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Motivated by the exotic phenomenology of certain quantum materials and recent advances in programmable
quantum emulators, we here study fermions and bosons in ZN lattice gauge theories. We introduce a family of
exactly soluble models, and characterize their orthogonal (semi)metallic ground states, the excitation spectrum,
and the correlation functions. We further study integrability-breaking perturbations using an appropriately
derived set of Feynman diagrammatic rules and borrowing physics associated to Anderson’s orthogonality
catastrophe. In the context of the ground states, we revisit Luttinger’s theorem following Oshikawa’s flux
insertion argument and furthermore demonstrate the existence of a Luttinger surface of zeros in the fermionic
Green’s function. Upon inclusion of perturbations, we address the transition from the orthogonal metal to the
normal state by condensation of certain excitations in the gauge sectors, so-called “e particles.” We furthermore
discuss the effect of dynamics in the dual “m-particle” excitations, which ultimately leads to the formation of
charge-neutral hadronic N-particle bound states. We present analytical arguments for the most important phases
and estimates for phase boundaries of the model. Specifically, and in sharp distinction to quasi-one-dimensional
ZN lattice gauge theories, renormalization group arguments imply that the phase diagram does not include
an emergent deconfining U(1) phase in the limit of large number of fermion flavors. Therefore, in regards to
lattice QED problems, ZN quantum emulators with N < ∞ can at best be used for approximate solutions at
intermediate length scales.
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I. INTRODUCTION

Lattice gauge theories (LGTs) have enjoyed constant in-
terest throughout the decades. Originally introduced in the
context of statistical physics [1], they have since been of
extraordinary relevance to understanding the strong coupling
limit of the standard model of elementary particles [2–4] and
to exotic phases of quantum materials [5], including quantum
spin liquids [6]. While theoretical activity is motivated by
the fundamental connection of gauge theories to states with
topological order [7] and to topological quantum computing
[8], very recent interest [9–14] was boosted by the (prospect of
the) realization of lattice gauge theories in quantum emulators
[15,16], in particular in the context of Rydberg atoms [17–20]
and arrays of superconducting qubits [21–23], including pro-
posed implementations of discrete ZN gauge theories with
N > 2.

From the perspective of quantum field theory, ZN gauge
theories coupled to fermionic matter are of considerable in-
terest as toy models of hadron formation: for example, a
finite string tension in Z3 gauge theories is expected [24]
to favor baryonic gauge neutral fermionic trions, while in
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Z2 gauge theories mesonlike (Cooper) pairs are formed [25].
While even the physics of non-Abelian gauge theories may
dynamically emerge [26], it is of interest to consider discrete
ZN LGTs with N � 1 as a proxy of U(1) LGT [27], which
in contrast to quantum electrodynamics (QED) benefit from
a finite local Hilbert space dimension which is more suitable
to both classical numerical simulations and analog quantum
emulations.

From the statistical mechanics viewpoint, pure ZN lattice
gauge theories in D = 2 + 1 are obtained from ZN quan-
tum clock models by Kramers-Wannier duality transformation
[1,28]. This is in contrast to the case of D = 1 + 1 space-
time dimensions, in which the quantum clock model maps
back onto itself. The differences between D = 1 + 1 and
D = 2 + 1 persist to the nature of the (quantum) phase tran-
sition between ordered and disordered phases: While for
quantum clock models for N > 4 and in D = 1 + 1, as well
as for certain non-Hermitian perturbations of clock models
in D = 2 + 1 [29,30] the direct quantum phase transition is
replaced by two Berezinskii-Kosterlitz-Thouless–type phase
transitions enclosing an intermediary gapless U(1) phase [31],
for the quantum clock model in D = 2 + 1, the quantum phase
transition is direct, yet of U(1) type [32,33]. What, however,
if the ZN gauge theory in D = 2 + 1 is coupled to fermionic
matter fields [34–39]? Is an intermediate U(1) phase emerg-
ing in the same way as in ladder systems [40–42], where
ZN -symmetry-breaking perturbations can be renormalization
group (RG) irrelevant? An affirmative answer would clearly
facilitate numerical studies of QED3.
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Finally, from the perspective of quantum materials, ZN

gauge theories with N > 2 have been very recently proposed
to explain strange and bad metal behavior [43]. Quantum spin-
liquid states with ZN gauge group have also been studied over
the years [44–46]. In general, fractionalization approaches
to correlated systems, including slave rotors [47] which are
related to the N → ∞ limit of our theory, have been success-
fully employed (see, e.g., [48–52]). Of relevance for this work
are studies of Z2 fractionalized metals [53–55] and of orthog-
onal (semi)metals in two spatial dimensions [25,26,56–58].
These states of matter can appear in Z2 slave spin construc-
tions [59] and display a gap in the fermionic Green’s function,
as if they were an insulator, but sustain gapless two-body
correlators, as if they were a metal. Fascinatingly, the decon-
fining phases of Z2 LGTs allow to circumvent [60–63] the
Luttinger-Oshikawa theorem [64,65], i.e., the paradigm that in
the absence of symmetry breaking the volume of the Fermi sea
is determined by the fermion density alone, independently of
the strength of interactions. Experimentally, this paradigm is
challenged by the Fermi-surface reconstruction in the cuprates
including the putative direct transition into the normal Fermi-
liquid phase as observed in magnetotransport [66]. A similar
scenario of Fermi-surface reconstruction in heavy-fermion
materials [67] is corroborated by quantum oscillation exper-
iments. Another remarkable conundrum is the observation
of quantum oscillations in electrical insulators, most notably
YbAl12 [68] but potentially also in SmB6 [69,70] and RuCl3

[71], which suggest the presence of a “hidden” Fermi surface.
More precisely than noted above, Luttinger’s theorem iden-
tifies the density to the volume where the fermionic Green’s
function is positive, which is enclosed by the area of poles
or zeros of the Green’s function. Therefore, in addition to
deconfining gauge theories, Luttinger’s theorem may also be
nontrivially satisfied in systems which stabilize a Luttinger
surface of Green’s function zeros [72]. This avenue, which
has attracted substantial renewed attention recently [73–76],
provokes the question if and when the LGT scenario and the
scenario of Luttinger surfaces are two distinct descriptions of
the same state of matter.

Here we study the ZN toric code [8,77–82] coupled to
fermionic matter, which realizes a ZN LGT in D = 2 + 1
space-time dimensions including both bosonic and fermionic
matter fields. We argue that such a model may describe
strongly coupled quantum materials in which a slave-clock
fractionalization scheme is accurate and summarize the du-
ality mapping between our model and ZN LGTs with both
fermionic and bosonic matter fields. On the side, we men-
tion that the interplay of fermions with toric code degrees of
freedom resembles processes such as quasiparticle poisoning
that can cause decoherence in topological quantum computing
paradigms. Starting from the integrable limit describing the
deconfining ZN orthogonal (semi)metallic [56,83] phases we
revisit Luttinger’s theorem for arbitrary N and the question
of Fermi-surface reconstruction without symmetry break-
ing. Upon inclusion of small perturbations, we demonstrate
that ZN orthogonal metals feature a Luttinger surface of
Green’s function zeros. We furthermore develop a diagram-
matic perturbation theory allowing to resum perturbations and
to determine the phases [84] of the ZN LGT, their observable
signatures, and the most important phase boundaries. We also

present renormalization group calculations which imply that a
putative deconfining intermediate phase of a U(1) LGT with
a Fermi surface is unstable towards ZN perturbations and thus
absent in the phase diagram. Instead, we find the formation of
hadrons (charge-neutral N-particle states) near the transition.
It is to be noted that both the instability of hadron formation
and the ruling out of a putative U(1) phase have been exam-
ined in the limit of large number of fermion flavors.

The remainder of the paper is structured as follows: In
Sec. II we introduce the model in its integrable limit and
motivate a ZN fractionalization scheme. In Sec. III we find the
ground state and excitations in the soluble limit. Section IV
lays the modification to Luttinger’s theorem obeyed by this
ground state. In Sec. V, we develop Feynman rules and dia-
grammatics for the model. This allows perturbative addition
of terms that destabilize the ground state and give rise to new
phases, which are investigated in Sec. VI. In Sec. VII, we
present renormalization group arguments for the absence of
a U(1) phase. We conclude with a summary and outlook and
delegate important technical details to the Appendixes.

II. MODEL AND MOTIVATION

In this section, the integrable limit of the model is intro-
duced and motivated by a Z3 fractionalization of generalized
Hubbard models. Integrability-breaking perturbations are dis-
cussed later, in Sec. VI.

A. Integrable limit

In its integrable limit, the model under consideration is de-
scribed by a generalization of Kitaev’s toric code with mobile
fermions on the lattice, H = HK + Hh + Hw, with

HK = −K

2

∑
p

e−iφBp + H.c., (1a)

Hh = −h

2

∑
r

e−iθ Qr + H.c., (1b)

Hw = −w
∑

r

∑
e∈{x̂,ŷ}

c†
r,ασr+ 1

2 ecr+e,α + H.c. − μ
∑

r

c†
r,αcr,α.

(1c)

Here and in what follows, r, b, and p denote the positions
of vertices, bonds (or edges), and plaquettes (or faces) of the
square lattice, and cr are the fermionic annihilation operators
in position space. In our notation, K, h, and w are real positive
quantities and θ, φ are real angles. The quantities Bp and Qr
are the plaquette (“flux”) and star (“charge”) operators defined
on the lattice as (see Fig. 1):

Bp =
∏

e∈{x̂,−ŷ}
σp+ 1

2 eσ
†
p− 1

2 e
, (2a)

Qr = ωn̂r
∏

e∈{x̂,ŷ}
τr+ 1

2 eτ
†
r− 1

2 e
. (2b)

Here, n̂r = c†
r,αcr,α is the fermionic density. The operators

σb, τb′ represent the ZN clock variables at the bonds, satisfy-
ing the algebra

σbτb′ = (ω)δb,b′ τb′σb, (3)
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FIG. 1. The ZN toric code, with the star, plaquette, and fermionic
terms.

where ω ≡ exp( 2π i
N ) is the N th root of unity. Fermions may

or may not have an internal quantum number, e.g., a spin or
flavor, α = 1, . . . , Nf (where Einstein summation is implied
throughout the paper).

One may use a series of well-known steps of gauge fixing
to demonstrate that Eq. (1) is a ZN gauge theory containing
both fermionic and bosonic matter fields (see Appendix A for
details). In the limit h → ∞, θ = 0, this model becomes a the-
ory containing only gauge fields and fermions, complemented
with a local Gauss’ law Qr = 1 (no background ZN charge).

B. Motivation: Z3 fractionalization of the Hubbard model

To heuristically motivate the ZN gauge theory with
fermions beyond the literature covered in the Introduction, we
here review the basic aspects of a Z3 slave-spin fractionaliza-
tion of a Hubbard-type single-band model

H = −t
∑
〈r,r′〉

c†
r,αcr′,α +

∑
r

U

2
nr(nr − 1) − μnr + · · · . (4)

The ellipsis denotes unknown additional terms which stabilize
the fractionalized phase.

The local Coulomb repulsion splits the onsite energy into
three distinct levels, with energies 0, μ, and U − 2μ and
filling n = 0, 1, and 2, respectively. The Z3 slave spins act in
the space of these three different charge states. This is similar
to the well-established Z2 slave-spin approach [59], which,
however, is applicable only to the special case μ = U/2 in
which the two levels with even fermion parity become de-
generate. Generalizing the established approach leads to a Z3

fractionalization of the physical fermion operator [56]

c†
r,β = f †

r,βςr. (5)

The fβ carries the fermion charge and spin, while the ς op-
erator acts like a raising operator on the fermion occupancy
basis |n = 0, 1, 2〉. The fractionalization has an emergent
Z3 local symmetry fr,β → eiαr f r,β , ςr → eiαrς r with αr ∈
{0, 2π/3,−2π/3}. It is generated by the unitary operator

Qr ≡ ω−n̂rτr , where ω ≡ e
2π i

3 is the third root of unity and

ςr =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, τr =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠. (6)

The ς, τ matrices suffice the same clock algebra [Eq. (3)] as
σ, τ . In the process of fractionalization, we have artificially
enlarged the Hilbert space. To return to the physical subspace,
we impose the constraint

Qr = 1. (7)

In this gauge sector, and up to a constant, the Hamiltonian
takes the form

H = −t
∑
〈r,r′〉

f †
r,αςrς

†
r′ fr′,α − h

2

∑
r

(e−iθτr + H.c.) + · · · ,

(8)

where he−iθ = [U − 3μ − i
√

3(U − μ)]/3. Thus, for empty
sites (μ � 0), θ ∈ [−π/3, π/3], for single occupation (0 �
μ � U ), θ ∈ [π/3, π ] and for double occupation (μ > U ),
θ ∈ [π, 5π/3].

At this point, the hopping term became an interaction term.
Upon integration of high-energy modes in a renormalization
group procedure, new operators may emerge. These include
hopping of fermions

Hw = −w

2

∑
r,e∈{x̂,ŷ}

σ̄(r+ 1
2 e) f †

r,α fr+e,α + H.c. (9)

and bosons (clock degrees of freedom)

HJ = −J

2

∑
r,e∈{x̂,ŷ}

σ̄(r+ 1
2 e)ς

†
r ςr+e. (10)

Note that by gauge symmetry, the new coupling constants
obtained by contraction of the type t〈ςrς

†
r′ 〉fast = wσ̄br,r′ /2

retain a nontrivial transformation under gauge symmetry.
To account for this, we introduce the emergent link degree
of freedom (gauge potential) with nontrivial transformation
σ̄br,r′ → eiαr σ̄br,r′ e

−iαr′ under Z3 gauge symmetry. In subse-
quent RG steps, terms accounting for the dynamics of gauge
field variables emerge σ̄b (both electric and magnetic terms).

In Appendix A we provide details on the mapping
[1,63,85] of the ZN gauge theory of fr, ςr, σ̄b variables to
Eq. (1) with additional perturbations. In particular, the Gauss
law as well as appropriate gauge fixing allows to remove ςr
degrees of freedom from the Hamiltonian (1), which thereby
takes the form of a toric code with integrability-breaking
extra terms. Depending on the unspecified terms in the model
indicated by the ellipsis, an effective low-energy deconfining
state may be stabilized. While the nature of such stabilizing
unknown terms is beyond the scope of the analysis in this
paper, the present goal is to understand the physics of all such
models which lie in the basin of attraction of the deconfining
phase, i.e., of the ground state of Hamiltonian (1) discussed in
the next section.
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FIG. 2. (a) Phase diagram illustrating the ground state of the sys-
tem |ϕ〉 as a function of the phase of Ke−iφ . A similar phase diagram
occurs in the complex plane of he−iθ . (b) Landau gauge choice for the
system with 2π/N flux. The entry inside kets indicates the eigenvalue
of clock operators, σb|ωn〉 = ωn|ωn〉, on the corresponding links.

III. GROUND STATES AND EXCITATIONS

In this section, we determine the ground state of the model
and the leading excitations in the model. As in the usual
toric code, the plaquette and star operators mutually commute
ensuring the integrability of the model. Moreover, they also
commute with the fermionic term Hw.

A. Ground state

In this paper, we will work in the asymptotic limit where
the energy contribution of the fermionic part is negligible. We
provide a mathematically concrete version of this qualitative
statement at the end of the subsequent section (Sec. III B).

Since they commute with the Hamiltonian, each Bp, Qr
individually encodes an integral of motion, with eigenvalues
1, ω, ω2, ..., ωN−1. The ground state has equal flux through all
plaquettes Bp|GS〉 = eiϕ |GS〉 with ϕ = 2πn

N and equal charge
on all sites Qr|GS〉 = eiϑ |GS〉 with ϑ = 2πn′

N and n, n′ ∈
{0, 1, . . . , N − 1}. The exact ground-state flux/charge is de-
termined by minimizing the phase differences φ − ϕ, θ − ϑ

[on the unit circle, see Fig. 2(a)].
To construct the ground state, we first set h = 0. We

then choose a gauge configuration that satisfies the plaque-
tte terms. For our analysis the “Landau” gauge is utilized
[Fig. 2(b)], which corresponds to a wave function |ϕ〉σ =
|σb,horizontal = 1, σb,vertical = ωnbx 〉. To satisfy the Hamiltonian
for h > 0, we project the constructed state onto the subspace

FIG. 3. Band structures for different phases in the soluble limit
of the model. The range of the plot is the full Brillouin zone BZ :
−π � kx, ky < π , with the darker section indicating the reduced
Brillouin zone rBZ = BZ ∩ {kx ∈ [−π/q, π/q)} for the flux ϕ =
2π p/q. (a) ϕ = 0, (b) ϕ = π , (c) ϕ = 2π/3, (d) ϕ = π/2.

where Qr = eiϑ is satisfied (P(ϑ )
r ≡ 1

N

∑N−1
j=0 [Qre−iϑ ] j):

|GS〉 =
[∏

r

P(ϑ )
r

]
|ϕ〉σ |FS〉c. (11)

Here, |FS〉c represents the fermionic ground state for the
two-dimensional gauge-fixed lattice with Hamiltonian Hϕ =
〈ϕ|Hw|ϕ〉. The projection operator in effect creates a sym-
metric combination of all allowed gauge configuration, also
referred to as a “quantum loop gas.” The band structure in the
fermionic sector consists of up to N distinct bands (see Fig. 3).
If N is even, and depending on the value of the flux ϕ, bands
may touch at half-filling, forming Dirac cones with a linear
band dispersion. It is important to stress that the ground state
described above does not break any crystalline translation and
rotation symmetries.

B. Excitations

The single-particle fermionic excitations of the system can
be obtained by inserting the fermionic operators to the right
of the projectors while constructing the ground state:

|e; k, i〉 =
[∏

r

P(ϑ )
r

]
c†

k,i|ϕ〉σ |FS〉c, k /∈ FS (12a)

|h; k, i〉 =
[∏

r

P(ϑ )
r

]
ck,i|ϕ〉σ |FS〉c, k ∈ . (12b)

Here, i indicates the band index. Analogously, one can con-
struct multiparticle excitations by applying multiple fermionic
operators. If the fermionic operators were instead applied to
the left of the projectors, then the excitations would no longer
be gapless since the fermionic operators do not commute with
the star operators Qr because of the density term n̂r. These
excitations are therefore gapped. In the simplest cases when
θ = 2πn

N , n = 0, . . . N − 1, the associated cost in energy is
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FIG. 4. The two gapped excitations on the ZN toric code. The
direction of the arrow (half-moon) indicates the appropriate choice
for σr1,r2 (τp1,p2 ), pointing from r1(p1) to r2(p2). (a) An e particle-
antiparticle pair, joined by a contour on the lattice (solid gray lines).
(b) An m particle-antiparticle pair, joined by a contour on the dual
lattice (dotted gray lines).

ηh, where η = [1 − cos( 2π
N )]. This corresponds to the creation

of an “e-particle” on the lattice, which can equivalently be
created by electric string operators

W (e) =
∏

br1 ,r2 ∈γ

σr1,r2 . (13)

The notation σr1,r2 is necessary to specify the correct orien-
tation; it corresponds to σ † when (r2 − r1) = {x̂, ŷ} and σ

otherwise [see Fig. 4(a)].
A key distinction is that the electric string operator W (e)

produces two e particles (for N �= 2, a particle-antiparticle
pair) at each end of the contour γ with total excitation energy
2ηh, whereas the fermionic operator to the left of the projector
creates just one e particle coupled to the electron or hole.

There is another gapped excitation on top of the toric code
ground state, the m particles, which reside on the dual lattice
and are joined by τ insertions, analogous to the electric strings
[Fig. 4(b)]

W (m) =
∏

bp1,p2 ∈γ ∗
τp1,p2 . (14)

Also analogously, τp1,p2 is oriented, corresponding to τ when
(p2 − p1) = {x̂,−ŷ} and τ † otherwise.

In the regular toric code, both e and m particles excitations
are static eigenstates, but in the fermionic toric code the m
particles are not static due to their coupling to the Fermi sea.
This peculiarity will be explored in more detail in Sec. V B,
but we anticipate here, that, in the absence of fermions, the
energetic cost of m particles in the simplest case φ = 2πn/N ,
where n = 0, 1, . . . , N − 1, is ηK . The assumption introduced
in the previous section, according to which the fermionic con-
tribution to the ground-state energy is negligible, is equivalent
to w � Kη. Contrary to this, in the opposite limit where
0 < ηK � w, the ground states do break crystalline symme-
tries, even when represented projectively (i.e., symmetries
modulo gauge transformations). The flux passing through the
plaquettes is no longer homogeneous and is dominated by the
fermionic sector. The fractional average flux is determined by
the filling in the system: for a filling ρ, one expects the average

flux density [86] to be ϕ = 2πρ. This has been corroborated
by Monte Carlo simulations [87] as well as a semianalytical
study [63] in the special case N = 2. Relaxing the condition
φ = 2πn/N , we furthermore expect that the gapless fermionic
sector influences the phase transitions between different sec-
tors of Fig. 2(a) and leave detailed analyses of this regime for
a general N to future studies.

We mention in passing here that the electric and magnetic
string operators defined over closed contours instead of open
are analogous to Wilson loop operators which play the role of
nonlocal order parameters [88] for various topological phases
hosted on this model.

IV. LUTTINGER-OSHIKAWA THEOREM

The phase φ of the plaquette term, Eq. (1a), alters the
band structure of the fermionic sector and, more importantly,
changes the volume of the Fermi surface. This appears to
violate Luttinger’s theorem [64], according to which the vol-
ume of the Fermi surface is only dependent on the fermionic
filling ρ. For simplicity, and without loss of generality, in
this section we concentrate on the spinless case Nf , in which
ρ coincides with the density. In its modern formulation due
to Oshikawa, a momentum balance argument [65] leads to
Luttinger’s theorem for conventional Fermi liquids (see more
details below). However, a key step in the proof is assuming
that momentum can only be carried by the quasiparticles
of a conventional Fermi liquid. In our model, and generally
in deconfining ZN gauge theories, m particles are able to
carry (angular) momentum, which leads to a modification in
Oshikawa’s proof [60,61]. We here generalize the Oshikawa
proof to ZN gauge theories, and illustrate the proof for the
simplest Z3 case in the |ϕ = 2π/3〉 state [Fig. 3(c)]. We men-
tion in passing that the generalization of Oshikawa’s proof
to SU(N ) theories, of which ZN is the center, was recently
reported in Ref. [89].

Consider the model in a cylindrical setup with the specific
gauge choice as shown in Fig. 5(a), at half-filling. We now
adiabatically thread a physical flux of 2π/3 through the cylin-
der. This flux can be absorbed into the internal gauge field by
changing the bonds as shown in Fig. 5(b). The ground state
describing the new lattice is related to the original ground state
by a unitary transform

|GS′〉 = W (m)|GS〉, (15)

where W (m) is the Wilson loop passing through the plaquettes.
One can show that the operator Ty = ∏

r∈C ωn̂r Q†
r translates

the lattice by one unit in the y direction [Fig. 5(c)]. Applying
this to |GS′〉 gives

Ty|GS′〉 =
∏
r∈C

ωn̂r Q†
r (W (m)|GS〉)

=
∏
r∈C

exp

(
i
2π

3
n̂r

)
W (m)|GS〉

= exp

(
i
2πLx

3
ρ

)
|GS′〉, (16)

where we have assumed a homogeneous fermion filling ρ =
〈n̂r〉r∈C .
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FIG. 5. (a) Modified Oshikawa’s argument demonstrated for the |ϕ = 2π/3〉 flux state. (b) An adiabatic flux � = 2π/3 through the system
absorbed into the gauge field as a vison threading (orange). (c) The translation operator along the y axis Ty acting on the cylinder along the
contour C (green).

Therefore, the momentum carried by the gauge field in
this configuration [Eq. (16)] is �P = − 2πLx

3 ρ. This is the
exact momentum imparted to the cylinder by the adiabatic flux
insertion �Ptot = �Lxρ, where � = −2π/3. The momentum
balance is accounted for and does not affect the fermionic
distribution.

We now present a generalized relationship between
fermion density and size of the Fermi surface. Arguments
analogous to above hold for a flux insertion of 4π/3, where
the gauge sector absorbs the flux with two Wilson loops in-
stead of one [(W (m) )2|GS〉]. The gauge field can thus carry
away momenta in steps of 2π/3. Adding this condition to the
standard momentum balance calculation done before leads to
the modified result (17):

VFS

(2π )2
± 1

3
= ρ + p, (17)

where p ∈ Z. We see this is true at ρ = 1
2 , when the volume of

the Fermi surface is VFS = (2π )2/6. Including the case where
the flux is not threaded at all and entirely carried by the Fermi
quasiparticles, the final relation is (in terms of a general N)

VFS

(2π )2
= ρ

(
mod

1

N

)
. (18)

It is of note that we arrived at this result without any knowl-
edge of the band structure or details about the Fermi surface.

V. CORRELATORS AND DIAGRAMMATICS

In this section, we first study the correlators of fermions
as well as σ insertions on the lattice and present a set of
Feynman diagrams to graphically encode these correlators
(see Appendix B). Subsequently, we discuss τ insertions.

A. Feynman rules for fermions and e particles

To evaluate an arbitrary imaginary-time-ordered ground-
state correlator with cr, c†

r , and σb with the general form

C({r, τ }) = −
〈
T
{∏

n

O(c)
rn

(τn)
∏

m

O(σ )
rm,r′

m
(τm)

}〉
GS

. (19)

Here, O(c)
rn

(τn) ∈ {crn (τn), c†
rn

(τn)} and O(σ )
rm,r′

m
(τm) is defined

for nearest neighbor rm, r′
m as

O(σ )
rm,r′

m
=
{

σ † for r′
m − rm = x̂, ŷ,

σ for r′
m − rm = −x̂,−ŷ.

(20)

To facilitate clear notation, we hereafter consider the sim-
plest case θ = 0:

(1) Draw ◦ for crn (τn), • for c†
rn

(τn), and a solid line

with an arrowhead for O(σ )
rm,r′

m
(τm), pointing from rm to r′

m

[see Fig. 6(a)]. Higher powers of σ are indicated by multiple
arrowheads.

(2) The “charge” qi ∈ {1, . . . , n} is defined as the power
of ω obtained from commuting Oi ∈ {O(c)

r , O(σ )
r,r′ } across Qr:

QrOi = ωqi OiQr. (21)

For n operators O1, . . . , On at site r with times τ1, . . . , τn,
respectively:

(i) The operators must satisfy charge neutrality
modulo N ,

n∑
i=1

qi = NZ. (22)

Note that O(σ )
r1,r2

contributes to both sites r1 (with charge
+1) and r2 (with charge −1).

FIG. 6. (a) Feynman rules for calculating correlators. (b) The
onsite fermionic Green’s function (top left) and the polarization
operator (right).
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(ii) Connect operators on the same site by wavy lines.
If there are more than two operators, encircle them. This
corresponds to the exponential factor

exp

[
h

n∑
i=1

τp(i)�
{
ω−∑i

j=1 qp( j) (1 − ωqp(i) )
}]

, (23)

where p(i) : {1, . . . , n} → {1, . . . , n} is the index permuta-
tion that orders the times appropriately

τp(1) > τp(2) > · · · > τp(n−1) > τp(n). (24)

For only two operators, this takes the simple form
D(τ1, τ2) = e−ηh|τ1−τ2|, where we remind the reader of the
excitation energy ηh = [1 − cos( 2π

N )]h of an e particle.
(3) Replace all arrowheads with their expectation value

〈ϕ|O(σ )
r1,r2

|ϕ〉.
(4) Connect all ◦, • in all possible combinations in accor-

dance with the standard rules for fermionic diagrammatics,
with solid lines representing the fermionic Green’s function

GFS(r1, r2; τ ) = −〈FS|T [c̄r1 (τ )c̄†
r2

(0)
]|FS〉

= −〈FS|T [eHϕτ cr1 e−Hϕτ c†
r2

]|FS〉,
where the bar above the operator indicates time evolution with
respect to Hϕ only.

The simplest correlator one can calculate is the two-
point Green’s function [Fig. 6(b)]: G(r1, r2; τ ) = −〈T c†

r1

(τ )cr2 (0)〉 = δr1,r2 e−ηh|τ |GFS (r1, r1; τ ). The ultralocal correla-
tor is a consequence of the fact that e particles do not move
in the integrable limit of the toric code. In the frequency
representation,

G(z) =
∫

(dk)
1

z − ξ0(k) − sign[ξ0(k)]ηh
, (25)

where ξ0(k) = −2w[cos(kx ) + cos(ky)] is the dispersion re-
lationship for the zero-flux state and (dk) = d2k/(2π )2. The
e particles (cf. Sec. III B) effectively create a gapped den-
sity of states, represented by the above equation. However,
two-particle correlators in the particle-hole channels display
regular Fermi-liquid behavior. For example, the polarization
operator [Fig. 6(b)] is gapless since the e-particle propaga-
tor at each site evaluates to D(τi − τi ) = 1. This drastically
different behavior of single and multiparticle correlators is
characteristic of an orthogonal metallic phase [56], also re-
ferred to as a deconfined Fermi-liquid phase [90] due to the
presence of both a large Fermi surface as well as fractionalized
excitations. In contrast to the case N = 2, ZN orthogonal
metals with N > 2 have gapped two-particle correlators in
the particle-particle channel, effectively preventing a Cooper
instability.

B. Insertion of m particles

Unlike the insertion of the σ operators which commute
with the fermionic part of the Hamiltonian (1c), the τ oper-
ators do not [τb,Hw] �= 0. As a consequence, insertion of τ

operators (i.e., insertion of m particles) triggers an Anderson
orthogonality catastrophe, which we shall now explore. We
mention in passing that a similar interplay of local spon-
taneous flux insertions with gapless fermionic modes is of
fundamental importance in the physics of U(1) and Kitaev

FIG. 7. (a) The two vertices in the perturbative expansion, V =
w

2 (1 − ω) and V̄ = w

2 (1 − ω̄). (b) The two sets of propagators; g0

joins two different vertices and h0 joins vertices with the same colors.

quantum spin liquids [91] as well as complex Kondo impurity
systems [92].

We start by finding the τ -τ correlator corresponding to
placing m particles at adjacent sites at time 0 and removing
them at time t . (We switch to real time here momentarily
to avoid confusion between τb, the clock operator, and τ ,
the imaginary time, and to remain consistent with previous
literature; we will return to imaginary time at the end). One
obtains an energy shift from the plaquettes HK , analogous
to the σ insertions, but one gets an additional term from the
fermionic contribution,

G(b, t ) = −i〈0|T {τ †
b (t )τb(0)}|0〉

= −i〈FS|T exp

{
−i

∫ |t |

0
dt ′ V̂ (t ′)

}
|FS〉

︸ ︷︷ ︸
G ′

FS(b;t )

× exp (−2iηK|t |), (26a)

V̂ (t ) = w

2
(1 − ω)c†

r1
(t )cr2 (t ) + H.c., (26b)

where r1, r2 are the sites corresponding to the bond b. One
must note that due to the translational and fourfold rotational
symmetry of the 0-flux state, the choice of bond is irrele-
vant. The propagator G ′

FS corresponds to scattering from a
time-dependent perturbation V̂ (t ) of the bond b. This form
is analogous to the x-ray edge problem [93,94], where the
propagator gains not only an energy shift but also a transient
part that results in a power-law decay at large times. Our
propagator, however, differs in one key point: namely, the
potential is not onsite but between neighboring sites.

Treating the potential perturbatively produces a set of con-
nected and disconnected cycles, which can be summed using
the linked cluster expansion [94] in two sets of complex ver-
tices [V ≡ w

2 (1 − ω), V̄ ] and two types of propagators (see
Fig. 7)

h0(τ2 − τ1) = −i
〈
T cr2 (τ2)c†

r1
(τ1)

〉 = −i
〈
T cr1 (τ2)c†

r2
(τ1)

〉
,

(27a)

g0(τ2 − τ1) = −i
〈
T cr1 (τ2)c†

r1
(τ1)

〉 = −i
〈
T cr2 (τ2)c†

r2
(τ1)

〉
.

(27b)

The solution can also be obtained in a nonperturbative fashion,
following the method of Nozieres and de Dominicis [94,95].
The details of the calculation are relegated to Appendix C.
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FIG. 8. (a) A schematic of the (real part of the) real-time τ -τ
correlator (yellow), with a power-law envelope (orange). (b) De-
pendence of the power-law exponent α on the chemical potential μ

for N = 3 (purple, solid), N = 5 (blue, dashed), and N = 7 (green,
dotted dashed). At the van Hove singularity, all approach a maximum
value of 0.5.

The result for the propagator is

� ln G ′
FS(t ) = −Nf

{(
δ1

π

)2

+
(

δ2

π

)2
}

︸ ︷︷ ︸
≡α

ln(|t |) (28)

with

δi = arctan
{
π
[
ρh

0�V + (−1)i
√

|V |2(ρ0)2 − (
ImV ρh

0

)2]}
.

Here, we have returned to the general number Nf of internal
degrees of freedom of the fermions, e.g., Nf = 2 due to spin.

As one can see, the factors δ1, δ2 depend on the local den-
sity of states (DOS), each acquiring a value of π

2 as the DOS
approaches infinity, which occurs in the orthogonal metal
phase at half-filling (cf. [96] for the orthogonality catastrophe
at a van Hove singularity). In contrast, the DOS vanishes for
half-filling in the orthogonal semimetal (OSM) phase (even
N) and the orthogonality catastrophe term disappears. One
should note that the τ -τ propagator acquires a phase shift
from the energy shift due to the scattering potential, but an
estimate of this requires nonanalytical methods. However,
we can conclude that it is of the order of the bandwidth w

since that is the only energy scale in the correlator, and since
we work in the regime Kη � w we can ignore this shift safely.

The real-time propagator thus quickly oscillates on the
scale 1/Kη and its envelope slowly decays as G(t ) ∼ |t |−Nf α ,
where the Nf accounts for the flavor degeneracy of the
fermions. The exponent α depends on the chemical potential
in the OM state (μ) as well as N [see Fig. 8(b)]. In imaginary
time, the oscillation is replaced by exponential decay, which
overshadows the power-law at scales beyond (Kη)−1.

VI. PERTURBATIONS AND INSTABILITIES

In this section, we add various perturbations to the soluble
limit which introduce a finite string tension and discuss the
instabilities of the orthogonal metal phase. In analogy to the
previous section, we first discuss the impact of spontaneous σ

insertions and subsequently of spontaneous τ insertions.

A. Spontaneous σ insertions: Kinetics of e particles,
Luttinger surface, and Higgs transition

We now introduce a perturbation that delocalizes the e
particles (wavy lines), which were previously confined to one

vertex. We do this by introducing σb terms in the Hamiltonian

HJ = −J

2

∑
b

(σb + σ
†
b ). (29)

We first consider the orthogonal metal phase (zero-flux state
〈ϕ = 0|σb|ϕ = 0〉 = 1). The resummation of nonintersecting
strings of σ insertions is given by

D(r f , ri; iω) = D(iω)δr f ,ri

+ J

2

∑
〈r,r f 〉

〈
O(σ )

r,r f

〉
0D(r, ri; iω)D(iω), (30)

where D(iω) = F{e−h|τ |η}(ω) = 2ηh/(ω2 + (ηh)2) and F
denotes Fourier transform. The object D(r f , ri; iω) effectively
describes the e-particle propagator.

In momentum space, this implies D(q, iω) = D(iω) +
J[cos(qx ) + cos(qy)]D(iω)D(q, iω), giving us

D(q, iω) = 2ηh

ω2 + ηh{ηh − 2J[cos(qx ) + cos(qy)]} . (31)

Note that for N = 2, the propagator gains an extra fac-
tor of 2 since O(σ )

r1,r2
= O(σ )

r2,r1
and the resummation gains an

extra term (cf. [63] for the Z2 propagator). One can add a
second perturbation to this: a fermionic Hamiltonian with
small nearest-neighbor hopping. It should be noted that this
perturbation is added on top of the existing Fermi sea

Ht = −t
∑
〈r,r′〉

c†
rcr′ . (32)

The fermionic perturbation modifies the Green’s function,
with the resummation given by the equation

Dt (r f , ri; iω) = D(r f , ri; iω) + t
∑

r

∑
〈r′,r〉

× D(r, ri; iω)GFS(r, r′)Dt (r f , r′; iω). (33)

In momentum space,

Dt (q, iω) = D(q, iω) + t̄ D(q, iω)Dt (q, iω), (34)

where t̄ = 2t GFS(r, r + êx ). The new propagator is, therefore,
analogously to Eq. (31) with the replacement J → (J + t̄ ).

1. Luttinger surface of Green’s function zeros

As outlined in the Introduction, it is a question of current
interest to understand the nature and occurrence of zeros in
the electronic Green’s function [72] of strongly correlated
systems. Specifically, these zeros, which can be understood
as poles of the self-energy, contribute to the thermodynam-
ics [73] and topology [74–76] very much alike conventional
quasiparticles in Fermi liquids and noninteracting electronic
systems. At the same time, it is apparent that the low-energy
thermodynamics of orthogonal (semi)metals is equivalent to
the thermodynamics of their nonorthogonal counterparts. In
this section, we demonstrate a connection between orthogonal
metals and the occurrence of zeros in the Green’s function.
However, the Luttinger surface of zeros is unrelated to the
density count.
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FIG. 9. (a) Schematic representation of the dispersion relation
of orthogonal fermions (red, dotted), and Green’s function zeros
[Eq. (36)] for t0 = 0 (light blue), 0 < 4t0 < μ0 (blue, dotted dashed),
μ0 < 4t0 (dark blue, dashed). (b) Dimensionless parameters entering
t0 and Z [cf. Eq. (36)] as a function of ηh/w.

To this end, we calculate the fermionic Green’s function

G(p, iε) = a2
∫

BZ
(dq)

∫
(dω)D(q, iω)GFS(p + q, iε + iω),

(35)
perturbatively in J and inside the gap of Eq. (25). Relegating
details to Appendix D, we find

G(p, z) = − 1

Z [z + ζ0(p)], (36a)

with a dispersion of zeros of the form

ζ0(p) = −2t0[cos(px ) + cos(py)] − μ0, (36b)

and

t0 = −J
ηh

8w

I+
1 + 2πw/ηh

I+
1

> 0, (36c)

μ0 = − 1

ν0

n(μ) − n(−μ)

I+
1

= sign(μ)|μ0|, (36d)

Z = −(ηh/ν0a2)I+
1 > 0. (36e)

Note that the “weight of zeros” Z has dimensions of en-
ergy squared. The dimensionless integral I+

1 (ηh/w) is plotted
along with t0 and a schematic representation of the dispersion
of orthogonal fermions and of zeros in Fig. 9. Crucially we ob-
serve that the Luttinger count enclosed by zeros is completely
unrelated to the Fermi surface of orthogonal metals. Indeed, in
the integrable limit J = 0, the zeros of the Green’s functions
are dispersionless and reside at energy z = μ0, where μ0 is a
function of I+

1 as well as the filling fraction of the orthogonal
fermions n(μ). Small t0 < |μ0|/4 does not lead to the appear-
ance of a Luttinger surface. For larger t0 the Luttinger surface
appears, but, as mentioned, it is unrelated to the Fermi surface
of fermions.

In addition to the Luttinger surface being unrelated to
fermion density, there are multiple distinctions between the
zeros occurring in this context as compared to earlier discus-
sions in the literature. The main reason is that the Luttinger
surface encountered here originates from the dispersion of “e”
particles (rather than, e.g., from a self-energy in the fermionic
Green’s function). Luttinger’s theorem is fulfilled by the count
of poles of orthogonal electrons, corrected for the effect of
visons, Eq. (18). While analogously to the situation discussed
by Fabrizio [73] the present fractionalized metal displays

FIG. 10. Diagrams that contribute to the confinement-
deconfinement transition. (a) The ZN term (illustrated specifically for
Z7). (b) The four-point self-interaction term. (c) The fermion-string
interaction term.

Fermi-liquid thermodynamics, the distinction is that this ther-
modynamic response does not originate from the Luttinger
surface but rather from the orthogonal fermions.

2. Higgs transition

The correlator D(q = 0, iν = 0) represents the sum of
open electric strings of all lengths. The singular behavior at
ηh = 4(J + t̄ ) indicates condensation of e particles, corre-
sponding to the confinement-deconfinement transition of the
regular toric code. If J + t̄ is increased further, the system
undergoes a transition from an orthogonal metal to a regular
Fermi liquid. At the critical point where confinement occurs,
one can write the continuum theory as a ZN lattice gauge
theory coupled to fermions (cf. [56,63] for the cases N = 2, 4)

S = S f + Sb + SIA, (37a)

Sb =
∫

dτ d2x φ̄
[− ∂2

τ − v2∇2 + r
]
φ + u0|φ|4

+ u(φN + φ̄N ), (37b)

S f =
∫

dτ d2x ψ̄[∂τ + ε(−i∇)]ψ, (37c)

SIA = γ

∫
dτ d2x ψ̄ [cos(−i∂x ) + cos(−i∂y)] ψ |φ|2.

(37d)

The complex field φ (Grassmann field ψ) describes the
fluctuations of the electric strings (fermions) near criticality
[D(x, τ ) = 2ηha2〈φ̄(x, τ )φ(0, 0)〉,GFS(x, t ) = a2〈ψ̄ (x, τ )
ψ (0, 0)〉 and a is the lattice spacing]. A first-order time deriva-
tive does not occur given the quadratic frequency dependence
of the resummed propagator (31). Observing Eq. (31),
one can identify the constants v2 = ηh[ηh − 4(J + t̄ )]
and r = ηh(J + t̄ )a2. Moreover, we have determined the
four-point self-interaction vertex u0 ∼ a2J4/(ηh) as well as
the ZN vertex u ∼ aN−2JN/h( N

2 −1) (cf. Appendix E). We
emphasize that the fermionic interactions are added on top
of the Fermi sea, so γ ∼ t . Figure 10 illustrates some of the
diagrams that contribute to the aforementioned transition.

The nature of the phase transition hinges on the value of N ,
as shown in Fig. 11. Note that for N � 5, the transition will
be of U(1) type. We also remark that, contrary to the quasi-1D
case, the Higgs transition is not expected to be preempted by
a U(1) phase. This is because the Higgs transition stems from
the toric code sector alone and intermediate U(1) phases are

195108-9



KAUSTUBH ROY AND ELIO J. KÖNIG PHYSICAL REVIEW B 109, 195108 (2024)

FIG. 11. Phase diagram representing the confinement-
deconfinement transition for N > 2. The phase boundary (red)
occurs at ηh = 4(J + t̄ ).

not permitted in two spatial dimensions (see Sec. VII for a
review).

B. Spontaneous τ insertions: Hadron formation

While in the previous section we studied the effect of
statistically appearing e particles (obtained by σ insertions),
we here study the effect of m particles. To this end we add

Hg = − g

2

∑
b

(τb + τ
†
b ) (38)

to the basic Hamiltonian (1), but set J = t = 0.
As we already saw, insertion of τ results in an Anderson or-

thogonality catastrophe, such that the m-particle dynamics in
the presence of fermions is very different from the dynamics
of e particles [Eq. (31)]. Technically, this is reflected in a much
less straightforward computation as the previous section.

As a remedy to avoid the orthogonality catastrophe
physics, it is physically favorable to bunch fermions into
charge-neutral N-particle bound states (“hadrons”). Here, we
present details on the hadron formation under the assumption
of Nf = N fermion flavors. For simplicity, we concentrate on
the limit of large h, φ = 0 and low fermion filling (so that the
Fermi surface is given by a circle and umklapp effects gener-
ating order in the particle-hole channels [25] is disabled.)

We first focus on the limit of low magnetic string ten-
sion g � ηK . Further, since we are already working in the
limit ηK � w, the orthogonal fermions are relatively slow as
compared to the m particles introduced with the perturbation.
These m particles induce an attractive interaction within the
fermions, and for large enough g, create an instability in the
OM phase. The instability can be identified as a singularity in
the N-particle interaction channel, the leading contribution to
which is obtained from a “ladder” resummation (see Fig. 12)
(for N = 2, the calculation is equivalent to that of the Cooper
instability).

The bare interaction induced by the m particles is char-
acterized by V . We can estimate V by finding the effective

FIG. 12. Ladder resummation of the N-particle propagator.
(a) The resummation in terms of the noninteracting ladder L(q =∑

j p j, iν = ∑
j iε j ) and the effective interaction vertex Veff. (b) The

Bethe-Salpeter equation defining the effective interaction vertex in
terms of L and the bare interaction V .

N-fermion hopping amplitude from perturbing around the OM
ground state, treating g as a small parameter in the partition
function

Z

Z0
= Tr

[
T exp

(
−
∫

dτ Hg(τ )

)]
. (39)

Ignoring higher-order contributions corresponding to m-
particle insertions in loops, the first nonzero contribution to
the hopping arises from N th order in g, with an amplitude
of (gw)N/(�Em)2N−1, �Em being the energy gap of the m
particles. While at the integrable limit this is simply ηK , it
gets modified to

√
ηK (ηK − 4g) as one approaches m-particle

confinement [analogous to e particles, cf. Eq. (31)].
Appendix F presents the details of the N-ladder correlator

as well as the calculations of the critical temperature at which
the hadron instability sets in, given by

Th(g � K ) = T (0)
h

(
1 − 1

vαN (0)

)
, (40)

where αN (0) = ∫ 1
0

∏N
i (dxi )(

∑N
i xi )−1 is finite for all N > 2

and behaves as 2/N in the large-N limit. The dimensionless
interaction v is a function of the bare interaction V and the
chemical potential μ (above the bottom of the band). The
scaling of dimensionless v as a function of g, K , w as well
as the chemical potential is

v(g/K ) ∼
(

g

�Em

)N(
w

�Em

)(
μ′

�Em

)N−2

. (41)

Here and henceforth, the dashed quantity μ′ indicates the
chemical potential above zero filling, as opposed to the μ in
Eq. (1) which is zero at half-filling. As g/K increases, one sees
that the proposed transition always occurs before the conden-
sation of m particles (see Fig. 13), supporting the hypothesis
that the m-particle dynamics result in a retarded attractive
interaction and subsequent hadron instability. As g approaches
ηK/4, Th approaches a maximum value T (0)

h ∼ μ′/N .
In the opposite limit, deep in the confining phase for m

particles (g � ηK) the ZN clock variables on the lattice align
in the τ basis which renders them disordered in the σ basis.
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FIG. 13. Estimate for the dimensionless hadron interaction v

[Eq. (41)], varying with g/K (blue). The plot has been constructed
for N = 4, w/ηK = 0.3, and μ/w = 0.3. v has a vertical asymptote
at ηK = 4g (red), the point at which m-particle condensation occurs.

This results in an insulating phase for the fermions for low
temperatures. One can carry out perturbation theory on the
new ground state where τb = 1, treating w as a small parame-
ter,

Z

Z0
= Tr

[
T exp

(
−
∫

dτ Hw(τ )

)]
. (42)

Expanding this expression to N th order in w produces an
effective nearest-neighbor hopping of [c†

r ]N [cr′ ]N , with an
amplitude of the order teff ∼ wN/gN−1. In this regime, assum-
ing that the N hadrons show bosonic statistics, i.e., N ∈ 2N,
the condensation sets in as a Berezinskii-Kosterlitz-Thouless
(BKT) transition (see [25] for N = 2). One can then utilize
BKT theory to estimate the transition temperature Th in this
regime

Th(g � K ) = TBKT ∼ teff nba2, (43)

where nb is the boson density [∼(μ/w)/N] and a the lattice
spacing. This calculation suggests that the temperature Th

develops a tail with a power-law decay (∼ 1
gN−1 ), tapering off

for large g/K .
In the regime between confinement and deconfinement of

the magnetic sector (g ∼ ηK), one needs numerical tools to
establish the exact phase boundary, but one expects to see a
dome of N-hadron instability in the phase diagram as shown
in Fig. 14, with the apex of the dome bounded above by the
critical temperature T (0)

h . A similar dome of superconductivity
has been strongly evidenced for N = 2 in Ref. [25] using
quantum Monte Carlo techniques, yet for N = 2 the hadron
formation occurs at infinitesimal g/K .

We leave a remark in passing here that interactions between
these N hadrons can lead to formation of higher-order aggre-
gates that are more energetically favorable, like the formation
of 2N hadrons with bosonic statistics for odd N , which can
form condensates unlike their counterparts with fermionic
statistics. This requires further analysis and will be dealt with
in future studies.

FIG. 14. Schematic phase diagram of temperature T vs g/K
for small fermion filling showing the dome of hadron formation
(red) buried in the ZN phase (blue). The point ηK = 4g indicates
the zero-temperature confinement-deconfinement transition for the
m particles. At higher temperatures T > Tcrit, our RG-flow analysis
suggests U(1)-like behavior (green).

VII. ABSENCE OF A U(1) PHASE

In the previous section we have argued that the
confinement-deconfinement transition of the ZN gauge theory
with fermions is buried under a dome of hadron formation (in
the case N = 2: a dome of superconductivity). Yet, one could
have also expected that an intermediate U(1) phase occurs
between the two phases, or might at least be stabilized by
additional interactions in the Hamiltonian. In this section, we
provide arguments why this is not the case. Instead, we here
show that in 2 + 1 dimensions [(2 + 1)D], QED coupled to
a Fermi surface is a renormalization group fixed point which
is unstable to ZN perturbations. According to these results,
it is strictly speaking not possible to emulate U(1) LGTs by
finite Hilbert space ZN approximants. However, we show that
U(1) physics may persist at intermediate system sizes smaller
than the length scales at which N-hadron bound states may be
observed.

We first summarize the situation in the absence of
fermionic matter fields, where indeed an intermediate U(1)
phase occurs in one spatial dimension, but not in 2D. This
can be understood as follows: While in D = 1 + 1 and large
N , terms breaking U(1) symmetry down to ZN are renormal-
ization group (RG) irrelevant near the transition [31], such a
mechanism is disallowed for D = 2 + 1. Indeed, in the dual
(gauge theory) language, the disorder-order transition cor-
responds to a deconfinement-confinement transition. At the
same time, compact QED3 without matter fields is always in
a confining phase, which implies that any putative U(1) phase
would ultimately gap out at longest distances [97]. What,
however, if the ZN gauge theory in D = 2 + 1 is coupled to
fermionic matter fields? Indeed, in contrast to the pure gauge
theory, it is common knowledge that compact QED3 coupled
to a Fermi surface remains gapless [34–39]. Analogously to
the logic applied in (1 + 1)D, we here study the effect of terms
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FIG. 15. A schematic of the flow of of the constants κ , λ under
the renormalization group procedure. System scales corresponding
to the green region can approximate U(1) order, where κ < 3N2

5 .

breaking U(1) symmetry down to ZN in a renormalization
group treatment.

We here study the renormalization group flow for a ZN

perturbation added to the non-Fermi-liquid theory obtained
by coupling a degenerate Fermi gas with Nf -fold flavor de-
generacy to QED3 gauge fluctuations (see Appendix G 2 for
details). The flow equations are

dκ

d ln b
= 6κ, (44a)

dλ

d ln b
=
(

5 − 3N2

κ

)
λ, (44b)

where the constant λ determines the strength of the ZN per-
turbation locking the U(1) gauge field to N discrete angles
and the constant 1/κ linearly enters the propagator of the
U(1) gauge field (analogously to a stiffness in Berezinskii-
Kosterlitz-Thouless theory). One sees that since κ is relevant,
λ is bound to flow to relevancy and thus the ZN perturbation
breaks U(1) order in the system. Figure 15 plots the flow
Eqs. (44a) and (44b). Although there is no ZN order, one
can see quasi-U(1) behavior at intermediate system scales,
corresponding to the green region of the phase space where
λ flows to irrelevancy. Using the starting value κ ∼ 1/N2

f ,
we have calculated the critical length scale Lcrit up to which
this behavior persists and its dependence on N as well as the
number of fermion flavors Nf ,

Lcrit ∼ l

(
N

Nf

) 1
3

, (45)

where l is the UV length cutoff which can be estimated of
the order of the Fermi wave vector. The critical length scale
endows a corresponding critical temperature Tcrit ∼ μ(Nf /N )
above which the U(1)-like behavior in the system persists (see
Fig. 14). In the case Nf = N studied in the previous section, it

is ensured that the quasi-U(1) behavior persists only outside
the N-hadron phase (Tcrit > T (0)

h )
We emphasize that our calculations are performed within

the random-phase approximation (RPA) of fermions coupled
to emergent photons in 2D. It has been argued that a combi-
nation of large Nf and an ε expansion justifies the existence
of a phase described by this phenomenology [39]. However,
in strictly two spatial dimensions, the infrared fixed point of
QED3 coupled to a Fermi surface is unknown. While we can
not exclude a scenario in which λ is relevant at the non-Fermi-
liquid RPA fixed point but irrelevant at the unknown physical
infrared fixed point, such a scenario seems extremely unlikely.

VIII. DISCUSSION AND OUTLOOK

In summary, we have coupled a ZN generalization of Ki-
taev’s toric code to fermions, obtaining a solvable model
for fermions coupled to a ZN lattice gauge theory in 2 + 1
dimensions. This model exhibits a rich phase diagram with
exotic changes in the Fermi-surface topology, switching from
an orthogonal metal phase to an orthogonal semimetal (for
even N) or a band insulator (for odd N). The deconfining
sector of the toric code admits momentum transfer through
the gauge field, allowing violation of Luttinger’s theorem
without symmetry breaking. In the integrable limit, we have
also developed a diagrammatic technique for correlators of
fermions and “σ” insertions (corresponding to e particles). We
furthermore studied correlators of “τ” insertions (correspond-
ing to m particles), which trigger an orthogonality catastrophe
effect and a power-law decay at long times in the m-particle
propagator. We have found a closed form for this power-law
exponent systematically using linked cluster expansions.

We next included perturbations to the integrable limit
which delocalize e and m particles of the toric code. In the de-
confining phase, the term delocalizing e particles generates a
dispersive band of Green’s function zeros. We have also stud-
ied the Higgs transition corresponding to the condensation of
e particles. We predicted the position of the phase transition
within mean-field theory and developed an effective field the-
ory to investigate the critical behavior of the system at this
transition beyond mean field. The terms dynamically delocal-
izing m particles (which correspond to a finite string tension)
tend to induce a hadron instability resulting in the formation
of gauge-neutral hadrons consisting of N particles. In the case
of Nf � N flavors of fermions we explicitly demonstrate that
the hadron instability buries the confinement-deconfinement
transition underneath a hadronic dome (superconductivity in
the case N = 2). We finally address the question of the limit
N → ∞ to answer whether ZN LGT are good emulators for
QED. Concentrating on the case of a Fermi surface but far
away from half-filling, we present RG arguments according
to which QED is always unstable, i.e., ZN LGTs do not have
a U(1) gapless phase in the infrared. However, we argue that
at intermediate energy scales ZN LGTs with N � 1 can be
good approximations to QED3.

In conclusion, both recent advances in quantum materials
and the advent of new programmable quantum emulators have
generated practical interest in topological phases of ZN gauge
theories. Here we studied fermionic fields in this context
allowing to shed light on the physics of Luttinger surfaces
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of Green’s function zeros and the problem of Fermi-surface
reconstruction without symmetry breaking. Interesting prob-
lems for the future involve the interplay of topological band
structures with deconfining lattice gauge theories and the
search for deconfining phases in more microscopic models of
materials. At the same time, many physically relevant ques-
tions for quantum emulator implementations of deconfining
gauge theories remain unanswered, most importantly those
addressing important aspects of experimental imperfections
such as decoherence.
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APPENDIX A: QUANTUM CLOCK MODEL TO ZN

TORIC CODE

In this Appendix we summarize the mapping of the ZN

gauge theory (with fermionic and bosonic matter fields) to the
ZN toric code model [1,63,85]

H = HZN + HQC + H f ,

HZN = −K

2

∑
p

∏
e∈{x̂,−ŷ}

σ̄r+ 1
2 eσ̄

†
r− 1

2 e
− g

2

∑
b

τ̄b + H.c.,

(A1a)

HQC = −J

2

∑
r,e∈{x̂,ŷ}

σ̄(r+ 1
2 e)ς

†
r ςr+e − h

2

∑
r

τr + H.c.,

(A1b)

H f = −w

2

∑
r,e∈{x̂,ŷ}

σ̄(r+ 1
2 e) f †

r,α fr+e,α + H.c. (A1c)

HQC is the usual quantum clock Hamiltonian, with the inter-
action term modified with the addition of σ̄b to couple it to the
gauge field.

Both sets of operators obey the algebra

σ̄bτ̄b′ = (ω)δb,b′ τ̄b′ σ̄b, (A2a)

ςrτ r′ = (ω)δr,r′ τ r′ςr, (A2b)

where ω = e2π i/N , the N th root of unity. The model has a local
ZN symmetry at each site generated by the operator Q̄r:

Q̄r = ωn̂rτr︸ ︷︷ ︸
matter

∏
e∈{x̂,ŷ}

τ̄ r+ 1
2 eτ̄

†
r− 1

2 e︸ ︷︷ ︸
gauge

. (A3)

To fix the local charge, we impose Gauss’ law on the
physical subspace

Q̄r|Phys〉 = |Phys〉. (A4)

We thus make the replacement τ†
r → ∏

e∈{x̂,ŷ} ωn̂r τ̄ r+ 1
2 e

τ̄
†
r− 1

2 e
(≡ Qr ). We also enforce the unitary gauge on the physi-

cal subspace:

ςr|Phys〉 = |Phys〉. (A5)

Finally, we replace the terms in the Hamiltonian with gauge-
invariant quantities:

(1) W (e)
γr,r′

= ς†
r [
∏

ri∈γ σ̄ri,ri+1 ]ςr′ ≡ ∏
ri∈γ σri,ri+1 ,

(2) τ̄b ≡ τb,
(3) cr,α = ς†

r fr,α ,
giving us the gauge-fixed Hamiltonian

H = − K

2

∑
p

∏
e∈{x̂,−ŷ}

σr+ 1
2 eσ

†
r− 1

2 e
− g

2

∑
b

τb + H.c.

− h

2

∑
r

ωn̂r
∏

e∈{x̂,ŷ}
τ r+ 1

2 eτ
†
r− 1

2 e︸ ︷︷ ︸
Qr

−J

2

∑
r

σr + H.c.

− w

2

∑
r,e∈{x̂,ŷ}

c†
r,ασ(r+ 1

2 e)cr+e,α + H.c. (A6)

This concludes the argumentation exposed in Sec. II B of the
main text.

APPENDIX B: DERIVATION OF FEYNMAN RULES

In this Appendix we derive the Feynman rules presented in
Sec. V A. To this end, consider Eq. (19) with the Heisenberg
picture time evolution O(τ ) = eHτ Oe−Hτ :

(i) Write |GS〉 as
∏

r P̂(0)
r |ϕ〉|FS〉. Commuting the projec-

tor on the left across to the other side, one sees that the charge
qi on each site must be conserved modulo N for the product
of projectors to not vanish. This gives Feynman rule 2. This
implies that two fermionic operators must be joined by a string
of oriented σ insertions, and equivalently that σ insertions
must either be closed loops or terminate in one (or one modulo
N) fermionic operator.

(ii) For an operator Or with charge qi, the ex-
plicit time evolution is Or(τ ) = eHhτ eHwτ Ore−Hwτ e−Hhτ =
Ōr(τ ) exp[ h

2 (1 − ωq)Qrτ + H.c.], where q is the charge of the
operator O and Ō(τ ) indicates time evolution with respect to
the fermionic part only.

(iii) At site r, write the operators inside the corre-
lator C({r, τ } in time-ordered fashion. Replace all oper-
ators with the above time-evolution expression: Or(τ ) =
Ōr(τ ) exp[ h

2 (1 − ωq)Qrτ + H.c.]. Commute the exponential
terms to the right, making note of the charge of the subsequent
operators (QrOr′ = (ωq)δr,r′ Or′Qr) and finally use Qr|GS〉 =
|GS〉 coupled with Feynman rule 2 to obtain the e-particle
interaction term (23).

(iv) The only dependence on σ variables now lies in Ō(τ ),
specifically in Hw, and the σ insertions. The σ ’s can now
be replaced with their expectation values on the gauge-fixed
lattice (〈ϕ|σr|ϕ〉). This fixes the Hamiltonian Hw → Hϕ .
For example, in the zero-flux orthogonal metal (OM) phase,
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FIG. 16. The connected part of the transient operator C(t ) containing linked clusters of all orders.

〈σr〉0 = 1 and Hw reduces to the regular 2D tight-binding
Hamiltonian.

(v) The correlator has now been brought to the
form C(r, τ ) = 〈FS|T {Ōr1 (τ1)Ōr2 (τ2) . . . Ōrn (τn)}|FS〉. Now
Wick’s theorem can be applied.

The real-time Feynman rules are derived analogously, sim-
ply derived with a Wick rotation: τ → it, |τ1 − τ2| → i|t1 −
t2|.

APPENDIX C: NOZIERES–DE DOMINICIS SOLUTION

In this Appendix, we present details on the correlators of
τ operators (m particles) in the presence of fermions, thereby
complementing Sec. V B.

To understand the Nozieres–de Dominicis solution, we first
lay out the perturbative method. The propagator G ′

FS(t ′ −
t ) = −i〈T exp −i

∫ t ′

t dτV̂ (τ )〉 can be expanded in V ≡
w
2 (1 − ω) and V̄ into a series of connected and disconnected
diagrams with two types of vertices. This series can be re-
summed to an exponential of just the connected diagrams
using the linked cluster theorem

G ′
FS(t ) = −ieC(t ), (C1)

where

C(t ) =
〈
T exp −i

∫ t

0
dτV̂ (τ )

〉
connected

. (C2)

C(t ) is the sum of all closed-loop diagrams, as shown in
Fig. 16 up to third order.

The diagrams above can be computed order by order, but
only when the propagators in each diagram are nonsingular.
While we concentrate on the case away from half-filling,
where the fermionic Green’s function is g0(t ) ∼ 1/wt , we
mention in passing that at the van Hove singularity the long-
time behavior of the onsite propagator acquires an additional
logarithm [g0(t ) ∼ ln(t )

wt ] and each term in the expansion is
more singular than the last. This amplifies the orthogonality
catastrophe. However, it was shown [96] for the case of an
abruptly appearing onsite potential that the phase shift ob-
tained at half-filling is the same as determined using the naive
extrapolating of the final result (as obtained for finite density
of states) to the van Hove point. Based on the assumption that
this observation also holds in the more complicated situation
of an abrupt change in the hopping amplitude [cf. Eq. (26b)],
we will thus perform all calculations away from half-filling
and simply extrapolate the final results when we discuss the
half-filled situation.

To obtain the solution nonperturbatively, we need a closed
equation for the sum of all linked clusters. We first split
the diagrams into two sets of equivalent diagrams C(t ) =
Cred(t ) + Cblue(t ) (Fig. 17), each of which has a vertex of the
aforementioned type and generates the other propagator with
the swap V ↔ V̄ . (One can always do this due to the form
of the potential: for every connected diagram there exists a
corresponding diagram with the vertices flipped.)

We now take Cblue(t ) and isolate the blue vertex. The
remaining parts of the propagator then form diagrams for
the hopping propagator in the time-dependent potential V (τ ).
We can resum these diagrams to obtain the fully normalized
electron hopping propagator. The 1/n symmetry factor can be
taken care of by multiplying each vertex with λ and integrat-
ing with respect to λ at the end [

∫ 1
0 dλ(λV )n = V n/n]. The

transient hopping propagator and the transient onsite propa-
gator is given by

hλ(τ ) = −i

〈
T cr2 (τ )c†

r1
(τ ′) exp{−iλ

∫
dt ′V̂ (t ′)}〉

〈T exp{−iλ
∫

dt ′V̂ (t ′)}〉 , (C3)

gλ(τ ) = −i

〈
T cr1 (τ )c†

r1
(τ ′) exp{−iλ

∫
dt ′V̂ (t ′)}〉

〈T exp{−iλ
∫

dt ′V̂ (t ′)}〉 . (C4)

The expression we desire is obtained by reintroducing the
removed vertex and integrating the normalized propagator hλ:

Cblue(t ) = −V
∫ t

0
dτ

∫ 1

0
dλ hλ(τ, τ + |t ). (C5)

The two transient propagator Eqs. (C3) and (C4) satisfy the
coupled Dyson-Schwinger equations:

hλ(τ, τ ′|t, t ′) = h0(τ−τ ′)+λV
∫ t ′

t
h0(τ−τ ′′)hλ(τ ′′, τ ′|t, t ′)

+ λV̄
∫ t ′

t
g0(τ − τ ′′)gλ(τ ′′, τ ′|t, t ′), (C6)

gλ(τ, τ ′|t, t ′) = g0(τ − τ ′) + λV
∫ t ′

t
g0(τ−τ ′′)hλ(τ ′′, τ ′|t, t ′)

+ λV̄
∫ t ′

t
h0(τ − τ ′′)gλ(τ ′′, τ ′|t, t ′). (C7)

One gets an equal number of corresponding diagrams Cred

which one can obtain by making the replacement V → V̄ in
Cblue. This gives us the full propagator

C(t ) = −V
∫ t

0
dτ

∫ 1

0
dλ hλ(τ, τ + |t ) + (V �→ V̄ ). (C8)
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FIG. 17. The pair of equations, Cred(t ) and Cblue(t ), that sum to give the total propagator C(t ) and are related to each other by conjugating
the vertices V ↔ V̄ .

In the energy representation,

g0(ω) =
∫

dE
ρ(E )

ω − E + iδ sign(E )
, (C9)

where ρ(E ) is the density of states,

ρ(E ) =
∫

d2k

(2π )2
δ(E − {−2w(cos kx + cos ky) − μ})

= 1

4π2w
K

⎧⎨
⎩
[

1 −
(

E + μ

4w

)2
] 1

2

⎫⎬
⎭

and K (x) is the modified Bessel function. Similarly,

h0(ω) =
∫

dE
ρh(E )

ω − E + iδ sign(E )
(C10)

with the “hopping” density of states ρh defined as

ρh(E ) =
∫

d2k

(2π )2
eikyδ(E − {−2w(cos kx + cos ky) − μ})

= − 1

4w
(E + μ)ρ(E ). (C11)

The integral can be evaluated in closed form due to the ro-
tational symmetry of the 0-flux band dispersion. Away from
half-filling, the small frequency behavior of the propagators
can be approximated as

g0(ω) ≈ A − iπρ(0)sign(ω), (C12a)

h0(ω) ≈ B − iπρh(0)sign(ω), (C12b)

where A, B are real constants. It is apparent that the long-time
behaviors of both propagators are g0(t ), h0(t ) ∼ 1/t .

To solve for the normalized propagator, we first decouple
the Dyson-Schwinger equations. Repressing all arguments ex-
cept for the first since that is the only one that changes in the
calculations,

hλ = −ρh
0

τ − τ ′ + λ

∫ t

0
dτ ′′ V ρh

0 hλ(τ ′′) + V̄ ρ0gλ(τ ′′)
τ ′′ − τ

, (C13)

gλ = −ρ0

τ − τ ′ + λ

∫ t

0
dτ ′′ V ρ0hλ(τ ′′) + V̄ ρh

0 gλ(τ ′′)
τ ′′ − τ

. (C14)

To decouple these equations, one must compute the left eigen-
vectors and eigenvalues of the matrix

M = λ

(
V ρh

0 V̄ ρ0

V ρ0 V̄ ρh
0

)
. (C15)

The eigenvalue equation for M gives

μ2 − λρh
0 (V + V̄ )μ + |λV |2[(ρh

0

)2 − (ρ0)2
] = 0, (C16)

μ = λρh
0�V ± λ

√
|V |2(ρ0)2 − (

ImV ρh
0

)2
(C17)

and the left eigenvector a ≡ (1, a) is defined by the character-
istic equation

λV ρh
0 + aλV ρ0 = μ1,2 (C18)

with the solutions

a1,2 = 1

V ρ0

(
μ1,2/λ − V ρh

0

)
. (C19)

The decoupled equations are

{h + a(1,2)g}λ(τ )

= −ρh
0 + a(1,2)ρ0

τ − τ ′ + μ1,2

∫ t

0
dτ ′′ {h + a(1,2)g}λ(τ ′′)

τ ′′ − τ
.

(C20)

This expression simplifies nicely due to Eq. (C18), leaving us
with

{h + a(1,2)g}λ(τ )

= − μ1,2

λV (τ − τ ′)
+ μ1,2

∫ t

0
dτ ′′ {h + a(1,2)g}λ(τ ′′)

τ ′′ − τ
.

(C21)

Using the textbook [94], one can directly read off the solution

Cblue(t ) = − V
∫ t

0
dτ

∫ 1

0
dλ

(
a2

a2 − a1

)
{h+a1g}λ(τ, τ + |t )

−
(

a1

a2 − a1

)
{h + a2g}λ(τ, τ + |t ). (C22)

Ignoring the leading-order energy shift, the transient part
gives us

Cblue(t ) = −
{(

a2

a2 − a1

)(
δ1

π

)2

+
( −a1

a2 − a1

)(
δ2

π

)2
}

ln(t ),

(C23)

where δi = arctan(πμi/λ). Now we find Cred. Note that while
ai is not invariant under the switch V �→ V̄ , μ1,2 are. This al-
lows for a dramatic cancellation in the full propagator, leaving
us with

C(t ) = −
{(

δ1

π

)2

+
(

δ2

π

)2
}

ln(t ). (C24)

Our final equation will be the above multiplied by Nf to
account for internal flavor or spin degrees of freedom, giving
Eq. (28).
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APPENDIX D: LUTTINGER SURFACE

In this Appendix we present details for the calculation of
the Luttinger surface in the orthogonal metal, Sec. VI A 1,
starting from Eq. (35) of the main text.

We here use the notation Mq =
ηh
√

1 − 2J[cos(qx ) + cos(qy)] � ηh(1 − δMq), where
δMq = J[cos(qx ) + cos(qy)]/(ηh). Using the notation

GOM(q, z) = 1

z − ξ0(q) − sign[ξ0(q)]ηh
(D1)

we thus obtain

G(p, z) = a2
∫

BZ
(dq)

ηh

Mq−p

1

z − ξ0(q) − sign[ξ0(q)]Mq−p

� a2
∫

BZ
(dq)GOM(q, z)︸ ︷︷ ︸
G (0) (z)

+ a2
∫

BZ
(dq)δMp−q[GOM(q, z) − ηh sign[ξ0(q)]GOM(q, z)2]︸ ︷︷ ︸

G (1) (p,z)

. (D2)

We next use a trigonometric identity to rewrite δMp−q as a
product of functions containing p and q, exploit that integrals
over sin(qx,y) vanish by symmetry, exploit C4 symmetry, and
write

cos(qx ) + cos(qy) = −[ξ0(q) + μ]/2w, (D3)

so that, using GOM(ξ, z) = [z − ξ − sign(ξ )ηh]−1,

G (0)(z) = a2
∫

dξ ρ(ξ + μ)GOM(ξ, z), (D4)

G (1)(p, z) = J[ξ0(p) + μ]

8ηhw2
a2
∫

dξ ρ(ξ + μ)(ξ + μ)

× [GOM(ξ, z) − ηh sign(ξ )GOM(ξ, z)2]. (D5)

We next define the following dimensionless integrals

I±
n =

∫ ∞

0
d ξ̄

ξ̄ n−1

ν0

ρ(ηhξ̄ + μ) ± ρ(ηhξ̄ − μ)

(z/ηh)2 − (ξ̄ + 1)2
, (D6)

where ν0 = 1/(2πwa2) and

ρ(ξ ) = ν0θ [(2w)2 − ξ 2]
4wK[1 − (2w/ξ )2]

π |ξ | (D7)

is the particle-hole-symmetric density of states of the square
lattice centered around zero and K (x) denotes a Bessel func-
tion of the second kind.

Using this notation we find

G (0)(z) = z

ηh
a2ν0I+

1 + a2ν0(I−
1 + I−

2 ), (D8)

G (1)(p, z) = [ξ0(p) + μ]
J

8w2
a2ν0

{
I+
2 + I+

3 + ηh∂z

× (I−
2 + I−

3 ) + μ

ηh
[I−

1 + I−
2 + ηh∂z(I+

1 + I+
2 )]

+ z

ηh
I−
2 + ∂z(zI+

2 ) + μz

(ηh)2
I+
1 + μ

ηh
∂z(zI−

1 )

}
.

(D9)

We concentrate on the vicinity of half-filling, i.e., μ =
0. We thus assume also z to be small and drop all orders

z2, μ2, zμ, zJ , etc. In this limit, we only need the following
combination of integrals (in addition to I+

1 < 0):

2I+
2 + I+

3 � −I+
1 − 2

ν0ηh
< 0, (D10)

I−
1 + I−

2 � 1

ν0ηh
[n(μ) − n(−μ)], (D11)

where n(μ) is the fractional filling

n(μ) =
∫ 0

−∞
dξ ρ(ξ + μ). (D12)

This leads to

G (0)(z) = a2ν0

ηh

(
zI+

1 + 1

ν0
[n(μ) − n(−μ)]

)
, (D13)

G (1)(p, z) = −[ξ0(p) + μ]
J

8w2
a2ν0

(
I+
1 + 2πw

ηh

)
, (D14)

which can be rewritten as

G(p, z) � a2 ν0I+
1

ηh

[
z + 1

ν0

n(μ) − n(−μ)

I+
1

(D15)

+Jηh

4w

I+
1 + 2πw/ηh

I+
1

∑
μ=x,y

cos(qμ)

]

=: − 1

Z [z + ζ0(p)], (D16)

which is the result quoted in Eq. (36) of the main text.

APPENDIX E: CRITICALITY OF ELECTRIC STRINGS
IN THE OM PHASE

In this Appendix we derive Eq. (37). Both coefficients λ

and λ0 arise from the self-interaction of the critical electric
strings. The four-point correlation function corresponding to
λ0 arises from vertices with 2 e particles and 2 e antipar-
ticles interacting. Since we only require the connected part
to calculate the nonlinearity, we must subtract from Eq. (23)
the pairwise distinct interaction of e-particle and -antiparticle
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pairs, i.e., noninteracting electric strings,

V0({r, τ }) = J4
4∏

n=1

∑
r

δ〈rn,r〉

×
[

exp

{
h

n∑
i=1

τp(i)Re
[
ω−∑i

j=1 qp( j) (1 − ωqp(i) )
]}

− D(τ1, τ2)D(τ3, τ4) − D(τ1, τ3)D(τ2, τ4)

− D(τ1, τ4)D(τ2, τ3)

]
. (E1)

Except for the special case N = 2, one of the three terms
in the pairwise interactions always evaluates to 0 due to Feyn-
man rule 2. To find the vertex for the continuum field theory,
we evaluate Eq. (E1) at zero frequency, taking β ≡ 1/T as the
infrared cutoff for the theory∫ β

0

N∏
n=1

(dτn)V0({r, τ })

= J4
∑

r

δ〈ri,r〉

[
16

(
3

(ηh)4
− 2β

(ηh)3
+ β2

2(ηh)2

)

+ 8

(η − 2)2

(
4η − 9

(ηh)2
− β

2 − η

2(ηh)3

)]

− 2
4J4

h2η2

(
β − 1

ηh

)2

O(β )= −β
J4

(ηh)3

(
16 + 4

η − 2

)∑
r

δ〈ri,r〉. (E2)

The ZN vertex has two terms, each of which corresponds
to the creation (φN ) and annihilation (φ̄N ) of N e particles,
respectively. Unlike the 4-vertex, there are no lower-order
contributions that need to be subtracted from the connected
part of the propagator. Since all charges are 1 (for the creation
term, −1 for the annihilation term), Eq. (23) can be simplified
to

V ({r, τ })

= JN
N∏

n=1

∑
r

δ〈rn,r〉 exp

{
h

N∑
=1

τp(i)Re[ω−i(1 − ω)]

}
.

(E3)

The corresponding imaginary-time integral with the IR cutoff
at β has no closed form in terms of N , but dimensionally, one
can observe that the exponent is of the order of JN/hN−1.

The addition of the nearest-neighbor hopping perturbation
t introduces new operators that in the critical limit give rise to
interactions between strings and fermionic excitations, cap-
tured by the action SIA. The interaction (local in time) takes
the form

V
(
rc, rc† ; rD1 , rD̄2

) = t δrc,rD1
δrc† ,rD̄2

δ〈rc† ,rc〉. (E4)

Upon rescaling the fields, we arrive at the coupling constant
γ ∼ ηhta2[cos(kx ) + cos(ky)] in the long-wavelength limit of
the φ fields.

APPENDIX F: HADRON FORMATION IN LARGE-Kη/g
LIMIT: LADDER RESUMMATION

In this Appendix, we present details on the formation of
hadrons. We concentrate on the large-Kη/g limit, in which
we calculate the temperature at which N-particle propagators
form bound states.

We now evaluate the N-particle Green’s function (see
Fig. 12) and consider first the noninteracting limit:

L(q, iν) = T N−1
N∏

i=1

[∫
(dpi )

∑
εi

1

iεi − ξ (pi )

× δ

(∑
pi − q

)
δ(
∑

εi ),ν

]

=
∫ N∏

i=1

(dpi )
∫ β

0
dτ e−iντ δ(2)

(∑
pi − q

)

×
⎛
⎝T

∑
εi

eiεiτ

iεi − ξ (pi)

⎞
⎠. (F1)

In the second step, we have used the identity
∫ β

0 (dτ )eiωnτ =
βδωn,0 for a bosonic Matsubara frequency ωn. This necessi-
tates that the Matsubara frequency ν is bosonic when N is
even and fermionic when N is odd, capturing the statistic of
the composite excitation. To calculate the sum over fermionic
Matsubara frequencies εi, we employ the usual contour inte-
gration

T
∑
εi

eiεiτ

iεi − ξ (pi )
= − 1

2π i

∮
dz

ezτ

z − ξ
× 1

eβz + 1

= nf(ξ )eξτ . (F2)

The integral becomes

L =
∫ β

0
dτ

∫ ∏
i

(d pi ) e−iντ (nf(ξi )e
ξiτ )δ(2)

(∑
i

pi − q

)

=
∫ ∏

i

(d pi ) δ(2)

(∑
i

pi − q

)
n f (ξi )

e−iνβe
∑

i ξi − 1∑
i ξi − iν

.

(F3)

For now, we assume even N . One would like to examine
the behavior of this ladder propagator at L(q = 0, iν = 0);
L0. For N = 2, one recovers the standard result for the Cooper
instability in a Fermi liquid. For a general N , the propagator
can be rewritten as

L0 =
∫ ∏

i

(dpi ) δ(2)

(∑
i

pi

)[∏
i

n f (−ξi ) −
∏

i

n f (ξi)

]
.

(F4)

The term in square brackets is nonzero only when all exci-
tations are electrons (ξ > 0) or holes (ξ < 0). In the limit of
low filling, we can assume a parabolic (and thereby radially
symmetric) dispersion relation [pi = √

2m(μ + ξi)]. One then
replaces the momentum-conserving Dirac delta by averaging
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it out over the N momenta〈
δ(2)

(∑
i

pi

)〉
= 2π

∫
dr r

(∏
i

J0(pir)

)
. (F5)

Performing a change of variables pi → ξi, dpi → ρdξi,
where ρ is the density of states,

L0 = ρN
∫

−μ

∏
i

dξi

∫
dr(2πr)

∏
i J0[pi(ξi )r]∑

i ξi

×
[∏

i

n f (−ξi) −
∏

i

n f (ξi)

]
. (F6)

If the effective interaction between the fermions occurs in a
range of energies around the Fermi surface: ξi ∈ [−ω0, ω0]
and ω0 � μ, the integral over the Bessel functions can be
estimated by setting the momentum as the Fermi momentum

2π

∫
r dr [J0(p f r)]N = 4π

p2
f

cN . (F7)

While c2 diverges (this is a manifestation of the Cooper
logarithm), cN with N � 3 are all finite and fall off asymp-
totically as 1/N for large N . We highlight that the assumption
of a retarded interaction ω0 � μ is not valid in the case of
g perturbations, instead all states up to the band edge are
involved ω0 ∼ μ. Therefore, while our calculations can be
expected to be parametrically correct, nonuniversal constants
from ultraviolet processes may be missed.

At finite temperature, approximating the Fermi distribution
function as a cutoff to the integral, one gets

L0 � −2
ρN

p2
f

4πcN

∫ ω0

T

∏
i

dξi
1∑
i ξi︸ ︷︷ ︸

ωN−1
0 αN (T/ω0 )

. (F8)

For small T , the integral can be further approximated by a
Taylor expansion to first order about 0: αN (T/ω0) ≈ αN (0) −
N T

ω0
αN−1(0).

We expect that the fermions have an attractive interaction
induced due to Hg whose strength is V . The effective interac-
tion vertex in the N-particle channel Veff is therefore

Veff = V
1 − VL0

. (F9)

The onset of hadron instability is characterized by the
development of a singularity in the vertex, which occurs when

L0 = V−1. (F10)

Defining the scaled interaction v as

v = −2V ρN

p2
F

4πcNωN−1
0 (F11)

(see Fig. 13), the critical temperature Th where Eq. (F10) holds
is

Th = ω0αN (0)

NαN−1(0)︸ ︷︷ ︸
T (0)

h

(
1 − 1

vαN (0)

)
. (F12)

For odd N , the ladder propagator must be evaluated at
ν = ±πβ, the minimum fermionic Matsubara frequency.
This changes the integrand in Eq. (F8) to [

∑
i ξi +

(πT )2/(
∑

i ξi )]−1. Up to first order in T , this change does not
significantly alter the integral and one can safely proceed with
the result for even N .

As mentioned in the main text, the bare interaction V is
expected to scale as (wg)N/(�E )2N−1. By substituting into
Eq. (F11) and assuming low filling, one can show that in terms
of w, g and the filling μ′ (above zero filling), v scales as

v ∼
(

g

�Em

)N(
w

�Em

)(
μ

�Em

)N−2

. (F13)

APPENDIX G: CONNECTION TO QED3

This Appendix is devoted to making a connection between
our ZN model and QED3. We first discuss the limit N → ∞
of our model, in order to identify the coupling constants of
both theories. Next, starting from a deconfining state of QED3
in the presence of a Fermi surface, we study the RG relevance
of ZN perturbations and thereby provide technical details for
Sec. VII of the main text.

1. ZN to QED3

In this Appendix we present the connection between the
Hamiltonians of ZN and U(1) gauge theories in the limit of
large h. Concentrating on the limit φ = 0 the gauge theory
part of our model is

H = − g

2

∑
r

∑
ê∈{x,y}

(τr,ê + τ
†
r,ê) − K

2

∑
p

(Bp + B†
p). (G1)

We now consider the limit N → ∞ and make connection to
a compact QED3 with gauge potential ar,ê on each link. Note
the slight difference in notation to the main text, in which b
denotes a link, rather than the multi-index (r, ê). This is to
facilitate the interpretation as a line integral over the U(1)
potential. By imposing the same algebra as Eq. (3) we can
identify

τr,ê + τ
†
r,ê = cos

(
2π

N
i

∂

∂ar,ê

)
, (G2)

Bp + B†
p = 2 cos(�p), (G3)

where �p is the flux passing through the plaquette p, i.e., the
directed sum of vector potentials ar,ê defined on each link.
Thus, the Hamiltonian becomes

H = −g
∑

r

∑
ê∈{x,y}

cos

(
2π

N
i

∂

∂ar,ê

)
− K

∑
p

cos(�p). (G4)

The first term contains the conjugate “electric” field Er,ê ≡
i ∂
∂ar,ê

endowed with the commutation relation [Er,ê, ar′,ê′ ] =
iδr,r′δê,ê′ . We carefully take the continuum limit and expand
the Hamiltonian about its minima. After sorting out the factors
of the lattice constant inside the vector potential, we obtain the
Hamiltonian

H =
∫

d2x
g

2

(
2π

N

)2(
E2

x + E2
y

) + Ka2

2
B2. (G5)
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Given this Hamiltonian, the corresponding QED3 action is

S =
∫

dt d2x

[
N2

2g(2π )2
Ȧ2 − Ka2

2
(∇ × A)2

]
, (G6)

S = Ka2

2

∫
dt d2x

3∑
μ=1

Aμ

(
N2

gK (2πa)2
∂2

t − ∇2

)
Aμ, (G7)

with the speed of light c = √
gK (2πa/N ). The fermionic part

of the Hamiltonian is coupled to this ZN gauge field as

H f = −w
∑

r

∑
ê∈{x,y}

c†
re−iar,ê cr+ê + H.c. (G8)

This corresponds to a Peierls substitution where the line in-
tegral of the U(1) gauge potential [ar,ê = ∫ r+ê

r A(r′) · dr′]
modifies the hopping between sites. Taking the continuum
limit recovers the Hamiltonian of fermions coupled to a U(1)
gauge field

Hw = wa2

2

∫
d2x ψ†

x (−i∇ − A)2ψx. (G9)

2. RG flow calculations for ZN perturbation in QED3

We now determine the regime in which the ZN physics
dominates the QED3 action. Namely, we ask when is the
action

S =
∫

dτ d2x
3∑

μ=1

Aμ

[−∇2 − ∂2
τ

]
Aμ + Sfermions (G10)

stable to the ZN perturbation

δS =
∫

dτ d2x λ[cos(NAx ) + cos(NAy)]. (G11)

We work in the Coulomb gauge (∇ · A = 0), where the prop-
agator takes the form [37]

DT [Q ≡ (ν, q)] = 1

γ
|ν|
q + q2χD

, (G12)

where on the bare level γ ∼ Nf kF and χD ∼ Nf /m.
Formally, this propagator is obtained by introducing N f

flavors of fermions followed by a large-Nf (and [39] an ε)
expansion. The action takes the form

ST =
∫

dν d2q
(2π )3

|AT (Q)|2
[
γ

|ν|
q

+ q2χD

]/
a2. (G13)

Here, AT (Q) is the transverse part of the gauge-fixed vector
potential [A(Q) = AT (Q)[ẑ × q]] and a is the lattice spacing.
Our RG procedure now splits the phase space into two parts,
the slow and fast fluctuations:√

(γ ν)2 + (χDq3)2 ∈
[

0,
�

bν

]
(slow), (G14)

√
(γ ν)2 + (χDq3)2 ∈

(
�

bν

,�

]
(fast), (G15)

where � is the UV cutoff. The quadratic action decouples in
the slow and fast fluctuations. We discard the fast fluctuations
and rescale the remaining action

ν ′ → bνν, q′ → bq. (G16)

One can immediately see that for the propagator to retain
its standard form bν = b3, which motivated the choice for the
momentum shells. Assuming that the U(1) gauge field scales
as ∣∣∣A<

T

( ν

b3
,

q
b

)∣∣∣ = b5|AT (ν, q)|, (G17)

the action thus scales as

S<
T = b3

∫
[0,�]

dν d2q
(2π )3

|AT (Q)|2
[
γ

|ν|
q

+ q2χD

]/
a2.

(G18)

Under this momentum-shell RG procedure, the ZN pertur-
bation scaling is

δS< = −λ

∫
dτ d2x

∑
i={x,y}

1

2
〈eiN (A>

i +A<
i ) + e−iN (A>

i +A<
i )〉>

= −λ

∫
dτ d2x

∑
i={x,y}

cos (NA<
i )e− N2

2 〈(A>
i )2〉, (G19)

〈(A>
i )2〉 = 1

(2π )3

∫
fast

dν d2q a2 [ẑ × q]2
i

γ
|ν|
q + χDq2

= a2

2(2π )3

∫
fast

dν d2q
1

γ
|ν|
q + χDq2

= a2

(2π )3

∫
fast, ν>0

dν d2q
1

γ ν
q + χDq2

. (G20)

Switching to polar coordinates and making the substitution

ν̄ = γ ν, q̄ = (χD)1/3q, (G21)

the integral is simplified to

〈(A>
i )2〉 = a2

(2π )2

1

γχD

∫
fast,ν̄,q̄>0

d ν̄ dq̄
q̄2

ν̄ + q̄3

= a2

12π2

1

γχD

∫
ν̄,x̄>0√

ν̄2+x̄2∈(�/b3,�]

d ν̄ dx̄
1

ν̄ + x̄
, (G22)

where x̄ = q̄3. Making another polar transformation [ν̄ =
r sin(θ ), x̄ = r cos(θ )],

〈(A>
i )2〉 = a2

12π2

1

γχD

∫ �

�/b3
dr

∫ π
2

0

dθ

sin(θ ) + cos(θ )

= �̃

χDγ
(1 − b−3), (G23)

where �̃ ∝ � is a velocity corresponding to the UV cutoff
and has hence the same dimensions as γχD.

From Eq. (G23), the ZN perturbation scales as

δS< = − λ exp

{
N2

2

�̃

χDγ
(1 − b−3)

}

×
∫

dτ d2x
∑

i={x,y}
cos (NA<

i ). (G24)

Examining Eq. (G24), λ scales under the RG procedure as

λ → b5 exp

{
− N2

χ̃ γ̃
(1 − b−3)

}
λ, (G25)
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where the cutoff has been absorbed into a redefinition of cou-
plings denoted χ̃ and γ̃ . The tree-level RG flow equations are

dχ̃

d ln b
= 3χ̃ , (G26)

d γ̃

d ln b
= 3γ̃ , (G27)

dλ

d ln b
=
(

5 − 3
N2

χ̃ γ̃

)
λ. (G28)

Introducing the dimensionless coupling κ = γ̃ χ̃
bare value=

N2
f vF /�̃, we obtain the RG equations presented in Eq. (44)

of the main text. One can see that for however large N , since

κ is a relevant parameter under RG scaling, the ZN parameter
λ always becomes relevant. Thus, there is no U(1) phase in
the system.

We can, however, estimate the regime in which the system
approximately behaves as QED3. From the tree-level flow
Eqs. (G26) and (G27),

dκ

d ln(L/l )
= 6κ ⇒ κ = κ0

(
L

l

)6

. (G29)

The ZN perturbation scaling λ does not grow as long as
κ = 3N2

5 . This endows a critical size to the system Lcrit =
l ( 3N2

5κ0
)1/6. For L < Lcrit, a U(1) phase can be well approxi-

mated. It is natural to assume �̃ ∼ vF , so that the bare κ = N2
f

(up to a coefficient of order one) and to set l = 1/kF .
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