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Superconducting diode effects (SDEs) occur in systems with asymmetric critical supercurrents |Ic
+| �= |Ic

−|
yielding dissipationless flow in one direction (e.g., +), while dissipative transport in the opposite direction (−).
Here we investigate the SDE in a phase-biased φ Josephson junction with a double-barrier resonant-tunneling
InAs nanowire nested between proximitized InAs/Al leads with finite momentum h̄q Cooper pairing. Within
the Bogoliubov-de Gennes (BdG) approach, we obtain the exact BCS ground state energy EG(q, φ) and Ic

+ �=
|Ic

−| from the current-phase relation IG(q, φ) ∼ ∂φEG(q, φ). The SDE arises from the accrued Andreev phase
shifts δφL,R(q, φ) leading to asymmetric BdG spectra for q �= 0. Remarkably, the diode efficiency γ = (Ic

+ −
|Ic

−|)/(Ic
+ + |Ic

−|) shows multiple Fabry-Perot resonances γ � 26% at the double-barrier Andreev bound states
as the well depth Vg is varied. Our γ also features sign reversals for increasing q and high sensitiveness to
fermion-parity transitions. The latter enables Ic

+(φ+) � Ic
−(φ−) switchings over narrow phase windows, i.e.,

φ+, φ− ∈ �φ � π , possibly relevant for future superconducting electronics.

DOI: 10.1103/PhysRevB.109.184513

I. INTRODUCTION

Nonreciprocity in superconducting materials [1–21] is
currently a subject of particular interest. It refers to the asym-
metry between the forward Ic

+ > 0 and reverse Ic
− < 0 critical

supercurrents such that Ic
+ �= |Ic

−|. This has been observed
in superconducting films [1–3], Josephson junctions [4–8],
superconductor/ferromagnet multilayers [12,13], as well as
twisted trilayer graphene [9,10]. Currents I in the range |Ic

−| <

I < Ic
+, assuming Ic

+ > |Ic
−|, flow dissipationlessly in one di-

rection (zero resistance), but dissipatively in the opposite
direction (nonzero resistance). This is the superconducting
diode effect (SDE) [14–20], conceptually similar to the p-n
junction semiconducting diode.

A nonzero SDE generally requires breaking both time-
reversal and spatial inversion symmetries [15,17]. Time-
reversal breaking can be achieved via, e.g., exchange fields
which displace the Fermi surfaces in a spin-resolved fashion,
thus making the Cooper pairs acquire a finite center-of-
mass momentum h̄q [22–28]. Inversion asymmetry allows
for a nonzero spin-orbit coupling and can result in a
Fulde-Ferrell type phase-modulated pairing potential �(r) =
�eiq·r [29–32]. The momentum h̄q can be controlled, e.g., by
an external in-plane magnetic field and the spin-orbit interac-
tion, which combined can change the Fermi surface [33–40],
by externally injecting currents [41–43] into the system and
via the intrinsic screening supercurrents through the Meissner
effect [11,44]. Bulk superconductors and Josephson junctions
alike can exhibit SDE. As we show next, superconductor-
semiconductor hybrids enable proximity superconductivity in
a semiconducting matrix, thus providing a unique setting to
exploit SDE.

Here we consider a Josephson junction formed by a
1D resonant-tunneling double-barrier InAs semiconduct-
ing nanowire placed between two adjacent proximitized

InAs/Al superconducting leads [45] with finite momentum
h̄q Cooper pairing, combining the extraordinary tunability
of semiconductors, the remarkable scalability of supercon-
ducting circuits, and the compact footprint of quantum
dots. Within the Bogoliubov-de Gennes (BdG) formalism,
we determine the exact ground-state energy EG(q, φ) and
the accumulated phase shifts δφL,R[q, E (q, φ)] Fig. 2(a),
due to multiple Andreev reflections, for our phase-biased
φ junction. We also obtain the supercurrent phase relation
IG(q, φ) = (2e/h̄)∂φEG(q, φ) versus φ, from which we ex-
tract the depairing supercurrents Ic

+ �= |Ic
−| signaling SDE,

Fig. 2(b). The asymmetry about φ = π of the phase shifts
δφL,R[q, E (q, φ)], Fig. 2(a), results in asymmetric disper-
sions for q �= 0 [inset of Fig. 2(a)] known to originate
SDE.

For our resonant-tunneling Josephson junction, we find a
sizable SDE with the diode efficiency γ = (Ic

+ − |Ic
−|)/(Ic

+ +
|Ic

−|) exhibiting sharp gate-tunable (Vg) Fabry-Perot type reso-
nances, peaking at about γ � 26%, Fig. 2(c). These arise from
the many zero-energy Andreev bound states [Fig. 2(d), red
lines lines] stemming from the ordinary quasibound states of
the double barrier [Fig. 2(d), black solid lines]. We can further
investigate SDE within the simpler single-site quantum dot
model for a Josephson junction, Fig. 1(a) (lower part). We
find that the spin-orbit (SO) interaction in the dot-lead tunnel
coupling, finite momentum h̄q, and Zeeman fields (dot and
leads) can substantially affect SDE, thus producing multi-
ple sign reversals in the diode efficiency γ , Figs. 3 and 4.
The Zeeman fields, in particular, can induce fermion-parity
(even/odd) transitions of the ground state, which can greatly
affect the current phase relation thus significantly chang-
ing the SDE, Fig. 3(b). The sharp jumps in IG(q, φ) vs φ

not only offer signatures for parity changes, but also yield
unique Ic

+(φ+) � Ic
−(φ−) switchings within a very narrow

phase range, φ+, φ− ∈ �φ � π , Fig. 3(b) (green curve). This
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FIG. 1. (a) InAs-based resonant-tunneling Josephson junction and its single-site quantum dot counterpart. (b) Multiply reflected Andreev
paths between finite-momentum h̄q superconductors and corresponding accrued phase shifts δφL,R[q, E (q, φ)]. Electrons (•) and holes (◦) can
be further coupled via the SO-induced spin rotation U (θso ).

enables high sensitivity in the SDE tuning, possibly being
a resource for superconducting electronics. Furthermore, the
dot model yields approximate expressions (via Green func-
tions) for the Andreev bound states, thus providing insight
into the crucial role of the phase shifts δφL,R[q, E (q, φ)]
(see Sec. II D).

The paper is organized as follows. In Sec. II, we present
our model and theory, including the continuum and tight-
bind models of double-barrier Josephson junction (Sec. II A),
ground-state supercurrent (Sec. II B), additional phase shifts
in the Andreev reflection of a finite-momentum superconduc-
tors (Sec. II C), as well as single-site quantum dot Josephson
junction (Sec. II D). Section III presents our results and
discussions, such as control of SDE via fermion-parity
change (Sec. III A) and tuning SDE via the spin-orbit angle
(Sec. III B). Our paper ends with conclusion and acknowledg-
ment in Sec. IV and Sec. IV. The appendixes contain detailed
information and derivations. Appendix A presents the detailed
evolution of the effective Hamiltonian from the continuum
(Appendix A 1) to the tight-binding (Appendix A 2) models
of the double-barrier Josephson junction, which is then sim-
plified into the single-site quantum dot Josephson junction
(Appendices A 3 and A 4). Appendix B and Appendix C
provide the detailed derivations of the diagonal Hamiltonian
[Eq. (7)] and the ground-state supercurrent [Eq. (10)], re-
spectively. Appendix D presents the additional phase shifts
of Andreev reflection in the finite-momentum superconduc-
tor, which leads to the microscopic origin of the asymmetric
Andreev dispersions discussed in Appendix E. Finally, the
investigation of ground state fermion parity changes is pre-
sented in Appendix F.

II. MODEL AND THEORY

A. From continuum to tight-bind models of double-barrier
Josephson junction

Here, we start with a double-barrier Josephson junction,
plotted in Fig. 1(a). The lower panel shows a possible layered
structure comprising InAs/Al proximitized superconducting
leads with InP barriers and a InAs well [6]. The corresponding
BdG Hamiltonian is

H =
∫

dxψ†(x)

[
− h̄2∂2

x
2m∗ + μ(x) −�(x)

−�∗(x) + h̄2∂2
x

2m∗ − μ(x)

]
ψ (x),

(1)

where m∗ is the effective electron mass and ψ†(x) =
[ψ†

↑(x) −ψ↓(x)] is the spinor field. The pair potential �(x)
is zero within semiconductor (green layer) and nonzero within
the finite-momentum h̄q superconductors (grey layers), i.e.,

�(x) =
⎧⎨
⎩

�e+2iqx+φL , x < −L/2
0, −LM/2 < x < +LM/2

�e+2iqx+φR , x > L/2
, (2)

where L in width of the semiconducting layer. The full
chemical potential profile μ(x), including the double-barrier
structure, is described by

μ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μS, x < −L/2
μB = μS + VB, −L/2 < x < −LW /2

μS + Vg, −LW /2 < x < +LW /2
μB = μS + VB, +LW /2 < x < +L/2

μS, x > L/2

, (3)
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FIG. 2. (a) Additional phase shifts of the Andreev reflection,
defined in Eq. (16). When q �= 0, the asymmetry of δφL,R[q, E (q, φ)]
around φ = π leads to an asymmetric dispersion [inset of (a)] and
supercurrent (b), resulting in a significant SDE [red line in (b)].
Remarkably, the SDE efficiency, denoted as γ , exhibits multiple
Fabry-Perot resonances as a function of the well depth Vg (c). Peaks
at γ � 26% correspond to zero-energy Andreev levels [red lines of
panel (d)] stemming from the (nonsuperconducting) double-barrier
quasibound states [black lines of (d)]. The resonance of γ at V 0

g �
−45.8� is well captured by the single-site quantum dot model, as
indicated by the blue dashed line in (c). Parameters: � = 0.5 meV,
m∗ = 0.03m0, μS = −19 meV, and μB = 9 meV.

where LW denotes the well width, μS the chemical potential of
superconductor, μB the chemical potential of semiconductor,
VB the height of the double barriers, and Vg the electrostatic
gate controlling the quantum well depth. For simplicity, we do
not consider Zeeman fields and SO coupling in the continuum
model; these are included in the simpler single-site quantum
dot Josephson junction in Sec. II D.

By considering the three-point (second derivative) finite
difference method with NT equally spaced discretized points
xn between the end points xi and x f , with xn = xi + nδx for
n = 0, 1, 2, . . . , NT , δx = (x f − xi )/NT being the (sufficiently
small) discretization step, we can approximate the BdG equa-
tion of our Hamiltonian (1) by the coupled set of equations

− h̄2

2m∗
ψ↑(xn + δx) − 2ψ↑(xn) + ψ↑(xn − δx)

(δxn)2
(4)

+μ(xn)ψ↑(xn) + �(xn)ψ†
↓(xn) = Eψ↑(xn),

− h̄2

2m∗
ψ

†
↓(xn + δx) − 2ψ

†
↓(xn) + ψ

†
↓(xn − δx)

(δxn)2
(5)

+μ(xn)ψ†
↓(xn) − �∗(xn)ψ↑(xn) = Eψ

†
↓(xn).

As well known, the three-point second derivative approxi-
mation for numerical discretization, e.g., Eqs. (4) and (5),
can be formally mapped onto a 1D tight-binding model with
nearest-neighbor hopping. More specifically, by making the
replacements δx → a, ψs(xn) → c jns, as well as − h̄2

2m∗(δx)2 →
t0, we can immediately write down the corresponding 1D

tight-biding model Hamiltonian

H =
∑

j=L,R,C

Nj∑
n=1

∑
s=↑,↓

(−2t0 + μ jn)c†
jnsc jns

+
∑

j=L,R,C

Nj−1∑
n=1

∑
s=↑,↓

(t0c†
jnsc jn+1s + H.c.)

+ t0
∑

s=↑,↓
(c†

LNscC1s + c†
CMscR1s + H.c.)

+
∑
j=L,R

Nj∑
n=1

(
� j

nc†
jn↑c†

jn↓ + H.c.
)
. (6)

The subscript j = C, L, R of electron operator c jns includes
the semiconducting (central) region C in addition to the (left
and right) superconducting leads L, R. The chemical potential
μ jn define the relevant offsets between the several layers in
terms of μS , VB, and Vg, as shown by Eq. (3). Here, Nj denotes
the respective number of points in the j = C, L, R layers, and
the total number of sites is given by NT = 2N + M with N =
LS/a and M = L/a, where a is the spacing of the tight-binding
mode. The first (last) site cC1s (cCMs) of the semiconductor
layer is tunnel coupled to the last (first) site cLNs (cR1s) of
the left (right) superconducting lead. The tunnel coupling t0
denotes the nearest-neighbor hopping amplitude in all regions.
For the left (right) lead, we assume a Fulde-Ferrell type prox-
imitized order parameter �

j
n = �eiφ j+2iqna, where φ j and �

are, respectively, the phase and absolute value of the proximi-
tized gap of the superconducting lead j, h̄q is the momentum
of the Cooper pairs, and a is the lattice constant. Below we
assume φR = −φL = φ/2, where φ is a global flux-tunable
phase difference. The finite-momentum Cooper pairs can be
realized by, e.g., direct current injection [41–43], screening
currents via the Meissner effect [11,44], SO interaction +
Zeeman field [45], and exchange-mediated Fulde-Ferrel type
mechanism [22]. In Appendix A 2 a, we present a detailed
explanation and estimation of the mechanism behind the
finite-momentum Cooper pairs in our proximitized InAs/Al
layer. These pairs can attain significant values of h̄qvF ∼ �,
where vF represents the Fermi velocity, for experimentally
accessible parameters. It is important to note that the momen-
tum of the Cooper pairs should be smaller than the critical
dispersing momentum (qc) determined by the closure of the
gap in the energy spectra of the continuum quasiparticles.
Numerical analysis confirms that q < qc, as evidenced by the
presence of a clear gap in the energy spectra of the continuum
quasiparticles [Fig. 3(a) and the inset of Fig. 2(a)].

B. Ground-state supercurrent

The tight-binding Hamiltonian (6) is exactly solvable via a
(real space) Bogoliubov transformation

H = 1

2

2N+M∑
l=1

∑
σ=⇑,⇓

∑
η=+,−

Elση(q, φ)γ †
lση

γlση + E, (7)

where l ∈ N enumerates the dot-lead orbital states and η =
+,− labels the particle-hole degrees of freedom. Here,
σ =⇑,⇓ denotes (pseudo) spin components (if we include
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FIG. 3. (a) Full BdG spectrum Elsη of our single-site dot Joseph-
son junction showing its asymmetry about φ = π , i.e., Elση(q, π −
φ) �= Elση(q, π + φ) for q �= 0. Here we chose εd = −64� and
adjust the dot-lead coupling t = −13� to obtain the resonance at
V 0

g of the continuum model in Fig. 2(d). Red and thin grey lines
indicate the Zeeman-split Andreev levels crossing at zero energy and
inducing even-odd-even fermion parity changes in the ground state as
0 < φ < 2π . These transitions induce discontinuities in IG(q, φ) vs
φ, see solid red circles in (b), and can strongly affect the SDE. The
diode efficiency γ undergoes multiple sign reversals as a function
of (c) q (for several hd = hsc) and (d) the Zeeman field, for a fixed q
and εd = 1.8�, 2.6�; it also exhibits cusps and plateaus. Cusps arise
when I+

c shifts significantly to the right [see empty and filled green
circles in (b)] due to a parity transition. After a cusp max[IG(q, φ)]
and min[IG(q, φ)] can yield Ic

+ and Ic
− occurring within a very narrow

range of φ, see, e.g., green curve in (b) thus enabling high sensitive-
ness of γ . Plateaus occur when the magnetic fields, though inducing
significant changes in IG(q, φ) vs φ due to parity changes [see grey
and dashed lines in (b)], do not affect the critical currents Ic

+, Ic
−.

Parameters: N = 2000, � = 0.5 meV, t0 = −100�, and θso = 0.

spin-orbit coupling in Sec. II D). The prefactor 1/2 in
Eq. (7) arises from the artificial doubling [46] of the BdG
formalism. The quasiparticle eigenenergies Elση and opera-
tors γlση are obtained via numerical diagonalization of the
BdG Hamiltonian in the (8N + 4M )-component Nambu spin
space ({cn↑, cn↓,−c†

n↓,+c†
n↑} for all n) and obey particle-

hole symmetry Elση(q, φ) = −El−σ−η(q, φ) and conjugate
relation γ

†
lση

= γl−σ−η. Hamiltonian (7) is written in the two-
quasiparticle representation {γlσ+, γlσ−}, with E =∑ jn ε jn

being φ-independent but dependent on μS .
Next we obtain the ground state of our system as defined

by γlση|G〉 = 0 for all Elση > 0, implying that all positive-
energy quasiparticle states are empty in the ground state, i.e.,

〈G|γ †
lση

γlση|G〉 = 0 for all Elση > 0. Calculating the ground
state of an entangled system is by itself challenging. Fur-
ther difficulty arises from fermion-parity changes with system
parameters. For convenience, we determine the ground state
from the effective vacuum state |V 〉+ defined by γlσ+|V 〉+ =
0 in the orthogonal basis set {γlσ+} for all l and σ , with
the vacuum energy E+(q, φ) = E +∑lσ

1
2 Elσ−(q, φ). This

choice of basis suitably guarantees the effective vacuum
state |V 〉+ has even parity so that the ground state is even
for E1⇓+(q, φ) > 0 and odd for E1⇓+(q, φ) < 0, [Fig. 3(a)].
Adding all negative-energy quasiparticles [Elσ+(q, φ) < 0] to
the vacuum state |V 〉+, we obtain by construction the ground-
state wave function

|G〉 =
⎛
⎝ ∏

Elσ+<0

γ
†
lσ+

⎞
⎠|V 〉+, (8)

and, from H |G〉 = EG|G〉, the ground-state energy EG(q, φ) =
E+(q, φ) +∑Elσ+<0 Elσ+(q, φ). We recast the above as

EG(q, φ) = E + 1

2

∑
Elση<0

Elση(q, φ), (9)

where we have used Elση(q, φ) = −El−σ−η(q, φ). As
shown in Appendix C, the ensemble-averaged supercurrent
IG(T, q, φ) ∼ ∂φ(T, q, φ), with (T, q, φ) being the grand
potential function and T the temperature [47–51]. At T = 0,
(0, q, φ) = EG(q, φ) [Eq. (9)] and IG(q, φ) = IG(0, q, φ) is

IG(q, φ) = I0

2

∑
Elση<0

∂φElση(q, φ), (10)

where I0 = 2e/h̄, e < 0 is the electron charge, h̄ = h/2π ,
and h is the Planck constant. Equation (10) has the great
advantage as it enables one to calculate IG(q, φ) including
all negative-only eigenenergies without worrying about parity
changes and/or double counting [51–53].

C. Additional phase shifts in the Andreev reflection of a
finite-momentum superconductors

Following the same way as Ref. [54], directly diagonaliz-
ing the total Hamiltonian (17) causes the following reduced
determinant equation whose solutions contain exact Andreev
levels

det {HC − E − �(E )} = 0. (11)

The spin degeneracy in Hamiltonian (6) halves the dimension
of the Hamiltonian matrix and thus H j is the 2Nj × 2Nj

Hamiltonian matrix of the layer j in the Nambu space �
†
j =∏Nj

n=1[c†
jn↑,−c jn↓]. The self-energy arises from integrating

out the superconducting leads [55]

�(q, E , φ j ) = t2
0

⎡
⎢⎢⎢⎢⎣

τz[GL(q, E , φL )]2×2τz 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 0 0 0
0 0 0 0 τz[GR(q, E , φR)]2×2τz

⎤
⎥⎥⎥⎥⎦

2M×2M

. (12)
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Here, [GL(q, E , φL )]2×2 and [GR(q, E , φR)]2×2 are the lower-
most and uppermost 2 × 2 diagonal blocks of GL = 1/(HL −
E ) and GR = 1/(HR − E ), respectively,

GL(q, E , φL ) ≡

⎡
⎢⎢⎣
� � � �
� . . .

...
...

� · · · � �
� · · · � [GL(q, E , φL )]2×2

⎤
⎥⎥⎦

2N×2N

,

(13)

GR(q, E , φR) ≡

⎡
⎢⎢⎣

[GR(q, E , φR)]2×2 � · · · �
� � · · · �
...

...
. . . �

� � � �

⎤
⎥⎥⎦

2N×2N

.

(14)

Each empty square in Eqs. (13) and (14) is a two-by-two
matrix, irrelevant to the Andreev levels. Next, we write out
[Gj (q, E , φ j )]2×2, explicitly using their Hermiticity

[Gj (q, E , φ j )]2×2 ≡
[
G1,1

j (q, E , φ j ) −F j (q, E , φ j )
−F∗

j (q, E , φ j ) G2,2
j (q, E , φ j )

]
.

(15)

Hermiticity requires that diagonal Green functions
G1,1

j (q, E , φ j ) and G2,2
j (q, E , φ j ) are real number, which

can have different values for the proximitized InAs/Al leads
(see Appendix E 2 b). We extract the moduli and phases of the
anomalous Green functions F j (q, E , φ j ) by using their polar
form

F j (q, E , φ j ) ≡ ∣∣F j (q, E )
∣∣eiφ j+iδφ j (q,E ). (16)

Notably, δφ j (q, E ) are additional phase shifts due to the
Andreev reflections at the finite-momentum superconducting
leads (see detailed explanation in Appendix D). The minus
sign in front of F j (q, E , φ j ) in Eq. (15) is added such that
δφ j (q, E ) = 0 when q = 0 [blue lines in Fig. 2(a)]. Remark-
ably, the form of the off-diagonal component of the self energy
[i.e., Eq. (16)] is quite general. Irrespective of the details of the
superconducting leads, their effect on the Andreev reflections
are captured by the additional phase shifts δφ j (q, E ) that can
be numerically calculated.

Note that the anomalous Green functions (16) are re-
sponsible for the Andreev reflections which couple electrons
with holes of opposite spins. As shown in Fig. 1(b), the
interference between left- and right-lead Andreev reflections
generates phase-tunable Andreev levels and ground-state su-
percurrent. For finite-q leads [red and blue curves in Fig. 2(a)],
holes acquire additional phase shifts after the multiply re-
flections δφ j[q, E (q, φ)], where the φ-modulation of the
additional phase shifts is introduced by the phase-tunable
Andreev levels, e.g., E1+(q, φ). Notably, these additional
phase shifts are asymmetric with respect to φ, resulting in an
asymmetric dispersion [inset of Fig. 2(a)] and a finite SDE
[Fig. 2(b)]. Figure 2(b) illustrates IG(q, φ) vs. φ [Eq. (10)]
for our resonant-tunneling Josephson junction, showing no
effect for q = 0 (blue line) and a sizable SDE for q �=
0 (red and green lines) [1,9,14,21], and reveals that more
asymmetric additional phase shifts contribute to larger SDE.

Interestingly, the diode efficiency γ = (Ic
+ − |Ic

−|)/(Ic
+ + |Ic

−|)
features [Fig. 2(c)] multiple Fabry-Perot resonances due to
the many Vg-tunable Andreev bound states [vertical dotted
lines in Figs. 2(c) and 2(d)]. The resonant peaks at γ � 26%
in Fig. 2(c) stem from the ordinary zero-energy quasibound
states of the double-barrier potential [Fig. 2(d), black lines]
morphing into Andreev bound states [Fig. 2(d), red lines] due
to the superconducting leads. The troughs in Fig. 2(c) have
γ � 3%, see green solid line in Fig. 2(b) for Vg = −51.8�.
Therefore we microscopically explain the SDE from the ad-
ditional phase shifts acquired during the Andreev reflections
of finite-momentum superconductors, which exhibits multiple
Fabry-Perot resonance.

D. Single-site quantum dot Josephson junction

It is important to know that the single-site quantum-dot
Josephson-junction model describes well the resonant be-
havior of γ ; see, e.g., the peak at V 0

g = −45.8� [see blue
dashed lines in Fig. 2(c)]. In the following analysis, we fo-
cus on this simplified single-site quantum dot model, which
offers several advantages. Firstly, it allows us to consider
the influence of additional parameters such as Zeeman mag-
netic field and spin-orbit coupling. Moreover, the simplicity
of this model enables us to perform analytical calculations,
facilitating a better understanding of the underlying physi-
cal mechanisms. Below, for simplicity, we only present the
1D tight binding model [11] for a single-site quantum dot
coupled to superconducting leads, plotted in bottom panel of
Fig. 1(a)

H =
N∑

n=1

∑
j=L,R

∑
s=↑,↓

ε jnsc
†
jnsc jns +

∑
s=↑,↓

(εd + shd )d†
s ds

+
N−1∑
n=1

∑
j=L,R

∑
s=↑,↓

(t0c†
jnsc jn+1s + H.c.)

+
N∑

n=1

∑
j=L,R

(
� j

nc†
jn↑c†

jn↓ + H.c.
)

+ t
∑
ss′

[c†
LNsUss′ (θso)ds′ + d†

s Uss′ (θso)cR1s′ + H.c.].

(17)

In the presence of the magnetic field, the electron energy in
lead j is given by ε jns = −2t0 + μ j + shsc, with hsc being the
Zeeman energy. The operator ds annihilates an electron state
in the dot having spin component s and energy εd + shd , with
εd and hd being the dot and Zeeman energies, respectively.
The dot energy εd is assumed to be one of the gate-tunable
quasibound states εi

w(Vg), i = 1, 2, . . . , of the double-barrier
potential well. In Figs. 3 and 4, for instance, we take εd =
εw(−45.8) = 2.6�, corresponding to the resonance at V 0

g =
−45.8� in Fig. 2(d). The spin rotation matrix U (θso) =
eiθsosy/2 accounts for the spin-orbit induced spin rotation θso

in the tunneling between the dot and the last (first) site cLNs

(cR1s) of the left (right) lead with coupling strength t [56–60].
Noting that t is related to the double-barrier potential, we treat
t as a fitting parameter to reproduce one of the resonances of
the double-barrier Josephson junction.
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FIG. 4. Supercurrent IG(q, φ) vs φ for various (a) angles θso

describing the SO-induced spin rotation in the dot-lead tunneling
process and (b) tunnel-coupling strengths t . We use h̄qvF = 0.1� in
all panels. Varying θso affects the fermionic parity transitions mani-
fest in IG(q, φ) vs φ such: that Ic

+ < Ic
− for 0 < θso < 0.29π (γ < 0),

Ic
+ = Ic

− at θso � 0.29π (γ � 0), and Ic
+ > Ic

− for 0.29π < θso <

0.56π (γ > 0). This is more clearly seen in (c) that shows γ being
periodically modulated by θso for a variety of Zeeman parameters hsc

and hd ; the blue curve in (c) corresponds to the parameters in panel
(a). Note also its four γ -sign reversals [see pentagon symbols in (c)].
Other curves in (c) also shows sign reversals and, additionally, cusps.
For hsc = 0 [cyan curve in (c)], the spin basis of superconducting
leads can be rotated so as to remove the effect of the spin-orbit
coupling, thus leading to a diode efficiency independent of θso. The
diode efficiency is also strongly modulated by tuning the tunneling
strength t as shown in (d), which shows resonant behavior around
t = −13�. The effective dot energy induced by the tunneling cou-
pling with superconducting leads cancels with εd = 2.6�. Similarly
to (c) and (a), the blue curve in (d) corresponds to the parameters in
(b).

The natural starting point for studying single-site quan-
tum dot Josephson junction is a superconducting quantum
dot described by an effective dot Hamiltonian where the
leads are integrated out to generate an order parameter on
the dot [61–66]. Again, we obtain a reduced determinant
equation for exact Andreev levels (see detailed derivations in
Appendix D 1)

det {εDτz + hDsz − E − �(E )} = 0, (18)

with

�(E ) = t2U(θso)[GL(q, E , φL )]4×4U
+(θso) (19)

+ t2U +(θso)[GR(q, E , φR)]4×4U (θso),

where U (θso) = diag[U (θso); −U (θso)] is the spin rotation
of the spin-orbit-coupled tunneling in Nambu space. In
the absence of the spin degeneracy, [GL(q, E , φL )]4×4 and
[GR(q, E , φR)]4×4 are given by the last and first four-by-
four matrix of GL = 1/(HL − E ) and GR = 1/(HR − E ),

respectively, which are tunnel coupled to the quantum dot

[Gj (q, E , φ j )]4×4 ≡

⎡
⎢⎢⎢⎣

G1,1
j↑ 0 −F j↑ 0
0 G1,1

j↓ 0 −F j↓
−F∗

j↑ 0 G2,2
j↑ 0

0 −F∗
j↓ 0 G2,2

j↓

⎤
⎥⎥⎥⎦.

(20)

Again, the anomalous Green function is expressed by the po-
lar form, i.e., F js(q, E , φ j ) ≡ |F js(q, E )|eiφ j+iδφ j (q,E ). In the
absence of spin-orbit coupling (θso), the interference between
the left-lead and right-lead Andreev reflections can be cap-
tured by∑

j

F js(q, E , φ j ) = |Fs(q, E )| cos

[
φ + δφ(q, E )

2

]
eiφeff ,

(21)

with φeff = [δφR(q, E ) + δφL(q, E )]/2, where δφ(q, E ) =
δφR(q, E ) − δφL(q, E ) is the additional phase-shift differ-
ence from the Andreev reflections in the left and right
finite-momentum superconductors. Hereafter, we assume the
identical left and right superconducting leads except for the
phase of order parameter.

In the absence of Zeeman fields, we have also de-
rived the approximate implicit solution for the Andreev
levels of this single-site quantum dot model E1σ+(q, φ) �√

(εd − εS
d )2 + 4�2 cos2[φ+δφ[q,E1σ+(q,φ)]

2 ], where the addi-
tional dot energy εS

d arises from the renormalization of the
lead-dot tunneling coupling (Appendix E 2 b). This clearly
shows that the Andreev dispersions are asymmetric about
φ = π [Fig. 3(a)], due to the asymmetry in δφ[q, E1σ+(q, φ)]
[Fig. 2(a)], thus leading to the SDE; here �/h̄ denotes
the total dot-lead tunnel rate. Note that E1σ+(q, φ) above
reduces to the known results for q = 0. In the presence
of Zeeman fields, Fig. 3(a) shows the full BdG spectrum
Elση(q, φ) vs. φ with finite-q leads and no spin-orbit cou-
pling in the dot-lead coupling (θso = 0). The Zeeman fields
in the dot hd and in the leads hsc can cause fermion-
parity changes of the ground state due to Zeeman-split
negative-energy levels Elσ+(q, φ). We find even-odd-even
parity transitions at φ = φ± as the subgap levels E1⇑−(q, φ),
E1⇓+(q, φ) cross each at zero energy [see filled red circles in
Fig. 3(a)]. In Appendix F 1, we show that φ± = −δφ(q, hsc) ±
2 arccos[ [hd +2t2hscK(q,hsc )]2−[εd −2(μS−2t0 )t2D(q,hscμ̃S )]2

4t4R2(q,hsc ) ]1/2, with the
functions K(q, hsc), D(q, hsc), R(q, hsc) defined following
Eq. (F6). Parity changes can affect IG(q, φ) and the SDE as
we discuss in Sec. III A.

III. RESULTS AND DISCUSSIONS

A. Controlling SDE via fermion-parity change

The discontinuities in IG(q, φ) versus φ, see IG(q, φ+)
and IG(q, φ−) [red filled circles in Fig. 3(b)], correspond
to Andreev levels crossing zero [Fig. 3(a)] and thus signal
fermion parity changes. For q �= 0, these transitions can sig-
nificantly alter the forward and reverse critical supercurrents
Ic
+, Ic

−, affecting in turn the SDE [Fig. 3(b)]. For h̄qvF � 1�

[Fig. 3(b)], we have a finite diode efficiency γ � 14.2% (gray
line). Interestingly, the SDE can be suppressed (red line,
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γ � 0) or enhanced–and even sign reversed (green line, γ �
−30%)–by Zeeman tuning the fermion parity. Note that parity
transitions do not affect Ic

−, Ic
+ when they take place away from

the extrema of the current-phase relation IG(q, φ); cf dotted
grey line and long-short dashed black line in Fig. 3(b): both
have γ � 14.2%.

Figures 3(c) and 3(d) show the diode efficiency γ as a func-
tion of q and hd = hsc, respectively. For hd = hsc = 0 [red line
of Fig. 3(c)], the maximum efficiency γ � 30% is attained
at h̄qvF � 1.5�, which describes a large asymmetry between
forward and reverse critical supercurrents Ic

+/Ic
− � 186%. For

nonzero fields, γ shows sign reversals and cusps as q increases
[Fig. 3(c), see dotted and dashed lines]. Interestingly, for a
larger field hd = hsc = 0.4�, γ becomes fully negative with
a cusp (γ � −30%) at h̄qvF � �. Figure 3(d) shows that γ

is initially independent of hd , hsc because the fermion parity
transition does not affect Ic

+ and Ic
− [see long-short dashed

black curve in Fig. 3(b)]. It then undergoes two sign reversals
and exhibits a cusp. The cusp at hsc = hd ∼ 0.4� is due to
the Ic

+ shifting closer to Ic
− as shown in Fig. 3(b) (see arrow

connecting the empty and filled green circles). Interestingly,
due to this shift, Ic

+ and Ic
− occur at essentially the same critical

phases, i.e., φ+ � φ−, as shown by the green curve, Fig. 3(b).
This should enable phase-tunable SDE devices with high sen-
sitivity over a narrow phase range. It also allows for short
switching times between forward and reverse critical currents.
The diode efficiency is linear for small q [Fig. 3(c)] and its
slope can change sign with field. Distinct fields (hd �= hsc) do
not qualitatively change the above results.

B. Tuning SDE via the spin-orbit angle

In the presence of spin-orbit interaction in the tunnel-
ing between the dot and the leads, spin rotation mixes the
spin-dependent Andreev-reflection paths and hence can affect
IG(q, φ). This couples electrons and holes with opposite and
same spins, see gradient arrows in Fig. 1(b). The spin-rotation
unitary matrix U (θso) accounts for the SO induced rotation
in the dot-lead tunneling. Figures 4(a) and 4(b) show the
supercurrent IG(q, φ) as a function of φ for different θso and
tunnel coupling amplitude t , respectively. For h̄qvF = 1.0�

and a vanishing dot Zeeman field hd = 0 and nonzero hsc,
Fig. 4(a), we obtain a sizable SDE with diode efficiency
γ � −15% for θso = 0 (black dashed line). As the spin-orbit
angle θso increases, γ is first suppressed θso < 0.29π (grey
dashed line, γ � 0) and then enhanced for θso < 0.57π (green
line, γ � 24.4%). Note that varying θso affects IG(q, φ) vs. φ

as it significantly alters the fermion parity transition and in
turn the forward and reverse critical supercurrents. A similar
effect happens when we vary t , possibly via an electrostatic
gate, as shown in Fig. 4(b).

The above features are more systematically seen in
Figs. 4(c) and 4(d) showing the diode efficiency γ as a
functions of θso and t , respectively. Interestingly, for hsc = 0,
we can rotate the spin basis of the superconducting leads to
remove the effect of spin-orbit coupling in the dot-lead tunnel
couplings so that the diode efficiency γ becomes independent
of θso. For finite hsc the spin-orbit significantly modulates
the SDE, see the blue curve in Fig. 4(c) with hsc = 0.4 and
hd = 0. For this blue curve we see four γ sign reversals with

increasing θso, while for a higher dot Zeeman field [red line
in Fig. 4(c)], the diode efficiency is always positive but does
show a highly nonlinear behavior. Similarly, Fig. 4(d) shows
γ sign reversals and cusps as t is varied [cf. Fig. 4(b)].

IV. CONCLUSION

We investigated the SDE in InAs-based resonant-tunneling
Josephson junctions with proximitized InAs/Al leads. We
find sizable SDE with diode efficiencies γ showing tun-
able Fabry-Perot resonances, peaking at ∼26%. We identify
the asymmetry of the phase shifts δφL,R, due to the multiple
Andreev reflections, as the mechanism inducing asymmet-
ric Andreev dispersions and unequal depairing currents Ic

+ �=
|Ic

−|. Within a simpler single-site dot model for a Joseph junc-
tion, which captures resonant tunneling, we have additionally
found that our SDE is highly tunable with γ exhibiting mul-
tiple sign reversals as a function of the SO coupling in the
dot-lead tunneling process, Zeeman fields (dot and leads),
and finite momentum h̄q. Fermion parity transitions can also
significantly change SDE. The tunability afforded by our pro-
posed Fabry-Perot superconducting diode should allow the
design of new multifunctional devices for future supercon-
ducting electronics.
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APPENDIX A: EFFECTIVE HAMILTONIANS

In this section, we discuss the Hamiltonians used to obtain
the results in the main text. We first present the continuum
model consisting of a semiconducting double-barrier poten-
tial sandwiched between two proximitized superconducting
leads within the BdG formalism. We then discuss the equiv-
alent lattice tight-binding model describing such a structure
in the limit of vanishing lattice parameter a taken to be the
discretization step δx (three-point finite differences) of the
continuum model. Finally we describe the tight binding model
for a Josephson junction with just one resonant level, i.e., a
single-site dot coupled to two superconductors. This simpler
model captures the essential feature of the continuum descrip-
tion of the double-barrier Josephson junction, i.e., resonant
tunneling. It allows the inclusion of additional features in
the model (e.g., Zeeman fields in the dot and leads and SO
interaction) to more easily investigate the SDE in terms of the
corresponding parameters.

1. Continuum BdG model for the resonant-tunneling
Josephson junction

Figure 5(a) shows the hybrid proximitized-
superconductor/semiconductor resonant-tunneling Josephson
junction investigated here. The corresponding BdG
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FIG. 5. (a) Sketch of a generic 1D superconductor-semiconductor-superconductor Josephson junction. The semiconductor layer contains
a double-barrier potential with a gate-tunable Vg well depth hosting many quasibound states. In absence of superconductivity (i.e., normal
semiconducting leads), this system represents the usual resonant-tunneling double-barrier semiconducting diode. (b) Schematic of a 1D tight-
binding model for the hybrid superconductor-semiconductor resonant-tunneling Josephson junction in (a). In the limit a → 0, this model
reproduces the continuum limit of a discretized (finite difference) 1D model. (c) 1D tight binding model for a single-site quantum dot Josephson
junction.

Hamiltonian is

H =
∫

dxψ†(x)

[
− h̄2∂2

x
2m∗ + μ(x) −�(x)

−�∗(x) + h̄2∂2
x

2m∗ − μ(x)

]
ψ (x),

(A1)

wher m∗ is the electron mass and the spinor field

ψ (x) =
[

ψ↑(x)
−ψ

†
↓(x)

]
. (A2)

The pair potential �(x) is zero within semiconductor (green
layer) and nonzero within the finite-momentum h̄q supercon-
ductors (grey layers), i.e.,

�(x) =
⎧⎨
⎩

�e+2iqx+φL , x < −L/2
0, −LM/2 < x < +LM/2

�e+2iqx+φR , x > L/2
, (A3)

where L in width of the semiconducting layer, [Fig. 5(a)].
The full chemical potential profile μ(x), including the double-
barrier structure, is described by

μ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μS, x < −L/2
μB = μS + VB, −L/2 < x < −LW /2

μS + Vg, −LW /2 < x < +LW /2
μB = μS + VB, +LW /2 < x < +L/2

μS, x > L/2

, (A4)

where LW denotes the well width, μS the chemical potential of
superconductor, μB the chemical potential of semiconductor,
VB the height of the double barriers, and Vg the electrostatic
gate controlling the quantum well depth. The origin x = 0 is
defined at the center of the double barrier potential, Fig. 5(a).
For simplicity, we do not consider Zeeman fields and SO
coupling in the continuum model; these are included in the
simpler single-site model described in the main text. Here, we
consider the system size of LS = 3.75 μm and L = 450 nm,
and hence the total number of sites is given by NT = 2N + M,
where N = LS/a and M = L/a, where a is the spacing of the
tight-binding mode (Fig. 5).

2. Discretized continuum model as a 1D nearest-neighbor
tight-binding model

By considering the three-point (second derivative) finite
difference method with NT equally spaced discretized points
xn between the end points xi and x f , with xn = xi + nδx for
n = 0, 1, 2, . . . , NT , δx = (x f − xi )/NT being the (sufficiently
small) discretization step, we can approximate the BdG equa-
tion of our Hamiltonian (A1) by the coupled set of equations

− h̄2

2m∗
ψs(xn + δx) − 2ψs(xn) + ψs(xn − δx)

(δxn)2

+ μ(xn)ψs(xn) + s�(xn)ψ†
s̄ (xn) = Eψs(xn). (A5)

The pair potential �(xn) couples the spin-dependent compo-
nents of the field spinors ψs(xn) and ψs̄(xn). A more familiar
form of Eq. (A5) is

− h̄2

2m∗
ψn+1

s − 2ψn
s + ψn−1

s

(δx)2
+ μnψn

s + s�n
(
ψn

s̄

)† = Eψn
s ,

(A6)

where we have used the discretized versions of the relevant
quantities: ψ (xn) → ψn

s , μs(xn) → μn
S and �(xn) → �n. As

well known, the three-point second derivative approximation
for numerical discretization, e.g., Eq. (A6), can be formally
mapped onto a 1D tight-binding model with nearest-neighbor
hopping, similar to the one introduced in the main text for the
single-site dot. More specifically, by making the replacements

ψn
s → c jns, (A7)

δx → a, (A8)

− h̄2

2m∗(δx)2
→ t0, (A9)
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we can immediately write down the 1D tight-biding model
corresponding to Fig. 5(b)

H =
∑

j=L,R,C

Nj∑
n=1

∑
s=↑,↓

(−2t0 + μ j )c
†
jnsc jns

+
∑

j=L,R,C

Nj−1∑
n=1

∑
s=↑,↓

(t0c†
jnsc jn+1s + H.c.)

+ t0
∑

s=↑,↓
(c†

LNscC1s + c†
CMscR1s + H.c.)

+
∑
j=L,R

Nj∑
n=1

(
� j

nc†
jn↑c†

jn↓ + H.c.
)
. (A10)

Note that the subscript j = C, L, R of fermionic electron op-
erator c jns includes the semiconducting (Central) region C in
addition to the (Left and Right) superconducting leads L, R.
The field operator c jns annihilates a spin-s electron at position
xn in region j. Here Nj denotes the respective number of
points in the j = C, L, R layers, i.e., NC = M and NR,L = N .
For definiteness, we index the superconducting leads with
(similar) indices n = 1..N and the central semiconducting
region with index m = 1, 2, . . . , M. The first (last) site cC1s

(cCMs) of the semiconductor layer is tunnel coupled to the
last (first) site cLNs (cR1s) of the left (right) superconducting
lead. The tunnel coupling t0 denotes the nearest-neighbor
hopping amplitude in all regions. For the left (right) super-
conducting lead, we consider the Fulde-Ferrell type order
parameter

� j
n = �eiφ j+2iqna, (A11)

where h̄q is the Cooper-pair momentum of the superconduct-
ing lead j with global superconducting phase φ j , and a is the
lattice constant.

a. Tight-binding dispersions in the normal leads
and some estimates

For clarity and definiteness of the parameters used in the
main text (e.g., Fermi wave vector and energy), next we show
the energy bands for normal leads. In this case, the tight bind-
ing bands (left and right leads), assuming periodic boundary
conditions with wave vector k, are give by

ε(k) = −2t0 + μS + 2t0 cos(ka), (A12)

where we have straightforwardly Fourier transformed the first
two terms of Eq. (A10). The above expression shows that the
bottom of the band (we use t0 < 0 in the main text) is ε(0) =
μs, while the Brillouin zone edge is ε(π/a) = −4t0 + μs.
In this case, a half-filled band corresponds to a Fermi wave
vector kF = π/2a. In our simulations, we are always away
from half filling. Because we are interested in InAs-based
semiconducting systems, we choose a kF closer to the bottom
of the band, e.g., kF = π/5a in Fig. 2. In this case, we can
approximate the above dispersion by expanding it to second

order in k

ε(k) � −2t0 + μS + 2t0

(
1 − (ka)2

2

)

= μS − t0a2k2 = μS + h̄2k2

2m∗ . (A13)

We can then define an effective mass

m∗ = − h̄2

2t0a2
. (A14)

Assuming m∗ � 0.03m0 for InAs-based systems [45], we find
t0 � −50 meV (this is the value we use in Fig. 2). By using a
typical electron density ne = 8.14 × 1011 cm−2 in InAs-based
wells [45], we can estimate the magnitude of Fermi wave
vector for a 2D electron gas, kF = √

2πne = 0.226 nm−1. If
we use, instead, kF = πne/2 for a 1D electron gas and con-
sider n1D

e ∼ 106 cm−1 [67], we obtain k1D
F � 0.157 nm−1 ⇒

40 nm. In our simulations, we take kF = π/5a, with lattice
parameter a = 5 nm so that kF = 0.125 nm−1 (20% of the
Brillouin zone) for which the quadratic dispersion is valid.
This number is consistent with the above estimates for kF

based on the electron density. We note that the a = 5 nm used
here corresponds to a small enough step δx = a so that the
numerical solution is converged; in the next subsection we
discuss convergence in more detail.

Coherence length ξ . The proximitized InAs/Al ξ is given
by superconductor is

ξ = h̄vF

π�
= h̄2kF

πm∗�
(A15)

Since h̄2/2m0 = 1Rya0 (eV Å), with 1Ry = 13.606 eV and
a0 = 0.529Å, we can write

ξ = 2 × 13.606

π × 0.03 × 0.22 × 10−c
× a0(a0kF ) = 831nm. (A16)

Note that kF ξ = 0.226nm−1 × 831 nm = 187

λF � ξ, i.e., 27 nm << 831 nm. (A17)

To estimate the chemical potential μS of the superconduc-
tor, we define the Fermi energy as the zero of energy, i.e.,

ε(kF ) = εF = 0 = μS + h̄2k2
F

2m∗ ⇒ μS = − h̄2k2
F

2m∗ < 0.

(A18)
Using kF = 0.125 nm−1, which is consistent with the usual
electrons densities in InAs-basel well and wires [67], we find
μS = −20.1 meV from Eq. (A18), which is similar to μS =
−19 meV the numbers we used to generate Fig. 2 with energy
dispersion (A12).

Estimate of the parameter q. As mentioned in the main text,
q parametrizes the finite momentum h̄q of the Cooper pairs
that, in principle, can generate (an anomalous) supercurrent
IG(q, φ) at φ = 0. Cooper pairs with a finite momentum can
arise from, e.g., (i) the interplay of (Rashba) spin-orbit interac-
tion and Zeeman field in InAs-based proximitized 2D electron
gases [39,45], (ii) screening currents (Meissner effect) due
to a weak external magnetic field [11,44], (iii) orbital effects
leading to the acquisition of an inhomogeneous phase [68], (v)
exchange interaction [22], (iv) injected current only [41–43].
In our proximitized InAs/Al nanowire system, Cooper pairs
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FIG. 6. [(a)–(c)] Convergent test for IG(q, φ) vs φ for three values of the lattice parameter a (“step size” δx). The current phase relation is
obtained by solving the continuum BdG eigenvalue problem via numerical discretization [(A6)] (equivalent to diagonalizing the corresponding
tight-binding Hamiltonian (17)). Convergence is clearly attained at sufficiently small spacing a = 1 nm (c) for both IG(q, φ) and the
corresponding diode efficiency γ . For the system of LS = 3.75 μm and L = 450 nm, the total number of sites NT = 2N + M of (a), (b),
and (c) are 2520, 3360, and 4200, respectively.

originating from the Al layer can leak into the InAs region, in-
ducing superconductivity in InAs. When an external magnetic
field is applied perpendicular to the InAs/Al nanowire, the
Meissner effect leads to the formation of unidirectional edge
screening currents, similar to the edge current of quantum Hall
effect. These screening currents result in the presence of finite-
momentum Cooper pairs that also leak into the InAs nanowire.
Consequently, we observe the existence of finite-momentum
Cooper pairs in the proximitized InAs. The momentum of
these Cooper pairs arising from this mechanism can be es-
timated using the expression h̄q � eByλL [11]. For a sizable
London penetration depth λL = 140 nm [69], a magnetic
field of approximately By � 20 mT is required to gener-
ate sizable momentum h̄qvF � 2.7� ∼ � [44]. Importantly,
this momentum is much smaller than the Fermi momentum
h̄kF , i.e., q/kF � 0.03. Here, we have utilized experimen-
tally available parameters, including the order parameter � =
0.5 meV, Fermi momentum kF = π/5a � 0.125 nm−1, Fermi
velocity vF = h̄kF /m∗ � 5 × 105 m/s, and effective mass
m∗ � 0.03m0 (consistent with the parameters employed in all
figures).

b. Numerical convergence of the continuum model

Recall that in the continuum model a = δx is the discretiza-
tion step to be chosen sufficiently small so that the eigenvalue
solution is convergent and, in turn, so are all other calculated
(physical) quantities. Figures 6(a)–6(c) illustrate the evolu-
tion of this convergence (different a’s) for the ground-state
supercurrent [Eq. (6) of main text] versus the phase difference
φ = φR − φL. We obtain a convergent result for sufficiently
small spacing a = 1 nm [Fig. 6(c)].

However, the convergent result numerically calculated
from the tight-binding model (A10) requires huge system
sites (see Fig. 6) and hence costs long time for numerical
calculations. Figure 7 plots the bare quasibound states, diode
efficiency, and current-phase relation for smaller spacing. We
note that the maximum diode efficiency is shifted to the
right-hand side due to the renormalization of effective well
bound-state energy from the lead-dot tunneling coupling, as
shown by the black arrows in Figs. 7(b) and 7(e). This renor-
malization depends on μ̃S = μS − 2t0 [Eq. (E23)] and hence
varies with a via t0 [Eq. (A7)] when a is not small enough.
This shift is well-explained in Appendix E 1. The current
phase relations at the maximum diode efficiency are plotted

in panels (c) and (f). Though they are not perfect convergent
results, all of them qualitatively show same behaviours, the
shifted resonant tunneling and current-phase relation. There-
fore, in the main text, we use a larger spacing a = 5 nm, which
can capture the main physics in our model.

3. Gate-tunable Andreev levels

Here we explore how the gate voltage Vg controlling
the well depth tunes the Andreev levels of our hybrid
semiconductor-superconductor Josephson junction. Figure 8
shows the Vg dependence of (a) the ordinary quasibound states
of the double-barrier potential well in the absence of super-
conductivity and (b) the corresponding Andreev bound states
of our Josephson junction for q = 0 and φ = π . Figure 8(c)
(repeated on the right panel for convenience) is identical to
Fig. 8(a), while Fig. 8(d) is similar to Fig. 8(b) but for fi-
nite momentum h̄qvF = 1.5� and φ = 1.34π . For q = 0 the
Andreev levels touch each other as the superconducting gap
closes at φ = π and oscillate as a function of Vg. Interestingly,
gap closing is now periodic in Vg and happens whenever one
of the Vg-tunable quasibound states of the well crosses zero
[vertical red dashed lines in (a) and (b)]. For h̄qvF = 1.5� this
gap closing takes place at φ = 1.34π because the Andreev
spectrum is asymmetric for q �= 0. Similarly to the q = 0
case, Andreev levels are still highly Vg tunable for q �= 0 and
successively cross the zero-energy baseline as the well depth
is varied [vertical dashed lines (c) and (d)]. Unlike the q = 0
case, the q �= 0 Andreev levels E1s±(Vg) feature flat regions as
a function of Vg due the avoided crossing between Vg tunable
quasibound state of the well and the gap edge of the finite-
momentum superconducting lead; cf. solid red lines in (d)
and (b).

4. From a multilevel double-barrier quantum well to a
single-site quantum dot

As mentioned in the main text and at the beginning of
this section, we would also consider a simpler 1D tight bind-
ing model describing a single-site quantum dot Josephson
junction as a means to further investigate SDE considering
additional parameters. This is illustrated in Fig. 5(c). The
single-site dot model retains just one of the resonances of the
continuum model, which is selected by choosing εd (Vg) to co-
incide with one of the double-barrier well quasibound levels.
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FIG. 7. [(a) and (b)] Convergent test for two values of the lattice parameter a (“step size” δx). (a) Dependence on Vg of the nonsupercon-
ducting well quasibound states for a = 5 nm. (d) corresponds to (a) but for a = 3.75 nm. [(b) and (e)] Diode efficiency γ as a function of
gate voltage Vg. The maximum diode efficiency is shifted to right due to the renormalization of effective bound-state energy from the lead-dot
tunneling coupling, as shown by the black arrows. The current phase relations at the maximum diode efficiency are plotted in (c) and (f). (a),
(b) and (c) here for the same parameters as Fig. 1 of the main text.

Below, for completeness, we reproduce the 1D tight biding
model for the single-site dot coupled to superconducting leads
shown in Eq. (1) of the main text,

H =
N∑

n=1

∑
j=L,R

∑
s=↑,↓

ε jnsc
†
jnsc jns +

∑
s=↑,↓

(εd + shd )d†
s ds

FIG. 8. Dependence on Vg of the nonsuperconducting well qua-
sibound states and corresponding Andreev bound states E1s± for the
double-barrier resonant-tunneling Josephson junction in Fig. 5(a),
with h̄qvF = 0 and φ = π [(a) and (b)] and h̄qvF = 1.5� and φ =
1.34π [(c) and (d)]. Note that the resonant Andreev bound states
(b) and (d) stem from the ordinary quasibound states of the well
(a) and (c) (see vertical dotted lines). As the well depth Vg is in-
creased, the confined states in the well [(a) and (c)] successively
cross the zero-energy baseline and so do the corresponding Andreev
bound states [(b) and (d)]. This induces periodic oscillations in the
Andreev levels for both h̄qvF = 0 and h̄qvF = 1.5� cases. Note
that for q = 0 the Andreev levels cross at zero energy for φ = π ,
while for h̄qvF = 1.5� this cross at zero energy occur for φ = 1.34π

because the spectrum is asymmetric for q �= 0. The parameters here
are exactly the same parameters as in Fig. 1(f).

+
N−1∑
n=1

∑
j=L,R

∑
s=↑,↓

(t0c†
jnsc jn+1s + H.c.)

+
N∑

n=1

∑
j=L,R

(
� j

nc†
jn↑c†

jn↓ + H.c.
)

+ t
∑
ss′

[c†
LNsUss′ (θso)ds′ + d†

s Uss′ (θso)cR1s′ + H.c.].

(A19)

Physically, the tunnel coupling between the quantum dot and
superconducting leads t is related to the double-barrier po-
tential [Eq. (A4)] of the continuum model. Here we treat t
as a fitting parameter to reproduce one of the resonances of
the continuum model. Figure 9 shows the resonance peak
in the diode efficiency γ obtained via the continuum model
(red solid line) and the single-site quantum dot model (blue
dotted line). The parameters used in both simulations are
listed in Tables I and II. The spin rotation matrix U (θso) =
eiθsosy/2 is responsible for accounting for the spin rotation
induced by spin-orbit coupling (θso) during the tunneling pro-
cess between the quantum dot and the last (first) site cLNs

(cR1s) of the left (right) lead. Spin-orbit coupling exists in
both the semiconducting quantum dot and the proximitized
InAs/Al leads, creating an effective magnetic field that leads
to a momentum-dependent spin rotation of itinerant elec-
trons. In our work, the purpose of the single-site quantum
dot Josephson junction is to obtain approximate expressions
for the Andreev levels using Green functions. This approach
allows us to gain insight into the important role played by
the phase shifts δφL,R[q, E (q, φ)] (refer to Sec. II C). To
achieve this objective, we incorporate the effect of spin-
orbit coupling on the Andreev levels in a simple manner,
treating it as a spin rotation during the tunneling process
between the quantum dot and the superconducting leads. It
is worth noting that the Andreev levels are derived from the
reduced determinant equation [Eqs. (18) and (D4)], where the
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FIG. 9. Gate-tunable diode efficiency γ for the continuum and
single-site dot models. We consider the resonance at V 0

g = −45.8�

of Fig. 1(f). The red and blue curves correspond to the γ resonant
peaks for the double-barrier and single-site dot models, respectively.
The system parameters used to obtain these curves are given in Ta-
bles I and II. Here, εS

d = 2.7� is the correction of the dot energy from
the lead-dot tunneling coupling, which is discussed in Fig. 12(c).

degrees of freedom associated with the superconducting leads
are integrated out to generate a self-energy term that cap-
tures the overall influence of the superconducting leads on
the Andreev levels. Interestingly, the form of the self-energy
[Eq. (19)] is quite general and does not depend on the spe-
cific details of the superconducting leads. As a result, this
spin rotation approach effectively encapsulates the effects
of spin-orbit coupling from both the semiconducting quan-
tum dot and the proximitized InAs/Al leads on the Andreev
levels.

APPENDIX B: DERIVATION OF THE HAMILTONIAN
[EQ. (7)] IN THE MAIN TEXT

In this section, we write out the Bogoliubov-de-Gennes
(BdG) Hamiltonian, corresponding to H in Eq. (17), in
Nambu-spin space and detail the steps to formally derive
Eq. (2) in the main text.

1. Generalized Nambu field operator and the BdG Hamiltonian

Let us rewrite the total Hamiltonian [Eq. (1) in
main text] in the Nambu space of the hybrid quantum-
dot/superconducting-lead system described by the field op-
erator

� =
⎡
⎣�d

�L

�R

⎤
⎦ ≡ �d ⊕ �L ⊕ �R, (B1)

where �d and � j , j = L, R denote the field operators for dot
and superconducting leads, respectively. More explicitly, we

have

� =

⎡
⎢⎢⎢⎣

d↑
d↓

−d†
↓

d†
↑

⎤
⎥⎥⎥⎦⊕

⎛
⎜⎜⎜⎝
⊕

n

⎡
⎢⎢⎢⎣

cLn↑
cLn↓

−c†
Ln↓

c†
Ln↑

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠⊕

⎛
⎜⎜⎜⎝
⊕

n

⎡
⎢⎢⎢⎣

cRn↑
cRn↓

−c†
Rn↓

c†
Rn↑

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠,

(B2)

where
⊕

n Xn concatenates Xn vertically. Using the general-
ized Nambu field operator � above, we can straightforwardly
recast H [Eq. (1), main text] in the form

H = 1
2�†HBdG� + E, (B3)

where the BdG Hamiltonian matrix is given by

HBdG =

⎡
⎢⎣
HD TL TR

T †
L HL 0

T †
R 0 H†

R

⎤
⎥⎦, (B4)

and

E =
∑

jn

ε jn (B5)

is a φ-independent constant [recall that ε jn is the site energy,
Eq. (1) in the main text]. The factor of 1/2 in Eq. (B3) arises
from the artificial doubling in the BdG formalism [46]. The
quantum dot is described by the noninteracting Hamiltonian

HD = εdτz ⊗ 1 + hd1 ⊗ sz

=

⎡
⎢⎢⎣

εd + hd 0 0 0
0 εd − hd 0 0
0 0 −εd + hd 0
0 0 0 −εd − hd

⎤
⎥⎥⎦

4×4

,

(B6)

where τz and sz are Pauli matrices acting within the Nambu
and spin spaces, respectively. The Hamiltonian H j describes
the superconducting leads j = L, R,

H j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H j1 Tt0

T †
t0 H j2 Tt0

T †
t0 H j3

. . .

. . .
. . . Tt0

T †
t0 H jN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4N×4N

, (B7)

with

Tt0 = t0T0, (B8)

T0 = τz ⊗ 1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦

4×4

, (B9)

TABLE I. Parameter for the continum model used in Fig. 9.

� t0 N μS a kF m∗ LM LW VB Vg

0.5 meV −50 meV 2000 −19 meV 5 nm π/5 0.03 m0 0.45 µm 0.15 µm 9 meV −23 meV
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TABLE II. Parameter for the single-site dot model used in Fig. 9.

� t0 N μS a kF m∗ t εd

0.5 meV −50 meV 2000 −19 meV 5 nm π/5 0.03 m0 −6.5 meV 1.3 meV

t0 denotes the dot-lead tunnel coupling amplitude, and

H jn =

⎡
⎢⎢⎢⎣

ε jn↑ 0 −�
j
n 0

0 ε jn↓ 0 −�
j
n

−(� j
n)∗ 0 −ε jn↓ 0

0 −(� j
n)∗ 0 −ε jn↑

⎤
⎥⎥⎥⎦

4×4

, (B10)

where

ε jns = ε jn + shsc, (B11)

and the finite-q superconducting pairing gap

� j
n = �eiφ j+2iqna. (B12)

For simplicity, in what follows, apart from distinct phases
φL, φR, we assume otherwise identical left and right super-
conducting leads. The tunnel-coupling matrix between the
quantum dot and the left and right leads are, respectively,

TL = t[0 · · · 0 U (θso)]4×4N , (B13)

TR = t[U †(θso) 0 · · · 0]4×4N , (B14)

where the unitary matrix U (θso) accounts for the spin-orbit
(SO) effect in the tunneling processes (left and right) and is
given by

U (θso) =
[
U(θso)

−U(θso)

]
4×4

, (B15)

with U(θso) = eiθsy/2 describing the spin rotation due to the
spin-orbit coupling in the tunneling between the quantum dot
and superconducting leads.

By numerically diagonalizing the BdG matrix (B4), we can
construct the (q, φL, φR)-dependent Bogoliubov (quasiparti-
cle) operators γlση(q, φL, φR) → γlση as unit vectors in the
Nambu space (B2), i.e.,

γlση =
8N+4∑
m=1

ul,m(q, φL, φR)�m, with
8N+4∑
m=1

|ul,m(q, φL, φR)|2

= 1, (B16)

where �m is the mth component of � in Eq. (B2) and
[ul,1, ul,2, . . . , ul,8N+4] is the l-th eigenvector that diagonal-
izes the BdG Hamiltonian; the Bogoliubov operators obey the
conjugation relation

γ
†
lση

= γl−σ−η. (B17)

We can now recast the total Hamiltonian (B3) in the form of
Eq. (2) in the main text,

H = 1

2

2N+1∑
l=1

∑
σ=⇑/⇓

∑
η=±

Elση(q, φ)γ †
lση

γlση + E . (B18)

Note that in the above the quasiparticle eigenenergies
Elση(q, φ) depend only on the phase difference φ = φR − φL

and satisfy,

Elση(q, φ) = −El−σ−η(q, φ), (B19)

due to particle-hole symmetry. To see that the eigenener-
gies depend on the phase difference φ = φR − φL, let us
do the transformation cLns → e−iφL/2cLns, ds → e+iφL/2ds and
cRns → e−iφR cRns in Eq 1 (main text). The pair potential then
transforms as �

j
n → �e+2iqna while the tunnel coupling be-

tween the dot and left (right) superconducting lead transforms
as t → t (t → teiφ/2). Thus the eigenenergies depend on only
the phase difference φ [note that a (φR + φL )/2 term does not
appear in the transformed Hamiltonian.]

In the main text, we use the orthogonal basis set {γlσ+} as
this choice makes it straightforward to determine the ground-
state wave function |G〉 and energy EG. Using Eqs. (B17)
and (B19), we can replace all γlσ− with γlσ+ in the Hamil-
tonian (B18) to obtain its form in this basis,

H =
2N+1∑
l=1

∑
σ=↑/↓

Elσ+(q, φ)γ †
lσ+γlσ+ + E+(q, φ), (B20)

where

E+(q, φ) = E +
∑

lσ

1

2
Elσ−(q, φ). (B21)

is the φ-dependent energy of the vacuum state γl,σ,+|V 〉+ = 0.
The form in Eq. (B20) is also convenient for the calculation
of the ensemble-averaged supercurrent [Appendix (C 2)].

APPENDIX C: DERIVATION OF EQ. (4) (MAIN TEXT) FOR
THE SUPERCURRENT IG(q, φ)

For completeness, in this section, we derive the supercur-
rent in Eq. (6) of the main text following Ref. [70,71].

1. Current definition

Quite generally, in terms of the time evolution of the elec-
tron number operator in the left lead NL =∑ns c†

LnscLns, we
can define current as

IG = +e

〈
d

dt
NL

〉
= +i

e

h̄
〈[H, NL]〉, (C1)

where H is given in Eq. (1) in the main text and HT (see
below) is its tunnel coupling part. The angle bracket 〈.〉 in
Eq. (C1) denotes either (i) the expectation value in the ground
state [e.g., Eq. (3) in the main text for our problem] at zero
temperature (T = 0) or (ii) the grand-canonical ensemble av-
erage for nonzero T , e < 0 is the charge of the electron and h̄
is the reduced Plank constant. Here we use the subindex “G’
in IG as our focus in the main text is the ground-state (T = 0)
supercurrent. Equivalently, we can define current from the
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electron number operator in the right lead NR =∑ns c†
RnscRns,

IG = −e

〈
d

dt
NR

〉
= −i

e

h̄
〈[H, NR]〉. (C2)

Using〈[(
� j

nc†
jn↑c†

jn↓ + H.c.
)
,
∑

s

c†
jnsc jns

]〉

= −2
(
� j

n〈c†
jn↑c†

jn↓〉 − � j∗
n 〈c jn↑c jn↓〉) = 0, (C3)

which follows from the self-consistency condition of the order
parameter, Eqs. (C1) and (C2) become

IG = +i
e

h̄
〈[HT , NL]〉 = −i

e

h̄
〈[HT , NR]〉, (C4)

To calculate the commutators in Eq. (C4), we first do the trans-
formation cLns → e−iφ/4cLns and cRns → e+iφ/4cRns in Eq. (1),
main text, which leads to

HT = t
∑
ss′

[e+iφ/4c†
LNsUss′ (θso)ds′

+ e−iφ/4d†
s Uss′ (θso)cR1s′ + H.c.], (C5)

and

[HT , NL] = +t
∑
ss′

[e+iφ/4c†
LNsUss′ (θso)ds′

−e−iφ/4d†
s′U∗

ss′ (θso)cLNs], (C6)

[HT , NR] = −t
∑
ss′

[e+iφ/4c†
R1sU∗

ss′ (θso)ds′ (C7)

−e−iφ/4d†
s Uss′ (θso)cR1s′ ]. (C8)

Combining Eqs. (C6), (C8) and

∂

∂φ
HT = it

4

∑
ss′

[e+iφ/4c†
LNsUss′ (θso)ds′

− e−iφ/4d†
s Uss′ (θso)cR1s′ − H.c.], (C9)

we find the identity〈
∂

∂φ
HT

〉
= i

4
(〈[HT , NL]〉 − 〈[HT , NR]〉). (C10)

Using 〈[HT , NR]〉 = −〈[HT , NL]〉 [Eq. (C4)], we can write the
above as

〈[HT , NL]〉 = −2i

〈(
∂

∂φ
HT

)〉
. (C11)

Hence the current (C1) becomes

IG(q, φ) = 2e

h̄

〈(
∂

∂φ
HT

)〉
, (C12)

where we have explicitly written out the q and φ dependencies
of IG [there is also, in principle, a temperature dependence (not
indicated) in the case we are considering a thermal average

(Appendix C 2)]. Since we are dealing with a superconducting
system with no voltage applied, we will hereafter refer to IG

in (C12) as supercurrent.

2. Thermal average of the supercurrent in the
grand-canonical ensemble

Even though we are interested in the zero-temperature limit
(T → 0) in the main text, here we calculate the supercurrent
IG in Eq. (C12) by performing an ensemble average in the
grand-canonical ensemble. As we see below, besides being
instructive, this provides, as a bonus, an alternative way to
obtain the ground-state energy EG(q, φ) of our system.

The grand potential function (T, q, φ) is defined as

(T, q, φ) = −(1/β ) ln(Z ) (C13)

with Z ≡ tr{e−βH } being the grand partition function. More
explicitly, using H in Eq. (B20), we have

Z = tr

{
e−βE+(q,φ)

∏
lσ

e−βElσ+(q,φ)γ †
lσ+γlσ+

}

= e−βE+(q,φ)
∏
lσ

tr
{
e−βElσ+(q,φ)γ †

lσ+γlσ+
}

= e−βE+(q,φ)
∏
lσ

(1 + e−βElσ+(q,φ) ). (C14)

The ensemble-averaged supercurrent [Eq (C12)] can be ex-
pressed as

IG(T, q, φ) = 2e

h̄

1

Z tr

{
e−βH ∂

∂φ
HT

}

= 2e

h̄

1

Z tr

{
∂

∂φ
e−βH

}(
1

−β

)

= 2e

h̄

1

−β

1

Z
∂

∂φ
Z

= 2e

h̄

−1

β

∂

∂φ
ln(Z )

= 2e

h̄

∂

∂φ
(T, q, φ), (C15)

with

(T, q, φ) = E+(q, φ) − 1

β

∑
lσ

ln(1 + e−βElσ+(q,φ) ). (C16)

Note that the pre-factor 2e/h̄ appears naturally in the super-
current (C15), obtained quite generally from (C1) or (C2).

a. T → 0 limit of �(T, q, φ): ground-state energy

In the T → 0 (β → ∞), we have

1

β
ln(1 + e−βElσ+(q,φ) ) →

{−Elσ+(q, φ), Elσ+(q, φ) < 0;
0, Elσ+(q, φ) > 0.

(C17)

Interestingly, in this limit the grand potential (T, q, φ)
[Eq. (C16)] reduces to the ground-state energy EG(q, φ)
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[Eq. (5) in the main text], i.e.,

EG(q, φ) = (0, q, φ) = E+(q, φ) +
∑

Elσ+(q,φ)<0

Elσ+(q, φ),

(C18)

where E+(q, φ) is defined in Eq. (B21). Note that the
above result, more than just yielding the correct limit, pro-
vides an alternative way to derive the ground-state energy
EG(q, φ). In the main text, we derived EG(q, φ) from the
exact T = 0 ground-state wave function |G〉 [Eq. (3)] via
H |G〉 = EG(q, φ)|G〉. As mentioned in the main text, since
Elση(q, φ) = −El−σ−η(q, φ), we can replace all positive en-
ergies in (C18) [and in (B21)] with negative eigenenergies
Elση < 0 to obtain

EG(q, φ) = E + 1

2

∑
Elση (q,φ)<0

Elση(q, φ), (C19)

where E is the constant defined in Eq. (B5), being indepen-
dent of q and φ. Note that the form of EG(q, φ) in (C19) is
particularly convenient to calculate the ground-state supercur-
rent (see below) as its φ dependence is solely included in
the second term, which involves only negative quasiparticle
eigenenergies.

b. T → 0 limit: ground-state supercurrent IG(q, φ)

From the general expression for the supercurrent in
Eq. (C15), we can straightforwardly [using Eq. (C18)] obtain
the usual ground-state (i.e., T = 0) supercurrent

IG(q, φ) = IG(0, q, φ)
2e

h̄

∂

∂φ
EG(q, φ), (C20)

which, upon using Eq. (9), yields Eq. (6) in the main text

IG(q, φ) = I0

2

∑
Elση (q,φ)<0

∂φElση(q, φ), (C21)

with I0 = 2e/h̄.

APPENDIX D: ADDITIONAL PHASE SHIFTS IN FINITE-q
SUPERCONDUCTORS

In this section, we define the additional phase shifts
δφ j (q, φ), central to our discussion and plotted in Figs. 1(b)
and 1(c) of the main text, in terms of the matrix elements
of the anomalous Green functions of the finite-momentum
superconducting leads. To this end, below we focus on an
effective description of the quantum dot in which the effect
of the leads are accounted for via a self energy. We derive
a general expression for the self energy that incorporates the
phase shifts δφ j (q, φ) via the superconducting lead (anoma-
lous) Green functions. As we will see later on, these phase
shifts (via the self energy) provide a simple mechanism to
understand (i) the finite-q-induced asymmetry of the Andreev
dispersions (Appendix E 1), crucial to the SDE, and (ii) the
fermion parity changes in the ground state (Appendix F)

1. Defining an effective dot Hamiltonian and self energy

A simpler starting point for studying Andreev bound states
in our hybrid quantum-dot/superconducting-lead system is to

consider an effective quantum dot Hamiltonian in which the
leads have been integrated out thus giving rise to a self energy,
which, as we will see below, emulates a pair potential in the
quantum dot [61–66]. To this end, we note that the diagonal-
ization of the BdG matrix (B4) results in the determinantal
equation,

det

⎡
⎢⎣
HD − E TL TR

T †
L HL − E 0

T †
R 0 HR − E

⎤
⎥⎦ = 0. (D1)

To find the Andreev (subgap) levels we can use the identity
for determinants of block matrices comprised of four matrices
A, B,C, and D [55],

det

(
A B
C D

)
= det(D) det(A − BD−1C), (D2)

where D is assumed to be invertible. By comparing Eqs. (D1)
and (D2) we can make make the identifications: A ↔ [HD −
E ], B ↔ [TL TR], C ↔ B†, and

D ↔
[
HL − E 0

0 HR − E

]
. (D3)

Now we have to guarantee that the blocks H j − E (i.e., block
D) are invertible. As it turns out, this is the case for Andreev
eigenenergies (i.e., for in-gap E ’s). In this case, Eq. (D1) [via
Eq. (D2)] reduces to

det {HD − E − �(q, E , φL, φR)} = 0, (D4)

where we have introduced the self energy

�(q, E , φL, φR) = [TL TR]

[
HL − E 0

0 HR − E

]−1
[
T †

L

T †
R

]

=
∑
j=L,R

[T j]4×4N

[
1

H j − E

]
4N×4N

[T †
j ]4N×4.

(D5)

Note that the determinantal Eq. (D4) can be viewed as stem-
ming from the effective quantum-dot 4 × 4 Hamiltonian,

Heff
D = HD − �(q, E , φL, φR), (D6)

in which the superconducting leads have been eliminated thus
giving rise to the self energy (D5). Interestingly, this self-
energy emulates a pair potential in the quantum dot [via H j ,
see Eqs. (B7)and (B10)].

Here we derive an expression for the dot self energy (D5)
making more explicit the contributions from the left and
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FIG. 10. Phase φ j , energy E , and potential μ̃S dependencies of the diagonal Green functions Eq. (D12) G l,l
js (l = 1, 2, j = L, R, s =↑, ↓).

(a), (b), and (c) exhibit G1,1
js + G2,2

js as functions of φ j , E , and μ̃S , respectively, for different values of q. (d), (e), and (f) correspond to (a),

(b), and (c) but for G1,1
js − G2,2

js . From (a) and (d), we see that G1,1
js + G2,2

js and G1,1
js − G2,2

js (i.e., G l,l
js ) are independent of φ j for both q = 0 and

q �= 0. While G1,1
js + G2,2

js is an odd function of E (b), G1,1
js − G2,2

js is an even function of E (e). However, they show opposite μ̃S dependence.

G1,1
js + G2,2

js is an even function of μ̃S (c) but G1,1
js − G2,2

js is an odd function of μ̃S (f). Here, we use the Cooper-pair momentum h̄qvF /� = 1.0.
Other parameters are given by � = 1, εd = 2.6, hsc = 0, t = −13, and t0 = −100, that are the same as Fig. 2 in main text.

right leads. By using Eqs. (B13) and (B14), Eq. (D5) becomes

�(q, E , φL, φR) = t2[0 · · · 0 U (θso)]4×4N

[
1

HL − E

]
4N×4N

⎡
⎢⎢⎣

0
...

0
U +(θso)

⎤
⎥⎥⎦

4N×4

+ t2[U +(θso) 0 · · · 0]4×4N

[
1

HR − E

]
4N×4N

⎡
⎢⎢⎣

U (θso)
0
...

0

⎤
⎥⎥⎦

4N×4

. (D7)

The quantum dot is coupled to the last site of the left super-
conducting lead and the first site of the right superconducting
lead, as shown by the first and second lines of Eq. (D7),
respectively, and hence only the last 4 × 4 block of [1/(HL −
E )]4N×4N and the first 4 × 4 block of [1/(HR − E )]4N×4N

participate in the calculation of the self-energy (D7). More
explicitly, below we specify the lowermost and uppermost
4 × 4 diagonal blocks of GL,R, denoted by [GL(q, E , φL )]4×4

and [GR(q, E , φR)]4×4,

GL(q, E , φL ) = 1

HL − E

≡

⎡
⎢⎢⎣
� � � �
� . . .

...
...

� · · · � �
� · · · � [GL(q, E , φL )]4×4

⎤
⎥⎥⎦

4N×4N

,

(D8)

GR(q, E , φR) = 1

HR − E

≡

⎡
⎢⎢⎣

[GR(q, E , φR)]4×4 � · · · �
� � · · · �
...

...
. . . �

� � � �

⎤
⎥⎥⎦

4N×4N

.

(D9)

Each empty square in Eqs. (D8) and (D9) is the 4 × 4 matrix

� =

⎡
⎢⎢⎣
� 0 � 0
0 � 0 �
� 0 � 0
0 � 0 �

⎤
⎥⎥⎦. (D10)

In the upper and lower diagonal 2 × 2 blocks of � above,
the triangles denote couplings between only same spins, while
in its off-diagonal 2 × 2 blocks Cooper pairing couples only
opposite spins, see Eq. (B10). Substituting Eqs. (D8) and (D9)
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into (D7), we obtain the general expression for the self energy

�(q, E , φL, φR) = t2U(θso)[GL(q, E , φL )]4×4U
+(θso)

+ t2U +(θso)[GR(q, E , φR)]4×4U (θso).
(D11)

The first and second terms on the right-hand side of (D11)
correspond to the contributions from the left and right leads,
respectively.

2. Additional phase shifts δφ j (q, φ)

Here we write out the 4 × 4 blocks [Gj (q, E , φ j )]4×4, j =
L, R [Eqs. (D8) and (D9)], explicitly making use of their
hermitian properties. By introducing diagonal G js and off-
diagonal F js matrix elements, we can write

[Gj (q, E , φ j )]4×4 ≡

⎡
⎢⎢⎢⎣

G1,1
j↑ 0 −F j↑ 0
0 G1,1

j↓ 0 −F j↓
−F∗

j↑ 0 G2,2
j↑ 0

0 −F∗
j↓ 0 G2,2

j↓

⎤
⎥⎥⎥⎦,

(D12)

where we have omitted the q, E , and φ j dependencies of the
matrix elements for simplicity. The off-diagonal functions F js
correspond to anomalous GL,R matrix elements of the super-
conducting leads. Note that all Green functions in Eq. (D12)
[also in Eqs. (D8) and (D9)] have a magnetic field dependence
hsc [see, Eqs. (B7), (B10), and (B11)]; whenever discussing
nonzero hsc effects, we should make the substitution E →
E − shsc in Eq. (D12) to make the hsc dependence explicit. As
usual, hermiticity requires that the diagonal Green functions
G l,l

js (q, E , φ j ) (l = 1, 2) be real numbers.
The anomalous Green functions F js(q, E , μ̃S, φ j ), on the

other hand, can in principle be complex, where μ̃S = μS −
2t0. To extract the moduli and phases of F js(q, E , μ̃S, φ j ), we
use their polar form

F js(q, E , μ̃S, φ j ) ≡ |F js(q, E , μ̃S, φ j )|eiξ js (q,E ,μ̃S ,φ j ), (D13)

where ξ js(q, E , μ̃S, φ j ) denote their phases. By comparing
the numerically determined F js(q, E , μ̃S, φ j ) with Eq. (D13),
we can determine the moduli |F js(q, E , μ̃S, φ j )| and phases
ξ js(q, E , μ̃S, φ j ). The minus sign in front of F js in Eq. (D12)
is added so that ξ js(q, E , μ̃S, φ j ) = φ j when q = 0.

Figure 10(a) shows G1,1
js (q, E , μ̃S, φ j ) + G2,2

js (q, E , μ̃S, φ j )
as a function of phase φ j for different values of q. Fig-
ures 10(b) and 10(c) are similar to Fig. 10(a) but as a function
of the energy E and μ̃S , respectively. Panels (d), (e), and (f)
correspond to (a), (b), and (c) but for G1,1

js (q, E , μ̃S, φ j ) −

G2,2
js (q, E , μ̃S, φ j ). Note that the Green G1,1

js (q, E , μ̃S, φ j ) +
G2,2

js (q, E , μ̃S, φ j ) and G1,1
js (q, E , μ̃S, φ j ) − G2,2

js (q, E , μ̃S, φ j )

[i.e., G l,l
js (q, E , μ̃S, φ j )] are independent of φ j for both

q = 0 and q �= 0, as shown in Figs. 10(a) and 10(d),
respectively. From Figs. 10(b) and 10(e), we see that
G1,1

js (q, E , μ̃S, φ j ) + G2,2
js (q, E , μ̃S, φ j ) is an odd function of

E but G1,1
js (q, E , μ̃S, φ j ) − G2,2

js (q, E , μ̃S, φ j ) is an even func-

tion of E . While G1,1
js (q, E , μ̃S, φ j ) + G2,2

js (q, E , μ̃S, φ j ) is

an even function of μ̃S [Figs. 10(c)], G1,1
js (q, E , μ̃S, φ j ) −

G2,2
js (q, E , μ̃S, φ j ) is an odd function of μ̃S [Figs. 10(f)].

Figures 11(a), 11(b) and 11(c) correspond to Figs. 10(a), 10(b)
and 10(c) but for |F js(q, E , μ̃S, φ j )|. Figures 11(d), 11(e)
and 11(f) correspond to Fig. 11(a), 11(b), and 11(c) but for
ξ js(q, E , μ̃S, φ j ). From Fig. 11(a), we see that the moduli
|F js(q, E , μ̃S, φ j )| of the anomalous Green functions are in-
dependent of φ j . It becomes even functions of E and μ̃S , as
shown in Figs. 11(b) and 11(c). Their phases ξ js(q, E , μ̃S, φ j )
are linear in φ j [Figs. 11(d)] for q = 0 and q �= 0. These
phases are independent of E for q = 0, while strongly energy
dependent for q �= 0, as shown in Fig. 11(e). Thus we suggest
the ansätz

ξ js(q, E , μ̃S, φ j ) = φ j + δφ j (q, E , μ̃S ), (D14)

where δφ j (q, E , μ̃S ) are additional phase shifts due to the
Andreev reflections in the finite-momentum superconducting
leads. These phase shifts, as it turns out, do not explicitly
depend on φ j . As we will see in the next section, the additional
phase shifts

δφ j (q, E , μ̃S ) = ξ js(q, E , μ̃S, φ j ) − φ j . (D15)

play an important role in giving rise to asymmetric Andreev
dispersions, which, in turn, underlie the SDE in our Andreev
QD setup.

To obtain a more compact and convenient form for further
calculations involving [Gj (q, E , μ̃S, φ j )]4×4, let us define the
operation

⊗
s=↑,↓

[X s]2×2 ≡

⎡
⎢⎢⎢⎢⎣

X ↑
1,1 0 X ↑

1,2 0

0 X ↓
1,1 0 X ↓

1,2

X ↑
2,1 0 X ↑

2,2 0

0 X ↓
2,1 0 X ↓

2,2

⎤
⎥⎥⎥⎥⎦, (D16)

where [X s]2×2 denotes a generic 2 × 2 matrix. Using this
notation and Eq. (D14), we can now recast the 4 × 4 blocks
[Gj (q, E , μ̃S, φ j )]4×4 in Eq. (D12) as

[Gj (q, E , μ̃S, φ j )]4×4 =
⊗

s=↑,↓
(E − shsc)

[
K(q, E − shsc, μ̃S )

0 K(q, E − shsc, μ̃S )

]

+
⊗

s=↑,↓
μ̃S

[+D(q, E − shsc, μ̃S ) 0
0 −D(q, E − shsc, μ̃S )

]

+
⊗

s=↑,↓
R(q, E − shsc, μ̃S )

[
0 −e+iφ j+iδφ j (q,E−shsc,μ̃S )

−e−iφ j−iδφ j (q,E−shsc,μ̃S ) 0

]
, (D17)
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FIG. 11. Phase φ j , energy E , and potential μ̃S dependencies of the off-diagonal Green functions Eq. (D12) F js ( j = L, R, s =↑, ↓). (a),
(b), and (c) exhibit |F js| as functions of φ j , E , and μ̃S respectively, for different values of q. (d), (e), and (f) correspond to (a), (b), and (c) but
for ξ js. Both |F js| and ξ js are even function of E and μ̃S [(b), (c), (e), and (f)]. While the moduli |F js| is independent of φ j , the phases ξ js vary
linearly with φ j for both q = 0 and q �= 0; however, for q �= 0 the phases ξ js show an abrupt transition from 2π to 0, when plotted in the range
[0, 2π ]. The linear dependence on φ j together with this transition imply the existence of an additional phase shift δφ j (q, E ) for nonzero q, see
(d). This additional phase shifts arise from the Andreev reflections in the finite-momentum superconducting leads. In fact, for q = 0, ξ js = φ j

mod(2π ) as δφ j (q, E ) = 0, see dotted line in (d), and ξ js(q, E , μ̃S, φ j ) = φ j + δφ j (q, E , μ̃S ) for finite q, see solid line (magenta) in (d). We
emphasize that the phase shifts δφ j (q, E ) do not depend on φ j . Other parameters are the same as Fig. 10.

where we have defined the functions

K(q, E − shsc, μ̃S ) ≡ 1

2(E − shsc)

[
G1,1

js (q, E − shsc, μ̃S, φ j ) + G2,2
js (q, E − shsc, μ̃S, φ j )

]
, (D18)

D(q, E − shsc, μ̃S ) ≡ 1

2μ̃S
[G1,1

js (q, E − shsc, μ̃S, φ j ) − G2,2
js (q, E − shsc, μ̃S, φ j )], (D19)

R(q, E − shsc, μ̃S ) ≡ ∣∣F js(q j, E − shsc, μ̃S, φ j )
∣∣. (D20)

In the above, we have explicitly put in the dependence on the magnetic field hsc in the arguments of the functions D(q, E −
shsc, μ̃S ), K(q, E − shsc, μ̃S ) and R(q, E − shsc, μ̃S ); note that these are real functions, being independent of φL,R, see Figs. 10
and 11.

In the next two sections we use the form (D17) to determine the self energy (D11), from which we can obtain the relevant
Andreev dispersions.

APPENDIX E: ORIGIN OF THE ASYMMETRIC ANDREEV DISPERSIONS FOR FINITE q

To gain some insight into how the finite-momentum q of the Cooper pairs affects the Andreev reflections, and, in particular,
how it leads to asymmetric dispersions, below we look in some detail at the simpler case with no Zeeman fields (hd = hsc = 0)
and no spin-orbit coupling (θso = 0).

1. Self energy for hd = hsc = θso = 0

First of all let us write out the self energy for this case in terms of the matrix elements of the superconducting lead Green
functions. Substituting Eq. (D17) into the self-energy (D11), we obtain

�(q, E , μ̃S, φL, φR) = 2t2
⊗

s=↑,↓

[
EK(q, E , μ̃S ) + μ̃SD(q, E , μS ) R̄(q, E , μ̃S, φL,R, δφL,R(q, E , μ̃S ))

R̄∗(q, E , μ̃S, φL,R, δφL,R(q, E , μ̃S )) EK(q, E , μS ) − μ̃SD(q, E , μS )

]
, (E1)
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where we have defined

R̄(q, E , μ̃S, φL,R, δφL,R(q, E , μ̃S )) (E2)

= 1

2

∑
j=L,R

R(q, E )eiφ j+iδφ j (q,E ,μ̃S ).

The above describes the interference between the Andreev
reflections in the left-lead and right-lead paths [Fig. 1(b), main
text] and can be rewritten as

R̄(q, E , μ̃S, φ, δφ(q, E , μ̃S ), φeff )

= R(q, E , μ̃S ) cos

[
φ + δφ(q, E , μ̃S )

2

]
eiφeff , (E3)

with φeff = [δφR(q, E , μ̃S ) + δφL(q, E , μ̃S )]/2, where φ =
φR − φL is the flux-tunable phase difference between the
left and right superconducting leads and δφ(q, E , μ̃S ) =
δφR(q, E , μ̃S ) − δφL(q, E , μ̃S ) is the additional phase-shift

difference between the left and right phase shifts arising from
the Andreev reflections in the left and right finite-momentum
superconductors. Remarkably, the form of the off-diagonal
component of the self energy [i.e., Eq. (E3)] is quite gen-
eral. Irrespective of the details of the superconducting leads,
their effect on the Andreev reflections are captured by the
additional phase-shift difference δφ(q, E , μ̃S ) that can be nu-
merically calculated.

2. Andreev dispersions for hd = hsc = θso = 0

By substituting the self energy (E1) into Eq. (D4), we can
determine the Andreev in-gap states from the secular equation

E2[1 + 2t2K(q, E , μ̃S )]2 − [εd − 2μSt2D(q, E , μ̃S )]2

= 4t4R2(q, E , μ̃S ) cos2

[
φ + δφ(q, E , μ̃S )

2

]
, (E4)

where φeff dropped out. Equation (E4) can be formally solved
as an implicit solution for the Andreev eigenenergies Eη,

Eη = η

√
[εd − 2μ̃St2D(q, Eη, μ̃S )]2 + 4t4R2(q, Eη, μ̃S ) cos2

[φ+δφ(q,Eη,μ̃S )
2

]
1 + 2t2K(q, Eη, μ̃S )

, (E5)

with η = ±. From the compact implicit equation above we
can obtain the Andreev levels, e.g, iteratively. Note that
Eη = Eη(q, φ, δφ). Here, the phase shifts δφ j (q, φ, E , μ̃S )
obey particle-hole symmetry, i.e., δφ j (q, φ,−E , μ̃S ) =
δφ j (q, φ, E , μ̃S ), as shown by Fig. 11(e).

Note that R(q, Eη, μ̃S ), D(q, Eη, μ̃S ) and K(q, Eη, μ̃S ) are
complicated functions and can only be calculated numerically.
To have some analytical result, let us perform the transforma-
tion of the fermionic lead operators

c jns = 1√
N

N∑
l=1

eikl nac jkl s, with kl = −π

a
+ 2π l

Na
and l ∈ Z,

(E6)

with

N∑
n=1

ei(kl +kl′ )na = Nδll ′ . (E7)

The above corresponds to a change of basis in the leads, i.e.,
from the original site (position) representation to the k-space
representation. Substituting Eq. (E6) into the superconducting
lead Hamiltonian [cf. Eq. (1) in the main text]

Hj =
N∑

n=1

∑
s=↑,↓

ε jnsc
†
jnsc jns +

N∑
n=1

(
� j

nc†
jn↑c†

jn↓ + H.c.
)

+
N−1∑
n=1

∑
s=↑,↓

(t0c†
jnsc jn+1s + H.c.), (E8)

we obtain

Hj =
N∑

l=1

∑
s=↑,↓

ε jc
†
jkl s

c jkl s

+
N∑

l=1

(
�eiφ j c†

jkl +q↑c†
j−kl +q↓ + H.c.

)

+
N∑

l=1

∑
s=↑,↓

2t0 cos(kla)c†
jkl ↑c jkl ↓

+ 1

N

∑
s=↑,↓

(
t0c†

jkl s
c jkl′ s

e−ikl Naeikl′ (N+1)a + H.c.
)
. (E9)

where we have use the identity (E7). In the limit of N → ∞,
we can omit the third line of Eq. (E9) for simplicity and
therefore the lead Hamiltonian (E9) becomes diagonal in kl

space. We denote the kl -space version of the Nambu space of
the superconducting leads by adding a superscript to � j ,

�k
j =

⊕
l

⎡
⎢⎢⎢⎣

c jkl +q↑
c jkl +q↓

−c†
j−kl +q↓

c†
j−kl +q↑

⎤
⎥⎥⎥⎦. (E10)

The transformation (E6) does not change the many-body
Hamiltonian of our system [(B3)] but it does change the rep-
resentation of the Bogoliubov Hamiltonian HBDG, (B4). As a
matter of fact, only HD does note change; all the other blocks
of HBDG, i.e., HL, HR, TL, and TR do change. Below we add
a k superscript in all these matrices so as to emphasize the
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k-space representation used in the leads:

H(k)
j =

⎡
⎢⎢⎢⎢⎣
H jk1

H jk2

H jk3

. . .

H jkN

⎤
⎥⎥⎥⎥⎦

4N×4N

,

(E11)

with

H jkl

=

⎡
⎢⎢⎣

+ε jkl +q↑ 0 −�e+iφ j 0
0 +ε jkl +q↓ 0 −�e+iφ j

−�e−iφ j 0 −ε j−kl +q↓ 0
0 −�e−iφ j 0 −ε j−kl +q↑

⎤
⎥⎥⎦

4×4

,

(E12)

where

ε jkl ↓ = −2t0 + μS + 2t0 cos(kla) (E13)

is the energy spectrum of the lead j. The tunnel-coupling
matrix between the quantum dot and the left and right leads
in the Nambu basis (E10) are, respectively,

T (k)
L = t[T0 · · · T0]4×4N , (E14)

T (k)
R = t[T0 · · · T0]4×4N , (E15)

where the 4 × 4 tunneling matrix T0 is given by Eq. (B8). Note
that the real-space coupling between the dot and the last (first)
site of the left (right) lead, translates into a kl -independent
tunnel coupling matrix in the kl -space representation of the
leads. Following the same procedure as in Eqs. (D1)-(D4), we
obtain the self-energy of the Andreev quantum dot

�(q, E , μ̃S, φL, φR)

= [T (k)
L T (k)

R

][H(k)
L − E 0

0 H(k)
R − E

]−1
[(

T (k)
L

)†(
T (k)

R

)†
]

=
∑
j=L,R

[
T (k)

j

]
4×4N

[
1

H(k)
j − E

]
4N×4N

[(
T (k)

j

)†]
4N×4.

(E16)

We emphasize that the above self energy is exacly the same
as the one calculated in the real-space site representation,

Eq. (D5). This is so because we performed the change of basis
(k-space) only on the leads. Substituting Eqs. (E11) and (E12)
into the self-energy (E16), we obtain

�(q, E , μ̃S, φL, φR)

= t2[T0 · · · T0]4×4N

[
1

H(k)
L

− E

]
4N×4N

⎡
⎢⎣T0

...

T0

⎤
⎥⎦

4N×4

+ t2[T0 · · · T0]4×4N

[
1

H(k)
R − E

]
4N×4N

⎡
⎢⎣T0

...

T0

⎤
⎥⎦

4N×4

.

(E17)

Note that [1/(H(k)
j − E )]4N×4N is diagonal in kl space [see

Eq. (E11)]. The huge matrix calculation of the above self-
energy can be written as a summation over kl

�(q, E , μ̃S, φL, φR)

= t2
⊗

s=↑,↓

∑
jkl

τz

[
ε jkl +q − E −�e+iφ j

−�e−iφ j −ε j−kl +q − E

]−1

τz,

(E18)

where τz is the Pauli matrix in Nambu space. Let us define the
Green functions as follows

Gjs(E , μ̃S, φ j, ε jkl ) ≡
[
ε jkl +q − E −�e+iφ j

−�e−iφ j −ε j−kl +q − E

]−1

= 1

det jkl s

[
ε j−kl +q + E −�e+iφ j

−�e−iφ j −ε jkl +q + E

]
,

(E19)

where det jkl s = �2 − (E − ε j−kl +q)(E + ε jkl +q). The self-
energy (E18) then becomes

�(q, E , μ̃S, φL, φR) = t2
⊗

s=↑,↓

∑
jkl

τzG js(E , φ j, ε jkl )τz.

(E20)

a. Zero Cooper pair momentum: symmetric dispersions

Here, for simplicity, we first consider the case with zero
Cooper pair momentum q = 0.

The summation over momenta k f in each element
�a,b(q, E , μ̃S, φL, φR) of the self-energy (E20) can be re-
placed by integration as follows

∑
k f

Ga,b
js (E , μ̃S, μ̃S, φ j, ε jk f ) =

∫
dk f

Na
Ga,b

js (E , μ̃S, μ̃S, φ j, ε jk f ) =
∫

dεν j (ε)Ga,b
js (E , μ̃S, μ̃S, φ j, ε), (E21)

where ν j (ε) is the density of states of superconductor j per spin. Then, Eq. (E20) reduces to

�(q, E , μ̃S, φL, φR) = 2t2
⊗

s=↑,↓

[
EK(q, E , μ̃S ) + μ̃SD(q, E , μ̃S ) R(q, E , μ̃S ) cos

(
φ

2

)
R(q, E , μ̃S ) cos

(
φ

2

)
EK(q, E , μ̃S ) − μ̃SD(q, E , μ̃S )

]
, (E22)
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FIG. 12. [(a) and (b)] Andreev levels E+ as a function of phase difference φ for h̄qvF = 0 with � = 1.4 and (b) h̄qvF = 1.0 with � = 0.6.
The latter corresponds to the results of Fig. 2 in the main text. (c) plots the additional dot energy εd [Eq. (E23)] induced by the lead-dot tunneling
coupling. For q = 0, we have εS

d � 2.7. Though it shows showing some poles in the range (−�, �) for q �= 0, we also obtain εS
d � 2.7 for

E away from poles. Therefore it is reasonable to use εS
d � 2.7 during the fitting [red lines of (a) and (b)]. In (a) and (b), the blue line is

calculated from the numerical diagonalization of the BDG Hamiltonian (B4), the green line is obtained from Eq. (E5) after the substitutions of
R(q, E+, μ̃S ), D(q, E+, μ̃S ),K(q, E+, μ̃S ), and δφ(q, E+, μ̃S ), and the red lines correspond to E+ =

√
(εd − εS

d )2 + 4�2 cos2( φ

2 )/(1 + 2�/�)

and E+ = η
√

(εd − εS
d )2 + 4�2 cos2[ φ+δφ[q,Eη (q,φ)]

2 ]/(1 + 2�/�) for q = 0 and q �= 0, respectively. The blue lines coincide with green ones,
which verifies our methodology of the additional phase shift and asymmetric Andreev dispersion for finite-q superconductor in Appendices D
and E 1. We can see clear asymmetric dispersion for q �= 0, crucial to the superconducting diode effect. Other parameters: � = 1, εd = 2.6,
hsc = 0, hd = 0, t = −13, and t0 = −100.

with

t2μ̃SD(q, E , μ̃S ) ≡ εS
d (E ). (E23)

We have t2EK(q, E , μ̃S ) � � E√
�2−E2 and t2R(q, E , μ̃S ) �

� �√
�2−E2 , where � = πνFt2 and νF = νL = νR is the density

of states of superconducting leads at the Fermi energy for
each spin species and is assumed to be ε-independent for
simplicity. Then, the Andreev levels (E5) becomes

Eη = η

√[
εd − εS

d (Eη )
]2 + �2

(
2�√

�2−E2
η

)2

cos2
(

φ

2

)
1 +

(
2�√

�2−E2
η

) . (E24)

Obviously, Andreev levels at q = 0 [Eq. (E24)] is a symmetric
dispersion, i.e., Eη(q = 0, π − φ) = Eη(q = 0, π + φ). As a
result, if we find a critical forward supercurrent Ic

+ at φ = φ+,
we can always obtain a critical reverse suppercurrent Ic

− at
φ = φ− = 2π − φ+ with the same magnitude, i.e., |Ic

−| = Ic
+.

Note that the superconducting lead-quantum dot tunneling
coupling renormalizes effective dot energy εeff

d = εd − εS
d ,

superconducting proximity effect with effective pair poten-
tial �eff = ( 2�√

�2−E2
η

)� cos( φ

2 ), as well as Andreev levels

[it appears in the denominator of the Andreev levels (E5)].
In weak tunneling and low energy limit (�, E � �), the
renormalization effects from 2t2K(q, Eη ) � 2�

�
become inde-

pendent of E , and the above Andreev level reduces to Eη =
η
√

(εd − εS
d )2 + 4�2 cos2( φ

2 )/(1 + 2�/�). Thus we obtain
better agreement for smaller t as shown by the red lines in
Fig. 12(a).

b. Finite Cooper-pair momentum q: asymmetric dispersions

For q �= 0, the φ-dependent additional phase differ-
ence δφ[q, E (q, φ)] results in the asymmetric dispersion
Eη(q �= 0, π − φ) �= Eη(q �= 0, π + φ) [Fig. 2(a) in the main
text] thus giving rise to the superconducting diode effect
[see Fig. 2(c) in the main text]. To see how the asym-
metric φ-dependence of the additional phase difference
δφ(q, E , μ̃S ) gives rise to asymmetric dispersions, let us
consider the weak tunneling and low energy case (�, E �
�) for simplicity in which we assume i) εS

d (� 2.7) is
independent of the E inside the finite-momentum supercon-
ductor gap [Fig. 12(c)], ii) 2t2R(q, Eη, μ̃S ) → 2�, and iii)
2t2K(q, Eη, μ̃S ) → 2�

�
that eliminate the E dependence of

the renormalization effects in both effective pair potential
and Andreev level. Equation (E5) then reduces to Eη(q, φ) =
η
√

(εd − εS
d )2 + 4�2 cos2[φ+δφ[q,Eη (q,φ)]

2 ]/(1 + 2�/�), which
is plotted by the red lines of Fig. 12(b). Numerically, we can
obtain the exact φ dependence of Eη(q, φ) via the diagonaliza-
tion of the BdG Hamiltonian (B4). To calculate the additional
phase difference δφ[q, Eη(q, φ)] for each phase difference
φ = φL − φR, we have to substitute φL = −φ/2, φR = +φ/2,
and E = Eη(q, φ) into Eqs. (D8) and (D9) and then deter-
mine the additional phase shifts of the Andreev reflections in
the left and right superconductors, i.e., δφL[q, Eη(q, φ)] and
δφR[q, Eη(q, φ)]. We find that the additional phase difference
δφ[q, Eη(q, φ)] is an asymmetric function of φ for q �= 0 [see
Fig. 1(c) in the main text] and therefore we obtain asymmet-
ric dispersions with respect to φ, i.e., Eη(q �= 0, π − φ) �=
Eη(q �= 0, π + φ) (see Fig. 12). Our fitting agrees with the
results obtained from the numerical diagonalization of the
BDG Hamiltonian (B4).

APPENDIX F: GROUND-STATE FERMION PARITY CHANGES

In this section, we derive a condition for the ground-state fermion parity changes in our system in the presence of both Zeeman
fields hd and hsc. We discuss the cases with and without SO interaction.
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1. Zero SO interaction (θso = 0) and hd �= 0, hsc �= 0

Here the secular equation (D4) for the Andreev states in the dot reads

[shd − Es − 2t2(E − shsc)K(q, E − shsc)]2 − [εd − 2μ̃St2D(q, E , μ̃S )]2 = 4t4R2(q, E − shsc) cos2

[
φ + δφ(q, E )

2

]
. (F1)

The above equation can be obtained from Eq. (E4) by a replacement E → E − shd (E → E − shsc) in the quantum dot
(superconducting leads). The K(q, E − shsc) function renormalizes both Andreev levels and its spin splitting. Thus Eq. (F1)
reduces to

{
shr

d − E [1 + 2t2K(q, E − shsc)]
}2 − (εr

d

)2 = 4t4R2(q, E − shsc) cos2

[
φ + δφ(q, E − shsc)

2

]
, (F2)

with

εr
d = εd − 2μ̃St2D(q, E , μ̃S ), (F3)

hr
d = hd + 2t2K(q, E − shsc, μ̃S )hsc. (F4)

Therefore we have obtained a compact implicit equation from which we can easily obtain the Andreev levels explicitly by
iterations

Esη = s
hd + 2t2K(q, Esη − shsc)hsc

1 + 2t2K(q, Esη − shsc)
+ η

√
[εd − 2μ̃St2D(q, Esη − shsc, μ̃S )]2 + 4t4K2(q, Esη − shsc) cos2

[φ+δφ(q,Esη−shsc )
2

]
1 + 2t2K(q, Esη − shsc)

.

(F5)

The fermion parity changes happen at Esη = 0 and hence we obtain the condition for it to occur

φ± = −δφ(q, hsc) ± 2 arccos

[
[hd + 2t2hscK(q, hsc)]2 − [εd − 2μ̃St2D(q, hsc, μ̃S )]2

4t4R2(q, hsc)

]1/2

, (F6)

where we have δφ(q, hsc) = δφ(q, E − shsc)|E=0, K(q, hsc) ≡ K(q, E − shsc)|E=0, D(q, hsc) ≡ D(q, E − shsc)|E=0, and
R(q, hsc) ≡ R(q, E − shsc)|E=0, where we remove the s dependence because δφ(q, E ), K(E ), D(E ), and R(E ) are even
function of E (Figs. 10 and 11). Equation (F6) helps explain how fermion parity changes can modify the SDE in the absence of
spin-orbit coupling, Fig. 2 in the main text.

2. Nonzero SO interaction (θso �= 0) and hd �= 0, hsc �= 0

In the presence of spin-orbit interaction, spin-up and spin-down electrons mix via tunneling matrix [Eq. (B15)]. Substituting
the Green function (D17) and the tunneling matrix (B15) into the self-energy (D11), we obtain

�̂(E ) = t2

[
Ĝ1,1(E ) F̂ (E )

F̂+(E ) Ĝ2,2(E )

]
. (F7)

The normal contributions are given by

Ĝ1,1(E ) = U (θso)

[
(E − hsc)K(q, E − hsc, μ̃S ) 0

0 (E + hsc)K(q, E + hsc, μ̃S )

]
U+(θso)

+ U (θso)

[+μ̃SD(q, E − hsc, μ̃S ) 0
0 +μ̃SD(q, E + hsc, μ̃S )

]
U+(θso)

+ U+(θso)

[
(E − hsc)K(q, E − hsc, μ̃S ) 0

0 (E + hsc)K(q, E + hsc, μ̃S )

]
U (θso)

+ U+(θso)

[+μ̃SD(q, E − hsc, μ̃S ) 0
0 +μ̃SD(q, E + hsc, μ̃S )

]
U (θso), (F8)

Ĝ2,2(E ) = U (θso)

[
(E − hsc)K(q, E − hsc, μ̃S ) 0

0 (E + hsc)K(q, E + hsc, μ̃S )

]
U+(θso)

+ U (θso)

[−μ̃SD(q, E − hsc, μ̃S ) 0
0 −μ̃SD(q, E + hsc, μ̃S )

]
U+(θso)
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+ U+(θso)

[
(E − hsc)K(q, E − hsc, μ̃S ) 0

0 (E + hsc)K(q, E + hsc, μ̃S )

]
U (θso)

+ U+(θso)

[−μ̃SD(q, E − hsc, μ̃S ) 0
0 −μ̃SD(q, E + hsc, μ̃S )

]
U (θso). (F9)

Then, the anomalous contributions are given by

F̂ (E ) = U (θso)

[
R(q, E − hsc, μ̃S )e−iφ/2+iδφL (q,E−hsc,μ̃S ) 0

0 R(q, E + hsc, μ̃S )e−iφ/2+iδφL (q,E+hsc,μ̃S )

]
U+(θso)

+ U+(θso)

[
R(q, E − hsc, μ̃S )e+iφ/2+iδφR (q,E−hsc,μ̃S ) 0

0 R(q, E + hsc, μ̃S )e+iφ/2+iδφR (q,E+hsc,μ̃S )

]
U (θso), (F10)

Here we are interested in the zero energy Andreev bound state, E = 0. Then, Eqs. (F8)–(F10) reduce to

Ĝ1,1(0) = −hscK(q, hsc, μ̃S )U (θso)szU+(θso) + μ̃SD(q, hsc, μ̃S )U (θso)soU+(θso) (F11)

− hscK(q, hsc, μ̃S )U+(θso)szU (θso) + μ̃SD(q, hsc, μ̃S )U+(θso)soU (θso),

Ĝ2,2(0) = −hscK(q, hsc, μ̃S )U (θso)szU+(θso) + μ̃SD(q, hsc, μ̃S )U (θso)soU+(θso) (F12)

− hscK(q, hsc, μ̃S )U+(θso)szU (θso) − μ̃SD(q, hsc, μ̃S )U+(θso)soU (θso),

F̂ (0) = e−iφ/2+iδφL (q,hsc,μ̃S )R(q, hsc, μ̃S )U (θso)soU+(θso)

+ e+iφ/2+iδφR (q,hsc,μ̃S )R(q, hsc, μ̃S )U+(θso)soU (θso), (F13)

where we have used the fact that δφR(q, E , μ̃S ), K(q, E , μ̃S ), D(q, E , μ̃S ), and R(q, E , μ̃S ) are even function of E . Then, we
reach

Ĝ1,1(0) = −2K(q, hsc, μ̃S )hsc cos θsosz + μ̃SD(q, hsc, μ̃S ), (F14)

Ĝ2,2(0) = −2K(q, hsc, μ̃S )hsc cos θsosz − μ̃SD(q, hsc, μ̃S ), (F15)

F̂ (0) = 2R(q, hsc, μ̃S ) cos

[
φ + δφ(q, hsc, μ̃S )

2

]
e+iφeff . (F16)

Solving the reduced determinantal equation (D4) at E = 0, we find

φ± = −δφ(q, hsc, μ̃S ) ± 2 arccos

{
[hd + 2 cos θsot2hscK(q, hsc, μ̃S )]2 − [εd − μ̃SD(q, hsc, μ̃S )]2

4t4R2(q, hsc, μ̃S )

}1/2

. (F17)

These are the phase values at which fermion parity changes occur for the case with spin-orbit interaction and Zeeman magnetic
fields, Fig. 3 of the main text.
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