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Obeying non-Abelian statistics, Majorana fermions holds a promise to implement fault-tolerant quantum
computing. It was found that Majorana fermions can be simulated by the zero-energy excitation in a nanowire
with strong spin-orbit coupling interacting with an s-wave superconductor under a magnetic field. However,
the signal of Majorana fermion in that system is obscured by the disorder in the nanowire and the confinement
potential at the wire end. Thus, more controllable platforms are desired to simulate Majorana fermions. We here
propose an alternative scheme to simulate the Majorana fermions in a trapped-ion system. Our dimerized-ion
configuration permits us to generate the Majorana modes not only at zero energy but also at the nonzero ones,
which enlarge the family of Majorana modes and supply another qubit carrier for quantum computing. We also
investigate the controllability of the Majorana modes by Floquet engineering. It is found that a widely tunable
number of Majorana modes are created on demand by applying a periodic driving on the trapped-ion system.
Enriching the platforms for simulating Majorana fermions, our result would open another avenue for realizing
fault-tolerant quantum computing.
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I. INTRODUCTION

As a rapidly developing field in modern physics, topo-
logical phases not only enrich the paradigm of condensed
matter physics, but also inspire many important applica-
tions in quantum technology [1–6]. Simulating the elusive
Majorana fermions in particle physics [7–19], topological
superconductor has become an ideal candidate to realize fault-
tolerant quantum computing due to its unique non-Abelian
statistics [20–26]. It was theoretically found that the Majo-
rana fermions can be simulated by the zero-energy excitation
mode in a semiconducting nanowire with strong spin-orbit
coupling interacting with an s-wave superconductor under a
magnetic field [9]. Although having been realized [27–36],
the generation of Majorana mode in the nanowire systems
is greatly hindered by the multiple subbands, the disorder in
the nanowire, and the confinement potential at the nanowire’s
ends [37–40]. Furthermore, on-demand generation and an-
nihilation of different numbers of Majorana modes are a
prerequisite for performing quantum computing by braid-
ing the Majorana modes. However, the number of Majorana
modes simulated in the nanowire systems is hard to change
anymore once the material sample is fabricated. Therefore,
more platforms with better controllability to simulate the Ma-
jorana fermions are highly desired.

A trapped-ion system has been widely used in quantum
simulation [41–43]. Its precise controllability makes it capa-
ble of simulating the behavior of many complicated systems,
such as spin interactions [44,45], many-body localization
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[46,47], prethermalization [48], and nonequilibrium phases
[49–52]. However, the scheme on simulating the Majorana
fermions in trapped-ion systems is still rare. On the other
hand, coherent control via periodic driving of external fields
called Floquet engineering offers an attractive control dimen-
sion to manipulate Majorana modes. Many novel topological
phases have been created by periodic driving [53–66]. The
well-established laser-control technique gives the trapped-ion
system a natural advantage to realize Floquet engineering
[67]. These advances show that the trapped-ion system has
the advantage to become a more controllable platform than
the nanowire systems to simulate the Majorana fermions. We
here propose a scheme to simulate the Majorana fermions
in the trapped-ion system. We discover the formation of
Majorana modes in this system. A spatial dimerization con-
figuration of the ion separation is discovered to support the
Majorana modes not only at zero energy but also at the
nonzero ones. A complete topological description to these
phases is established in the system. On the one hand, these
rich phases enlarge the family of the Majorana modes. On
the other hand, they offers more candidates to encode infor-
mation for quantum computing. We then propose to control
the Majorana modes of our system by Floquet engineering.
A widely tunable number of Majorana modes are generated
by the periodic driving in the regions where the static system
does not host their existence. Our work enriches the platform
for simulating the Majorana fermions and provides a feasible
way to freely control different numbers of Majorana modes. It
lays a foundation on exploring the realization of fault-tolerant
quantum computing by the braiding of Majorana modes in
trapped-ion systems.
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FIG. 1. (a) Schematic diagram of our dimerized trapped-ion sys-
tem. (b) Energy spectrum of Eq. (2) and winding number W (red line)
as a function of B when J1 = J2 = J0. (c) Probability distribution of
the two zero-energy Majorana modes. (d) Phase diagram described
by W .

II. MAJORANA MODES IN TRAPPED-ION SYSTEMS

Our scheme to simulate Majorana fermions in trapped-ion
system is based on the idea to implement the transverse-field
Ising model by globally applying two noncopropagating Ra-
man laser beams on the ions. We consider a system consisting
of a chain of N 173Yb+ ions confined in a linear Paul trap
[see Fig 1(a)]. Each ion has two hyperfine “clock” states |F =
0, mF = 0〉 ≡ | ↓z〉 and |F = 1, mF = 0〉 ≡ | ↑z〉 of the 2S1/2

valence electron and spin-1/2 nucleus, which act as the two
orthogonal states of a pseudospin-1/2 system [68–72]. The
two states have a frequency splitting ω0 = 12.6 × 2π GHz.
Each ion is prepared in | ↓x〉 = (| ↓z〉 − | ↑z〉/

√
2 by apply-

ing a laser pulse. Then, two noncopropagating Raman laser
beams, with bichromatic beatnotes at frequencies ω0 ± μ and
wave vector difference δk pointing along the x direction, are
uniformly applied on the ions to generate a spin-dependent
force at frequency μ on the ions. Under the rotating-wave
approximation and in the Lamb-Dicke limit, we obtain an
interaction Hamiltonian (h̄ = 1)

Ĥ (t ) = � sin(μt )
N∑

j=1

∑
m

η j,m(âme−iωmt + H.c.)σ̂ x
j , (1)

where � is the Rabi frequency of the two Raman laser beams,
âm is the annihilation operator of the mth mode of the phonon,
and η j,m = δkb j,m/

√
2Mωm, with b j,m being the normal-mode

transformation matrix of the jth ion in the mth normal mode
[73]. When the optical beatnote frequency is far detuning
from one of each normal mode, the phonons are only virtually
excited and the ion displacements become negligible. In this
case, a Magnus expansion [74,75] to the evolution opera-
tor of Eq. (1) results in Û (t ) = exp(−it

∑
i, j Ji, j σ̂

x
i σ̂ x

j ) with

Ji, j = �2 (δk)2

2M

∑
m

bi,mb j,m

μ2−ω2
m

, see Appendix A. Further, adjusting

the two Raman beatnotes to ω0 ± μ + B, a uniform effective
transverse magnetic field of B along σ̂ z

i is generated [69].
Thus, the dynamics of a transverse-field Ising Hamiltonian
Ĥ = ∑

i, j Ji, j σ̂
x
i σ̂ x

j + B
∑

i σ̂
z
i is simulated in the trapped-ion

system. The coupling strength Ji j is approximated as a power
law Ji, j � J0/|zi − z j |β , with β ∈ (0, 3) [68–70,76,77]. We set
β = 3 by tuning the detuning between the beatnote frequency
μ and the sideband ωm [69,70]. To generate the Majorana
modes, we propose that the ion array has a spatial dimeriza-
tion configuration [78], which can be realized by setting the
distance between each odd (even) ion and its next neighboring
ion being 	1 (	2). Thus, the ion array reduces into a lattice of
N/2 unit cells, each of which contains two sublattices labeled
by a and b. Keeping only the nearest-neighbor hopping of
the dimerized ion array and making the Jordan-Wigner trans-
formation [79], we obtain the fermionized Hamiltonian, see
Appendix A,

Ĥ =
N/2−1∑

l=1

[J1ĉ†
a,l (ĉb,l + ĉ†

b,l ) + J2ĉ†
b,l (ĉa,l+1 + ĉ†

a,l+1)

+ H.c.] − 2B
∑
j=a,b

N/2∑
l=1

ĉ†
j,l ĉ j,l , (2)

where Ji = J0/	
β
i , ĉ j,l satisfying [ĉ j,l , ĉ†

j′,l ′ ]+ = δll ′δ j j′ is the
fermionic annihilation operator of the jth sublattice of the lth
unit cell, and a constant has been abandoned. The nearest-
neighbor interaction approximation is justified as follows.
First, we can make the nearest-neighbor interaction dominant
by adjusting the collective vibration modes of ions. The ions
generally have the vibrational modes of the center of mass, the
tilt, and the zigzag. Contributing different types of spin-spin
interaction, they can be controlled by the laser detuning. If
the ions are in the zigzag mode, then the nearest-neighbor
interaction is dominant [80]. Second, the nearest-neighbor
interaction tends to dominate at larger spatial separation on
the ion chain [81]. Third, the longer-range interaction gives
less contributions when the power index β is large [82,83].
Thus, we can reasonably consider only the nearest-neighbor
interaction for β being its largest value, i.e., three [84].

Equation (2) hosts a p-wave topological-
superconductorlike phase. To reveal its bulk-boundary
correspondence, we rewrite Eq. (2) in the momentum
space under the periodic-boundary condition as Ĥ =∑

k Ĉ†
kH(k)Ĉk with Ĉ†

k = ( ˆ̃c†
a,k,

ˆ̃ca,−k, ˆ̃c†
b,k,

ˆ̃cb,−k), where
ˆ̃c j,k = ∑

l ĉ j,l exp(ikl )/
√

N/2. The Bogoliubov-de Gennes
Hamiltonian reads

H(k) = [2Bτ0 + (J1 + J2 cos k)τx + J2 sin kτy]sz

− [J2 sin kτx + (J1 − J2 cos k)τy]sy, (3)

where τi and si, respectively, are the Pauli matrices acting
on the sublattice and particle-hole subspaces, and τ0 is
the identity matrix. H(k) has particle-hole C = τ0sxK ,
time-reversal T = K , with K being the complex conjugation,
and chiral S = τ0sx symmetries. Thus, it belongs to the
topological class BDI and its bulk-band topology is
characterized by the winding number [85]. Equation (3)
is unitarily equivalent to an antidiagonal matrix ( 0 D(k)

D†(k) 0 ),
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with D(k) = 2[J2 sin k + i(J1 − J2 cos k)]τx − 2[iJ2 sin k +
(J1 + J2 cos k)]τy + 4iBτz. The winding number for our
four-band system is defined as W = ∫ π

−π
dk
2π i ∂kln[detD(k)],

which denotes the number of the Majorana modes with
zero energy [27,86]. It is remarkable to find that the
system also has the Majorana modes with nonzero
energies. To characterize the topological features of
such nonzero-energy Majorana modes, we resort to the
dipole moment P = [ Im ln det F

2π
− ∑

j,l; j′,l ′
r j,l; j′ ,l′

4N ]mod1,
where Fpp′ ≡ 〈ψp|ei2πr/N |ψp′ 〉, with |ψp〉 satisfying
Ĥ |ψp〉 = Ep|ψp〉 are the lowest occupied eigenstates, and the
coordinate r j,l; j′,l ′ = lδ j j′δll ′ with j and j′ being the sublattice
index and l and l ′ being the unit-cell number [87–89].
Physically, P signifies the formation of the topological
phases via describing the density distribution of the relevant
fermions in the occupied states of the system [87,90]. It is
readily calculated from Eq. (3) that the upper two bands
close at a nonzero energy when |J1| = |J2|, where the phase
transition characterized by P occurs, and the middle two
bands close at the zero energy when

2B2 + J2
1 + J2

2 =
√

4B2(J1 + J2)2 + (
J2

1 − J2
2

)2
, (4)

where the phase transition characterized by W occurs.
In the uniform case of 	1 = 	2, we have J1 = J2 ≡ J . The

system reduces to a two-band model and the phase transition
characterized by P does not occur. It is calculated that D(k) =
2i(Jτ+ − Jeikτ− + 2Bτz ), with τ± = (τx ± iτy)/2, and thus
W = 1 for |J| > |B| and 0 for |J| < |B|. The energy spectrum
under the open-boundary condition in Fig. 1(b) confirms that
the zero-energy Majorana modes are present in the regime of
W = 1. They are twofold degenerate and distribute at the two
lattice edges, respectively, see Fig. 1(c). The phase diagram
described by W in Fig. 1(d) gives a global picture on the topo-
logical phases, whose boundaries agree to the band-coalesce
condition |J| = |B| at the zero energy obtained from Eq. (4).

The energy spectrum in the nonuniform case of 	1 �= 	2

shows that the system hosts the formation of the Majorana
modes not only at the zero energy but also at the nonzero
energies, see Figs. 2(a) and 2(b). The zero-energy Majorana
modes present when W = 1 and the nonzero-energy ones
present when P = 0.5. Figure 2(c) shows the phase diagram
of the zero-energy Majorana modes described by W in the
B-J1 plane, where the phase boundaries obey Eq. (4). Fig-
ure 2(d) shows the nonzero-energy one described by P, where
the phase transition occurs at |J1| = |J2|. The results indicate
that our proposed trapped-ion system possesses rich Majorana
modes. Our dimerized-ion configuration with the formation of
the Majorana modes not only at the zero but also the nonzero
energy gaps enhances the Majorana modes, which could be
used to encode more qubits in quantum computing by the
braiding of Majorana modes.

III. FLOQUET ENGINEERING

For quantum computing, how to efficiently generate and
annihilate different numbers of Majorana modes is an im-
portant question. Limited by the finite control methods, it is
usually difficult in static systems. We propose to control the
Majorana modes by Floquet engineering.

FIG. 2. (a) Energy spectrum and winding number W (red line) in
different B when J1 = 5J0/6 and J2 = 5J0/4. (b) Energy spectrum
and dipole moment P (red line) in different J1 when B = J0 and
J2 = 0.5J0. (c) Zero-mode phase diagram described by W when
J2 = 5J0/4. (d) Nonzero-mode phase diagram described by P when
J2 = 0.5J0.

First, we consider that the periodic driving is applied on the
hopping rate J in the uniform case as

J (t ) =
{

U1, t ∈ [nT, nT + T1)
U2, t ∈ [nT + T1, (n + 1)T ) , (5)

where n ∈ Z and T = T1 + T2 is the driving period. This may
be realized by periodically manipulating either the ion separa-
tion between two spatial configurations or the Rabi frequency.
The periodic system Ĥ (t ) does not have a well-defined energy
spectrum because its energy is not conserved. According to
the Floquet theorem, we can define an effective Hamilto-
nian Ĥeff = i

T ln ÛT from one-period evolution operator ÛT =
Te−i

∫ T
0 Ĥ (t )dt , with T being the time-ordering operator. The

eigenvalues of Ĥeff are called quasienergies and the topo-
logical properties of the periodic system are defined in the
quasienergy spectrum [91,92]. Applying the Floquet theorem
to our system, we obtain Heff(k) = i

T ln[e−iH2(k)T2 e−iH1(k)T1 ],
where H j (k) is Eq. (3) with J1 = J2 ≡ J replaced by Uj .

Periodic systems have unique π/T -quasienergy topo-
logical phases, which, although enrich the bulk-boundary
correspondence, make the topological descriptions well de-
fined in static fermionic systems inadequate. To reveal
the complete bulk-boundary correspondence of our periodic
fermionic system, proper topological invariants to describe
both the zero- and π/T -quasienergy Majorana modes are
needed. Unfortunately, the chiral symmetry of H j (k) is not
inherited by Heff(k) due to [H1(k),H2(k)] �= 0, which means
that we cannot define a winding number in Heff(k) in a sim-
ilar manner as the static case. To restore chiral symmetry,
we make two unitary transformations Gl (k) = ei(−1)lHl (k)Tl /2

(l = 1, 2) to Heff(k), which do not change the quasienergy
spectrum, and obtain two chirally symmetric H̃eff,l (k) =
iT −1 ln[Gl (k)UT (k)G†

l (k)]. Then, two winding numbers Wl
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FIG. 3. (a) Quasienergy spectrum and (b) winding numbers Wα/T

of the periodic system in different B at T1 = 0.5J−1
0 . Probability

distributions of the (c) zero- and (d) π/T -quasienergy Majorana
modes. Phase diagram described by (e) W0 and (f) Wπ/T . The white
solid lines are from Eq. (6) with the labeled (n1, n2). Equation (7)
with n0,+ = 2, 4 in (e) and n0,+ = 1, 3 in (f) is depicted by red solid
lines, with n0,− = 0 by the red dashed line and with nπ,+ = 2, 4, 6, 8
by the black solid lines in (e), and nπ,+ = 1, 3, 5, 7, 9 by the black
solid lines in (f). We use U1 = 0.8J0, U2 = 4J0/3, and T2 = 1.3J−1

0 .

are well defined in H̃eff,l (k) and the topological features at the
quasienergies α/T , with α = 0 or π , are described by Wα/T =
(W1 + eiαW2)/2. The number of α/T -quasienergy Majorana
modes equals to 2|Wα/T | [93]. The phase boundaries also can
be obtained from Heff(k). We find that the topological phase
transition occurs at the quasienergies α/T for the system
and driving parameters, making the eigenvalues of ÛT be eiα .
Thus, we can readily obtain the phase boundaries as either√

4U 2
j − 8BUj cos k + 4B2Tj = n jπ (6)

or

|U1 + Beiγ |T1 ± |U2 + Beiγ |T2 = nγ ,±π/2, (7)

with γ = 0 and π , see Appendix B, at the quasienergy zero
(or π/T ) when n1 and n2 in Eq. (6) are integers with a similar
(or different) parity and nγ ,± in Eq. (7) is even (or odd).

Figure 3(a) shows the quasienergy spectrum in the open-
boundary condition, whose topological features are well
described by the winding number Wα/T in Fig. 3(b). It is

interesting to see that the coexisting Majorana modes in both
the quasienergies zero and π/T are present. Both of the two
types of Majorana modes possess the feature of lattice-edge
distribution, see Figs. 3(c) and 3(d). The phase diagrams
characterized by Wα/T in Figs. 3(e) and 3(f) reveal that, in
contrast to the static case in Fig. 1(d), the periodic system
has a widely tunable Wα/T from −3 to 3, whose phase bound-
aries match well with our analytic result in Eqs. (6) and (7).
It means that we can freely manipulate the number of the
Majorana modes by changing the driving parameters. The
distinguished role played by the periodic driving of Floquet
engineering in generating rich Majorana modes is that it can
induce effective long-range hopping of the system among the
lattice sites, which efficiently fold the (quasi)energy bands
[53] and creates multiple band-touching points [94]. Conse-
quently, an amount of topological phases absent in the static
system, including the large winding number phases, are gen-
erated. Thus, Floquet engineering supplies us with a useful
tool in controlling the Majorana modes in our trapped-ion
system.

Second, we apply Floquet engineering to the nonuniform
case in Eq. (3). We consider that the transverse field is pe-
riodically changed as B(t ) = B0 sin2(ωt ), with ω being the
driving frequency. This can be realized by manipulating the
two Raman-field beatnotes. In the high-frequency limit, we
can make a second-order Magnus expansion to the one-period
evolution operator and obtain [95,96]

Heff(k) � [B0τ0 + (J1 + J2 cos k)τx + J2 sin kτy]sz

−
(

1 − B2
0

ω2

)
[J2 sin kτx + (J1 − J2 cos k)τy]sy.

(8)

Equation (8) possesses the same symmetries as Eq. (3). Its
topological feature can be described by the similar method to
the static case. Its hopping amplitude along sy is renormal-
ized by the driving parameters. This gives a sufficient space
to control the topological phase transition by adjusting the
external periodic-driving field. It is easy to derive that the
nonzero-quasienergy topological phase transition still occurs
at |J1| = |J2|, while the zero-quasienergy one occurs at

B2
0 + (1 + f 2)

(
J2

1 + J2
2

) + 2(1 − f 2)J1J2 cos k

= 2
√

B2
0

(
J2

1 + 2J1J2 cos k + J2
2

) + f 2
(
J2

1 − J2
2

)2
, (9)

where f = 1 − B2
0/ω

2. Figures 4(a) and 4(b) show the
quasienergy spectrum of Eq. (8) under the open-boundary
condition. The topological phase transition at both the zero
and nonzero gaps of the quasienergies are well described by
W and P, see Fig. 4(c). We find that the periodic driving can
create the Majorana modes from the topologically trivial static
fermionic system in Figs. 2(a) and 2(b). The phase diagram
in Fig. 4(d) also clearly proves that Floquet engineering can
create the Majorana modes in the regions where the static
system does not host their existence.

IV. DISCUSSION AND CONCLUSION

Our dimerization approach to implement the Majorana
modes can be further extended to trimerization and so on,
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FIG. 4. (a) Quasienergy spectrum and winding number W (red
line) in different B0 when J1 = 5J0/6 and J2 = 5J0/4. (b) Quasinergy
spectrum and (c) dipole moment P (red line) and winding number W
(blue line) in different J1 when ω = 1.45J0, B = J0, and J2 = 5J0/4.
(d) Phase diagram described by W when J1 = 5J0/6 and J2 = 5J0/4.

where the number of Majorana modes could be further in-
creased. The topologically trivial states correspond to the
paramagnetic states in the spin model. The topological states
in the presence of the Majorana modes correspond to the
ferromagnetic states polarized in either +x or −x in the spin
model. The paramagnetic states and the ferromagnetic states
may be detected by measuring the magnetic moment Mx =
〈∑i σ̂

x
i 〉. The Majorana modes with nonzero energies can also

be detected by measuring the dipole moment P. The recent
experimental progress on trapped-ion systems supports the re-
alization of our proposal [82,97–101]. Furthermore, although
our proposal is based on the trapped-ion system, it is applica-
ble to the Rydberg-atom array hold by optical tweezers, where
the Ising model has been experimentally realized [102–107].
Our scheme only reveals a minimal requirement to simulate
Majorana modes in trapped-ion systems under the nearest-
neighbor approximation. It is interesting to further explore
the correction of the longer-range interactions to our leading-
order result. According to Ref. [84], even in the presence of
the longer-range interactions, the main conclusion on forming
the Majorana modes still does not qualitatively change. A
final remark is that the nonlocal Jordan-Wigner transforma-
tion might trigger a dichotomy of a formal equivalence and a
physical inequivalence between the original Ising model and
the Kitaev-chain model such that the ground state in the latter
is topologically protected while in the former it is not [108].
However, the system still can be used to perform quantum
computing via the braiding of the topologically nonprotected
ferromagnetic states in the Ising model [109].

In summary, we propose a scheme to realize Majorana
modes and its Floquet engineering in a trapped-ion sys-
tem. Our dimerized-ion configuration supports the formation
of the Majorana modes not only at the zero, but also the
nonzero energy gaps. We also propose to create and annihilate

different numbers of Majorana modes by Floquet engineering.
A widely tunable number of Majorana modes can be created
on demand in the static topologically trivial fermionic sys-
tem by applying periodic driving. Providing an alternative
platform to controllably simulate the mysterious Majorana
fermions, our scheme paves the way to explore quantum
computing by the braiding of Majorana modes in trapped-ion
systems.
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APPENDIX A: SYSTEM

The evolution operator of Eq. (1) is

Û (t ) = Te−i
∫ t

0 Ĥ (t ′ )dt ′
, (A1)

where T is the time-ordering operator. According
to the Magnus formula Û (t ) = exp{−i

∫ t
0 Ĥ (t ′)dt ′ −

1
2

∫ t
0 dt2

∫ t2
0 [Ĥ (t2), Ĥ (t1)]dt1 + · · · }, Eq. (A1) is expanded as

[74,75]

Û (t ) = exp

[
N∑

j=1

φ j (t )σ̂ x
j +

N∑
p,q=1

χp,q(t )σ̂ x
p σ̂ x

q

]
, (A2)

where φ j (t ) = ∑
m[g j,m(t )â†

m − g∗
j,m(t )âm]. The first term is

spin-dependent displacements of the mth phonon mode by an
amount

g j,m(t ) = −iη j,m�

μ2 − ω2
m

[μ − eiωmt (μ cos μt − iωm sin μt )].

(A3)

The second term is a spin-spin interaction between the pth and
qth ions with coupling strength

χp,q(t ) = �2

2

∑
m

iηp,mηq,m

μ2 − ω2
m

[
μ sin(μ − ωm)t

μ − ωm

− μ sin(μ + ωm)t

μ + ωm
+ ωm sin 2μt

2μ
− ωmt

]
. (A4)

We focus on the “slow” regime, where the optical beatnote
frequency is far detuning from one of each normal mode,
i.e., |μ − ωm|  �η j,m. Then, the phonons are only virtu-
ally excited and the ion displacements become negligible,
i.e., φ j (t ) � 0 [69,73]. Under the rotating-wave approxima-
tion, only the last term of Eq. (A4) is kept. In this case,
Eq. (A2) represents the dynamics of the pure Ising model
Ĥ = ∑

i, j Ji, j σ̂
x
i σ̂ x

j with

Ji, j = �2(δk)2

4M

∑
m

bp,mbq,m

μ2 − ω2
m

. (A5)

Further, we adjust the two Raman beatnotes to ω0 ± μ + B.
A uniform effective transverse magnetic field of B along σ̂ z

i is
generated [69]. The coupling strength Ji j is approximated as a
power law Ji, j � J0/|zi − z j |β , with β ∈ (0, 3) [68–70,76,77].
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In order to analyze the properties of the system, we take
the Jordan-Wigner transformation [79]

σ̂ z
j = 1 − 2ĉ†

j ĉ j , σ̂
y
j = iσ̂ x

j σ̂
z
j ,

σ̂ x
j = −

∏
l< j

(1 − 2ĉ†
l ĉl )(ĉ j + ĉ†

j ), (A6)

where ĉ†
j is the fermionic generation operator. We propose that

the ion array has a dimerization configuration, which can be
realized by setting the distance between each odd (even) ion
and its next neighboring ion being 	1 (	2). Thus, the ion
array reduces into a lattice of N/2 unit cells, each of which
contains two sublattices labeled by a and b. The fermionized
Hamiltonian reads

Ĥ =
N/2−1∑

l=1

[J1ĉ†
a,l (ĉb,l + ĉ†

b,l ) + J2ĉ†
b,l (ĉa,l+1 + ĉ†

a,l+1)

+ H.c.] − 2B
∑
j=a,b

N/2∑
l=1

ĉ†
α,l ĉα,l , (A7)

where Ji = J0/	
β
i , ĉ j,l satisfying [ĉ j,l , ĉ†

j′,l ′ ]+ = δll ′δ j j′ is the
fermionic annihilation operator of the jth sublattice of the lth
unit cell, and a constant has been abandoned.

In the homogeneous case where 	1 = 	2, the ion array
becomes a uniform array and J1 = J2 ≡ J . Thus, the degrees
of freedom of the sublattice, i.e., a and b, can be absorbed.
Equation (A7) reduces to

Ĥ =
N−1∑
l=1

[Jĉ†
l (ĉl+1 + ĉ†

l+1) + H.c.] − 2B
N∑

l=1

ĉ†
l ĉl . (A8)

APPENDIX B: TOPOLOGICAL PHASE TRANSITION
INDUCED BY PERIODIC DRIVING

We can derive an effective Hamiltonian Ĥeff = i
T ln ÛT

from one-period evolution operator ÛT = Te−i
∫ T

0 Ĥ (t )dt for
a periodically driven system. Its topological properties are
defined in the eigenvalues of Ĥeff. After making the Fourier
transform under the periodic boundary condition, Eq. (A8)
is rewritten as Ĥ = ∑

k Ĉ†
kH(k)Ĉk with Ĉ†

k = ( ˆ̃c†
k ,

ˆ̃c−k),
where ˆ̃ck = ∑

l ĉl exp(ikl )/
√

N . The Bogoliubov-de Gennes

Hamiltonian reads

H(k) = (2J cos k − 2B)τz − 2J sin kτy ≡ d(k) · τ. (B1)

Under the driving protocol in Eq. (5) and using Euler’s for-
mula of the Pauli matrices, we obtain the one-period evolution
operator as

UT = e−id2(k)·τT2 e−id1(k)·τT1 = εI2×2 − ir · τ, (B2)

where ε and r are

ε = cos(d1T1) cos(d2T2) − sin(d1T1) sin(d2T2)d1 · d2,

r = d1 sin(d1T1) cos(d2T2) + d2 cos(d1T1) sin(d2T2)

− sin(d1T1) sin(d2T2)d1 × d2, (B3)

with d j (k) = d jd j . The unitariness of UT requires
ε2 + |r|2 = 1. Thus, the effective Hamiltonian is

Heff(k) = arccos ε

T

r · τ

|r| . (B4)

The eigenvalues of Heff(k) are ε = ± arccos ε
T , which are the

quasienergies. We find that the topological phase transition
occurs at the quasienergies zero and π/T when ε = 1 and
−1, respectively. According to Eq. (B3), the phase transition
occurs for k and driving parameters satisfying one of the
following:

(i) sin(d1T1) sin(d2T2) = 0. In this case, ε = cos(d1T1)
cos(d2T2). Then the bands of Heff(k) close when

d jTj = n jπ, n j ∈ Z (B5)

at the quasienergy zero (or π/T ) if n1 and n2 are integers with
same (different) parity.

(ii) d1 · d2 = ±1. In this case, ε = cos(d1T1 ± d2T2).
Then the bands of Heff(k) close when

d1T1 ± d2T2 = nπ, n ∈ Z (B6)

at the quasienergy zero (or π/T ) if n is even (or odd).
By combining Eqs. (B1), (B5), and (B6), we can get the

phase boundaries satisfying either√
4U 2

j − 8BUj cos k + 4B2Tj = n jπ (B7)

or

|U1 + Beiγ |T1 ± |U2 + Beiγ |T2 = nγ ,±π/2, (B8)

with γ = 0 and π .
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