factors of G enter higher order
Feynman diagrams as internal propagators, this enhancement
invalidates the naive N-counting, rendering the expansion
uncontrolled.

To get around this problem, Mross et al. introduced a
further deformation of the Hertz-Millis action Eq. (2.1) in-
spired by earlier works of Nayak and Wilczek [26]. Here,
the f -sector still contains N identical species of fermions,
but the φ-sector has a nonanalytic kinetic term q1+ε . The full
Euclidean action therefore takes the form

S = S f + Sφ + Sint,

S f = −
∫

k,ω

N∑
i=1

f †
i (k, ω)(iω − εk) fi(k, ω),

Sφ = 1

2

∫
q,�

φ∗
a (q,�)(λ�2 + |q|1+ε + m2)φa(q,�),

Sint = 1√
N

∫
k,q,ω,�

ga(k, q)φa(q,�)

×
N∑

i=1

f †
i (k + q/2, ω + �/2) fi(k − q/2, ω − �/2).

(2.3)

The proposal of Ref. [28] is that a 1/N expansion becomes
controlled if N → ∞ and ε → 0 with the product εN fixed.
This can be simply understood by examining the fermion self
energy for general ε ∈ [0, 1],

	(k, iω) ∼ 1

N sin 2π
2+ε

sgn(ω)|ω| 2
2+ε . (2.4)

In the limit of ε = 1, this self energy scales as 1/N , leading
to the infrared problems identified in the fundamental large
N expansion. But when ε → 0 and N → ∞, the self energy
scales as

	(k, iω) ∼ 1

Nε
sgn(ω)|ω| 2

2+ε . (2.5)

Since εN is held fixed, the prefactor in 	(k, iω) is now O(1)
and the infrared problems in the fundamental large N expan-
sion are avoided.

Based on the logic above, we expect that higher-order
corrections to the fermion and boson self-energies organize
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themselves into the following series:

	(k, iω) =
∞∑

n=0

N−ng(n)
c (εN, k, ω),

�(q, i�) =
∞∑

n=0

N−ng(n)
b (εN, q,�), (2.6)

where g(n)
c , g(n)

b are continuous functions that have finite lim-
its as N → ∞, ε → 0 and εN fixed. At each order in 1/N ,
these functions can be found by enumerating all diagrams
according to their N-scaling in the fundamental large N ex-
pansion and evaluating them. Having avoided the infrared
singularities in the fundamental large N expansion, we expect
the dependence of g(n)

c and g(n)
b on frequency and momenta

to be no more singular than the leading order results in
Eq. (2.2) (up to logarithms). This structure has been veri-
fied up to three loops in Ref. [28]. A recent tour de force
calculation [37] shows that two four-loop diagrams involving
virtual Cooper pairs contain a double-log divergence which
may destabilize the expansion. Concretely, working within a
pair of anti-podal patches on the Fermi surface with coordi-
nates x, y perpendicular/parallel to the patches, the double-log
divergence is a contribution to the boson self energy that
scales as �(qx, qy, i�) ∼ |qy|(log �y/|qy|)2. The authors of
Ref. [37] argued that no other diagram can cancel the double-
log divergence using a “local divergence conjecture” which,
while reasonable, was not proven in their paper.2 Due to
this unresolved subtlety in the argument, we will temporar-
ily neglect the double-log divergence in this work. If this
divergence becomes firmly established in the future (like for
the antiferromagnetic quantum critical metal [54]), then the
conclusions that we draw in Secs. III and IV still hold over
some intermediate energy scales but may break down in the
deep IR limit.

B. Infinitely many diagrams at every order in perturbation
theory in the transport regime

The discussion in Sec. II A neglects a fundamental prob-
lem: for any correlation function with external momentum q
and frequency �, the quantum critical regime where � � q
can have scaling behaviors that are very different from the
transport regime � � q. In other words, the low frequency
and low momentum limits do not commute. This phenomenon
can be illustrated most simply for the one-loop boson self
energy

�1−loop(q, i�) ∼
{

γ
|�|
|q| � � q

�0 � � q
. (2.7)

2Previously, an even more singular (log �y/|qy|)5 divergence
was identified in the fundamental large N expansion with no ε-
deformation [53]. However, the authors of Ref. [53] were able to
remove the divergence by adding an extra term proportional to q2

x/q2
y

in the boson kinetic energy. Since q2
x/q2

y has the same tree-level
scaling dimension as q2

y under patch scaling qx ∼ q2
y , it is natural for

q2
x/q2

y to be generated by an RG flow. It would be interesting to ex-
plore if an analogous workaround can be found for the (log �y/|qy|)2

divergence in Ref. [37], which has a distinct conceptual origin.

FIG. 2. While combinatorial scaling predicts that a ladder dia-
gram with n rungs is O(N−n), an explicit calculation shows that
integrals over internal momenta carry additional factors of N and all
of the ladder diagrams are in fact O(1) in the transport regime.

In the quantum critical regime, the boson self energy correctly
reproduces the divergence of the order parameter suscepti-
bility as m2 → 0 and also predicts the dynamical critical
exponent z = 2 + ε when combined with the bare nonanalytic
kinetic term |q|1+ε . In the transport regime, the boson self
energy is insensitive to the quantum critical scaling behavior
and instead approaches a finite positive constant �0.3

This simple observation opens up the possibility that at
each order in 1/N , the set of diagrams contributing in the
quantum critical regime can be drastically different from the
set of diagrams contributing in the transport regime. We now
show that this is already the case even at leading order in 1/N
by considering ladder diagrams for the boson self energy as
shown in Fig. 2.

By naive combinatorial scaling, we associate a factor of N
to each fermion loop and a factor of 1√

N
to each boson-fermion

vertex. A ladder with n rungs has 2n + 2 vertices and a single
fermion loop. Therefore, one might expect that a ladder with
n rungs scales as N−n in the large N limit. However, if we
explicitly evaluate the 1-rung diagram in the transport regime,
then we find a structure [25]

�1-rung(q,�) ∼ 1

Nε
π (εN, q,�), (2.8)

where π is a regular function in the large N limit. Since Nε is
fixed, this formally O(N−1) contribution is in fact O(1) and
the combinatorial scaling breaks down.

The origin of this breakdown is that integrals over inter-
nal momenta can carry anomalous factors of N in the large
N limit. By manipulations detailed in Ref. [25], one can
show that the 1-rung diagram is proportional to the following
integral:4 ∫ ∞

0
dq D(q,�) ∼

∫ ∞

0

dq

q1+ε + γ
|�|
q

. (2.9)

For all ε > 0, the integral is convergent. However, the value of
the integral diverges as 1

ε
∼ N in the large N limit. In fact, one

can check that an n-rung diagram contains n powers of this
kind of loop integral. Therefore, �n−rung(q = 0,�) is O(1)

3The value of �0 does not matter for the present discussion and we
defer a precise definition to Eq. (4.4) in Sec. IV.

4Technically, this scaling estimate should have a prefactor which
is proportional to powers of the Yukawa interaction form factor
ga(k, q). So long as ga(k, q) approaches a nonzero limit as q → 0
for most k on the Fermi surface (i.e., all but a measure-zero set),
this scaling is valid. This constraint on ga(k, q) is satisfied by most
metallic quantum critical points of interest and will be assumed
throughout the paper.
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FIG. 3. The one particle irreducible boson self energy can be decomposed into a 4-pt fermion vertex multiplied by four fermion
propagators. The 4-pt fermion vertex (the grey box) is a geometric sum of the particle-hole irreducible kernel K .

for all values of n and we need to resum an infinite number of
diagrams already at leading order in the double expansion.

III. EXTENSION OF THE CONTROLLED EXPANSION
TO THE TRANSPORT REGIME

The infinitude of diagrams identified in Sec. II B seems
hopeless at first. The goal of this section is to show that this is
not the case and provide a tractable method to calculate their
total contribution order by order in the double expansion. In
Sec. III A, we first define a class of particle-hole irreducible
diagrams K such that the boson self energy can be written
as a geometric series 1

1−K .5 We then show in Sec. III B that
the kernel K only receives contributions from a finite number
of diagrams at each order in 1/N . Moreover, every diagram
in the transport regime can be generated by sewing together
diagrams in the quantum critical regime in a well-defined way.
In Sec. III C, we relate the diagrammatic expansion for the
boson self energy to the current-current correlation function
which controls electrical transport. For readers who are only
interested in the main results, the recipe for diagrammatic
constructions is given in Sec. III B 2 and the formula for
conductivity is summarized in Fig. 7 and Eq. (3.12). With this
outline in mind, let us dive in.

A. Boson self energy as a geometric sum of the particle-hole
irreducible kernel

In complete generality, the boson self energy �(q = 0,�)
consists of all diagrams with two external boson legs that
are irreducible with respect to cutting a single internal boson
propagator. In each diagram, we assume that the IR singular
contributions come from the integration region where all in-
ternal propagators live in the quantum critical regime. When
this is the case, we can first resum all the quantum critical
self-energy corrections in internal propagators. After the re-
summation step, the only diagrams we need to evaluate are
skeleton diagrams with no internal self-energy subdiagram.

We now proceed to organize the remaining vertex correc-
tions encoded in the skeleton diagrams. The key observation
is that �(q = 0,�) can be recast as a geometric series of

5This notation is schematic. The precise definition of this geometric
series will be given in Sec. III A.

particle-hole irreducible kernel K , as shown in Fig. 3. In-
tuitively, the particle-hole irreducible kernel K consists of
diagrams that cannot be factorized by cutting a particle prop-
agator on the top and a hole propagator on the bottom. In
the rest of this section, we precisely define the meaning of
these terms and show that the geometric series is a complete
expansion.

Consider a generic four-fermion vertex diagram with two
particle legs labeled as 1, 2 and two hole legs labeled as 3,
4. This vertex is shown in Fig. 4, with the orange shaded
region enclosing an arbitrary number of internal propagators.
Since the interaction vertex couples a particle-hole operator to
a boson, fermion lines in the diagram cannot terminate. There-
fore, the four legs 1, 2, 3, 4 must be pairwise connected via
a sequence of internal fermion propagators. Moreover, since
every interaction vertex must have one incoming fermion line
and one outgoing fermion line, 1 must be connected to 2
or 3, but not 4. When 1 connects to 2 and 3 connects to
4, we can always arrange so that both connections consist
of completely horizontal internal fermion propagators. This
defines the canonical representation of a horizontal four-point
vertex. When 1 connects to 3, we can always arrange so that
the connection between 1 and 3 goes through a series of
horizontal fermion propagators starting at 1, turns towards a
series of vertical fermion propagators labeled as v13, and fi-
nally turns again to a series of horizontal fermion propagators
running towards 3. A similar arrangement can be made for
the connection between 2 and 4. This procedure defines the

FIG. 4. The canonical representation of horizontal and vertical
fermion four-point vertex. The shaded region can contain arbitrar-
ily many internal propagators and loops. Each solid line in the
shaded regions do not represent a single fermion propagator but
rather a series of fermion propagators running in the same direction
(horizontal/vertical).
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FIG. 5. A vertical four-point vertex is minimal/nonminimal if it
cannot/can be factorized by a vertical cut on the left of v13 or on the
right of v24. We illustrate both cases in this figure.

canonical representation of a vertical four-point vertex. These
two cases are represented in Fig. 4.

We now think about factorizations. Suppose we start out
with a horizontal four-point vertex. Then we can apply a
recursive procedure, where in each step, we look for a virtual
string that cuts across one particle propagator on the 1–2
connection and one hole propagator on the 3–4 connection
and nothing else. If such a line can be found, then we say
that the horizontal diagram is p-h reducible. Otherwise, it is
p-h irreducible. Since each cut reduces the number of internal
lines in the original diagram, this process must terminate in
finitely many steps, in which case we are left with a finite
product of horizontal p-h irreducible diagrams.

Suppose instead that we start out with a vertical four-point
fermion vertex, where v13 and v24 are vertical sections of the
diagram that contain a series of consecutive fermion propaga-
tors, interrupted by outgoing boson propagators that are not
explicitly represented in Fig. 4. If we apply a vertical cut on
the immediate left of v13 and on the immediate right of v24,
then the original diagram factorizes into a product of two hor-
izontal four-point vertices and one vertical four-point vertex
[see Fig. 5(a) for an example of such a factorization]. Follow-
ing the procedure in the previous paragraph, the horizontal
four-point vertex diagrams can be further factorized into prod-
ucts of horizontal p-h irreducible diagrams. Therefore, we
need only analyze the factorization of a vertical four-point
vertex diagram where the external legs are immediately next
to v13, v24 (i.e., it cannot be further reduced from the left of
v13 or from the right of v24).

Due to the Yukawa interaction structure, the four corners
where vertical and horizontal fermion lines connect (which
we call NW, NE, SW, SE) are each connected to one boson
propagator as shown in Fig. 5(b). We canonically choose
these boson propagators to be horizontal. The other end of
each boson line must be connected to one incoming and one
outgoing fermion leg. We define a/d as the outgoing fermion
leg at the NW/SE vertex, and b/c as the incoming fermion leg
at the NE/SW vertex. With these definitions, it is natural to
refer to a, b as particle lines and c, d as hole lines. Now we
say that the vertical diagram is p-h reducible if a string can
be drawn that cuts only through one of a, b and one of c, d.
Otherwise, it is p-h irreducible. After making one such cut,
the diagram factorizes into a product of two smaller vertical
four-point vertex diagrams. This recursive process again ter-
minates in finitely many steps. Therefore, we arrive at the final
conclusion:

Claim 1: Every four-point vertex can be reduced to a finite
product of diagrams, each one of which is either horizontal
p-h irreducible or vertical p-h irreducible.

From here on, we will refer to the sum of all p-h irreducible
four-point fermion vertex diagrams (horizontal and vertical)
as K . Since the kernel K has four external legs, we regard it
as a linear operator acting on two external legs with average
momentum k, average frequency ω, relative momentum q, and
relative frequency �. These functions of four variables span a
vector space. Using a braket notation, we can represent the
boson vertex as |g〉 such that

〈k, ω, q,�| gq̄,�̄〉 = g(k, q) δ2(q − q̄) δ(� − �̄). (3.1)

The implication of Claim 1 is that the full boson self energy
can be rewritten as a geometric series in K :

�(q,�) = 〈gq,�|WG(1 − K )−1 |gq,�〉 , (3.2)

where WG is the kernel that corresponds to two parallel-
running fermion propagators

〈k, q, ω,�|WG |k′, q′, ω′,�〉
= δ2(k − k′) δ2(q − q′) δ(ω − ω′) δ(� − �′)

· G(k + q/2, iω + i�/2) G(k − q/2, iω − i�/2).
(3.3)

Having defined this compact braket notation, we proceed
to find a controlled expansion for the irreducible kernel K .
In general, the matrix elements of the irreducible kernel
〈v1| K |v2〉 can depend in complicated ways on the choice of
v1, v2. However, since possible anomalous factors of N come
from the internal loop integrals over boson momenta in K , the
N-counting of the matrix elements is independent of v1, v2.
Therefore, as far as N-counting is concerned, it suffices to
contract the four dangling legs in K with two external boson
vertices (which corresponds to choosing |v1〉 = WG |gq,�〉 and
|v2〉 = |gq,�〉). For convenience, we will slightly abuse nota-
tions and refer to this contraction 〈v1| K |v2〉 as K . It should be
understood that this contraction captures the N-scaling of the
original kernel K but not its detailed functional form.

B. Bridge between transport and quantum critical diagrams:
Surgery and suture

In the previous section, we gave a precise definition of
K , which is the sum of all p-h irreducible diagrams for the
fermion four-point vertex. Given this preparation, we are now
ready to present a classification of all diagrams in K in the
transport regime.

The classification scheme hinges upon a basic observation:
independent of the choice of external momentum/frequency,
the dominant singular contributions to every loop diagram in
the infrared limit arise from the integration region where all
internal boson propagators are in the quantum critical regime
� � q. To see that, we recall the large N solution for the
Euclidean boson propagator with q � kF and arbitrary � (up
to some microscopic energy scale EUV):

D(q, i�) ∼

⎧⎪⎨
⎪⎩

�−2 EUV ∼ � � q
�−1

0 EUV � � � q(
q1+ε + |�|

q

)−1
� � q

. (3.4)
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FIG. 6. A pictorial recipe for generating a quantum critical diagram from a transport diagram (and vice versa). Reading from the left, the
surgery step cuts one internal boson propagator open, and the reduction step removes the two external boson legs. The augmentation and suture
steps run in reverse. The key observation is that the N-scaling of the transport diagram on the left can be determined by the N-scaling of the
quantum critical diagram on the right.

For every internal boson propagator, if we fix a small q � kF

and integrate over �, then the gapless virtual processes at
� � q strongly enhance D(q, i�) and provide singular con-
tributions, while the gapped virtual processes with � � q
give a subleading correction that depends on the UV cutoff
EUV. Therefore, for the purpose of identifying the dominant
contributions to each diagram and classifying their N-scaling,
it suffices to restrict all internal boson legs to the quantum
critical regime.

With this preliminary observation in mind, we can give a
broad summary of the classification. The key idea is that every
transport diagram becomes a (possibly reducible) quantum
critical diagram after we cut one of the internal boson prop-
agators and remove the original external boson legs. Since
there are many internal boson propagators in general, this
correspondence is not one-to-one. However, if we can enu-
merate the set S of all possible quantum critical diagrams
that can arise from cutting any internal propagator in skeleton
transport diagrams, then we can then run the surgery in reverse
and obtain the set of all transport diagrams by sewing together
the external boson legs of every quantum critical diagram in
the set S and then removing the redundancies. As a concrete
example, consider the Maki-Thompson diagram in the trans-
port limit, as represented on the left side of Fig. 6. Reading
Fig. 6 from left to right, the surgery step involves cutting the
internal boson propagator with momentum q1 and frequency
�1 � q1. The reduction step then removes the two external
boson lines with momentum q and frequency � � q. In the
end, we are left with a quantum critical diagram which is just
a one-loop fermion bubble. Reading Fig. 6 from right to left,
the augmentation and suture steps are inverses of the reduction
and surgery steps.

What we will show is that the N-scaling of every transport
diagram is upper bounded by the N-scaling of the quantum
critical diagram obtained by “surgery + reduction.” Since
all quantum critical diagrams follow combinatorial scaling,
and since there are only finitely many quantum critical dia-
grams at each order in 1/N , the bridge between transport and
quantum critical diagrams immediately implies a controlled
and tractable expansion for the kernel K in the transport
regime.

1. From transport diagrams to quantum critical diagrams
and back again

Step 1: Surgery and reduction. Consider an arbitrary di-
agram Ki in the transport regime that contributes to the p-h
irreducible kernel K . With the exception of the trivial identity
diagram, every Ki has at least one internal boson line carrying
momentum q1 and frequency �1. When we cut this internal
boson line, we obtain a new diagram with four external legs
(for concreteness, one can again refer to the middle part of
Fig. 6). Two of these legs carry momentum q1 and frequency
�1 which are in the quantum critical regime �1 � |q1|. The
other two legs carry momentum q and frequency � which are
in the transport regime � � |q|. When q → 0, momentum is
conserved at the transport legs. Therefore, as far as momen-
tum integrals are concerned, one can further delete the two
external legs in the transport regime without changing the N
scaling of loop integrals. But because we lose two vertices in
this process, we must multiply the original diagram by a factor
of N .

Step 2: Augmentation and suture. After the surgery
and reduction procedure, we obtain an amputated diagram
�amp,i (q1,�1) which can be regarded as a boson self-energy
diagram in the quantum critical regime. By running the pro-
cedure in reverse, we can relate the N-scaling of the original
diagram Ki to the amputated diagram by a loop integral

Ki ∼ 1

N

∫
q1,�1

D(q1,�1) �amp,i (q1,�1), (3.5)

where D is the renormalized boson propagator, and 1/N
comes from the augmentation step which brings in two extra
vertices.

Since q1,�1 started their lives as the momentum/
frequency of an internal boson propagator, �amp,i (q1,�1)
should be evaluated in the quantum critical regime, where
combinatorial counting is valid. Therefore, we can write

�amp,i(q1,�1) = N−ni πamp,i (q1,�1), (3.6)

where N−ni is the combinatorial scaling of �amp,i and πamp,i

is an O(1) function of its arguments. The final task is to
determine the scaling of the integral over q1,�1. But since the
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double expansion is controlled in the quantum critical regime,
higher order corrections to �(�1 � q1) must be compara-
ble/subleading relative to the leading Landau damping term
|�1|/|q1| under dynamical critical scaling. In particular, this
means that

πamp,i (q1,�1) ∝ c0
|�1|
|q1|

+ subleading, (3.7)

where the subleading terms are suppressed by additional pow-
ers of |�1|/EF and/or |�1|/|q1|. Plugging πamp,i back into the
integral (3.5), we find

Ki ∼ N−ni−1
∫

q1,�1

1

|q1|1+ε + |�1|
|q1| + O(1/N )

· πamp,i (q1,�1,�)

∼ N−ni−1
∫

q1,�1

1

|q1|1+ε + |�1|
|q1| + O(1/N )

·
(

c0
|�1|
|q1|

+ subleading

)
. (3.8)

The integral over frequency is superficially divergent. How-
ever, this divergence is innocuous because it can be regulated
by UV frequency cutoffs that do not depend explicitly on
ε. However, potential divergences in the momentum integral
would be more concerning as they are related to scattering
processes along the Fermi surface mediated by the gapless
boson, which can have large momentum but low energy.
Fortunately, the presence of a positive ε guarantees the con-
vergence of momentum integrals. If c0 �= 0, then the integral
over q1 scales as 1/ε at small ε. If c0 = 0, then the integral is
O(1) in the small ε limit. Therefore, we conclude that there is
an upper bound on Ki,

Ki � N−ni−1 1

ε
∼ N−ni . (3.9)

This upper bound tells us that every transport diagram that
contributes at O(N−ni ) can be related (not uniquely) to a
quantum critical diagram �amp,i which scales as O(N−ni )
according to fundamental large N counting.

Step 3: Classification of all possible �amp,i. The final step
is to devise a simple method to classify and enumerate the
set of all quantum critical diagrams that can be obtained from
a transport diagram by the “surgery + reduction” procedure
defined in Step 2. For this purpose, it is useful to define a
generalized notion of diagrammatic reducibility as follows.

Definition: A diagram is boson-n-reducible if it can be
factorized into n + 1 disconnected subdiagrams by cutting n
internal boson lines.

With this definition in mind, we can establish two claims
(see the Appendix for detailed proofs).

Claim 2: �amp,i is not boson-n-reducible for any n > 1.
Claim 3: �amp,i does not contain a fermion self-energy

(fSE) subdiagram.
Based on these claims, we arrive at the important con-

clusion: the set of all possible �amp,i is the set of all boson
self-energy diagrams that are p-h irreducible, free from fSE
subdiagrams, and not boson-n-reducible for any n > 1.

2. Explicit recipe for constructing all transport diagrams
at each order in the controlled expansion

The classification in Step 3 immediately implies a simple
procedure that generates all possible transport diagrams in K
at any order in the double expansion. Suppose we want to
calculate the O(N−n) contribution to the boson self energy in
the transport regime. Then we first enumerate all boson self-
energy diagrams that are p-h irreducible, free from fermion
self-energy (fSE) subdiagrams, not boson-m-reducible for
m > 1, and O(N−n) under fundamental large N counting.
Label these diagrams by an index i. For each i, we then sew the
two external boson legs of diagram i together. Now enumerate
all possible ways to cut two internal fermion lines and obtain
a particle-hole kernel with four external fermion legs. The
nonredundant kernels generated from this procedure can be
labeled as Ki,s.

The total contribution to the particle-hole irreducible ker-
nel at O(N−n) is therefore K (n) = ∑

s,ni=n Ki,s.6 The boson
self energy in the transport regime can be obtained via a
geometric sum of the kernel

�(q = 0,�) = 〈gq=0,�|WG
1

1 − ∑
n K (n)

|gq=0,�〉 , (3.10)

where |gq,�〉 ,WG are defined in Sec. III A. This explicit recipe
is the main technical result of this paper. Note that although
the expansion has been developed for the boson self energy,
the large N counting structure in fact generalizes to two-point
correlation functions of any fermion bilinear operator. In the
next section, we use this observation to derive a diagrammatic
expansion for the electrical conductivity.

C. Relating the boson self energy to the optical conductivity

The electrical conductivity associated with a U (1) con-
served current J is related to a two-point function of J via
the Kubo formula

σi j (�) = GJiJj (q = 0,�)

i�
,

Ji(q) =
∫

d2k
(2π )2

vi
F (k)

N∑
i=1

f †
i (k + q/2) fi(k − q/2).

(3.11)

The computation of GJiJj requires evaluating all possible
Feynman diagrams that end on two external current vertices.
Pictorially, to distinguish from the Yukawa interaction vertex,
we represent the current vertex by a blue wavy line connected
to a pair of incoming/outgoing fermion lines. Unlike for the
boson self energy, the Feynman diagrams for GJiJj need not be
irreducible with respect to single boson line cuts. Therefore,
we cannot directly write GJiJj as a geometric series of p-h
irreducible diagrams. However, this problem can be easily
resolved if we decompose GJiJj into two terms-one which con-
tains all one-boson-line irreducible diagrams, and one which
contains the rest.

6Remember that some diagrams with ni = n might actually be
� N−n. But the important claim is that diagrams with ni > n are
always � N−n.
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FIG. 7. The current-current correlator can be decomposed into
two terms. In the first term, two external current vertices are directly
connected by the grey box which is the familiar 4-point fermion
vertex that we encountered in Sec. III A. The interior of the box is
irreducible with respect to single boson line cuts. In the second term,
we account for the remaining reducible diagrams by resumming them
into an exact boson propagator Dab.

The first term is simple to represent in terms of the four-
point fermion vertex defined in Sec. III A. Following the
notation of Sec. III A, we draw the four-point fermion vertex
as a grey box and insert it between the two external current
vertices (this is the first term in Fig. 7). For a noninteracting
Fermi surface, this is the only term that survives and it gives
rise to the Drude weight. The second term contains all dia-
grams that are reducible by cutting one internal boson line.
But any such diagram can always be factorized into a product
of one-boson-line irreducible diagrams. The factors that are
disconnected from the external current vertices resum into
a fully renormalized boson propagator. The factors that are
connected to the external current vertices are equivalent to two
additional grey box insertions. Therefore, the second term also
admits a simple diagrammatic representation as illustrated in
Fig. 7.

Finally, let us recall that the four-point fermion vertex
(represented as a grey box) is the geometric series of p-h
irreducible diagrams. Using the braket notation introduced in
Sec. III A, we can therefore translate Fig. 7 into a compact
equation

N−1GJiJj = 〈vi|WG(1 − K )−1 |v j〉 + 〈vi|WG(1 − K )−1 |ga〉
× Dab 〈gb|WG(1 − K )−1 |v j〉 . (3.12)

Note that with N species of fermions, the conductivity should
scale as N . The factor of N−1 on the left-hand side guarantees
that the right-hand side is an O(1) quantity. Once we have
a controlled expansion for K , the electrical conductivity can
be extracted by evaluating the inner products in Eq. (3.12).
In practice, this procedure is challenging because we need to
invert an infinite-dimensional operator 1 − K . However, as we
will see in Sec. IV, it is often the case that the spectrum of
1 − K contains a set of near-zero eigenvalues which dominate
the IR behavior of the conductivity. This simplification allows
us to obtain explicit formulas for the leading frequency depen-
dence of σ (q = 0,�).

IV. APPLICATIONS

We now apply the formalism developed in Sec. III to two
concrete physical examples. The first example is a Fermi
surface coupled to a single scalar boson order parameter with
a form factor g(k). We will find that the boson self energy
�(q = 0,�) approaches a finite constant in the IR limit. This
constant self energy in turn gives rise to a g(k)-dependent
correction to the free-fermion Drude weight. Both of these
results are fully consistent with the nonperturbative anomaly
arguments in Refs. [42,45]. We also calculate incoherent cor-

FIG. 8. The two amputated diagrams that contribute to �amp to
leading order in the double expansion.

rections to the optical conductivity and find agreement with a
recent analysis in the Yukawa-SYK expansion [49,50].

A. Spinless Hertz-Millis model with a single critical boson

Let us recall the Hertz-Millis action for a scalar boson order
parameter field within the double expansion

S = S f + Sφ + Sint,

S f = −
N∑

i=1

∫
k,ω

f †
i (k, ω)(iω − ε(k)) fi(k, ω),

Sφ = 1

2

∫
q,�

φ∗(q,�)(λ�2 + |q|1+ε )φ(q,�),

Sint = 1√
N

N∑
i=1

∫
k,q,ω,�

g(k) f †
i (k + q/2, ω + �/2)

fi(k − q/2, ω − �/2) φ(q,�). (4.1)

Our goal is to compute the self energy �(q = 0,�) in the
limit � → 0 to leading order in 1/N with εN fixed. To do
that, let us follow the recipe in Sec. III B 2 and first identify
the correct set of diagrams to include in K . At leading order in
the 1/N expansion, the set of diagrams that can contribute to
�amp consist of all boson self-energy diagrams that are p-h ir-
reducible, free from fSE subdiagrams, not boson-m-reducible
for m > 1 and O(N0) under fundamental large N counting.
By explicit enumeration, one finds that there are only two
diagrams that we need to account for, as shown in Fig. 8.
Let us label the diagram on the left/right as �amp,1/�amp,2.
The next task is to enumerate all possible ways to perform the
“augmentation + suture” procedure in Fig. 6 on each diagram.

For �amp,1, there are three ways as shown in Fig. 9. The s =
1 and s = 2 diagrams represent particle-hole kernels with an

FIG. 9. The three diagrams K (n=0)
i=1,s=1,2,3 that arise from three dis-

tinct ways to connect the two external boson legs in the amputated
diagram �amp,1.
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FIG. 10. The two diagrams K (n=0)
i=2,s=1,2 that arise from two distinct

ways to connect the two external boson legs in the amputated dia-
gram �amp,2.

electron self-energy correction on the particle/hole line. These
diagrams are not admissible because only skeleton diagrams
can contribute to K . The s = 3 diagram is the familiar Maki-
Thompson diagram, which is admissible. For �amp,2, there
are two ways to perform augmentation + suture as shown in
Fig. 10. Both s = 1 and s = 2 are admissible p-h irreducible
diagrams. Together, they constitute the Aslamazov-Larkin
corrections to the boson self energy.

Following conventional notations, we refer to K (n=0)
i=1,s=3 as

KMT and K (n=0)
i=2,s=1 + K (n=0)

i=2,s=2 as KAL, where MT stands for
Maki-Thompson and AL stands for Aslamazov-Larkin. In
terms of these kernels, the O(N0) result for the self energy
reduces to

�(n=0)(q = 0,�)= 〈gq=0,�|WG(1 − KMT − KAL)−1 |gq=0,�〉 .

(4.2)

The set of diagrams that need to be resummed in the above
expression is identical to the set of diagrams appearing in the
Gaussian effective theory for fermion bilinears in the Yukawa-
SYK large N model. Therefore, we can directly import results
obtained for the Yukawa-SYK model [38,42,49,50] (allowing
for a possible renormalization of the dynamical critical expo-
nent z)

�(q = 0,�) = �0 +
{

c1�
(8−z)/z convex FS

c2�
(4−z)/z concave FS

. (4.3)

For a general Fermi surface parametrized by Fermi momen-
tum kF (θ ), the constant part �0 is related to an angular
integral over the Fermi surface

�0 = Trθg2, Trθ f g =
∫

dθ
|∂θkF (θ )|

(2π )2

f (θ )g(θ )

vF (θ )
, (4.4)

which agrees with the nonperturbative fixed point answer
derived using anomaly arguments in Ref. [45].

Having understood the boson self energy, we can then turn
to the electrical conductivity. Recall from Sec. III C that, using
the braket notation, the current-current correlation function

can be written as

N−1GJiJ j (q = 0,�)

= 〈
vi

q=0,�

∣∣WG(1 − KMT − KAL)−1
∣∣v j

q=0,�

〉
+ 〈

vi
q=0,�

∣∣WG(1 − KMT − KAL)−1 |gq=0,�〉
× D(q = 0,�) 〈gq=0,�|WG(1 − KMT − KAL)−1

× ∣∣v j
q=0,�

〉
. (4.5)

The tour de force calculation in Refs. [49,50] shows that
the soft modes of 1 − KMT − KAL correspond to near unit
eigenvalues of −WG(1 − KMT − KAL)−1 (i.e., eigenvalues that
approach 1 in the � → 0 limit). Moreover, these soft modes
are generated by shape deformations of the Fermi surface.
Assuming that the Fermi surface has only one connected
component parametrized by an angle θ , the space of all shape
deformations is spanned by δ-function bumps localized at
every possible θ . Within the spectral decomposition, the sum
over these soft modes can be written as an integral over θ

with an appropriate measure. From the boson self energy, we
learned that the correct measure to choose for a generic Fermi
surface shape is∑

soft modes α

|α〉 〈α| =
∫

dθ
|∂θkF (θ )|

(2π )2vF (θ )
|θ〉 〈θ | . (4.6)

Summing up the soft mode contributions gives the most IR
singular part of GJiJj (q = 0,�)

−N−1GJiJ j (q = 0,�)

=
∫

dθ
|∂θkF (θ )|

(2π )2 vF (θ )

〈
vi

q=0,�

∣∣ θ 〉 〈
θ

∣∣v j
q=0,�

〉
+

∫
dθ

|∂θkF (θ )|
(2π )2 vF (θ )

〈
vi

q=0,�

∣∣ θ 〉 〈θ | gq=0,�〉

× 1

−�(q = 0,�)

∫
dθ

|∂θkF (θ )|
(2π )2 vF (θ )

× 〈gq=0,� |θ〉 〈
θ

∣∣v j
q=0,�

〉
= Trθv

i v j − Trθ (vi g)Trθ (gv j )

Trg2
+ δGJiJi (q = 0,�),

(4.7)

where δGJiJi (q = 0,�) is proportional to the frequency-
dependent part of �(q = 0,�). Plugging this correlation
function into the conductivity then yields a formula for the
total conductivity

σ i j (q = 0,�) = iN

�

[
Trθv

i v j − Trθ (vi g)Trθ (gv j )

Trg2

]

+ δσ i j (q = 0,�), (4.8)

where

δσ i j (q = 0,�) =
{
O(�(8−2z)/z ) convex FS
O(�(4−2z)/z ) concave FS

. (4.9)

Several comments are in order. First, the interaction-corrected
Drude weight agrees precisely with nonperturbative argu-
ments in Refs. [42,45]. The form of the correction depends
strongly on the interaction form factor g(θ ) ≡ g(kF (θ )). In
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particular, since the Fermi velocity vi(θ ) contains only odd
angular momentum modes, the Drude weight is only corrected
when g(θ ) also contains odd angular momentum modes. This
is the case for loop current order but not for Ising-nematic
order, as previously pointed out in Ref. [42].

The structure of incoherent corrections is also interesting,
as it shows a dichotomy between convex and concave Fermi
surfaces. In this context, a one-dimensional curve (e.g., Fermi
surface) is defined to be convex if for every point on the curve,
there exists a line passing through the point such that the curve
is contained in one of the two half-planes bounded by the
line. Therefore, a circular Fermi surface is convex, while a
starfish-shaped Fermi surface is concave. Why does concavity
play a role in the scaling of optical transport? The rough
intuition is that when a pair of virtual fermions are scattered by
a virtual boson with momentum q, the pair momenta change
from k − q/2, k′ + q/2 to k + q/2, k′ − q/2. The energeti-
cally favorable scattering processes are those where all four
fermions are nearly on shell (i.e., εk−q/2 ≈ εk+q/2 ≈ εk′−q/2 ≈
εk′+q/2 = 0). For a convex Fermi surface, there are at most
two solutions to this equation related by inversion k → −k. In
these special inversion-related channels, the leading singular
contributions from different diagrams cancel. However, for
concave Fermi surfaces, there are more solutions that are
not related by inversion. The contributions from these new
channels generically do not cancel and preserve the singular
scaling of individual diagrams. A more detailed discussion of
this dichotomy between convex and concave Fermi surface
can be found in a recent paper [55].

So far, we have only accounted for the soft modes, which
provide the leading Drude weight but not necessarily the
most IR-singular incoherent corrections. Generically, when
additional kinematic constraints emerge in the IR limit, the
soft mode corrections in δσ (q = 0,�) can be anomalously
suppressed and become less singular than the leading contri-
butions from rough modes. This anomalous suppression does
not happen for concave Fermi surfaces but does happen for
convex Fermi surfaces. Since diagrammatic calculations is not
the conceptual focus of our paper, we will not discuss these
details any further, and refer the interested readers to a careful
analysis of the competition between soft and rough modes in
Refs. [49,50].

B. Generalizations to multiple boson flavors and gauge fields

The double expansion can also be generalized to Hertz-
Millis models with multiple boson species and to certain
beyond-Landau metallic quantum critical points with emer-
gent gauge fields. The general idea is as follows: Suppose
we have a few species of fermions fi coupled to emergent
gauge fields Ai and critical bosons φi. In a generalized double
expansion, we introduce a nonanalytic kinetic term |q|1+ε

for all bosonic fields Ai, φi that couple to any of the Fermi
surfaces fi. Now for each fermion species, we introduce N
flavors labeled by fi,α where α goes from 1 ∼ N . Then a
controlled expansion can be developed again in the regime
ε → 0, N → ∞ with εN fixed.

With this generalized double expansion in mind, we can
now ask if the mixed boson self-energy matrix �φiφ j (q,�)
or mixed gauge field self-energy matrix �AiA j (q,�) admits a

tractable expansion in the transport regime � � |q|. Clearly,
one can still define a notion of p-h irreducibility such that
these self-energy matrices can be recast as a geometric series.
However, in the most general case where particles and holes
come in multiple flavors and different bosons can mix up the
flavors in different ways, the definition of p-h irreducibility
is complicated and a useful classification scheme for p-h ir-
reducible diagrams can only be developed on a case-by-case
basis. Therefore, instead of attempting to make general state-
ments, we will demonstrate how the classification works in
a specific spinful Hertz-Millis model, where we can already
appreciate both the complexities of additional flavors and the
flexibility of the formalism developed in Sec. III.

Consider a Fermi liquid formed by fermionic fields fi,α

where i = 1, . . . , N labels the different species and α = 1, 2
labels the spin. The model we study describes a Landau order-
ing transition associated with the onset of XY ferromagnetic
order in this metallic system. The XY order parameter is a
two component bosonic field (φx, φy) which couples to the
fermion sector via an interaction term

∫
φxSx + φySy where

the spin operators are defined by

Sx/y = 1

2

N∑
i=1

f †
i,ασ

x/y
αβ fi,β . (4.10)

Assuming that the ordering transition is continuous, the crit-
ical point can be captured by the following Euclidean action
(within the generalized double expansion):

S = S f + Sφ + Sint,

S f = −
N∑

i=1

2∑
α=1

∫
k,ω

f †
i,α (k, ω)(iω − ε(k)) fi,α (k, ω),

Sφ = 1

2

∫
q,�

∑
a=x,y

φa(q,�)(λ�2 + |q|1+ε )φa(q,�),

Sint = g

2
√

N

∑
a=x,y

2∑
α,β=1

N∑
i=1

∫
r,t

φa(r, t ) f †
i,α (r, t ) σ a

αβ fi,β (r, t ).

(4.11)

We are interested in diagrammatic expansions for various
bosonic correlation functions in the transport regime. The
simplest such example is a spin-polarized current-current
correlation function, which is related to the spin-polarized
conductivity via the Kubo formula. Due to the exchange
symmetry between spin labels 1 ↔ 2, we can focus on the
current-current correlator restricted to spin-1:

GJi
1J j

1
(q = 0,�) = 〈

Ji
1(q = 0,�)J j

1 (q = 0,−�)
〉
,

Ji
1(q) =

N∑
m=1

∫
d2k

(2π )2
vi

F (k) f †
m,1(k + q/2)

× fm,1(k − q/2). (4.12)

Following Sec. III C, we might at first expect that GJi
1J j

1
can be

decomposed into two terms as in Fig. 11. The first term con-
tains all diagrams that are irreducible with respect to internal
boson line cuts and the second term contains the rest. How-
ever, the Yukawa interaction structure demands each internal
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FIG. 11. The naive decomposition of GJi
1J j

1
into two terms misses

the fact that the second term is identically zero.

vertex to be associated with an off-diagonal spin matrix Sx or
Sy. This means that the second term in Fig. 11 necessarily
contains two subdiagrams that connect three fermion lines
with spin index 1 and one fermion line with spin index 2.
One can easily show that such diagrams vanish identically.
Therefore, the second term does not contribute to the spin-
polarized conductivity, as indicated by the red cross.

Coming back to the first term, we just need to understand
the grey box, which is a spin-polarized four-point fermion ver-
tex. Slightly generalizing the arguments in Sec. III A, one can
write this vertex as a geometric series of spin-1 particle-hole
irreducible diagrams K .7

The final step is to study the kernel K , which maps a pair
of spin-1 particle-hole fermion lines to another pair. As far
as N counting is concerned, the surgery and suture proce-
dures developed in Sec. III B still apply. However, the set of
diagrams that contribute to K at leading order in the double
expansion will be different. This is because certain diagrams
that have the correct N-scaling are forbidden by the interaction
structure. For a simple example, consider the Maki-Thompson
diagram which generates ladders in the spinless Hertz-Millis
model. Since the Yukawa interaction is off-diagonal in spin
space, the Maki-Thompson kernel maps a pair of spin-1
fermion lines to a pair of spin-2 fermion lines and vice
versa. Hence the Maki-Thompson kernel cannot contribute
to K .

With these illegal diagrams removed, the remaining di-
agrams that contribute to the p-h irreducible kernel K at

7Heuristically, this can be defined as all diagrams that cannot be
factorized upon cutting a pair of spin-1 particle-hole lines. For a more
precise definition, one can refer to Sec. III A.

O(N0) can be written as K11 + K12(1 − K22)−1K21 where Ki j

are kernels that maps between pairs of fermion lines with
different/same spins. The full structure is shown in Fig. 12.
By the exchange symmetry between the two spin species, the
spin labels attached to internal lines in the diagrams do not
affect the functional forms of internal propagators. Therefore,
we will write K12 = KMT + KAL and K11 = K22 = KAL and
omit explicit spin labels. This decomposition immediately
gives a compact formula for the spin-polarized current-current
correlation function

N−1GJi
1J j

1
(q,�) = 〈

vi
q,�

∣∣WG[1 − (KMT + KAL)(1 − KAL)−1

× (KMT + KAL) − KAL]−1
∣∣v j

q,�

〉
. (4.13)

Let us compare this formula with the analogous formula
Eq. (4.5) that appears in the spinless Hertz-Millis model.
The modification in the denominator has important physical
consequences. From the analysis in the spinless case, we
know that 1 − (KMT + KAL)(1 − KAL)−1(KMT + KAL) − KAL

and 1 − (KMT + KAL) have the same soft eigenvectors but
different spectra. This shift in the soft mode spectra will not
change the Drude part of the conductivity but can generically
lead to a quantum critical incoherent conductivity in the spin-
polarized channel. This is not surprising because the Yukawa
interactions in this model violate spin conservation explicitly.
Since this paper focuses on conceptual issues, we will not
comment further on the detailed evaluation of Eq. (4.13),
which is reported elsewhere [52].

This concludes our discussion of the spinful Hertz-Millis
model which describes a metallic XY ferromagnetic tran-
sition. The most important takeaway is that the large N
counting structure developed in the spinless Hertz-Millis
model survives in more general cases, although the definition
of “particle-hole irreducible kernel” and the set of diagrams
that need to be included at each order in the double expansion
can be modified in interesting ways. It is our hope that in every
new problem of this type, one can use the general logic in
Secs. III and IV to construct an appropriate classification of
diagrams and perform systematic conductivity calculations.

FIG. 12. Diagrams that contribute to the kernel K at leading order in the double expansion.
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V. DISCUSSION

Understanding the low-energy properties of non-Fermi liq-
uid metals is a longstanding challenge in condensed matter
physics. The simplest class of non-Fermi liquids are described
by Hertz-Millis models, where electronic modes near a Fermi
surface are strongly coupled to the long wavelength fluctua-
tions of gapless bosonic fields. In this work, we revisited a
controlled “double expansion” [28] for Hertz-Millis models,
which combines an expansion in the inverse number (N ) of
fermion flavors with an expansion in the boson dynamical
critical exponent, z = 2 + ε. While previous works studied
correlation functions in the quantum critical regime where
the external frequency � is much smaller than the external
momentum q, we focused on the opposite regime � � q
which is relevant for transport properties. The key challenge
was that correlation functions receive contributions from a
finite number of diagrams in the quantum critical regime,
but an infinite number of diagrams in the transport regime at
every order in the expansion. Surprisingly, we show that this
infinite set of diagrams can be reorganized into a geometric
series (1 − K )−1 where the kernel K only involves finitely
many diagrams at each order in the expansion. Furthermore,
we provide an explicit recipe for enumerating and resumming
these diagrams that facilitates tractable calculations of the
electrical conductivity.

It is useful to zoom out and consider the benefits and draw-
backs of the double expansion relative to other perturbative
approaches in the literature.8 One important merit is that the
double expansion preserves the microscopic U (1) symmetry
of the Hertz-Millis model and embeds it in a larger U (N )
symmetry of the deformed action. As a result, the metallic
quantum critical point can be accessed by tuning a single
U (N )-singlet relevant operator and the transport of conserved
symmetry currents is well-defined at all stages of the calcula-
tion. This is to be contrasted with the codimension expansion
[31] which explicitly breaks the microscopic U (1) symmetry,
and the Yukawa-SYK large N expansion which is a multicrit-
ical point with a large number (N2) of relevant deformations
(i.e., the boson mass matrix Ri jφ

iφ j). A related advantage of
the double expansion is that it preserves the anomaly structure
of the physical theory with N = 1, ε = 1. More precisely,
at the IR fixed point, the electrical current associated with
the U (1) subgroup of U (N ) respects the same anomaly con-
straints for every value of N . This feature is shared by the
matrix large N expansion but is violated in the Yukawa-SYK
expansion as shown in Ref. [42]. Going beyond correlation
functions that are constrained by symmetries and anomalies,
the double expansion also provides an efficient calculational
method that is competitive with the Yukawa-SYK expansion,
as demonstrated for the incoherent optical conductivity in
Sec. IV A. The analogous calculation has not been possible in
the matrix large N expansion, where a summation over planar
diagrams may be required even at leading order.

8Examples include the codimension expansion [31], the matrix
large N expansion [32,33], and the Yukawa-SYK expansion [36].
See Ref. [56] and Sec. 6 of Ref. [45] for a brief review of the basic
structure of each expansion scheme.

The main caveat of the double expansion, as emphasized
in Ref. [37], is that certain four-loop diagrams for the boson
self energy contain double-log divergences that cannot be can-
celed by local counterterms. These divergences originate from
virtual Cooper pairs spread across the entire Fermi surface,
which are absent in all the other expansions where ε is fixed
at 1. However, it is currently unknown whether there exists
other diagrams that can cancel these double-log divergences.
This open question needs to be resolved before a complete
assessment of the double expansion can be made.

Looking ahead, it would be interesting to explore if the
transport expansion developed in this paper can be applied
to a wider class of non-Fermi liquids. One natural direction
is the extension to more complicated Hertz-Millis mod-
els or beyond-Landau metallic quantum critical points that
we briefly discussed in Sec. IV B. The presence of arbi-
trary interactions between multiple species of fermions and
bosons generally weakens the constraints from nonperturba-
tive anomalies and allows for critical fixed point incoherent
conductivities that can potentially be accessed with a minor
generalization of the double expansion. A more ambitious
direction is to ask if the double expansion can be combined
with some additional control parameter to study Hertz-Millis
models with spatial disorder (see Ref. [57] for an interesting
attempt using the matrix large N expansion). Such a frame-
work would clarify the interplay between interactions and
disorder in the presence of a Fermi surface, which can lead
to novel transport phenomena that are not possible with either
of these ingredients alone. Finally, we must acknowledge
that many non-Fermi liquids observed in nature (including
cuprates and heavy fermion metals) are likely not described
by the Hertz-Millis model or any of its minor generalizations.
Nevertheless, the essential lesson that the structure of dia-
grammatic expansions can be qualitatively different in distinct
kinematic regimes is likely robust. We hope that this observa-
tion can serve as a useful guide in analyzing more realistic
theories of non-Fermi liquids in the future.
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APPENDIX: PROOFS OF TWO CLAIMS IN SEC. III B 1

In this Appendix, we prove two claims that are crucial for
the classification of particle-hole irreducible diagrams. Let
Ki be a diagram that appears in the expansion of the p-h
irreducible kernel K and let �amp,i be the diagram that remains
after we apply the “surgery + reduction” procedure to Ki as
defined in Sec. III B. Then the following claims are true:

Claim 2: �amp,i is not boson-n-reducible for any n > 1.
Proof. Recall from Sec. III B that a diagram is boson-

n-reducible if one can factorize the diagram into n + 1
disconnected subdiagrams by cutting n internal boson lines.
We prove that �amp,i cannot be boson-2-reducible. This would
imply that Ki is not boson-n-reducible for any n � 2 because
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FIG. 13. Take the vertical p-h irreducible kernel Ki on the left.
When the four external fermion legs are sewed together into loops,
we get a new diagram which does contain a bSE subdiagram. In this
case, two cuts indeed factorize Ki into two disconnected components
as indicated by the orange boxes.

each additional cut in a graph can only generate one additional
disconnected component.

Suppose for the sake of contradiction that �amp,i is boson-
2-reducible. Then the original diagram Ki can be factorized
into three disconnected components by three boson line cuts.
Now we do a casework.

Case 1: If Ki is a horizontal p-h irreducible diagram, then
Ki cannot contain any bSE subdiagram by the assumption
that Ki is a skeleton diagram. Therefore, it is impossible
to factorize Ki with two cuts. But in any Feynman graph,
each additional cut can generate at most one extra discon-
nected component. Hence, three cuts can at most factorize
the diagram into two disconnected components, leading to a
contradiction.

Case 2: If Ki is a vertical irreducible diagram, then the
situation is a little trickier because although the open four-
fermion vertex does not contain any bSE subdiagram, one
bSE subdiagram could appear when we close the four external
fermion legs in pairs, generating a new diagram K̃i with two
extra fermion loops (this possibility illustrated for a simple
example in Fig. 13).

If we are only allowed to cut internal boson lines that
are not connected to the external fermion bubbles, then the
same argument as in case 1 gives a contradiction. If instead
we cut internal boson lines that are connected to the external
fermion bubbles, then to factorize K̃i into two pieces with
two cuts, these two cuts must be the boson lines in the im-
mediate vicinity of one of the external fermion bubbles. Can

b

a

= ΣLL L L

a

b

L

a

b

FIG. 14. Three possible scenarios for the intertwinement of the
fermion self-energy subdiagram and the exposed boson legs a, b. On
the left, a, b are disjoint from the loop L. In the middle, a is attached
to loop L′ while b is attached to loop L. On the right, a, b are both
attached to loop L.

the remaining diagram be factorized with a single additional
boson line cut? The answer is negative, because the existence
of such a cut contradicts the condition that the open kernel
Ki is irreducible with respect to a single boson line cut. Thus,
three cuts cannot give three disconnected components, leading
again to a contradiction.

Claim 3: �amp,i does not contain a fermion self-energy
(fSE) subdiagram.

Proof. We say that a diagram contains an fSE subdiagram
if we can extract a disconnected piece from the diagram by
cutting two internal fermion lines. Now imagine that we cut a
boson line from Ki and denote the exposed boson legs by a and
b. Suppose for the sake of contradiction that �amp,i contains a
fermion loop L which hosts an fSE subdiagram 	 (this basic
configuration is shown in Fig. 14).

If the exposed boson legs are completely disconnected to
the fermion loop L or if one of the dangling boson legs is con-
nected to L while the other dangling boson leg is connected
to some other fermion loop L′, then upon reconnecting a and
b, the original diagram Ki would also contain 	, leading to
a contradiction (see left/middle panel of Fig. 14). If both of
the exposed boson legs connect to the fermion loop L, then
the only potential concern is if one of the legs penetrates into
the fSE subdiagram (see right panel of Fig. 14). But such
a configuration contradicts the assumption that 	 is an fSE
subdiagram of �amp,i.

The above argument demonstrates that Ki contains an fSE
subdiagram whenever �amp,i does, which contradicts the fact
that Ki is a skeleton diagram. �
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