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The only kinematically allowed phonon-scattering events for bands of subsonic fermions (vF < vp) are
interband transitions, leading to different low-T transport physics in nearly flat-band systems (NFBs) than in the
typical supersonic case. We apply a kinetic theory of phonon-limited transport to a generic two-band system of
subsonic fermions, deriving formulas for relaxation times and resistivity that are accurate in the “ultrasubsonic”
limit defined by small vF /vp and small band separation. We predict regimes of ρ ∝ T , ρ ∝ T 2, and perfect
conductivity. Our theory predicts linear-in-T resistivity down to a crossover temperature that is suppressed from
its supersonic analog by a factor of vF /vp, offering a different explanation for low-T “strange metal” behavior
observed in NFBs. Understanding NFBs thus requires updated expectations for “normal” transport physics.

DOI: 10.1103/PhysRevB.109.195105

Rapid progress in the fabrication and manipulation of lay-
ered two-dimensional van der Waals heterostructures has led
to an unprecedented ability to engineer nearly flat-band (NFB)
electronic systems, which have already displayed a wealth of
exotic phenomena [1–41]. However, all solid-state systems
contain phonons. To understand observations of novel physics
in solid-state NFB systems, it is important to understand
how phonons interact with NFB fermions. This work focuses
on one aspect: When the fermions in question are subsonic
(vF < vp), kinematics requires that all single-phonon scatter-
ing processes are interband transitions, with consequences on
the low-T transport physics.

The prime example of the NFB systems is magic-angle
twisted bilayer graphene (MATBLG). MATBLG has been
found to exhibit superconductivity (SC) proximate to strongly
correlated insulating states [7–13,22] and has been reported
to exhibit a linear-in-T “strange-metal”-like resistivity over
a large range of dopings and temperatures [9,26–28], some-
times down to temperatures as low as 50 mK [42]. These
phenomena have inspired analogy between MATBLG and the
cuprate high-Tc SCs, as well as speculation that SC in MAT-
BLG might be driven by strong correlation physics. However,
phonon-based theories of SC [43,44] and high-T transport
[28,43,45] in MATBLG have been put forth that give gener-
ally good quantitative agreement with experiment. It is thus
imperative to understand whether low-T , linear-in-T transport
in MATBLG is indeed arising from a strange metal state.

The standard kinetic theory of acoustic phonon scattering
is exceptionally accurate in describing transport in layered
graphene systems (as well as in normal metals and semicon-
ductors) at temperatures above a few Kelvin [43,45–47], and
accurately describes TBLG transport away from the magic
angle [43,45]. In this work, we apply the same framework to
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NFB systems at asymptotically low T , extending the kinetic
theory well beyond its regime of proven validity. Remark-
ably, the familiar theory predicts qualitatively different low-T
transport physics for subsonic fermions than it does for the
(standard) supersonic alternative, due entirely to the kinematic
differences between the two limits.

We develop a transport theory for a generic two-band
fermion system in the “ultrasubsonic” (USS) limit, which we
define as the double limit of small vF /vp and small band
separation. This limit allows an analytical solution to the
Boltzmann transport equation. We show that the interband na-
ture of subsonic fermion scattering manifests an exponentially
divergent relaxation time at low temperatures, in contrast with
the familiar τ ∝ T −4 Bloch-Grüneisen (BG) power law ap-
plicable to supersonic fermions. The divergence in relaxation
time is capable of perfectly balancing the thermodynamic
suppression of states away from the Fermi level, leading to
a nonintuitive physical picture in which states far from the
Fermi level contribute meaningfully to transport. This sce-
nario produces a linear-in-T resistivity over a wide range of T ,
and down to a temperature much lower than the BG paradigm
of supersonic fermion bands would suggest possible. The
divergence in relaxation time can also drive the system to
perfect conductivity at asymptotically low T , mimicking a SC
transition. We also note that the geometry of isolated NFBs
can manifest a mid-T , ρ ∝ T 2 power law. All these features
are consistent with the hitherto unexplained phenomenology
of MATBLG transport.

There are reasons to suspect that the kinetic theory of
acoustic-phonon-limited transport may not apply well to NFB
systems. Nevertheless, it is important to understand the pre-
dictions of naive kinetic theory for NBF systems. The fact
that our theory gives a simple and concrete mechanism for
robust linear-in-T resistivity is noteworthy, given that this is
the primary signature of the “strange-metal” state. Further,
it is interesting that phonon scattering in subsonic fermion
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bands can also generate regimes of ρ ∝ T 2 resistivity, often
assumed to arise from electron-electron scattering in Fermi
liquids, and regimes of perfect conductivity that mimic the
behavior of superconductivity. While an accurate, quantita-
tive treatment of realistic NFB electron-phonon physics is
beyond reach, the atypical kinematics of subsonic fermions
could be a key ingredient to understanding transport in NFB
systems, which our approach is able to fully capture. Al-
though our theory has MATBLG in mind, we work with a
general USS model and our results apply widely to NFB
systems.

I. PHONON SCATTERING OF SUPERSONIC
AND SUBSONIC FERMIONS

In an electron-phonon scattering process, conservation of
energy and momentum defines a “scattering manifold” of
Bloch states that a given initial state can scatter to. The
maximum energy difference between a Bloch state on the
scattering manifold and the initial state defines the Bloch-
Grüneisen temperature TBG [48] [Fig. 1(a)]. When T � TBG,
enough phonon modes will be populated that all kinematically
allowed scattering events are possible. This is the so-called
“equipartition regime,” which is characterized by a linear-
in-T scattering rate for each Bloch state, usually giving a
linear-in-T resistivity above TBG. On the other hand, when
T � TBG, only low-energy phonon modes are available and
scattering is restricted to a small neighborhood of the initial
state. This is what gives rise to the famous low-T τ ∝ T −(d+2)

power law in the Bloch-Grüneisen regime (where d is the
spatial dimension). Crucially, when vF > vp, the scattering
manifold is smoothly connected to the original state, allowing
arbitrarily small-momentum scattering events. As a result, the
BG regime holds all the way to zero temperature. In single-
layer graphene and in normal metals, vF /vp ≈ O(102) or
larger.

However, when the Bloch state in question is subsonic, all
phonon scattering processes are interband processes and the
scattering manifold determined by energy-momentum con-
servation is necessarily disconnected from the original state
[see Fig. 1(c)]. This is the crucial difference between the su-
personic and subsonic cases. This implies minimum allowed
energy transfer (�Emin) in scattering events, which defines
another temperature scale applicable for subsonic scattering
TSS ≈ �Emin/kB. Since the phonons obey Bose statistics, the
availability of the phonons with energies above �Emin is
exponentially suppressed for T below TSS, and we expect a
crossover to a regime in which the entire scattering manifold
is inaccessible. Below TSS, the exponential suppression of the
phonons needed for scattering causes the relaxation time of
the Bloch state to diverge exponentially as T → 0 (instead of
τ ∝ T −4 as in the supersonic BG regime).

II. BASIC KINETIC THEORY

The well-known fundamental equation giving the resistiv-
ity in terms of the relaxation times τS is [43,45–47,49–51]

δi j

ρ
= e2

kBT

1

A
∑

S

τSv
i
Sv

j
S f (εS )[1 − f (εS )], (1)

FIG. 1. Key aspects of phonon scattering for subsonic fermions
can be understood from simple schematic figures. Above we depict
three simple cases: (a) The usual case of scattering of a supersonic
fermion in a single-band system, (b) the scattering of a subsonic
fermion in a single-band system, and (c) the scattering of a subsonic
fermion in a double-band system. In each case, the left side of the
figure shows a cross section of a fermion band structure (blue), with
momentum on the horizontal axis and energy on the vertical axis.
We pick an “initial” Bloch state (pink) and superimpose on it the
Debye dispersion of the acoustic phonons (orange). Due to energy
and momentum conservation, a fermion in the initial state (pink)
can only scatter to one of the intersection points of the fermion
and phonon bands (e.g., green or yellow). The intersection of the
fermion band with the Debye cone defines the scattering manifold.
On the right side of the figure, we give a momentum space plot of
the scattering manifold geometry. The pink dot again is the initial
state, the black curve represents the Fermi surface, and the colored
curves mark the scattering manifolds. The green and yellow points
mark corresponding locations on the scattering manifolds. In (a),
we see that the maximum allowed energy transfer defines TBG, and
that the scattering manifold connects smoothly to the initial state,
so that arbitrarily small energy transfers are allowed. In (b), we
see that a single-band system of subsonic fermions does not allow
single-phonon scattering events. This follows from the simple fact
that the fermion and phonon dispersions only intersect at the initial
state, and thus there is no scattering manifold. In (c) see that in multi-
band subsonic fermion system, the phonon scattering is necessarily
interband, and the scattering manifold is not connected to the initial
state. In addition to a maximum allowed energy difference defining
a Bloch-Grüneisen scale, there is also a minimum allowed energy
difference.

where A is the area of the system, f (ε) is the Fermi-Dirac
distribution, the sum runs over the (moiré) Bloch states S,
and vS , εS , and τS are the Fermi velocity, energy, and relax-
ation time of the state S, respectively. The relaxation times
are determined from a self-consistent integral equation, de-
rived from the Boltzmann equation, which depends on the
details of the phonon couplings. Since we do not use this
directly in the main text, we present these details in the
Appendixes.
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FIG. 2. In (a) we depict the scenario of an NFB system iso-
lated from the rest of the band structure by a sizable energy gap.
Phonon scattering can produce a ρ ∝ T 2 resistivity power law for
�Eband � kBT � �Egap in this band geometry. In (b), we depict the
band geometry of the ultrasubsonic limit, defined by vF � vp and
small band separation.

III. EQUIPARTITION REGIME: ρ ∝ T 2

When T � TBG (“equipartition regime”), the inverse relax-
ation times scale linearly with temperature:

τS = cS

kBT
+ O

(
�ε

(kBT )3

)
, (2)

where cs are some (T, μ)-independent proportionality con-
stants that depend on the details of the band structure. In the
usual case, the high-T , linear-in-T power law follows directly
from this linear scattering rate. However, in the case of NFBs
separated from all other bands by a large energy gap, there is
a mid-T regime in which T is larger than the NFB bandwidth,
yet T is still small compared to the gap between the NFBs
and the other bands [Fig. 2(a)]. In this case, we may neglect
bands other than the NFBs, apply the equipartition scaling for
the relaxation times [Eq. (2)], and expand the thermal weight-
ing functions in the formula for the resistivity [Eq. (B1)],
giving

δi j

ρ
= 1

4

e2

(kBT )2

1

A
∑

S

cSv
i
Sv

j
S + O

(
1

(kBT )4

)
. (3)

We thus find a mid-T , ρ ∝ T 2 scaling regime due entirely to
phonon scattering. This is noteworthy since ρ ∝ T 2 scaling
is generally seen as the hallmark of transport dominated by

electron-electron scattering in a Fermi liquid [49,50,52], but
the “mid-T ” regime generated by NFB phonon scattering has
exactly the same T 2 dependence.

IV. ULTRASUBSONIC KINETIC THEORY

In general, determining the relaxation times for Eq. (B1)
requires the self-consistent solution of a complicated inte-
gral equation: the relaxation time of a state S couples to
the relaxation times of all states on the scattering manifold
for S, which may have a complicated geometry. However,
the “ultrasubsonic (USS) limit” yields transparent analytical
results. The USS limit is defined by a generic two-band model,
taking both vF /vp and the band separation (the maximum
energy difference between two points with the same crystal
momentum but on opposite bands) to be small parameters [see
Fig. 2(b)].

Let S be a state on band b with energy ε, and let S̄ denote
the state with the same momentum on the opposite band (b̄)
with energy ε̄. The scattering manifold of the state S will be
a loop on band b̄ around S̄, with radius |ε − ε̄|/(h̄vp) and
the energy variation along the scattering manifold is roughly
(vF /vp)|ε − ε̄| [Fig. 2(b)]. Both quantities are suppressed in
the USS limit. This physical picture enables two key approxi-
mations. Since the scattering manifold is small and the energy
variation along it is negligible, we can approximate τ (S′) ≈
τ (S̄) and ε′ ≈ ε̄ for states S′ along the scattering manifold.
The former approximation reduces the self-consistent equa-
tion for the relaxation times to a 2 × 2 matrix equation that
can be simply inverted and the latter allows for an analyti-
cal solution with transparent, closed-form dependencies on T
and μ.

To keep our discussion focused on the key concepts, we
will simply state the final answer and present the deriva-
tion in full in the Appendixes. For the rest of the paper, to
illustrate universal features, we will specialize to the particle-
hole-symmetric case, for which the relaxation times are
given by

τS = ρM h̄3v4
p

D2

1

|ε|2 sinh

( |ε|
kBT

)
1

X 2
S − X̃ 2

S

×
[

Xs

cosh
(

ε+μ

2kBT

)
cosh

(
ε−μ

2kBT

) + X̃S

cosh
(

ε−μ

2kBT

)
cosh

(
ε+μ

2kBT

)
]
, (4)

where ρM is the mass density of the system, D is the defor-
mation potential, and the (T, μ)-independent factors XS and
X̃S encode wave-function overlap and band geometry data.
They are defined explicitly in the Appendixes. Combining the
relaxation time formula [Eq. (C8)] with the resistivity formula
[Eq. (B1)] gives the master formula for the resistivity of the
(particle-hole-symmetric) ultrasubsonic fermion system:

δi j

ρ
= 1

4

e2

kBT

ρM h̄3v4
p

D2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

A
∑

S

vi
Sv

j
S

XS − X̃S

1

ε2

sinh
( |ε|

kBT

)
cosh

(
ε+μ

2kBT

)
cosh

(
ε−μ

2kBT

)

+1

2
sinh

( |μ|
kBT

)2 1

A
∑

S

vi
Sv

j
SXS

X 2
S − X̃ 2

S

1

ε2

[
sinh

( |ε|
kBT

)
cosh

(
ε+μ

2kBT

)
cosh

(
ε−μ

2kBT

)
]3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (5)
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FIG. 3. We depict the difference in the physics of ultra-low-T
transport in subsonic and supersonic fermion systems. In each figure,
the band structure of the fermions is depicted in blue, and the orange
filling indicates the energies of the electrons that contribute meaning-
fully to transport. The dotted line denotes the Fermi level. In (a), we
show the scenario for supersonic fermions, in which only the states in
the immediate vicinity of the Fermi surface contribute to transport. In
(b), we illustrate the different physics of subsonic fermion scattering,
where the states contributing meaningfully to low-T transport are
those satisfying |ε| > |μ|. In this picture, states very far from the
Fermi level can contribute much more than states even just barely
below it.

In the limit kBT � |ε − ε̄|, expanding the sinh factor in
Eq. (C8) gives the expected τ ∝ T −1 scattering rate of the
equipartition regime. However, when kBT � |ε − ε̄|, instead
of the usual crossover to a τ ∝ T −4 power law, we find an
exponential blowup of the relaxation times, in line with a
physical picture in which the entire scattering manifold be-
comes thermally inaccessible.

V. EXTREME LOW-T LIMIT

In Eq. (5), the only T -dependent factor in the Brillouin
zone summations is the kernel

K (ε, μ, T ) ≡ sinh
( |ε|

kBT

)
cosh

(
ε+μ

2kBT

)
cosh

(
ε−μ

2kBT

) . (6)

This factor represents the competition at low T between the
divergence of the relaxation times and the thermodynamic
suppression of states far from the Fermi level. In the extreme
low-T limit, where the sinh and cosh functions blow up expo-
nentially, we simply have

K (ε, μ, T → 0) → 2�[|ε| − |μ|]. (7)

The thermal kernel K determines which Bloch states mean-
ingfully contribute to transport. Equation (7) suggests that
all states with |μ| < |ε| contribute equally, while states with
|μ| > |ε| do not contribute, even though they may be close to
the Fermi energy. We emphasize that this is radically different
than the usual paradigm, where low-T transport is almost
entirely determined by states in the immediate vicinity of the
Fermi level. This is depicted in Fig. 3.

Applying the limit (7), the two summations in Eq. (5)
are simply T -independent constants (C1, C2), and the extreme
low-T expression for the resistivity is

ρ ≈ h̄D2

4e2ρM (h̄vp)4

kBT

C1 + C2 sinh[|μ|/(kBT )]2
. (8)

From Eq. (8), it is apparent that at the charge-neutrality
point (μ = 0), we have purely linear-in-T phonon-induced
resistivity down to T = 0. On the other hand, when μ 	= 0,
then the low-T resistivity is proportional to the factor ρ ∝
exp[−2|μ|/(kBT )], and is exponentially suppressed when
kBT � 2|μ|, giving a crossover to perfect conductivity. Com-
paring this with the physics of supersonic fermions, we find

kBTcrossover = 2|μ| = vF

vp
kBT trad

BG , (9)

where T trad
BG ≡ 2vpkF gives the traditional lower bound for

the regime of linear-in-T resistivity based on the usual
Bloch-Grüneisen paradigm. The crossover temperature is
parametrically suppressed by the small parameter vF /vp. The
ultrasubsonic case is thus expected to host linear-in-T resistiv-
ity scaling down to a significantly lower temperature than one
would estimate based on intuition from supersonic fermion
scattering.

VI. CONCLUDING DISCUSSION

The simple fact that phonon scattering processes in sub-
sonic fermion systems are necessarily interband transitions
underlies a robust, linear-in-T scaling of the resistivity down
to temperatures far lower than the Bloch-Grüneisen paradigm
of supersonic fermion scattering would suggest. This result
provides a concrete mechanism for the linear-in-T resistivity
over a wide range of temperatures based only on familiar con-
cepts of solid-state physics and the distinct kinematics of NFB
systems. In particular, it provides an alternative theoretical
explanation for low-T “strange-metal” resistivity scaling in
NFB systems.

Our theory also predicts regimes of perfect conductiv-
ity and ρ ∝ T 2 scaling which compete with the ρ ∝ T
regime, which are not commonly associated with phonon
physics. Thus, low-T ρ ∝ T , ρ ∝ T 2, and perfect conduc-
tivity regimes may all arise in NFB systems from the same
universal phonon-scattering physics, providing a possible ex-
planation for these reported observations in MATBLG [42].
Further, there has been some disagreement in the literature
about where SC can be found in the MATBLG phase dia-
gram, with some groups claiming to find regions of SC (e.g.,
[13]) that have not been reported by other groups [8,11].
Especially since the Meissner effect cannot be used as a veri-
fication of SC, a phonon mechanism that can produce perfect
conductivity mimicking SC could explain these sporadic SC
observations.

Without particle-hole (PH) symmetry the competition
between linear-in-T resistivity and perfect conductivity de-
pends sensitively on the band structure details. Since the
true interaction-renormalized MATBLG band structure is
unknown, we refrain from a detailed consideration of the
specifics of the Bistritzer-MacDonald (BM) model and keep
our focus on general considerations of subsonic fermions
transport. However, we discuss the BM model more quanti-
tatively in the Appendixes.

Future work should investigate the roles of strain, disorder,
and interaction-renormalization effects on this mechanism. In
particular, studying disorder is important: while graphene-
based NFB systems are remarkably disorder free, all systems
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contain some disorder, and even trace amounts of disorder
could play an important role in cutting the proposed ex-
ponential growth of the relaxation times. In particular, we
expect that trace disorder could render states far from the
Fermi surface (FS) inert and define an energy window about
the FS determining which states contribute meaningfully to
transport. On one hand, this could produce interesting correc-
tions to our results dependent on the interplay of the disorder
strength and the band geometry near the FS. On the other,
by killing the contributions from the far-from-FS states, dis-
order could in fact stabilize the linear-in-T resistivity regime
in the non-PH-symmetric case. Indeed, if subsonic fermion
transport is sensitive to trace amounts of disorder, then this
could help explain the huge sample-to-sample variation ob-
served in experiments on MATBLG systems known to have
extremely low disorder. However, quantitative inclusion of
other effects in the theory beyond the BM model such as
interaction, strain, and disorder should await future MATBLG
experiments reaching a stronger consensus on transport phe-
nomena. At this stage, when MATBLG transport experiments
themselves show considerable sample to sample variations
with little quantitative agreement, our excellent qualitative
agreement with MATBLG transport is all that we can aim for.
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APPENDIX A: MICROSCOPIC MODEL
OF PHONON COUPLING

In this Appendix we give an an explicit microscopic
model for the electron-phonon coupling of a subsonic fermion
system. We will use the formalism of a layered graphene sys-
tem. We consider a general, subsonic two-band fermion sys-
tem coupled via the standard deformation potential [46,49,52]
to longitudinal acoustic phonons in the Debye approximation.
Our model is described by the Hamiltonian

H = He + Hph + He-ph, (A1)

Hph =
∑
l,q

h̄ωqa†
l,qal,q, (A2)

He-ph =
√

D2h̄

2ρMA
∑
l,q

n̂q,l√
ωq

(−iq · êq)(aq,l + a†
−q,l ).

(A3)

Above, A is the area of the system, ρM is the mass density
of the system, D is the deformation potential, êq is the dis-
placement unit vector of the phonon, and ωq is the phonon
dispersion. The summation over the vector q runs over the
Brillouin zone, and l is a layer index, making our formalism
tailored to layered graphene systems. (In a nonlayered sys-
tem, the l summation is trivial.) Finally, the electron density
operator is

n̂q,l ≡
∑

k

c†
(k+q),l ck,l , (A4)

where c†
k ≡ c†

s,ξ ,σ,l,k creates an electron with momentum k,
spin s, valley ξ , sublattice σ , and layer l . Summations over the
unwritten indices s, ξ , and σ are implicit in Eq. (A4). We em-
phasize that none of the physics described in this paper depend
on the degenerate spin and valley degrees of freedom. We use
the Debye approximation ωq ≈ vp|q|, where vp is the phonon
(or sound) velocity of graphene. (Since our focus is on the
extreme low-T limit, the Debye approximation is particularly
justified.) The standard values of the above parameters for
monolayer graphene are D = 25eV, ρM = 7.6 × 10−8 g/cm2,
and vp = 2.0 × 106 cm/s, [43,46,51,53]. Using these values in
the theory gives accurate quantitative predictions for transport
in many layered graphene systems [43,45,47].

The single-particle electron Hamiltonian He determines
the electronic band structure, which we do not specify in order
to preserve generality. However, we will consider a two-band
system and assume both that vF � vp and that the separation
between the bands is small. We call the limit in which both
these assumptions are valid the “ultrasubsonic” (USS) limit.

APPENDIX B: BOLTZMANN KINETIC THEORY DETAILS

Here we provide additional details on the fundamental
equations of the Boltzmann kinetic theory framework for lon-
gitudinal acoustic phonon-limited transport. As stated in the
main text [Eq. (1)], the resistivity of the system follows from
the relaxation times via

δi j

ρ
= 1

4

e2

kBT

1

A
∑

S

τSv
i
Sv

j
S

cosh
(

ε−μ

2kBT

)2 . (B1)

The relaxation times are determined from a self-consistent
integral equation, derived from the Boltzmann equation. In
the case of longitudinal acoustic phonons, in the Debye
approximation, which couple to the fermions via the defor-
mation potential, this takes the form [43,45–47,49,51]

πD2

h̄ρMv2
p

1

A
∑

S′
�̃S,S′CS,S′Fμ,T

S,S′

[
τS − τS′

vS′ · vS

v2
s

]
= 1. (B2)

Above, ρM is the mass density of the system, D is the defor-
mation potential, and vp is the phonon velocity. In a layered
graphene system, we note that the summation over states S in
Eqs. (B1) and (B2) includes a fourfold degeneracy over spin
and valley degrees of freedom. The function �̃S,S′ enforces
the conservation of energy and momentum and defines the
scattering manifold:

�̃S,S′ ≡ δs,s′δξ,ξ ′�S,S′ ≡ δs,s′δξ,ξ ′δ(|ε′ − ε| − h̄vp|k′ − k|).
(B3)

Note that the energy-momentum conservation assumes the
Debye dispersion for the phonons. The function

Fμ,T
S,S′ ≡ |ε′ − ε|

2

1

sinh
[ |ε′−ε|

2kBT

] cosh
[

ε−μ

2kBT

]
cosh

[
ε′−μ

2kBT

] (B4)

encodes all the thermodynamics, including the occupation
data for the fermions and phonons and all dependence on μ

and T . Finally, CS,S′ are “matrix elements” encoding geometric
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wave-function overlap data [43,45–47], and are given by

CS,S′ ≡
∑

l

∣∣〈S′|n̂l,q|S〉∣∣2
. (B5)

In CS,S′ , the wave-function overlap is given by

〈S′|n̂l,q|S〉 =
∑

σ,G,G′
V ∗

b′,k′;σ,l,GVb,k;σ,l,G′δk′+G′,k+G+q, (B6)

where k, k′ take values in the (moiré) Brillouin zone and
G, G′ take values on the (moiré) reciprocal lattice. The matrix
elements V define the (moiré) Bloch wave functions that are
eigenstates of the Hamiltonian:

c̃†
s,ξ ,b,k =

∑
σ,l,G

Vb,k;σ,l,G c†
s,ξ ,σ,l,k+G, (B7)

such that

He =
∑

s,ξ ,b,k

εs,ξ ,b,kc̃†
s,ξ ,b,kc̃s,ξ ,b,k. (B8)

On a finite-momentum grid, Eq. (B2) is a matrix inversion
problem that can be solved for the relaxation times τS . Equa-
tion (B1) then gives the resistivity.

APPENDIX C: ULTRASUBSONIC TRANSPORT THEORY:
DERIVATION DETAILS

We give the details for the derivation of the main re-
sults of ultrasubsonic (USS) transport theory [Eqs. (4) and
(5) in the main text] and state the general version of the
particle-hole-symmetric result given in those equations. As
discussed in the main text, the technical advantage of the USS
limit is the justification of the approximations Fμ,T (S, S′) ≈
Fμ,T (S, S̄) and τ (S′) ≈ τ (S̄) which replace the relaxation
times and the thermal occupancy function at points along the
scattering manifold (S′) by their values at the complement
point (S̄). Applying these simplifications to Eq. (B2), we
have

1 = πD2

h̄ρMv2
p

Fμ,T
S,S̄

(
τS

[
1

A
∑

S′
�̃S,S′CS,S′

]
− τS̄

[
1

|vS|
1

A
∑

S′
�̃S,S′CS,S′ |vS′ | cos θv

])
(C1)

= πD2

h̄ρMv2
p

Fμ,T
S,S̄

(
τS

[∫
d2k′

(2π )2
�S,S′CS,S′

]
− τS̄

[
1

|vS|
∫

d2k′

(2π )2
�S,S′CS,S′ |vS′ | cos θv

])
(C2)

≡ D2

2ρM h̄3v4
p

|ε − ε̄|Fμ,T
S,S̄

[XSτS − X̃SτS̄], (C3)

where in the second line we have taken the thermodynamic limit (continuum limit in momentum space) and in the last line we
have defined the (T, μ)-independent factors

XS ≡ 2π (h̄vp)2

|ε − ε̄|
∫

d2k′

(2π )2
�S,S′CS,S′ , (C4)

X̃S ≡ 2π (h̄vp)2

|ε − ε̄|
∫

d2k′

(2π )2
�S,S′CS,S′

vs′

vs
cos θv,v′ , (C5)

which encode wave-function overlap and band geometry data. To motivate the prefactors in the definitions above, we note that
if we approximate the scattering manifold as a circle around S̄, we simply have

XS ≈ 2π (h̄vp)2

|ε − ε̄|
∫

dq q

(2π )
δ[|ε − ε̄| − h̄vpq]

∫ 2π

0

dφ

(2π )
CS,S′

=
∫ 2π

0

dφ

(2π )
CS,S′ . (C6)

We emphasize that XS, X̃S depend on the state index S via the wave function and the local geometry of the bands in the vicinity
of S. Pairing Eq. (C3) with the corresponding one for the state S̄ gives a 2 × 2 matrix equation:

D2

2ρM h̄3v4
p

|ε − ε̄|
[

Fμ,T
S,S̄

XS −Fμ,T
S,S̄

X̃S

−Fμ,T
S̄,S

X̃S̄ Fμ,T
S̄,S

XS̄

][
τS

τS̄

]
=

[
1

1

]
. (C7)

Simply inverting the 2 × 2 matrix, using the full form of Fμ,T
S,S̄

from Eq. (B4) and simplifying gives the general solution for the
relaxation time of a USS system,

τS = 2ρM h̄3v4
p

D2

2

|ε − ε̄|2 sinh

( |ε − ε̄|
2kBT

)
1

XSXS̄ − X̃SX̃S̄

[
XS̄

cosh
(

ε̄−μ

2kBT

)
cosh

(
ε−μ

2kBT

) + X̃S

cosh
(

ε−μ

2kBT

)
cosh

(
ε̄−μ

2kBT

)
]
. (C8)
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Combining the relaxation time formula [Eq. (C8)] with the resistivity formula [Eqs. (1) and (B1)] gives the master formula for
the resistivity of the ultrasubsonic fermion system:

δi j

ρ
= e2ρM (h̄vp)4

h̄D2kBT

1

A
∑
εS>0

1

|ε − ε̄|2
sinh

( |ε−ε̄|
2kBT

)
cosh

(
ε̄−μ

2kBT

)
cosh

(
ε−μ

2kBT

) 1

XSXS̄ − X̃SX̃S̄

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X̃S + XS̄ )vi
Sv

j
S + (X̃S̄ + XS )vi

S̄v
j
S̄

+ sinh

(
ε̄ − ε

2kBT

)
sinh

(
ε̄ + ε − 2μ

2kBT

)

×

⎡
⎢⎣ XS̄v

i
Sv

j
S

cosh
(

ε−μ

2kBT

)2 − XSv
i
S̄v

j
S̄

cosh
(

ε̄−μ

2kBT

)2

⎤
⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (C9)

We emphasize that the complexity of the particle-hole-
symmetry-breaking terms in the brackets of Eq. (C9) sig-
nificantly complicated the competition between the regimes
of linear-in-T resistivity and perfect conductivity discussed
in the main text. These terms depend sensitively on band
structure details. To extract easily comprehensible general
features of USS transport, in the main text we focus on the
particle-hole-symmetric limit. In this case, enforcing particle-
hole symmetry on our results [Eqs. (C8) and (C9)] simply
amounts to setting ε̄ = −ε, XS̄ = XS , and X̃S̄ = X̃S . Making
these substitutions in Eqs. (C8) and (C9) yields Eqs. (4) and
(5) in the main text.

Finally, as noted in the main text, the high-T limit (kBT �
|ε − ε̄|) gives the expected τ ∝ T −1 scattering rate of the
equipartition regime [Eq. (2)]. Taking this limit in Eq. (C8),
we see that for USS fermions, the constants cS are given
explicitly by

cS = 2ρM (h̄vp)4

h̄D2

1

|ε − ε̄|
XS̄ + X̃S

XSXS̄ − X̃SX̃S̄

. (C10)

In the PH-symmetric limit we have

cS = ρM (h̄vp)4

h̄D2

1

|ε|
1

XS − X̃S
. (C11)

APPENDIX D: HIERARCHY OF APPROXIMATIONS
IN ULTRASUBSONIC LIMIT

We formalize the hierarchy of simplifications that follow
from the ultrasubsonic (USS) limit. The USS limit is defined
as the limit of both the small dimensionless ration of veloc-
ities vF /vs and small separation between the two bands of
the electronic band structure. By small band separation, we
specifically mean that

1

h̄vp
|εS − εS̄| � 1 (D1)

for all (moiré) Bloch states S (with complement state S̄).
The USS limit allows us to make a series of approximations

that give analytical, closed-form solutions to the Boltzmann
transport equation [Eq. (B2)]. The various approximations are
as follows:

(1) “USS 1”: τ (S′) ≈ τ (S̄) along the scattering manifold.
(2) “USS 2”: In addition to USS 1, we further assume that

Fμ,T
S,S′ ≈ Fμ,T

S,S̄
along the scattering manifold.

(3) “USS 3”: In addition to USS 1 and USS 2, we also
approximate the scattering manifold as a small circle around
the point S̄, as in Eq. (C6).

We justify USS 1 by noting that the small band separation
[Eq. (D1)] means that the scattering manifold for state S is a
small loop centered around S̄ on the opposite band. To see this
geometrically, see Fig. 2(b) in the main text. Since the wave
functions, energies, and Fermi velocities are continuous along
the scattering manifold we expect the relaxation times to also
be continuous. (If the scattering manifold included a Dirac
point, the wave function would not necessarily be continuous.
However, for subsonic fermions, this is ruled out by geometry.
It is impossible to scatter to a subsonic Dirac point.) The small
scattering manifold then allows USS 1. We note that USS 1 is
the key technical step of this paper since it is the simplification
that allows the reduction of the integral equation in Eq. (B2)
to a 2 × 2 matrix equation. We emphasize that it is similar in
spirit to the “quasielastic” approximation used throughout the
standard treatments of transport in graphene [43,44,46,48,51],
which assumes that the relaxation time of a state S is identical
to the relaxation times on its own scattering manifold. The
quasielastic approximation is natural for a strongly supersonic
fermion system, like graphene or traditional metal, and in
those systems reduces the Boltzmann transport integral equa-
tion to an algebraic equation that can be solved in closed form.
The USS 1 approximation is the natural analog for a strongly
subsonic system. (We emphasize that the quasielastic approx-
imation for supersonic fermion systems requires additional
assumptions, usually isotropy, which are not required for the
USS 1 approximation in the USS limit.)

USS 2 is justified similarly by estimating that the total
energy variation along the scattering manifold is

�ε ≈ vF

vp
|εS − εS̄|, (D2)

which is parametrically suppressed by the USS limit. Since
the thermodynamic occupancy function Fμ,T

S,S′ depends on S, S′
only through their energies, USS 2 is very natural. We note
that at a technical level, USS 2 is not required in order to
reduce the Boltzmann equation to a matrix equation. However,
USS 2 allows us to factor out all temperature and doping de-
pendencies from the integral equation in Eq. (B2) and makes
the temperature and doping dependencies of the relaxation
times and resistivity transparent. If one wants to avoid USS
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FIG. 4. We demonstrate the extent of the applicability of the
ultrasubsonic scattering theory to MATBLG by providing nu-
merical heat maps of some crucial quantities, calculated for the
Bistritzer-MacDonald model for the noninteracting band structure
of MATBLG. We use the standard BM Hamiltonian with the in-
terlayer hopping parameters ω0 = 90 meV, ω1 = 117 meV, and the
bare graphene Dirac cone velocity vF = 106 m/s, which places the
“magic angle” at θ = 1.025◦. We take vp = 2 × 104 m/s, consistent
with phonon speeds in single-layer graphene [43]. In the left column
[(a) and (d)], we depict the energy difference between the two NFBs,
|εS − εS̄|. We note that it is very small except for a single peak. In the
center [(c) and (e)], we calculate the dimensionless ratio vF /vp. We
see that the majority of the band is strongly subsonic, though there
are supersonic Bloch states near the peak. Finally, in the right column
[(c) and (f)], we plot the product of these two quantities, which is
the energy scale justifying the USS approximations that enable our
theory. For each quantity, we plot the data in a linear scale on the top
row (a)–(c) and a logarithm scale on the bottom row (d)–(f).

2, a generalized definition of XS, X̃S that incorporates temper-
ature dependence could be used.

Finally, we note that we do not use USS 3 anywhere in the
main text. It is useful if one wants to approximate XS, X̃S for a
specific model.

APPENDIX E: ULTRASUBSONIC DIRAC CONE

As a concrete example, we apply our results to the ultra-
subsonic Dirac cone, where the simple band structure can be
used to to evaluate the formulas explicitly. We must evaluate
XS and X̃S . By symmetry, XS and X̃S will only depend on the
state S via the energy ε, though we will see that in the case of
the Dirac cone they are also ε independent. We let r ≡ vF /vp.

For the subsonic Dirac cone, we have cos θv = − cos θ ,
where θ is the momentum angle and

CS,S′ = 1
2 (1 − cos θ ). (E1)

Analyzing the kinematics of phonon scattering on the
Dirac cone, we see that the scattering manifold for the

interband transitions in the subsonic Dirac cone is an ellipse
parametrized by the momentum transfer vector

q(φ) = 2rk

1 − r2
(1 + r cos φ), (E2)

where φ is the angle between the momentum of the initial
fermion state and the phonon state. Some trigonometry gives
the momentum angle (θ ) in terms of φ:

cos θ = 1 − 2r2 sin2 φ

1 + r2 + 2r cos φ
. (E3)

We may then evaluate

XS (r) = 2π (h̄vp)2

|ε − ε̄|
∫

dq q

(2π )

∫ 2π

0

dφ

(2π )
δ[|ε − ε′| − h̄vpq]CS,S′

(E4)

= h̄vp

4|ε|
∫ 2π

0

dφ

2π
q(φ)

(
1 − cos[θ (φ)]

)
(E5)

= 1

2

∫ 2π

0

dφ

2π

1 + r cos φ

1 − r2

[
2r2 sin2 φ

1 + r2 + 2r cos φ

]
. (E6)

We note that Eq. (E6) is an exact evaluation of XS that does
not make use of the approximation “USS 3,” and we point
out that the final answer has no dependence on the state S.
Similarly,

X̃S (r) ≈ −1

2

∫ 2π

0

dφ

2π

1 + r cos φ

1 − r2

[
2r2 sin2 φ

1 + r2 + 2r cos φ

]

×
[

1 − 2r2 sin2 φ

1 + r2 + 2r cos φ

]
(E7)

= −X (r) + 1

2

∫ 2π

0

dφ

2π

1 + r cos φ

1 − r2

×
[

2r2 sin2 φ

1 + r2 + 2r cos φ

]2

. (E8)

Like Eq. (E6) for X (r), Eq. (E8) gives an exact expression for
X̃S and shows that there is no dependence on the initial state
S.

Working to leading order in vF /vp we simply have

X = 1

2

(
vF

vp

)2

, X̃ = 3

4

(
vF

vp

)4

− X. (E9)

The above results show that

1

XS − X̃S
≈ 1

r2

4

4 − 3r2
=

(
vp

vF

)2 4v2
p

4v2
p − 3v2

F

, (E10)

XS

X 2
S − X̃ 2

S

≈ 2

3r4

4

4 − 3r2
= 2

3

(
vp

vF

)4 4v2
p

4v2
p − 3v2

F

. (E11)

Applying Eqs. (E10) and (E11) to the PH-symmetric re-
sistivity formula [Eq. (5)] and using the Dirac cone band
structure gives a concrete formula for the resistivity of the
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USS Dirac cone:

1

ρ
≈ 1

kBT

2

π

e2ρM h̄v4
p

D2

(
vp

vF

)2 v2
p

4v2
p − 3v2

F

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ �

0

dε

ε

sinh
(

ε
kBT

)
cosh

(
ε+μ

2kBT

)
cosh

(
ε−μ

2kBT

)

+1

3

(
vp

vF

)2

sinh

( |μ|
kBT

)2 ∫ �

0

dε

ε

[
sinh

(
ε

kBT

)
cosh

(
ε+μ

2kBT

)
cosh

(
ε−μ

2kBT

)
]3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (E12)

Specializing to the μ = 0 case, we find

ρ ≈ πkBT D2

e2ρM h̄v4
p

v2
F

v2
p

(
1 − 3

4

v2
F

v2
p

)
ln

[
�

kBT

]−1

(E13)

which gives a purely linear-in-T resistivity, up to cutoff-
dependent logarithmic corrections. Away from μ = 0 but in
the extreme low-T limit, we may make the simplification from
Eq. (9) of the main text. This gives

ρ ≈ v4
F

v8
p

πD2kBT

e2ρM h̄

1

ln(�/|μ|)e−2|μ|/(kBT ) (E14)

in the r, T → 0 asymptote. The final resistivity formulas for
the USS Dirac cone demonstrate the general features of USS
transport, showing robust linear-in-T resistivity partially gen-
erated by states far from the Fermi level and a crossover to
perfect conductivity with exponentially suppressed scatter-
ing when kBT � 2|μ|. We note that the prefactor contains
nontrivial power-law dependencies on the velocities vF and
vp that could prove useful for experimental probes of USS
transport physics in systems for which the Dirac cone is a
useful model.

APPENDIX F: ULTRASUBSONIC FERMIONS IN MATBLG

We close with a more quantitative discussion of the appli-
cability of USS transport theory to MATBLG in particular.

In Fig. 4, using the Bistritzer-MacDonald (BM) model for
the noninteracting band structure of MATBLG [3], we give
numerical heat maps of the interband spacing, the ratio vF /vp,
and the product of these quantities for the NFBs. It is clear
from these figures that the vast majority of the Bloch states
in the moiré Brillouin zone are very well captured by the
subsonic limit, with energy spacing below 0.0005 eV and
vF /vp < 0.01. For some states, these values approach zero.
We further emphasize that while these systems do have signif-
icant twist-angle disorder, they are almost entirely free from
impurities that would cause elastic scattering, indicating that
transport is indeed likely phonon dominated.

Even in the noninteracting BM model, the NFBs are not
entirely subsonic: there is a small “high”-energy hump in the
dispersion at the � point, characterized by energy separations
a large as 0.004 eV and vF /vp as large as 1.35. The coex-
istence of subsonic and supersonic states in the band would
need to be taken into account to correctly apply USS scatter-
ing theory to the BM band structure in a quantitative way. For
example, some subsonic states near the high-energy region
may still experience intraband scattering. Even after signifi-
cant band renormalization, it is possible that large portions of
the NFB are well captured by the ultrasubsonic limit and ex-
hibit the related low-T transport phenomena. Indeed, there is
evidence that interaction-driven band renormalizations further
flatten the band [54].
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