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Opportunities for the direct manipulation of a phase-driven Andreev spin qubit
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In a Josephson junction, the transfer of Cooper pairs from one superconductor to the other one can be
associated with the formation of Andreev bound states. In a Josephson junction made with a semiconducting
nanowire, the spin degeneracy of these Andreev states can be broken thanks to the presence of spin-orbit coupling
and a finite phase difference between the two superconducting electrodes. The lifting of the spin degeneracy
opened the way to the realization of Andreev spin qubits that do not require the application of a large magnetic
field. So far the operation of these qubits relied on a Raman process involving two microwave tones and a
third Andreev state [M. Hays et al., Science 373, 430 (2021)]. Still, time-reversal preserving impurities in the
nanowire allow for spin-flip scattering processes. Here, using the formalism of scattering matrices, we show that
these processes generically couple Andreev states with opposite spins. In particular, the nonvanishing current
matrix element between them allows for the direct manipulation of phase-driven Andreev spin qubits, thereby
circumventing the use of the above-mentioned Raman process.

DOI: 10.1103/PhysRevB.109.184515

I. INTRODUCTION

A Josephson junction formed via a short and narrow
normal region between two superconducting leads accom-
modates a discrete spectrum of Andreev bound states [1–4].
The Kramers degeneracy of these states is lifted by the con-
comitance of spin-orbit coupling in the normal region and a
superconducting phase bias, which breaks time-reversal sym-
metry [5–10]. Therefore, such a Josephson junction provides
a unique opportunity to realize a special kind of spin qubit,
nicknamed an Andreev spin qubit [5,7,10], which may not
require the application of a large magnetic field to be operated,
in contrast to conventional semiconductor spin qubits. Instead,
the qubit operation can be performed through an ac modula-
tion of an electrostatic gate [11–14] or magnetic flux [15,16],
thanks to the sensitivity of the Andreev levels to the electric
potential or the phase difference, respectively. The latter op-
tion seems particularly promising. Indeed, one can anticipate
a strong coupling between a Josephson junction forming part
of a superconducting loop and the magnetic flux threading that
loop, which is needed to set the phase difference. Experimen-
tally so far, microwave spectroscopy allowed us to resolve
the spin-splitting of Andreev levels [11–13,15,17,18]. Fur-
thermore, the coherent manipulation of a flux-driven Andreev
spin qubit was achieved thanks to a Raman process involving
two microwave tones and a third Andreev level [16,19]. These
results raise the question of whether the direct manipulation of
an Andreev spin qubit with a less demanding protocol, which
would involve a single microwave tone, is within reach. The
aim of the present work is to assess such a possibility by
estimating the amplitude of the matrix element of the current
operator between two states forming an Andreev spin qubit.
Indeed, it is precisely this matrix element that characterizes
the strength of the coupling of the qubit with an external flux
drive [10,12,20,21].

To address this question, we consider the experimentally
relevant situation of a Josephson junction made with a rather
clean single-channel nanowire having Rashba spin-orbit cou-
pling. When Coulomb repulsion is negligible, the ground
state of the junction is even and Andreev levels are empty.
However, in the odd sector a singly occupied Andreev level is
long-lived [22,23], as a superconductor preserves parity, i.e.,
a second quasiparticle would be needed for the two to recom-
bine into the even ground state. The Andreev spin qubit that
we consider is formed of the two Andreev levels with the low-
est energy. In the absence of spin-orbit coupling, they would
form a spin-degenerate (Kramers) pair. Actually, it has been
established that their spin splitting relies minimally on three
ingredients: (i) an asymmetry of the velocities in opposite
pseudospin bands in the nanowire (which itself necessitates a
finite transverse length of the nanowire or a transverse field),
(ii) a finite length of the nanowire, and (iii) a phase differ-
ence that differs from the effectively time-reversal invariant
values 0 and π . Apart from these ingredients, the amplitude
of the spin-splitting is only limited by the minimum of the
superconducting gap in the leads (in short junctions) and the
inverse dwell time in the normal region (in long junctions)
[5,6,10,11,15]. In short, the order of magnitude of the energy
spin-splitting is typically given by the same energy scale that
determines the amplitude of the Josephson coupling in the
considered setup.

In the model sketched above, the matrix elements of the
current operator within the Andreev spin qubit would actu-
ally vanish. Namely, the two pseudospin sectors would be
completely decoupled. As a minimal model involving addi-
tional ingredients, we consider the case of a generic single
scatterer located at a given position along the nanowire. We
find that, for the matrix elements to take a finite value,
it is necessary that the scatterer yields a finite spin-flip

2469-9950/2024/109(18)/184515(15) 184515-1 ©2024 American Physical Society

https://orcid.org/0009-0007-8819-1399
https://orcid.org/0000-0002-1831-7087
https://orcid.org/0000-0002-8584-5381
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.184515&domain=pdf&date_stamp=2024-05-14
https://doi.org/10.1126/science.abf0345
https://doi.org/10.1103/PhysRevB.109.184515


FAUVEL, MEYER, AND HOUZET PHYSICAL REVIEW B 109, 184515 (2024)

transmission probability with respect to the pseudospin bands
in the nanowire. This is generically the case unless the scat-
terer possesses additional spatial (mirror) symmetries [12,16].
Furthermore, its location should deviate from the interfaces
between the nanowire and the leads. (The matrix element
also vanishes if scattering only takes place at both interfaces
with the lead, but not in-between.) Our detailed study below
provides the specific dependence of the energy splitting and
current-operator matrix elements on the phase difference, the
transmission properties of the scatterer, and its location along
the nanowire. In particular, we find that the ratio between
the current-operator matrix element and the energy splitting
varies quadratically in the pseudospin band velocity asym-
metry and linearly in the spin-flip transmission amplitude.
The strong suppression of the current-operator matrix element
does not favor the operation of the Andreev spin qubit using
a flux drive if spin-orbit coupling is small. Thus, our study
will contribute to identifying optimal working points, where
a sufficiently strong driving may be achieved. If spin-orbit
coupling is sufficiently large, the order of magnitude of the
matrix element is bounded by the critical current of the junc-
tion. Thus, we do not see major challenges in operating an
Andreev spin qubit in that case.

This paper is organized as follows. In Sec. II, we present
the model used to describe the system. In Sec. III, we study
the Andreev spectrum and determine the spin-splitting of An-
dreev energies. In Sec. IV, we study the matrix elements of
the current operator in the odd-parity sector. We obtain simple
analytical results in the short and long junction limit, and
we compare them with the numerics. Finally, we conclude in
Sec. V.

II. MODEL

In this section, we introduce the effective one-dimensional
(1D) model Hamiltonian of the system. The normal part of the
junction consists of a quasi-one-dimensional nanowire with
Rashba spin-orbit coupling. As detailed in Refs. [10,24–26],
the lowest subband of transverse quantization splits into two
pseudospin bands with different Fermi momenta kF j and dif-
ferent Fermi velocities v j , where j = 1, 2, depending on the
propagation direction.1 An example is shown in Fig. 1. The
difference in Fermi velocities, δv, can be estimated as δv ∼
αR(W/LSO)4(W/λF )2 in the limit W � LSO where αR is the
strength of the Rashba spin-orbit coupling, LSO ∼ (mαR)−1 is
the associated length scale, W is the width of the nanowire
and λF is the Fermi wavelength [10,27]. In the following, we
will linearize these pseudospin bands around the Fermi level
μ. The corresponding Hamiltonian H0 takes the form

H0 =
(

H1 0
0 H2

)
, Hj = v j[(−1) j i∂xσz − kF j] (1)

in the basis ψ = (R1, L1, L2, R2)T , where Rj and Lj denote
right- and left-movers, respectively. Furthermore, σz is a Pauli

1Note that it is essential to start from a higher-dimensional model
in order to obtain different Fermi velocities. In a strictly one-
dimensional model, the Rashba spin-orbit coupling only yields a
momentum shift between the two spin bands.

k

μ

E

kF2 kF1

FIG. 1. Electron band structure of the nanowire. The dotted lines
correspond to the case without coupling between the transverse sub-
bands. The two Kramers pairs are represented by different colors.
Note that the coupling between the transverse subbands leads to a tilt
between the respective spin quantization axes of the two pairs.

matrix in right/left space. We use units such that h̄ = 1. Note
that R1 and L2 (L1 and R2) belong to the same pseudospin
band; see Fig. 1. The Hamiltonian respects time-reversal
symmetry (TRS), i.e., 	H0	

−1 = H0, with the time-reversal
operator

	 =
(

iσyC 0

0 iσyC

)
, (2)

where C denotes complex conjugation. The states Rj and Lj

form a Kramers pair.
Scattering in the normal region can be described by a

Hamiltonian Hb of the form

Hb =
(

U1(x) U3(x)

U †
3 (x) U2(x)

)
. (3)

Assuming time-reversal invariance, the potentials U1,2 are
constrained to be proportional to the identity, U1,2 = u1,212

with u1,2 real, as TRS forbids backscattering within a Kramers
pair. By contrast, U3 takes the form

U3 = u0(x)12 + iu(x) · σ (4)

with u0,x,y,z real. The diagonal terms of the block U3 couple
counterpropagating states within the same pseudospin band,
whereas the off-diagonal terms of the block U3 couple co-
propagating states in opposite pseudospin bands. The latter are
present if the scattering potential possesses an asymmetry in
the transverse direction [12,16]. In the remainder of this work,
we will call these processes spin-flip scattering. As we will
see, they are essential in obtaining a direct coupling between
the two states of the Andreev spin qubit.

In the following, we consider a normal region of length
d described by the Hamiltonian He = H0 + Hb coupled to
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FIG. 2. Schematic of the scattering problem. The incoming and
outgoing states are taken at both superconducting/normal interfaces.
They freely propagate in the junction area of length d and are scat-
tered at the barrier at position x0.

superconductors on either side.2 The superconductors induce
a pair potential with amplitude


(x) = 
[θ (−x) + θ (x − d )], (5)

where θ is the Heaviside step function, and the phase φ(x)
is equal to −φ/2 and φ/2 in the left and right superconduc-
tor, respectively. Note that at this point the phase along the
nanowire (0 < x < d) is arbitrary. We will get back to the
question of where the phase drop occurs at a later point.

The resulting 1D Bogoliubov–de Gennes (BdG) Hamilto-
nian reads

HBdG = Heτz + 
(x)[cos φ(x)τx − sin φ(x)τy], (6)

where τx,y,z are Pauli matrices in particle-hole (Nambu)
space, and we chose the basis � = (ψ,	ψ )T . The particle-
hole symmetry operator is given by P = −iτy	 such that
PHBdGP−1 = −HBdG.

The Hamiltonian (6) will allow us to characterize the An-
dreev bound states that form in the normal region at subgap
energies |E | < 
.

III. ENERGY SPECTRUM

To derive the Andreev bound state (ABS) energy spec-
trum, we use the scattering formalism [3]. The scat-
tering properties of the normal region are described
by a scattering matrix Se(E ), which relates incoming
states �in = (Rin

1 , Rin
2 , Lin

2 , Lin
1 )T to outgoing states �out =

(Lout
2 , Lout

1 , Rout
1 , Rout

2 )T with energy E at the interfaces with
the left and right superconductor; see Fig. 2. With this choice,
time-reversal symmetry imposes

Se(E ) = 	S†
e (E )	−1 (7)

2Here we assume that the spin-orbit coupling is unchanged under
the superconductor, as also done in Ref. [10]. We checked that our
results do not depend on this assumption. While the wave functions
in the leads depend on the presence or absence of spin-orbit coupling,
the spectrum as well as the matrix elements of the current operator
are unchanged.

with the same 	 as given in Eq. (2). The most general form of
Se(E ) then reads [28]

Se(E ) = eiξ (E )

⎛
⎜⎜⎜⎜⎝

r(E ) 0 −t∗(E ) −s∗(E )

0 r(E ) −s(E ) t (E )

t (E ) s∗(E ) r∗(E ) 0

s(E ) −t∗(E ) 0 r∗(E )

⎞
⎟⎟⎟⎟⎠. (8)

Here r(E ) and t (E ) are pseudo-spin-conserving reflection
and transmission coefficients, while s(E ) describes spin-flip
transmission. As pointed out before, TRS forbids spin-flip
reflection.

Using the particle-hole symmetry of the BdG Hamiltonian,
one finds that the scattering matrix for holes is given as

Sh(E ) = 	Se(−E )	−1 = S†
e (−E ). (9)

In the following, we will denote xe = x(E ) and xh = x∗(−E )
for x = r, t, s. The explicit form of the scattering amplitudes
for a specific model with a δ-potential will be given below.

The matrix SA(E ) describing Andreev reflection between
electrons and holes at the nanowire/superconductor interfaces
takes the usual form

SA(E , φ) = α(E )rA(φ), rA(φ) =
(

eiφ/2σ0 0

0 e−iφ/2σ0

)

(10)

with α(E ) = exp[−i arccos(E/
)].
An ABS will form in the junction when �in =

SA (E , −φ) Sh (E )SA (E , φ)Se (E ) �in. Hence, defining
M(E , φ) = rA(−φ)Sh(E )rA(φ)Se(E ), the discrete energy
spectrum of ABS is given by the roots of the secular equa-
tion [3],

Det[14 − α2(E )M(E , φ)] = 0. (11)

The solutions of (11) are found by diagonalizing M(E ), see
Appendix A, and they can be cast in the form

ξ (E ) − ξ (−E )

2
+ ρχσ (E , φ) − arccos

E



− qπ = 0 (12)

with q ∈ Z and σ, ρ = ±. Here,

χσ (E , φ) = arccos

√
1 + τ cos (φ − σω) + Re[rerh]

2
, (13)

ω(E ) = sgn(E ) arccos
Re[teth + sesh]

τ
, (14)

τ (E ) =
√

(|te|2 + |se|2)(|th|2 + |sh|2). (15)

Note that particle-hole symmetry implies that the energy
solutions of Eq. (12) obey Eq,ρ,σ = −E−(q+1),−ρ,−σ . In the
following, we will thus concentrate on energies E > 0 only.
Furthermore, Eq,ρ,σ (2π − φ) = Eq,ρ,−σ (φ), such that it will
be sufficient to consider phases 0 � φ � π . The maximum
number of ABS is set by the maximum value that q can take.
This value is obtained by setting E = 
 in Eq. (12), leading
to

qmax =
[

1

π

(
ξ (
) − ξ (−
)

2
+ ρχσ (
,φ)

)]
, (16)

where [x] stands for the integer part of x.
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FIG. 3. Energy spectrum of ABS for a model with a single scat-
tering center in the junction, shown up to an energy Ē � 
. Here,
T = 0.95, S = 0, λ1 = 8, λ2 = 10, and x̃0 = 0.9. Red lines corre-
spond to spin-up states, while blue lines correspond to spin-down
states. We denote the gap between doublet m and m + 1 at phase ϕm

as 2δm.

A sample spectrum is shown in Fig. 3. As can be seen,
the states group into doublets labeled by an index m ∈ N∗
that increases with energy. Specifically, the doublets with odd
m contain the states [(m − 1)/2,+, σ ], whereas the doublets
with even m contain the states (m/2 − 1,−, σ ). The energies
within a doublet will then be denoted Emσ .

In the absence of backscattering, τ (E ) = 1, and Eq. (13)
reduces to

χσ (E , φ) = [φ − σω(E )]/2.

In this form, one can see explicitly that the spin-splitting
originates from ω(E ). One notices further that ω(E ) = 0 if
the scattering coefficients are energy-independent. Note that
σ corresponds to the pseudospin of right-moving electrons
involved in the ABS at T = 1 and when v1 > v2. In the fol-
lowing, we will continue to call the states σ = 1 spin-up and
σ = −1 spin-down even though the pseudospin of the ABS is
not well-defined at T �= 1.

For most of this paper, we will consider a specific model
with a single short-range scattering potential at a position x0,
i.e., in Eq. (3) we choose Uj (x) = Ujδ(x − x0). In that case,
the scattering coefficients take the following form:

r(E ) = r eik̄dx̃0 , t (E ) = t e
i
2 δkd , s(E ) = s e

i
2 δkdx̃0 , (17)

and ξ (E ) = k̄d + θ . Here x̃0 = 2x0/d − 1 and k̄ = (k1 +
k2)/2, δk = k1 − k2 with k j = kF j + E/v j . Note that only the
phase factors are energy-dependent. The coefficients r, t , s,
and θ are determined by the scattering potential. Namely,

r = 4u∗
r
√

v1v2

||us|2 + |ur |2 − ũ1ũ2| , (18)

t = −i
|us|2 + |ur |2 − ũ∗

1ũ2

||us|2 + |ur |2 − ũ1ũ2| , (19)

s = −i
4us

√
v1v2

||us|2 + |ur |2 − ũ1ũ2| , (20)

and θ = −π/2 − arg[|us|2 + |ur |2 − ũ1ũ2] with ũ j = u j −
2iv j for j = 1, 2, ur = u0 + iuz, and us = ux + iuy.

The resulting form of Eqs. (12)–(15) for this specific model
is given in Appendix A. Equation (12) can be solved numer-
ically in all parameter regimes, whereas analytical solutions
are possible only in limiting cases. The simplest form is ob-
tained in the limit d → 0 where the scattering coefficients do
not depend on energy. In that case, the spin-orbit coupling
plays no role and one recovers the well-known result of a
single spin-degenerate ABS with energy [6]

ε
(0)
1σ (φ) = ε0 ≡

√
1 − (T + S) sin2 φ

2
, (21)

where T = |t |2, S = |s|2 and ε = E/
. It is interesting to note
that, in this limit, only the total transmission T + S matters
[6,29].

Spin-split Andreev levels are obtained once one takes into
account a finite length of the junction. This is illustrated in
Fig. 3, where the degeneracy of the ABS is lifted except for
phases that are multiples of π , which effectively preserves
TRS and, hence, Kramers degeneracy. To better understand
the effect of the different parameters on this splitting, we
start by taking the finite length of the junction into account
perturbatively. Namely, we compute the corrections to ε0 [see
Eq. (21)] to first order in λ j = 
d/v j , which yields

ε1σ = ε0 + δεshift + σδεsplit (22)

with

δεshift = −λ̄ε0

√
1 − ε2

0 , (23)

δεsplit = 1

2
|δλ|

√
1 − ε2

0

√
T + Sx̃2

0 cos
φ

2
, (24)

where λ̄ = (λ1 + λ2)/2 and δλ = λ1 − λ2. Here δεshift de-
scribes a shift of both eigenvalues, whereas δεsplit describes
the spin splitting. The splitting is proportional to δλ, highlight-
ing the importance of the different Fermi velocities v1 �= v2.
Furthermore, as

√
1 − ε2

0 ∝ | sin(φ/2)|, we recover the sin φ-
dependence of the splitting predicted perturbatively in SOC
in Refs. [5,6]. Finally, we note that the splitting depends sepa-
rately on the spin-conserving transmission T and the spin-flip
transmission S. At R = 0 and S � T , up to small corrections
∝ S, the result simplifies to

ε1σ = cos
φ

2
− 1

2

(
λ̄ − σ

2
|δλ|

)
sin φ. (25)

The above approximation is valid for phases not too close
to zero. As can be observed in Fig. 3, additional Andreev
levels may appear in a finite length junction. From Eq. (12),
setting T = 1 and ε = 1, one can see that, for a short junction,
these additional states quickly join the continuum at φ = 2λ j .
Taking into account corrections up to second order in λ j , one
finds a crossing between the doublets m = 1 and 2 that takes
place at ϕ1 ≈ |δλ|. A complementary view on the structure of
Andreev levels in the vicinity of zero phase is discussed in
Ref. [30], see Fig. 9 therein.

In arbitrary length junctions, a simple expression for the
low-energy spectrum, ε � 1, can be obtained at R = 0 and
S � T , namely

εm,σ = fm(φ)

2(1 + λ̄) + (−1)mσ |δλ| , (26)
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where

fm(φ) =
{

mπ − φ, m odd,

(m − 1)π + φ, m even.

In the short junction limit, λ̄, δλ � 1, Eq. (26) coincides with
Eq. (25) for φ near π when the condition ε � 1 is verified.
Time-reversal invariance at phases φ = 0, π imposes level
crossings at these phases. Namely, ε2m,σ = ε2m−1,−σ at φ = 0,
whereas ε2m,σ = ε2m+1,−σ at φ = π .

In the long junction limit, λ̄ � 1, and assuming δλ � λ̄,
crossings between the same spin-states of doublets m and m +
1 occur at phases

ϕm =
{

πm |δλ|
2λ̄

, m odd,

π − πm |δλ|
2λ̄

, m even.
(27)

Note that for m odd the crossing is between spin-up states,
whereas for m even the crossing is between spin-down states.

These crossings are not protected by time-reversal invari-
ance and are lifted at finite R, as we will see in the following.
The resulting spectrum resembles the one shown in Fig. 3 at
phases ϕm < φ < ϕm+1 for m odd and ϕm−1 < φ < ϕm for m
even.

The energy gaps δm, in units of 
, at the anticrossings can
be obtained by calculating the energy perturbatively in R at
the phases φc = ϕm with the help of Eq. (12). We find

δm =
√

R

λ̄

{∣∣ sin
(
πm x̃0

2

)∣∣, m odd,∣∣ cos
(
πm x̃0

2

)∣∣, m even.
(28)

These gaps close at particular values of x̃0 when the reflected
and transmitted part of the wave function acquire the same
phase through propagation in the normal region.

The energies of the two states involved in the anticrossing
are then given as

ε>/<
m = 1

2

(
ε−

m + ε+
m ±

√
(ε−

m − ε+
m )2 + 4δ2

m

)
, (29)

where ε±
m corresponds to the energy level with

positive/negative slope as a function of φ. For m odd,

ε±
m = πm ± φ

2λ̄

(
1 ∓ |δλ|

2λ̄

)
, (30)

whereas for m even,

ε±
m = π (m ∓ 1) ± φ

2λ̄

(
1 ± |δλ|

2λ̄

)
. (31)

Note that ε−
m − ε+

m = (ϕm − φ)/λ̄ for all m.
The doublet m = 1 requires special attention. At T = 1,

it crosses with the negative energy states at phase φ = π ,
leading to a fourfold degeneracy at the Fermi level. Finite
backscattering opens up a gap (while preserving the twofold
degeneracy imposed by time-reversal symmetry). Using the
same method as outlined above, we find that the positive
energy states are shifted to δπ = √

R/λ̄.

IV. CURRENT OPERATOR

We now turn to the evaluation of the matrix elements of
the current operator. Namely, we are interested in transitions

between Andreev levels when a microwave drive is applied
to the junction. In particular, we will limit ourselves to the
odd-parity sector, since we are interested in the spin-flip tran-
sitions between excited levels. The microwave drive leads
to a variation of the phase difference φ across the junction.
If the variation δφ is small, we may linearize, H = HBdG +
δφ(�0/2π )Ĵ , where Ĵ is the current operator given by

Ĵ = 2π

�0

∂HBdG

∂φ
, (32)

and �0 = h/2e is the (superconducting) flux quantum
[21,31]. The coupling of the junction to the microwave drive
is thus described by the current operator, and its off-diagonal
elements in the basis of Andreev levels determine which tran-
sitions can be induced.

0 π/2 π 3π/2 2π
φ

0.0

0.2

0.4

0.6

0.8

1.0

|J 1
↓→

1↑
|/J

(s
h
or

t)
0

0 π/2 π 3π/2 2π
φ

0

2

4

6

|J 1
↓→

1↑
|/J

(l
on

g
)

0

(a)

(b)

FIG. 4. Spin-flip current operator matrix elements within the
lowest doublet in the absence of backscattering, R = 0. (a) Short
junction (λ1 = 0.02 and λ2 = 0.01) and (b) long junction (λ1 = 20
and λ2 = 16). The parameters for both panels are T = 0.99, S =
0.01, and x̃0 = 0.3. The current operator elements are normalized by
J (short)

0 and J (long)
0 for the short and long junction, respectively. Results

for a phase drop at x′ = 0 (green) and x′ = d (black) are shown.
Dashed lines correspond to the analytical results and full lines to the
numerical results. As can be seen in panel (b), the matrix element
sharply drops to zero at φ = ϕ1. In panel (a), the drop happens at a
phase too close to zero to be visible.
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Using a gauge transformation HBdG → H̃BdG = e−iφg(x)τz/2

HBdGeiφg(x)τz/2, Eq. (6) can be brought into the form

H̃BdG = Heτz + φ

2

∂g(x)

∂x

(
v1σz 0

0 −v2σz

)
τ0 + 
(x)τx, (33)

where g(x) describes the phase profile along the x direction
with g(d ) = −g(0) = 1/2. Therefore, the current operator
may be written as

Ĵ = π

�0

∂g(x)

∂x

(
v1σz 0

0 −v2σz

)
τ0. (34)

The matrix elements of the current operator are given by

Jnn′ =
∫

dx �†
n (x)Ĵ�n′ (x), (35)

where �n(x) is the wave function of the Andreev level n asso-
ciated with the spectrum obtained in Sec. III (see Appendix A)
and n = (m, σ ) is a composite index. For the diagonal ele-
ments, the expression simplifies to Jnn = e∂φEn as expected
from the Feynman-Hellmann theorem.

To evaluate the off-diagonal elements of the current opera-
tor, we need to know how the phase of the superconducting
order parameter drops along the nanowire. Under ac drive,
determining the profile of g(x), which in turn determines
the electric field inside the nanowire, requires an involved
self-consistent calculation that takes into account electron-
electron interactions in the system; see, e.g., Ref. [32]. A

common simplifying assumption is that the charge inside a
nanowire with low electron density is fully screened by nearby
metallic gates; see, e.g., Refs. [33,34]. Then, the phase profile
along the nanowire becomes frequency-independent and can
be determined by an electrostatic calculation that involves the
capacitance matrix between the leads and the gates. Rather
than evaluating the electrostatic profile along the nanowire,
we will compute the elements of the current operator for the
case when the entire phase drop happens at an arbitrary point
x′, i.e.,

g(x) = θ (x − x′) − 1/2, (36)

such that ∂g(x)/∂x = δ(x − x′). The off-diagonal elements
of the current operator for different phase profiles can be
obtained by appropriately averaging over x′. In particular, in
the case of a single metallic screening gate, it is expected
that the phase drop takes place at the interfaces between the
nanowire and the leads at x′ = 0 or x′ = d . In Figs. 4 and 6–9,
we show results for a phase drop at either one or the other
interface. More complicated phase profiles can arise in the
case of several gates: in Fig. 10, we will assume that the phase
drop arises at a single arbitrary position along the nanowire,
while a linear drop of the phase was assumed in Ref. [16].
Let us note that the phase profile does not affect the value
of the diagonal elements of the current operator due to the
Feynman-Hellmann theorem mentioned earlier.

Using the wave functions given in Appendix A, the current
operator elements can be written in the following form:

Jnn′ = e
√

NnNn′

⎧⎪⎨
⎪⎩

∑
k=1,2

[
f +
nn′,kA∗

(n)kA(n′ )k − f +
nn′,k+1α

∗
nαn′ (Se(n)A(n) )∗k (Se(n′ )A(n′ ) )k

]
, 0 < x′ < x0,

− ∑
k=3,4

[
f −
nn′,k−1A∗

(n)kA(n′ )k − f −
nn′,kα

∗
nαn′ (Se(n)A(n) )∗k (Se(n′ )A(n′ ) )k

]
, x0 < x′ < d,

(37)

where f ±
nn′,k = eiλk (εn′ − εn ) (1 ± x̃′ )/2 + αn α∗

n′ e−iλk (εn′−εn )(1±x̃′ )/2

with x̃′ = 2x′/d − 1, and we defined λ3 = λ1, λ4 = λ2. Fur-
thermore, Nn is the normalization coefficient of the nth ABS,
and A(n)k the component k of the eigenvector of M(E ) associ-
ated with the state n; see Appendix A.

It is important to note that Eq. (37) can be simplified when
certain components A(n)k of the wave function are zero. In
particular, this may lead to the absence of specific transitions.
If S = 0, the spin-up and spin-down states are decoupled and
all spin-flip transitions are absent. A similar decoupling into
two independent blocks occurs when there is only spin-flip
scattering (T = 0). If R = 0, the states with different parity of
m, i.e., with positive and negative slope as a function of φ, are
decoupled and all transitions between a doublet with m odd
and a doublet with m even are absent.

Equation (37) allows one to compute all the elements
of the current operator for arbitrary parameters numeri-
cally. Before showing the results, let us discuss limiting
cases, where analytical results are possible due to the above-
mentioned simplifications. Time-reversal symmetry relates
states at phases φ and 2π − φ. In particular, T �mσ (2π −
φ) = �m−σ (φ) with T = τ0	, where 	 is defined in Eq. (2).
Using T ĴT −1 = −Ĵ , it follows that Jmσ→m′σ ′ (2π − φ) =
−Jm−σ→m′−σ ′ (φ), i.e., we can restrict ourselves to computing

the current operator matrix elements in the phase interval
φ ∈ [0, π ].

A. Spin-flip transitions without backscattering

The expressions for the elements of the current operator
simplify considerably when considering the case R = 0 and
treating S � 1 perturbatively. As in that case states with
a different parity of m are decoupled, spin-flip transitions
within a given doublet are only possible in the phase inter-
val ϕm < φ < ϕm+1 for m odd and ϕm−1 < φ < ϕm for m
even. For interdoublet spin-flip transitions, the phase interval
is given as ϕm′ < φ < ϕm−1 for m, m′ odd and as ϕm′−1 <

φ < ϕm for m, m′ even. Within that interval, we can compute
the matrix elements Jm↓→m′↑ using the eigenvectors given
by Eq. (A39). For m odd, only the components A(n)k with
k = 3, 4 contribute, whereas for m even only the components
A(n)k with k = 1, 2 contribute. Furthermore, only the product
A∗

(m↓)kA(m′↑)k−1 is of order 1, whereas A∗
(m↓)kA(m′↑)k is of

order
√

S. Keeping only terms up to order
√

S and assuming
|δλ|ε, δε � 1, where δε = εm′↑ − εm↓, one obtains after a
lengthy but straightforward calculation the matrix elements
for spin-flip transitions between doublets m and m′, where
m + m′ even. Up to a global phase factor, they take the form
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FIG. 5. Energy spectrum at perfect transmission (R = 0, dashed
lines) and with finite backscattering (R = 0.01, full lines). The col-
ored arrows indicate the transitions for which we calculate the matrix
elements of the current operator in Figs. 6 and 7. The parameters are
T = 0.99 − R, S = 0.01, x̃0 = 0.3, λ1 = 20, and λ2 = 16.

(see Appendix C)

|Jm↓→m′↑|√
N↑N↓

=
√

S
e

2
|δλδε|

×
∣∣∣∣η(x̃0)

2
|δλ|ε̄ f (0)

± + (−1)m(1 ∓ x̃0) f (1)
±

∣∣∣∣,
(38)

with

f (0)
± = cos

[
δε

2

(
1√

1 − ε̄2
+ λ̄(1 ± x̃′)

)]
, (39)
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FIG. 6. Numerical results for the matrix elements of the current
operator between opposite spin states at perfect transmission asso-
ciated with the spectrum shown in Fig. 5. Panels (a) and (b) show
the intradoublet matrix elements for the first and second doublet, re-
spectively. Panel (c) shows the interdoublet spin-flip matrix elements
between the first and third doublet, having the same parity. Panel
(d) shows the interdoublet spin-flip matrix elements between the first
and second doublet, having opposite parity. In all panels, we took
x′ = d . The abrupt drops to zero at phases ϕm are due to the various
crossings between states at perfect transmission.

f (1)
± =(1 ± x̃′) sin

[
δε

2

(
1√

1 − ε̄2
+ λ̄(1 ± x̃′)

)]
, (40)

and η(x̃0) = (1 − x̃2
0 )(1 ∓ x̃0/3). Here the upper (lower) sign

has to be used for x′ < x0 (x′ > x0). Furthermore, ε̄ = (εm′↑ +
εm↓)/2.

According to Eq. (38), the spin-flip current operator matrix
elements vanish when the barrier is at one of the interfaces,
|x̃0| = 1. As discussed in Appendix B, this feature is true
beyond the specific model considered here: if scattering is
only taking place at the interfaces, there are no spin-flip tran-
sitions. For |x̃0| �= 1, Eq. (38) yields a finite result that will be
analyzed in more detail for the case of short and long junctions
below.

1. Short junction

In the short junction limit, the only possible transition is
the intradoublet transition 1 ↓→ 1 ↑. Using δε, λ̄ � 1, the
current matrix element Eq. (38) further simplifies to

|J1↓→1↑| =
√

S
e

4

√
N↑N↓δλ2|δε ε̄|

× |η(x̃0) − (1 ∓ x̃0)(1 ± x̃′)|. (41)

Using Eq. (25) to obtain ε̄, δε and
√

N↑N↓ ≈ 
 sin(φ/2)/2 as
well as the expression for η(x̃0), one finds

|J1↓→1↑| =
√

S
e


32
|δλ|3 sin2 φ

× (1 ∓ x̃0)

∣∣∣∣x̃0 − x̃′ − 1

3
x̃0(1 ± x̃0)

∣∣∣∣. (42)

The characteristic scale for the magnitude of the current ma-
trix element is J (short)

0 = √
Se
|δλ|3/32.

2. Long junction

In the long junction limit, several doublets with energies
ε � 1 exist and Eq. (38) can be applied in a large phase
interval comprising π/2 up to the level crossings given by
Eq. (27). Approximating Eq. (26) as

εm,σ ≈ fm(φ)

2λ̄

(
1 − (−1)mσ

|δλ|
2λ̄

)

and
√

N↑N↓ ≈ 
/(2λ̄), one finds that δε ≈ |δλ|ε̄/λ̄ for the
intradoublet matrix elements, yielding

|Jm↓→m↑| =
√

S
e


32λ̄

∣∣∣∣δλλ̄
∣∣∣∣
3

f 2
m(φ)

× |η(x̃0) + (−1)m(1 ∓ x̃0)(1 ± x̃′)2|, (43)

and the phase interval is delimited by ϕm < φ < ϕm−1 for
m odd and ϕm−1 < φ < ϕm for m even. In the long junc-
tion regime, the characteristic scale for the magnitude of
the matrix elements of the current operator is J (long)

0 =√
SeET |δλ/λ̄|3/32 with the Thouless energy ET = 
/λ̄. As

for the short junction, the amplitude is proportional to |δλ|3.
Namely, it is suppressed as |δλ/λ̄|3 � 1. However, as ex-
pected in a long junction, the overall energy scale for the
transition matrix elements is set by the Thouless energy rather
than the superconducting gap.
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By contrast, for the interdoublet matrix elements, δε ≈
(m′ − m)π/(2λ̄). In that case, the two terms in the second line
of Eq. (38) behave differently. For |x̃ ± 1| � |δλ|/λ̄, the first
term dominates and we obtain

|Jm↓→m+2n↑| ≈
√

S
e


16λ̄

∣∣∣∣δλλ̄
∣∣∣∣
2

π |n|η(x̃0) fm+n(φ), (44)

whereas for other values of x̃, the second term dominates and
the result reads

|Jm↓→m+2n↑| ≈
√

S
e


4λ̄

∣∣∣∣δλλ̄
∣∣∣∣π |n|

× (1 ∓ x̃0)(1 ± x̃′)
∣∣∣sin

(
n
π

2
(1 ± x̃′)

)∣∣∣. (45)

Let us first note that these matrix elements are larger than
the intradoublet matrix elements, which have an additional
suppression factor due to the small energy difference δε ∝ δλ.
Furthermore, their magnitude strongly depends on the phase
profile. Namely, it is enhanced by a factor |λ̄/δλ| � 1 when
the phase drop is not at the interfaces.3 Figure 4 shows the
intradoublet matrix elements of the current operator within
the first doublet in the short and long junction regime, while
Fig. 6 shows both intradoublet and interdoublet spin-flip ma-
trix elements in the long junction regime. We show the matrix
elements |Jm↓→m′↑| over the entire phase interval φ ∈ [0, 2π ].
Using the relation Jmσ→m′σ ′ (2π − φ) = −Jm−σ→m′−σ ′ (φ), the
extended phase interval allows one to deduce the matrix
elements |Jm↑→m′↓| as well. The different transitions are in-
dicated in Fig. 5.

B. Effect of finite backscattering

Finite backscattering couples states with different parity of
m and therefore renders the spin-flip current operator elements
finite for all phases. This is particularly interesting in long
junctions, where several doublets exist and anticrossings take
place at phases not too close to zero. To include the effect of
backscattering on the current operator matrix elements in long
junctions, we use the results of Sec. III for the ABS at finite
R. Namely, the wave functions corresponding to the energies
given by Eq. (29) read

ψ>
m = Umψ+ m + Vmψ− m, (46)

ψ<
m = − Vmψ+ m + Umψ− m, (47)

where Um = �m/
√

(
√

δϕ2
m + �2

m − δϕm)2 + �2
m and Vm =√

1 − U 2
m with �m = 2λ̄δm and δϕm = φ − ϕm. Thus, Um and

Vm vary around ϕm on a typical scale set by �m.

1. Modification of the intra- and interdoublet spin-flip transitions
in long junctions

In this section, we will focus on how the transitions we
previously studied in Sec. IV A are modified due to finite
backscattering. For intra- and interdoublet matrix elements in

3For |n| > 1, the enhancement only holds when the phase drop
occurs away from the positions n(1 ± x̃′)/2 ∈ Z.
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FIG. 7. Numerical results for the matrix elements of the current
operator between opposite spin states at finite backscattering (R =
0.01) associated with the spectrum shown in Fig. 5. As discussed in
the main text, finite backscattering smoothes the sharp drops seen in
Fig. 6. In panel (c), one further sees that the matrix element no longer
vanishes at phases close to π . This results from the avoided crossing
between positive and negative energy states at ϕ = π in the presence
of finite backscattering.

the limit |1 ± x̃′| � |δλ|/λ̄ � 1, Eq. (38) simplifies to

|Jm↓→m′↑| =J0λ̄
∣∣ε2

m↓ − ε2
m′↑

∣∣ (48)

with J0 = √
Se
(δλ/λ̄)2η(x̃0)/16.

Finite backscattering modifies this result in the vicinity of
the anticrossings on a scale �m. If the different anticrossings
are well separated in phase on that scale, we find the spin-flip
matrix elements between doublets m and m′ = m + 2n,

|Jm↓→m′↑|
J0λ̄

=
{

Um′Vm−1|(ε−
m−1)2 − (ε−

m′ )2| m odd,

Um′−1Vm|(ε+
m )2 − (ε+

m′−1)2| m even.
(49)

Thus, the main effect of finite backscattering is to smoothen
the drop to zero over a width given by �m, i.e., the typical
scale of variation of Um and Vm. Figure 7 shows numerical
results for both intradoublet and interdoublet matrix elements
|Jm↓→m′↑| over the entire phase interval [0, 2π ].

As discussed in Sec. IV A, the interdoublet matrix elements
are enhanced by a factor ∼λ̄/|δλ| for |x̃ ± 1| � |δλ|/λ̄. The
smoothing due to finite backscattering involves the same fac-
tors Um and Vm, but starting form Eq. (45) instead of Eq. (44).

2. Spin-flip matrix elements between opposite parity doublets

In the absence of backscattering, spin-flip matrix elements
between opposite parity doublets are possible only in a narrow
phase interval around 0 and π . Including backscattering ren-
ders them finite at all phases and can be done the same way as
in the previous section. For a given transition, two anticross-
ings are relevant, one close to zero and another one close to π .
The spin-flip matrix elements of the current operator between
doublets m and m′ = m + 2n + 1 are given as

|Jm↓→m′↑|
J0λ̄

= |Um′−1Um−1[(ε+
m−1)2 − (ε+

m′−1)2]

+ Vm′−1Vm−1[(ε−
m−1)2 − (ε−

m′−1)2]| (50)
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for m odd, and

|Jm↓→m′↑|
J0λ̄

= |Um′Um[(ε−
m )2 − (ε−

m′ )2]

+ VmVm′ [(ε+
m )2 − (ε+

m′ )2]| (51)

for m even. Here the first line in Eq. (50) [in Eq. (51)] is
significant at phases φ ∼ ϕm−1 (ϕm) while the second line is
significant at phases φ ∼ ϕm′−1 (ϕm′ ) when m is odd (even).
As previously, the main effect of finite backscattering is to
smoothen the drop to zero of the different matrix elements
over a width �m around each crossing. An illustration of these
matrix elements is shown in panel (d) of Fig. 6.

C. Spin-conserving matrix elements

Finally, we can look at the spin-conserving matrix elements
of the current operator. These matrix elements do not require
spin-flip scattering. We will therefore start by calculating
them at R = S = 0. Then we will include backscattering as
in Sec. IV B.

At R = S = 0 only one component A(n),k with k =
1, . . . , 4 is nonzero, which simplifies Eq. (37) significantly.
As before, at R = 0, only transitions between doublets with
the same parity are allowed in a wide phase interval. Hence,
the matrix elements between doublet m and m′ = m + 2n are
given as

|Jm↑→m′↑| ≈ eET

∣∣∣cos
[πn

2
(1 − x̃′)

]∣∣∣
×

{
1 + sgn(φ − ϕm)|δλ|/(2λ̄), m odd,

1 − sgn(φ − ϕm−1)|δλ|/(2λ̄), m even.

(52)

For σ =↓, one has to interchange sgn(φ − ϕm) and sgn(φ −
ϕm−1). For m′ = m + 2n + 1, the same result holds, but in the
complementary phase intervals where |Jm↑→m+2n↑| = 0. As
for the spin-flip matrix elements, the spin-conserving matrix
elements sharply drop to zero at level crossings. Including
backscattering smoothes these drops as discussed above for
the spin-flip matrix elements.

However, there is a particular case when m′ = m + 1. In
that case, the two states involved in the transition cross at ϕm

in the absence of backscattering. Backscattering mixes them
and therefore enables transitions. One finds

|Jmσ→m+1σ | = 2eET |UmVm|. (53)

This leads to a peak in the amplitude of the current operator
matrix element at φ = ϕm as shown in Fig. 8(a).

D. Numerical results

Arbitrary length junctions and/or arbitrary values of the
scattering parameters may be studied numerically using
Eqs. (12) and (37). In particular, we will be interested in the
case when S and T are comparable and/or when δλ ∼ λ̄. A
sample spectrum is shown in Fig. 9(a) and the correspond-
ing current operator matrix element for spin-flip transitions
within the lowest doublet in Fig. 9(b). The phase depen-
dence is similar to the perturbative case with maxima at the
avoided crossings. For the example shown, the scale for the
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FIG. 8. Numerical results for the spin-conserving matrix ele-
ments of the current operator. Here S = 0, x̃0 = 0.3, x̃′ = 1, λ1 = 20,
and λ2 = 16. The dashed and full lines correspond to perfect trans-
mission R = 0 and finite backscattering R = 0.001, respectively.
Panel (a) shows the matrix elements between spin-up states of the
first and second doublet. The peak at φ = ϕ1 results from the mixing
between the two states involved in the transition in the presence of
finite backscattering. Panel (b) shows the matrix elements between
spin-up states of the first and third doublet.

magnitude of the current operator matrix elements is set by
J (long)

0 = √
SeET |δλ/λ̄|3/32, where eET is the relevant scale

for the critical current of the junction. The smallness of the
prefactor is due to numerical factors and does not contain a
small parameter.

In Fig. 10, we show the dependence of the magnitude of the
current operator matrix element for intradoublet transitions
within the lowest doublet m = 1 on various parameters. Panel
(a) shows that the magnitude of the current operator matrix
element is indeed maximal when S and T are comparable,
whereas it vanishes when one of them is zero. Panel (b) shows
the length dependence of the effect. As expected, intermediate
length junctions are optimal. If the junction is too short, the
effect of spin-orbit coupling is weak such that the magnitude
of the spin-flip current operator matrix elements is suppressed.
If the junction is too long, the overall energy scale for all the
current operator matrix elements set by the Thouless energy is
small and therefore suppresses the effect. Panel (c) shows the
dependence of the magnitude of the current operator matrix
element on the position of the scattering center. As mentioned
earlier, spin-flip transitions are absent when scattering only
occurs at the interfaces. Here we see that their amplitude
is maximal when the scattering happens close to the center
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FIG. 9. Numerical results in the nonperturbative regime:
(a) spectrum and (b) current operator matrix element for spin-flip
transitions within the lowest doublet. Here S = T = 0.45, R = 0.1,
λ1 = 2.3, λ2 = 1.3, x̃0 = 0.3, and x̃′ = 1. The phase dependence is
similar to the perturbative case with maxima at the avoided crossings.
The scale for the magnitude of the current operator matrix elements
is set by J (long)

0 = √
SeET |δλ/λ̄|3/32.
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FIG. 10. Dependence of the intradoublet matrix elements of the
current operator within the lowest doublet on different parameters. In
all panels, R = 0.1 and |δλ|/λ̄ = 0.556. In panel (a)–(c), the phase
drop is set at x̃′ = 1. For panel (b)–(d), we have T = S = 0.45. For
panels (a), (c), and (d), we set λ1 = 2.3. For panels (a), (b), and (d),
we set x̃0 = 0.3.

of the junction. Finally, panel (d) shows the variation of the
current operator matrix element with the position of the phase
drop. The matrix element drops to zero for a particular value
of x̃. This can already be seen on the perturbative level; see
Eqs. (42) and (43). In Appendix C, we show that the vanishing
of the current operator matrix elements for particular values of
x̃ generically happens also for other courant operator matrix
elements, both spin-preserving and spin-flip.

V. CONCLUSION

In this work, we estimated analytically and computed nu-
merically the amplitude of the matrix elements of the current
operator between two Andreev bound states forming an An-
dreev spin qubit in the odd-parity sector of a nanowire-based
Josephson junction. These matrix elements characterize the
coupling strength between the qubit and an external flux
drive. In particular, they determine a variety of routinely
measured observables, such as frequency shifts and reso-
nance linewidths in microwave spectroscopy experiments,
Rabi oscillations, and the decoherence induced by quantum
fluctuations in the electromagnetic environment of the qubit.

We showed that generic scattering potentials yield nonvan-
ishing matrix elements for all possible transitions, including
the intradoublet spin-flip transitions, in the absence of a
magnetic field. The amplitude of the matrix element for
intradoublet spin-flip transitions is controlled by the spin-
splitting of the spectrum and the presence of spin-flip
scattering in the junction. Unless the system possesses ad-
ditional symmetries, such scattering is generically present.
Our findings indicate that the strong-coupling regime can
be reached in a Josephson junction made with a nanowire
of intermediate length (on the scale of the superconducting
coherence length), provided that spin-orbit coupling (charac-
terized by the relative asymmetry of the Fermi velocities in
each of the pseudospin bands intercepting the Fermi level)
is strong. Our results provide perspectives for the direct ma-
nipulation of an Andreev spin qubit with a single-tone drive,
instead of the Raman protocol used in Ref. [16], which in-
volves two tones and an auxiliary Andreev level.

In the nanowire-based Josephson junctions that we in-
vestigated in this work, we ignored the effect of Coulomb
interaction. Thereby, the Andreev spin qubit resides above the
even ground state, and it requires a quasiparticle to “poison”
the junction in order to be activated. Recent experiments with
quantum dots subject to large Coulomb repulsion allowed sta-
bilizing the doublet ground state in the odd sector, as well as
resolving the spin splitting [14,17,35]. Studying the current-
operator matrix element for the operation of the associated
spin qubit is an interesting direction for future investigation.
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APPENDIX A: DIAGONALIZATION OF M(E )

In this Appendix, we provide the derivation of the eigen-
values and eigenvectors of M(E ) = r∗

ASh(E )rASe(E ). From
Eq. (8), we note

ρ(E ) = r(E )12, τ (E ) =
(

t (E ) s∗(E )

s(E ) −t∗(E )

)
. (A1)

Hence, M(E ) takes the form

M(E ) = eiξ (E )−iξ (−E )

(
A −B†

B D

)
(A2)

with

A = ρ†(−E )ρ(E ) + τ †(−E )τ (E )e−iφ, (A3)

D = ρ(−E )ρ†(E ) + τ (−E )τ †(E )eiφ, (A4)

B = ρ(−E )τ (E ) − τ (−E )ρ(E )eiφ. (A5)

From the unitarity of M(E ), we have D = (B†)−1A†B†. Thus,
A and D have a similar form, which can be written as

A =
(

αA + βAe−iφ −δ∗
Ae−iφ

δAe−iφ αA + β∗
Ae−iφ

)
, (A6)

D =
(

αD + βDeiφ −δ∗
Deiφ

δDeiφ αD + β∗
Deiφ

)
, (A7)

where

αA = α∗
D = rhre, (A8)

βA = thte + shse, βD = t∗
h t∗

e + shse, (A9)

δA = s∗
hte − t∗

h se, δD = s∗
ht∗

e − thse. (A10)

With the scattering coefficients given in Eq. (17), this yields

αA/D = R e±2iλ̄εx̃0 , (A11)

βA/D = T e±iδλε + S eiδλεx̃0 , (A12)

δA/D = ±2i
√

T S e
i
2 δkF d (1±x̃0 )+iϕs−iϕt sin

δλε(1 ∓ x̃0)

2
. (A13)
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The matrices that diagonalize those blocks take the form

WA/D = e−i
θA/D

2 σz e−i
γA/D

2 σy (A14)

with

θA/D = ∓π

2
+ ϕA/D, tan γA/D = ± |δA/D|

Im[βA/D]
, (A15)

where δA/D = |δA/D|eiϕA/D .

In the new basis, we will denote the four blocks as Ã, D̃,
and B̃. One finds D̃ = Ã† with

Ã = αA + Re[βA]e−iφ + i
√

Im2[βA] + |δA|2e−iφ σz. (A16)

Note that, due to the square root in Eq. (A16) which results
from the rotation of the block, there is an ambiguity in the
spin definition. In particular, in the limit T = 1, the square
root simplifies to |Im[βA]|, which changes the way we label
spin when Im[βA] < 0.

Using unitarity, one concludes that Ã = B̃ÃB̃−1. Thus, the block B̃ must commute with Ã and therefore be diagonal in the
same basis, i.e.,

B̃ =
(

B̃1 0
0 B̃2

)
. (A17)

As a consequence, the diagonalization of the blocks A and D allows decomposing M(E ) into two 2 × 2 independent blocks,
which can be readily diagonalized to yield the eigenvalues in the form e2iρχσ (φ)+iξ (E )−iξ (−E ) with σ, ρ = ±1 and

χσ (φ) = arccos

√
1 + τ cos (φ − σω) + Re[rerh]

2
, (A18)

ω = sgn(E ) arccos

(
Re[teth + sesh]

τ

)
, (A19)

τ =
√

(|te|2 + |se|2)(|th|2 + |sh|2), (A20)

which are the same as Eqs. (13)–(15). Here te/h, se/h, and re/h are the scattering coefficients of electrons/holes related by th(E ) =
t∗
e (−E ), sh(E ) = s∗

e (−E ), and rh(E ) = r∗
e (−E ).

The eigenvectors of M(E ) are given by

W =
(

WA 0
0 WD

)
⎛
⎜⎜⎜⎜⎝

cos γB1

2 e−i θB1
2 0 − sin γB1

2 e−i θB1
2 0

0 cos γB2

2 e−i θB2
2 0 − sin γB2

2 e−i θB2
2

sin γB1

2 ei θB1
2 0 cos γB1

2 ei θB1
2 0

0 sin γB2

2 ei θB2
2 0 cos γB2

2 ei θB2
2

⎞
⎟⎟⎟⎟⎠, (A21)

where

θBi = π

2
+ ϕBi, tan γBi = − |B̃i|

Im[Ãi]
(A22)

with B̃i = |B̃i|eiϕBi . Here the different columns correspond
to different values of (ρ, σ ), namely the first column corre-
sponds to the state (−,+), the second column to (−,−), the
third column to (+,+), and the fourth column to (+,−).

For the specific model with a single short-range scattering
potential used here, the above equations can be simplified. In
particular, Eqs. (13)–(15) can be reduced to

χσ (ε, φ) = arccos

√
τ cos2 φ − σω

2
+ R cos2(λ̄εx̃0), (A23)

ω = sgn(ε) arccos

[
T cos(δλε) + S cos(δλεx̃0)

τ

]
, (A24)

τ = T + S, (A25)

yielding the energy spectrum

λ̄ε + ρχσ (ε, φ) − arccos ε − qπ = 0. (A26)

The coefficients of W , on the other hand, are given as

tan γA/D = 2
√

ST sin (δλε(1 ∓ x̃0)/2)
T sin(δλε) ± S sin(δλεx̃0)

, (A27)

tan γB1/2 = ± 2
√

Rτ sin
(

φ∓ω

2 + λ̄εx̃0
)

τ sin(φ ∓ ω) − R sin(2λ̄εx̃0)
, (A28)

θA/D = δkF (1 ± x̃0)d/2 + ϕs ± ϕt , (A29)

θBi(φ) = k̄F x̃0d + φ

2
+ ϕr + π

2
(1 + (−1)i ). (A30)

The eigenvectors of M(E ) allow one to obtain the wave func-
tions of the ABS. Namely, the eigenvectors of M(E ) give the
amplitudes of incoming electron states at the interfaces with
the superconductors. To obtain the full wave function, we can
construct the outgoing and hole amplitudes with the help of
the normal and Andreev scattering matrices:

ψe
out = Se(E )ψe

in, (A31)

ψh
in = α(E )rA(φ)Se(E )ψe

in, (A32)

ψh
out = α∗(E )rA(φ)ψe

in. (A33)

Then, using continuity, the wave functions in the nanowire and
the superconductors can be computed. Note that this result is
independent of the scattering model; the only requirement is
that it respect TRS. In the basis in which the BdG-Hamiltonian
in Sec. II is given, the wave functions for the case of a single
scatterer at position x0 take the following form in different
regions:
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(i) In the normal region of the nanowire to the left of the
barrier, 0 < x < x0:

�n(x)√
Nn

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(n)1eike
1x/

√
v1

(Se(n)A(n) )2e−ike
1x/

√
v1

(Se(n)A(n) )1e−ike
2x/

√
v2

A(n)2eike
2x/

√
v2

α∗
nA(n)1eikh

1 x+iφ/2/
√

v1

αn(Se(n)A(n) )2e−ikh
1 x+iφ/2/

√
v1

αn(Se(n)A(n) )1e−ikh
2 x+iφ/2/

√
v2

α∗
nA(n)2eikh

2 x+iφ/2/
√

v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A34)

(ii) In the normal region of the nanowire to the right of the
barrier, x0 < x < d:

�n(x)√
Nn

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Se(n)A(n) )3eike
1 (x−d )/

√
v1

A(n)4e−ike
1 (x−d )/

√
v1

A(n)3e−ike
2 (x−d )/

√
v2

(Se(n)A(n) )4eike
2 (x−d )/

√
v2

αn(Se(n)A(n) )3eikh
1 (x−d )−iφ/2/

√
v1

α∗
nA(n)4e−ikh

1 (x−d )−iφ/2/
√

v1

α∗
nA(n)3e−ikh

2 (x−d )−iφ/2/
√

v2

αn(Se(n)A(n) )4eikh
2 (x−d )−iφ/2/

√
v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A35)

(iii) In the left superconductor, x < 0:

�n(x)√
Nn

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(n)1eκ1nx/
√

v1

(Se(n)A(n) )2eκ1nx/
√

v1

(Se(n)A(n) )1eκ2nx/
√

v2

A(n)2eκ2nx/
√

v2

α∗
nA(n)1eiφ/2+κ1nx/

√
v1

αn(Se(n)A(n) )2eiφ/2+κ1nx/
√

v1

αn(Se(n)A(n) )1eiφ/2+κ2nx/
√

v2

α∗
nA(n)2eiφ/2+κ2nx/

√
v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A36)

(iv) In the right superconductor, x > d:

�n(x)√
Nn

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Se(n)A(n) )3e−κ1n (x−d )/
√

v1

A(n)4e−κ1n(x−d )/
√

v1

A(n)3e−κ2n(x−d )/
√

v2

(Se(n)A(n) )4e−κ2n(x−d )/
√

v2

αn(Se(n)A(n) )3e−iφ/2−κ1n (x−d )/
√

v1

α∗
nA(n)4e−iφ/2−κ1n (x−d )/

√
v1

α∗
nA(n)3e−iφ/2−κ2n (x−d )/

√
v2

αn(Se(n)A(n) )4e−iφ/2−κ2n (x−d )/
√

v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A37)

Here we defined κ jn = (
/v j )
√

1 − ε2
n . In general, the

subscript n or (n) indicates that a quantity is evaluated for a
state with energy εn, where n = (m, σ ) is a composite index.
The coefficients A(n)k with k = 1, . . . , 4 are the components

of the eigenvector of M(E ) of state n. [Depending on the
values of (m, σ ), the corresponding columns of the matrix W
have to be used.]

Some limiting cases will be useful. At R = S = 0, the
matrix W reduces to

W0 =

⎛
⎜⎜⎜⎜⎝

e−i θA+θB1
2 0 0 0

0 −iei θA−θB1
2 0 0

0 0 e−i θD−θB1
2 0

0 0 0 iei θD+θB1
2

⎞
⎟⎟⎟⎟⎠.

(A38)

Introducing R, S � 1 perturbatively yields W ≈ W0w1 with

w1 =

⎛
⎜⎜⎜⎝

1 i
√

S ds−
√

R dr− 0
i
√

Sds− 1 0
√

R dr+
−√

R dr− 0 1 −i
√

S ds+
0 −√

R dr+ −i
√

S ds+ 1

⎞
⎟⎟⎟⎠,

(A39)

with ds± = 1
2 tan γD/A and dr± = ∓ 1

2 tan γB2/1. Using ω ≈
δλε and γA/D, γB1/2 � 1, the corresponding expressions sim-
plify to

ds± = sin
[

δλε
2 (1 ± x̃0)

]
sin(δλε)

, (A40)

dr± = sin
[

φ

2 + (
λ̄x̃0 ± δλ

2

)
ε
]

sin(φ ± δλε)−R sin(2λ̄εx̃0)
. (A41)

APPENDIX B: PARTICULAR CASE OF BARRIERS
AT THE SUPERCONDUCTOR INTERFACES

From Eq. (38), we see that for a one scattering cen-
ter model, the intradoublet element vanishes for |x̃0| = 1.
In this case, we see in Eqs. (19) and (20) that s(E ) and
t (E ) have the same energy-dependent phase. As a conse-
quence, the spectrum depends only on the combination T +
S, and the problem becomes analogous to having only one
type of transmission. This can directly be seen by diagonaliz-
ing the transmission block of the scattering matrices. For the
particular case of x̃0 = 1, Eq. (A15) yields

cos γA,D = T ± S

T + S
, (B1)

sin γA = 0, sin γD = 2
√

ST

T + S
. (B2)

Those coefficients do not depend on the energy and

W †
Dτ (±E )WA = √

T + Se± 1
2 iδλεσzσz. (B3)

As WD and WA become energy-independent, Eq. (37) yields a
vanishing result.

For a model with a barrier at each interface, the results are
similar. In that case, the scattering coefficients are given as

r(E ) = i

|K (E )| [rLe−iθR−ik̄d − rReiθL+ik̄d ], (B4)

t (E ) = i

|K (E )| [tLtRe
1
2 iδkd + sLs∗

Re− 1
2 iδkd ], (B5)

s(E ) = i

|K (E )| [tLsRe
1
2 iδkd − sLt∗

Re− 1
2 iδkd ], (B6)
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ξ (E ) = θL + θR + k̄d − ζ (E ) − π

2
, (B7)

ζ (E ) = arctan

(
− |rL||rR| sin(ϕtot + 2λ̄ε)

1 − |rL||rR| cos(ϕtot + 2λ̄ε)

)
, (B8)

|K (E )|2 = (1 − |rL||rR|)2 + 4|rL||rR| sin2

(
ϕtot + 2λ̄ε

2

)
,

(B9)

ϕtot = θL + θR + ϕrR − ϕrL + (kF1 + kF2)d. (B10)

Here θL/R are arbitrary global phases of the left/right barrier
and ϕrR/L are the phases of rR/L. Again, s(E ) and t (E ) have the
same energy dependency, and as a consequence the matrices
WA and WD are energy-independent:

cos γA/D = TL/R − SL/R

TL/R + SL/R
, (B11)

sin γA/D = 2
√

TL/RSL/R

TL/R + SL/R
, (B12)

while

θA = ϕtL + ϕsL , θD = ϕsR − ϕtR . (B13)

As before, this yields zero spin-flip matrix elements when
plugged into Eq. (37).

APPENDIX C: GLOBAL PHASE OF THE CURRENT
OPERATOR MATRIX ELEMENTS

Here we show that the global phase of the matrix elements
of the current operator obtained from Eq. (37) does not depend
on x̃′.

The matrix W containing the eigenvectors can be cast in
the form W = Dϕ (ϕ2)rA(−φ/2)W̃ , where

W̃ =

⎛
⎜⎜⎜⎜⎜⎝

cos γA

2 cos γB1

2 i sin γA

2 cos γB2

2 − cos γA

2 sin γB1

2 −i sin γA

2 sin γB2

2

sin γA

2 cos γB1

2 −i cos γA

2 cos γB2

2 − sin γA

2 sin γB1

2 i cos γA

2 sin γB2

2

cos γD

2 sin γB1

2 −i sin γD

2 sin γB2

2 cos γD

2 cos γB1

2 −i sin γD

2 cos γB2

2

sin γD

2 sin γB1

2 i cos γD

2 sin γB2

2 sin γD

2 cos γB1

2 i cos γD

2 cos γB2

2

⎞
⎟⎟⎟⎟⎟⎠, (C1)

and Dϕ (ϕ2) is a diagonal matrix containing energy-independent phases,

Dϕ (ϕ2) = exp

[
− i

2
(ϕ1σz + ϕ2τz + ϕ3σzτz )

]
(C2)

with ϕ1 = δkF d/2 + ϕs, ϕ2 = k̄F dx̃0 + ϕr , and ϕ3 = δkF dx̃0/2 + ϕt . Thus, the phase of A(n)k does not depend on the energy
such that A∗

(n)kA(n′ )k is real.
Furthermore, we may use that the matrix

Se(E ) = eiθ+ik̄(E )d

⎛
⎜⎜⎜⎜⎜⎜⎝

reik̄(E )dx̃0 0 −t∗e−i δk(E )
2 d −s∗e−i δk(E )

2 dx̃0

0 reik̄(E )dx̃0 −sei δk(E )
2 dx̃0 tei δk(E )

2 d

tei δk(E )
2 d s∗e−i δk(E )

2 dx̃0 r∗e−ik̄(E )dx̃0 0

sei δk(E )
2 dx̃0 −t∗e−i δk(E )

2 d 0 r∗e−ik̄(E )dx̃0

⎞
⎟⎟⎟⎟⎟⎟⎠

(C3)

can be written in the form Se(E ) = ei(θ+k̄F d )

Dϕ (−ϕ2)S̃e(E )D†
ϕ (ϕ2), where S̃e(−E ) = S̃∗

e (E ). This allows
us to rewrite the matrix M in the form

M = Dϕ (ϕ2)rA(−φ)S̃T
e (E )rA(φ)S̃e(E )D†

ϕ (ϕ2). (C4)

With this, we can then cast the equation α2MW = W in the
form mW̃ = m∗W̃ with the matrix

m = αrA(φ/2)S̃e(E )rA(−φ/2). (C5)

Since the columns Ã of W̃ are either purely real or
purely imaginary, this shows that mÃ is either purely real
or purely imaginary. As a consequence, the global phase
of (αS(n)A(n) )k = [ei(θ+k̄F d )rA(−φ/2)Dϕ (−ϕ2)]kk (m(n)Ã(n) )k

does not depend on energy, and (αS(n)A(n) )∗k (αS(n′ )A(n′ ) )k is
real.

With this we conclude that the phase of the current
matrix operator elements is determined by the phase of
f ±
nn′,k = eiλk (εn′−εn )(1±x̃′ )/2 + αnα

∗
n′e−iλk (εn′−εn )(1±x̃′ )/2, which is

given as

θnn′ = (arccos εn′ − arccos εn)/2. (C6)

As observed in Fig. 10, the current operator matrix ele-
ments may vanish for particular values of x̃. In Fig. 11,
we show that this is generically the case for all cur-
rent operator matrix elements, both spin-preserving and
spin-flip.
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0 π 2π
−1

0

1

x̃
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0 π 2π

J1↓→3↑

0 π 2π
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J1↓→2↑

0 π 2π

J1↑→3↑

0 π 2π

J1↑→2↑

0.5

1.0

|J m
σ
→

m
σ
(x̃

)|/
|J m

ax
|

FIG. 11. Dependence on the position of the phase drop x̃′ of several current operator matrix elements, covering all possible kinds of
transitions. Same parameters as in Fig. 10(d). We can see that both spin-preserving and spin-flip matrix elements generically vanish for
particular values of x̃.
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