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In this study, we explore the Josephson current-phase relation within a planar diffuse tunneling supercon-
ducting multilayer junction subjected to a parallel magnetic field. Our investigation involves computing the
supercurrent associated with a fixed jump in the phase of the order parameter at each of the two insulating
interfaces, allowing us to derive the current-phase relation for the junction. Employing perturbation theory in
junction conductance, we determine both the first and second harmonics of the current-phase relation under
specific magnetic field conditions. Notably, the presence of a strong spin-orbit interaction in the middle region
of the junction introduces an anomalous Josephson effect. The interplay between spin-orbit and Zeeman
interactions results in the emergence of an effective vector potential. This specific characteristic induces a
phase shift in each harmonic of the current-phase relation without altering the overall shape of the relation. The
mechanism for the Josephson diode effect is discussed for disordered junctions of multiband superconductors.
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I. INTRODUCTION

The Josephson junction is the key element of supercon-
ducting circuits where the superconducting phase ϕ retains
coherence on a macroscopic scale. The Josephson junction
forms a weak link between the two superconductors [1]. The
weak link can be a constriction, insulating (I) tunnel barrier,
normal (N) metal, ferromagnet (F), semiconductor (Sm), or
other superconductor (S). Regardless of the particular realiza-
tion, the defining property of the Josephson junction is the
current-phase relation J = J (�ϕ) between the change of the
phase of the order parameter (OP) �ϕ across the junction and
the Josephson current J .

As the phase is defined up to a multiple of 2π the current-
phase relation is periodic, J (�ϕ ± 2π ) = J (�ϕ). In addition,
both the time-reversal symmetry (T ) and other parity and/or
paritylike unitary symmetries (I) inverting the current direc-
tion imply J (�ϕ) = −J (−�ϕ). As a result, when at least
one of these symmetries is present, the current-phase relation
satisfies J (�ϕ = 0) = 0. The simplest current-phase relation
satisfying these requirements, e.g., in the SIS junction, is J =
Jc sin(�ϕ), where Jc is the critical current. In contrast, if all
of the above symmetries are broken, J (�ϕ = 0) �= 0. In this,
less common scenario the Josephson junction is said to exhibit
the anomalous Josephson effect (AJE). Previously, the AJE
has been explored in junctions formed by the unconventional
superconductors [2–5].

The simplest model of the current-phase relation of Joseph-
son junction in AJE regime is J = Jc sin(�ϕ + ϕ0). Hence,
the Josephson junctions exhibiting AJE are characterized by
a ϕ0 �= 0, and are referred to as ϕ0-Josephson junction [6].
In superconductor-ferromagnet (SF) structures with broken
T symmetry for some thicknesses of the ferromagnet, the
exchange energy might turn ϕ0 to π (see Refs. [7–12]). This
means that in the ground state of such a π junction the OP
changes the sign across the junction.

To highlight the significance of the AJE consider the
isolated superconducting loop with a ϕ0-Josephson junction
threaded by the Aharonov-Bohm flux � = �ext + LJ , where
�ext is the external magnetic flux, and L is the inductance of
the loop. The fluxoid quantization gives �ϕ = 2π�/�0 up to
a multiple of 2π with the flux quantum �0 = π h̄/ec. Hence,
the current in the loop in the simplest case Jc sin(2π�/�0 +
ϕ0). At �ext = 0 both the current and the flux vanish in the
normal Josephson junction with ϕ0 = 0. In contrast, finite ϕ0

in AJE implies finite current in the loop. From now on we use
units h̄ = kB = c = 1.

Recently, the AJE in the planar superconductor-normal-
superconductor (SNS) structures has been observed exper-
imentally [13–20] and studied theoretically [21–26]. The
Rashba-type spin-orbit interaction breaking the in-plane mir-
ror symmetry along with the magnetic field breaking the T
symmetry lead a finite phase shift ϕ0 as well as an asymmetry
in the Fraunhofer diffraction pattern when a finite magnetic
flux threads the junction of a finite width. In all such cases the
AJE is sensitive to the length of the N region LN as well as
to the presence of the tunnel barriers between the normal and
superconducting regions. For the clean and transparent SNS
structures ϕ0 ∝ L3

N [26] while in the case of SINIS structures
with the insulating low-transparency I regions ϕ0 ∝ LN [22].
For the disordered N region, ϕ0 ∝ L2

N for long junctions, and
ϕ0 ∝ LN for short N regions with tunnel barriers, and for
transparent and short junction ϕ0 ∝ L3

N as in the clean case
[21].

In this paper, we study the current-phase relation and AJE
of the disordered multilayer SIS′IS structures in the planar
geometry. The superconducting S regions and S′ region have
generically different critical temperatures denoted as Tc and
T ′

c , respectively. Correspondingly, the OPs �(T ) �= �′(T ) are
finite for considered temperatures T < min{Tc, T ′

c }. All the
regions are assumed to be in the diffusive limit with the typical
mean-free path being the shortest length scale in the problem.
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The insulating tunnel barriers are assumed to have a low trans-
parency. We find that under the above assumptions spin-orbit
interaction in combination with the in-plane magnetic field
gives rise to the AJE with ϕ0 scaling linearly with the system
size L.

As shown in Ref. [27] the in-plane magnetic field B
generates the emergent vector potential Aeff in the spin-orbit-
coupled superconductor. From this result we demonstrate that
ϕ0 = 2eAeff L is the anomalous phase at least for sufficiently
low transparencies of the I regions. This conclusion holds even
if the harmonics higher than the first one are retained in the
current-phase relation. The linear scaling of ϕ0 has also been
obtained for junctions with the weak link formed due to the
geometric constriction [26].

Within the Ginzburg-Landau phenomenology, the emer-
gent vector potential Aeff can be understood as arising from
the so-called Lifshitz invariants appearing in the free-energy
functional [28]. These terms are quadratic in the OP and are
linear in the OP gradients. In superconductors with the time-
reversal symmetry T , Lifshitz invariants require breaking of
T by an external field, typically an external magnetic field
B. In addition, since gradients and B are polar and axial
vectors, respectively, the inversion center has to be absent.
The existence and the algebraic form of the Lifshitz invari-
ants depend on the point-group symmetry as tabulated in
Ref. [28]. Generally, the Lifshitz invariants inherit their struc-
ture from the spin-orbit-coupling Hamiltonian that is linear in
momentum.

In the bulk, Lifshitz invariant can be gauged out by the
transformation ϕ(r) → ϕ(r) − 2eAeff r. The resulting helical
ground state carries no current. Moreover, the critical current
is isotropic. In other words, no superconducting diode effect
(SDE) arises. It follows that the bulk SDE is finite in cases
when gauging out of Aeff is impossible. For instance, cubic
and/or higher gradient terms in the free energy give rise to
SDE [29].

The ballistic high transparency ϕ0-Josephson junction ex-
hibits SDE once the second or higher harmonics are present
in the current-phase relation [19,30,31]. The effective vector
potential Aeff is not the same for different ballistic channels.
As a result, it cannot be gauged out. Still, this does not imply
a finite SDE. The other important ingredient is the skewness
of the current phase relation. This is guaranteed if the current
has second and/or higher harmonics.

Motivated by these findings we pose the question whether
one can have a universal SDE in the opposite limit of dirty
ϕ0-Josephson junction. We demonstrate that the second har-
monics is necessary for SDE exactly as in the ballistic case.
However, in addition more than one band is required. In this
paper we study in details both aspects of the SDE in dirty
junctions. To this end, we consider the minimal model of S′
superconductor supporting a finite Aeff . We supplement the
Usadel equations describing the OP in S and S′ regions for-
mulated for the Rashba spin-orbit-coupled superconductors
in Ref. [27] by the Kuprianov-Lukichev boundary conditions
[32] properly extended to account for a finite Aeff [21].

We fix the current-carrying state by the phase difference
�ϕ of the OP just behind the interfaces, I in the S electrodes
(see Fig. 1). This parameter is directly measurable. However,
it is more convenient initially to perform all the calculations

FIG. 1. Quasi-2D rectangular SIS′IS junction lying in xy plane.
The insulating barriers I separate S regions (shaded) and S′ region
(white). The width and the length of the S′ region is W and L, respec-
tively. Symmetry operations of the SIS′IS form a D2h point symmetry
group with elements listed in Table I. Only those operations that
exchange the two S regions effectively change the sign of the phase
difference ϕ → −ϕ have to be broken for a finite AJE.

in terms of the phase jump of the OP across each of the
interfaces δϕ. This jump is the same for both of the interfaces
due to symmetry. The total phase jump of the OP �ϕ is the
sum of the two jumps at the boundaries δϕ and the phase
accumulation inside the S′ electrode.

The paper is organized as follows. In Sec. II we discuss
the limitation imposed by symmetry on the model to yield
AJE. This allows us to formulate the minimal model of S′
superconductor with an emerging effective vector potential.
In Sec. III we present the main findings of this work. In
particular, the solution for the current is given up to the second
harmonic in the perturbation theory developed over the barrier
transparency. The self-consistent results for the OP are also
presented. In Sec. IV we lay out the set of Usadel equations,
and describe the basic solution method. The most technical
parts of the calculation are given in the Appendixes.

II. SYMMETRY CONSIDERATIONS

We derive the necessary conditions for the AJE in a thin
quasi-two-dimensional (quasi-2D) SIS′IS Josephson junction
(see Fig. 1). As such our arguments are similar to those of
Ref. [23], where we apply the symmetry operations to the S′
rather than the normal region. Unlike in the planar geometry,
supporting the Fraunhofer field dependence of the critical cur-
rent, we have no perpendicular magnetic field in the S′ region.
This extends the list of symmetry operations that effectively
flip the phase �ϕ across the junction. For our purposes, it is

TABLE I. D2h symmetries label the columns. C2t is the rotation
by π around the t axis, σtt ′ is the mirror in tt ′ plane. Second row
marks by + (-) the symmetries preserving (flipping) the sign of �ϕ.
The x (y) components of B are multiplied by ±1 in accordance with
the entries in the third and fourth rows. The last two rows indicate
which of the symmetries is preserved (�) or broken (X) by Rashba
(αR) and Dresselhaus (βD) spin-orbit couplings.

E C2x C2y C2z σxy σyz σxz I T

�ϕ → −�ϕ + + – – + – + – –
Bx + + – – – + – + –
By + – + – – – + + –
αR � X X � X � � X �
βD � � � � X X X X �
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sufficient to consider the operations acting on both orbital and
spin degrees of freedom. This is justified since the inversion
operation I has to be broken for AJE in any scenario. As a
result, the spin and orbital motions are coupled by the atomic
spin-orbit interaction.

As the supercurrent flow in our model is essentially one
dimensional, we envision the S′ region as a thin rectangular
prism with a pair of opposite bases formed by the two insu-
lating barriers denoted A and B. The phases of the OP in the
S region right next to the insulating barriers ±�ϕ/2 are fixed
by Aharonov-Bohm flux throughout this section.

We start with the S′ which is fully isotropic and consider
separately the symmetry breaking by the in-plane magnetic
field and the spin-orbit coupling. The OP S′ is assumed to re-
spect T and I symmetries. This is in cases with pseudoscalar
OP odd under I the Josephson current.

For the isotropic S′, the rectangular prism has a D2h point
group. Some of the operations exchange the insulating barriers
A ↔ B and some of them leave them unaffected. Exchanging
the barriers amounts to flipping the sign of the phase �ϕ. The
T operation causes the same effect. One way to see this is to
note that the Aharonov-Bohm field is reversed by T .

Table I summarizes the properties of the elements of the
point group D2h. Among the elements of D2h, rotations by π

around the y axis, C2y as well as the rotation C2z, the mirror σyz

in yz plane effectively flips the phase difference �ϕ. The same
is true for the inversion I and T . Therefore, the unitary sym-
metries that have to broken for a finite AJE either extrinsically
by the in-plane field or intrinsically by the spin-orbit couplings
are C2y,2z, σyz, I. The nonunitary symmetries T , T C2x, T σxy,xz

also flip �ϕ and have to be broken.
Before we analyze the effect of the two components of the

field B let us state the general requirements on the system.
First, unless the S′ breaks T spontaneously, the time reversal
has to be broken extrinsically by the applied field(s). Second,
as B is an axial vector, it is invariant under I and therefore
the inversion symmetry has to broken intrinsically. Normally
this causes the spin splitting of the electronic bands. Third,
breaking of the C2z is not required for AJE because an in-plane
field breaks it anyway. And, finally, the σxy has to broken
intrinsically, as otherwise σxyT is the symmetry even for finite
in-plane B. This means that Ising superconductors do not
show AJE.

We now consider the combined action of the in-plane
magnetic field and the spin-orbit coupling. The two types of
spin orbit we consider here are Rashba spin-orbit coupling
HR = αR(σx py − σy px ), where px,y are the components of the
in-plane momentum, and the Dresselhaus spin-orbit interac-
tion of the form HD = βD(σx px − σy py).

As it follows from Table I for B = x̂Bx (B = ŷBy) the Dres-
selhaus (Rashba) spin-orbit coupling causes the AJE, while
Rashba (Dresselhaus) spin-orbit coupling does not.

III. SUMMARY OF RESULTS

In this section we summarize and discuss our main
findings. The junction is modeled as an infinite quasi-two-
dimensional (2D) strip of a transverse width W . The S′ region
has length L and occupies the region |x| < L/2 (see Fig. 1
for the illustration). The analysis is trivially generalized to the

three-dimensional geometry with W replaced by the cross-
section area.

The S (S′) region is assumed to be an s-wave supercon-
ductor with an equilibrium gap �0 (�′

0), the mean-free path

 (
′), and the Fermi velocity vF (v′

F ). Here T is the temper-
ature. The normal-state conductivity in the S region is σ =
2e2ν0D, where ν0 is the density of states per spin, and D =
vF 
/2 is the diffusion coefficient in a quasi-two-dimensional
geometry. Similar definitions apply for the S′ region, where
hereinafter the quantities referring to S and S′ regions are not
primed and primed, respectively.

Each of the two regions is characterized by its respective
coherence length ξ and ξ ′. Here we adopt the operational
definition ξ = √

D/[2�0(T )], ξ ′ = √D′/[2�′
0(T )] appearing

naturally in our analysis. It should be noted that ξ scales as
(T − Tc)−1/4, T close to the critical temperature Tc. This scal-
ing differs from the one expected from the Ginzburg-Landau
theory ξGL ∝ (T − Tc)−1/2. We later comment on this differ-
ence. Both regions are assumed to be in the diffusive limit

 � ξ , 
′ � ξ ′, where the Usadel equations as formulated in
Sec. IV apply.

We are considering the tunneling limit, which implies that
the interface conductance Gint of the interface is much lower
than every other characteristic conductance of the system:1

α= gintξ

σ
� 1, α′ = gintξ

′

σ ′ � 1, αL = gintL

σ ′ � 1, (1)

where gint = Gint/W . Here we present the results of the pertur-
bation theory in small parameters of Eq. (1). In SIS junctions
the perturbation theory in α � 1 accounts for the second
harmonics in the current-phase relation ∝α2 sin(2δϕ) [33].

The absolute value and phase of the OP are even and odd
functions of the coordinate x. Therefore, we specify these
results in the S region for x > L/2. The results below are
obtained by solving the Usadel equations along with the
boundary conditions in S and S′ regions in perturbation theory
in the parameters α and α′, respectively. More specifically we
look for the expressions for the absolute value of the OP, and
its phase in the S region,

|�(x)| = �0 + α�1(x),
(2)

ϕ(x) = eAeffL + δϕ + αϕ1(x).

In the S′ region we similarly have

|�′(x)| = �′
0 + α′�′

1(x),
(3)

ϕ′(x) = 2eAeff x + α′ϕ′
1(x).

In Sec. III A we specify and illustrate the corrections �1

and �′
1 to the absolute value of the OP. In the following

Sec. III B we discuss and illustrate the corrections to the
phase of the OP, ϕ1 and ϕ′

1. The corrections to the current are
presented in Sec. III C. The formalism used to obtain these
results is outlined in Sec. IV. The details of the derivations
are relegated to Appendixes A and B. The expressions for the

1In the paper [33] the tunneling criterion was also discussed. Near
the critical temperature Tc the coherence length ξ should be replaced
by ξGL = √

πD/8(Tc − T ) 	 ξ . This is considered in more details
in Appendix C 4.
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OP and the current for the long L 	 ξ ′ and short L � ξ ′ S′
regions are obtained in the Appendixes C 1 and C 2.

A. Order-parameter absolute value

We start with the results for the absolute value of the OP.
The details of the calculations are presented in Appendix A 1
for the S region and in the Appendix A 3 for the S′ region. As
explained above, it is enough to state the expressions for the
OP in the S region for positive coordinate x > L/2. In terms
of the dimensionless coordinate z = (x − L/2)/ξ > 0,

�1(z)

�0
= −2

(
�0

�′
0

− cos δϕ

)

×
∫ +∞

−∞

dk

2π
eikz L1,1(k) − L3,1(k)

k2L2,0(k) + L3,0(k)
, (4)

where for compactness we have introduced the notations

Ln,m(k) = 2πT

�0

∑
ω>0

sinn θ0 sinm θ ′
0

k2 sin θ0 + 1
, (5a)

L′
n,m(k) = 2πT

�′
0

∑
ω>0

sinn θ ′
0 sinm θ0

k2 sin θ ′
0 + 1

. (5b)

As we ignore the pair breaking, in Eq. (5) we have sin θ0 =
�0/

√
�2

0 + ω2
n and sin θ ′

0 = �′
0/

√
�′2

0 + ω2
n, and the sum-

mation runs over the positive Matsubara frequencies ωn =
(2n + 1)πT .

For the S′ region we have in terms of the dimensionless
coordinate y = (x − L/2)/ξ ′ (−L/ξ ′ < y < 0),

�′
1(y)

�′
0

= −2
ξ ′

L

(
�′

0

�0
− cos δϕ

)

×
∞∑

n=−∞
eikny L′

1,1(kn) − L′
3,1(kn)

k2
nL′

2,0(kn) + L′
3,0(kn)

, (6)

where kn = 2πn/(L/ξ ′).
The expressions given by Eqs. (4) and (6) are illustrated in

Figs. 2 and 3 for �0 > �′
0 and �′

0 > �0, respectively. At the
interface, for the phase jump δϕ � π/2 the larger one of the
two OPs decreases, and the smallest one increases. However,
for δϕ � π/2 both OPs are suppressed. Qualitatively, these
results can be understood as different manifestations of the
proximity effect.

To illustrate this point consider δϕ ≈ 0. In this case, the OP
can be chosen to be a positive real number on both sides of the
interface. The proximity effect is the tendency of the OPs to
approach each other. This means that near the interface the
larger (smaller) of the two OPs is suppressed (grows). When
δϕ ≈ π , the OP remains a real number. Yet, in contrast to the
previous case δϕ ≈ 0 it changes sign across the interfaces.
As before, the OPs tend to equalize. Now it implies that the
positive (negative) OPs gets a negative (positive) correction at
the interface, respectively. Hence, the absolute value of the OP
is everywhere suppressed.

B. Order-parameter phase

We now turn to the discussion of the phase of the OP. The
details of this calculation are presented in Appendix A 2. In

FIG. 2. The absolute value of the OP in the S and S′ regions. The
OP contains the zero current value as well as the first correction in
the α and α′ parameters in accordance with Eqs. (2) and (3). The
corrections in the two regions are given by Eqs. (4) and (6), respec-
tively for the two representative phase jumps at the right insulating
barrier δϕ = π/6 (red) and δϕ = 5π/6 (blue). The ratio of the zero
current OPs (black dashed) is �′

0/�0 = 0.3, T = 0.18Tc, ξ = 0.32L,
ξ ′ = 0.58L, α = 0.032, α′ = 0.058. The OP is normalized to �0.

the S region we have

ϕ1(z) = 2 sin δϕ

∫ +∞

−∞

dk

2π

1 − cos kz

k2

L1,1(k)

L2,0(k)
+ ϕ1(+0).

(7)

To find the constant ϕ1(+0) we use the fact that the jump of
the phase at the boundary is fixed to δϕ and by definition has
no corrections to all orders in α (α′) which implies

αϕ1(+0) = α′ϕ′
1(−0). (8)

The result for the phase in the S′ region is derived in Ap-
pendix A 4 and reads as

ϕ′
1(y) = sin δϕ

2ξ ′

L

+∞∑
n=−∞

cos(kn+1/2y)

k2
n+1/2

L′
1,1(kn+1/2)

L′
2,0(kn+1/2)

. (9)

FIG. 3. All the parameters are the same as in Fig. 2 except for
the ratio �′

0/�0 = 3.
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FIG. 4. The spatial variation of the phase plotted for the same
set of parameters as in the Fig. 2 with the the phase jump set to
δϕ = π/6. The absolute value of the OP is presented in Fig. 2 (red).
The inset shows the spatial variation of the phase with the disconti-
nuity removed for clarity. The dashed lines represent the linear phase
dependencies in the depth of the S′ and S regions. For clarity, the
lines are drawn so that inside the S′ layer, the line turns to zero at
x = 0, and in the S layer, so that the line plot leaves the phase jump
point without vertical shift.

Equations (8) and (9) specify the additive constant in Eq. (7).
The expressions given in Eqs. (7) and (9) are illustrated in
Fig. 4. These results along with Eqs. (4) and (6) fully specify
the self-consistent OP in the presence of a finite current to the
first order in the considered perturbation theory.

C. Josephson current

As the current-carrying state is defined by the phase
jump δϕ at the two interfaces, x = ±L/2, ϕ1(±L/2) =
ϕ′

1(±L/2) = 0 by construction. Although δϕ is a convenient
parameter, it is not directly measured. For this reason below,
at the end of this section, we reformulate the results in terms
of the full phase change �ϕ including in addition to 2δϕ

the phase accumulated in the S′ region. Throughout the sec-
tion any possible pair breaking is ignored.

For the current we present the result as an expansion in the
parameters α and α′ similar to Eqs. (2) and (3) as follows:

J (δϕ) = J1(δϕ) + J (1)
2 (δϕ) + J (2)

2 (δϕ), (10)

where the subscript denotes the order in α (α′). To the second
order we obtain the correction to the first Fourier harmon-
ics in δϕ as well as the second Fourier harmonics denoted
in Eq. (10) as J (1)

2 and J (2)
2 , respectively. The details of

the derivation leading the three contributions are outlined in
Appendix B.

The leading contribution to the current in Eq. (10),

J1(δϕ) = sin δϕ
2πT

eRint

∑
ω>0

�0√
�2

0 + ω2
n

�′
0√

�′2
0 + ω2

n

, (11)

has a form of Ambegaokar-Baratoff formula [34] expressed
solely via the resistance of a single barrier Rint = G−1

int . Here

SISIS

SIS

FIG. 5. This plot shows the amplitude c2 of the second harmonics
J (2)

2 (δϕ) = c2 sin 2δϕ [see Eq. (10)] as a function of the junction
length L. For symmetric contact, c2 is conveniently normalized to
α�0/2eRint . The junction here is to be considered at T = 0 and to
be symmetric D = D′, 
 = 
′, Tc = T ′

c (blue curve, SISIS). In the
limit L 	 ξ ′ the system passes to the symmetric SIS junction, the
result for which was obtained earlier in [33] and is shown here by
a green dashed line. In the limit L → 0 the increasing role of
proximity effect determines the second harmonic amplitude and
leads to nonperturbative effects [36,37]. The red dot dashed line
shows the asymptotics of the answer in the limit L � ξ ′, c2(L) =
α�0/2eRint[0.86 + (16 + 3π 2)ξ ′/24L], obtained from the formulas
(13b), (C6), and (C8).

and throughout the section we ignore the pair-breaking effects
for clarity. The current-phase relation (11) takes the form
J1(δϕ) = Jc sin δϕ defining the critical current Jc which at
T = 0 reads as [35]

Jc = 2�0�
′
0

eRint(�0 + �′
0)

K

( |�0 − �′
0|

�0 + �′
0

)
, (12)

where K (k) = ∫ π/2
0 (1 − k2 sin2 θ )−1/2dθ is the complete el-

liptical integral of the first kind. For a symmetric junction,
K (0) = π/2, therefore, Jc = π�0/2eRint [34].

The corrections to the OP and the phase to the first order
in α (α′) allow us to obtain the Josephson current to the
second order in the same parameters. Specifically, we obtain
the leading correction to the known expression (11). This is
achieved by computing the current at the interface directly
from the boundary conditions and using the results listed in
Secs. III A and III B:

J (1)
2 (δϕ) = − sin δϕ

eRint

[
α

�2
0

�′
0

∫ +∞

−∞

dk

π
S(k)

+α′ �
′2
0

�0

2ξ ′

L

+∞∑
n=−∞

S′(kn)

]
, (13a)

J (2)
2 (δϕ) = sin 2δϕ

2eRint

{
α�0

∫ +∞

−∞

dk

π
[S(k) + P(k)]

+α′�′
0

2ξ ′

L

+∞∑
n=−∞

[S′(kn) + P′(kn+1/2)]

}
. (13b)

184512-5



OSIN, LEVCHENKO, AND KHODAS PHYSICAL REVIEW B 109, 184512 (2024)

FIG. 6. Temperature dependence of the second harmonics am-
plitude plotted for the different ratios between Tc and T ′

c . The
junction is considered in the regime L 	 ξ ′, D = D′, σ = σ ′, α2 =
gint

√
D/2πT ′

c /σ . For Tc �= T ′
c the second harmonic amplitude grows

in a monotonic way which is due to the increasing importance of the
proximity effect in the S′ region. At some temperatures sufficiently
close to T ′

c the perturbation theory breaks down. In contrast, for sym-
metric junction Tc = T ′

c after an initial growth the second harmonic
decreases in agreement with previous works (see Refs. [33,38]). The
dashed curves are asymptotic curves of behavior c2(T ) obtained in
the formulas (C31) (blue) and (C27) (yellow and green). To recalcu-
late in terms of δϕ instead of �ϕ, the α′

L term must be excluded from
the above formulas.

Here, for brevity we have introduced the auxiliary functions

S(k) ≡ [L1,1(k) − L3,1(k)]2

k2L2,0(k) + L3,0(k)
+ L1,2(k) − L3,2(k), (14a)

P(k) ≡ L2,1(k)
L1,1(k)

L2,0(k)
− L1,2(k), (14b)

S′(k) ≡ [L′
1,1(k) − L′

3,1(k)]2

k2L′
2,0(k) + L′

3,0(k)
+ L′

1,2(k) − L′
3,2(k), (14c)

P′(k) ≡ L′
2,1(k)

L′
1,1(k)

L′
2,0(k)

− L′
1,2(k). (14d)

The correction to the first harmonic, Eq. (13), has a neg-
ative sign with respect to the leading contribution (11) as
detailed in Appendix B 1.

In Fig. 5 we plot the amplitude of the second harmonic as
a function of the length L of the S′ region. As expected when
the two superconductors are identical the results match the
expression obtained previously for the SIS system in the limit
L 	 ξ ′.

As we can see, the second harmonic grows substantially
for relatively thin S′ region L � ξ ′. The perturbation theory
we have developed in this work fails to properly describe
length dependence in this limit. The reason for this is the
strong proximity effect in this limit [36,37]. The proximity
effect, on the other hand, is most pronounced when T ′

c < Tc

and T approaches T ′
c . Therefore, in this regime one expects the

breakdown of the perturbation theory. This is demonstrated in
Fig. 6.

The current in Eq. (10) is expressed as a function of the
discontinuity δϕ that the OP phase ϕ experiences at each of the

two interfaces. This parametrization of the current-carrying
state is natural in view of the perturbation theory we applied
to solve the problem.

Experimentally, however, the current is measured in terms
of the total phase change �ϕ that includes the two jumps
δϕ at the barriers as well as the phase ϕcur = ϕ(L/2 − 0) −
ϕ(−L/2 + 0) accumulated in the region S′ sandwiched be-
tween the barriers. By definition, the two phases δϕ and �ϕ

are related as

�ϕ = 2δϕ + ϕcur + 2πn, (15)

where n ∈ Z expresses the general property of the phase of
being defined modulo 2π .

The goal is to write the current in the form

J (�ϕ) = J1(�ϕ) + J (1)
2 (�ϕ) + J (2)

2 (�ϕ), (16)

instead of (10). The separate contributions in Eq. (16) are
obtained in Appendix B 2:

J1(�ϕ) = (−1)n sin

(
�ϕ

2

)
�0

eRint
L1,1(0), (17a)

J (1)
2 (�ϕ) = − (−1)n sin (�ϕ/2)

eRint

×
[
α

�2
0

�′
0

∫ ∞

−∞

dk

π
S(k) + α′ �

′2
0

�0

2ξ ′

L

∞∑
n=−∞

S′(kn)

]
,

(17b)

J (2)
2 (�ϕ) = sin �ϕ

2eRint

{
α�0

∫ ∞

−∞

dk

π
[S(k) + P(k)]

+α′�′
0

2ξ ′

L

∞∑
n=−∞

[S′(kn) + P′(kn+1/2)]

− α′
L

2
�0L1,1(0)R(L/ξ ′)

}
. (17c)

The current-phase relationship (16) is 2π periodic. This is
achieved by a suitable choice of a sign in Eqs. (17a) and (17b),
i.e., choosing the number n. The number n is determined
by the interval in which the value �ϕ lies �ϕ ∈ (π (2n −
1); π (2n + 1)). Thus, the factor (−1)n in the formulas (17a)
and (17b) can be replaced by sgn[cos(�ϕ/2)]. The dimen-
sionless function R(t ) is defined by Eq. (B5).

In Fig. 7 we plot the current-phase relation of SIS′IS junc-
tion with an account of the correction terms. Finally, to take
into account the anomaly in the current-phase relation, one
has to replace the J (�ϕ) as given by Eqs. (16) and (17) by
J (�ϕ − 2eAeffL) in accordance with Eq. (2).

IV. SUMMARY OF THE SOLUTION METHOD

In this section, we formulate the Usadel equations [39,40]
for S and S′ regions separated by an insulating interface.
We consider a particular realization of the junction such that
the spin-orbit coupling is absent (present) in S (S′) regions,
respectively. We then supplement these equations with the
proper boundary conditions in order to match the solutions
across the interfaces that respect continuity of current.
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FIG. 7. The current-phase relation plotted for a symmetric junc-
tion at zero temperature shown as solid (blue) curve. The interface
conductances were chosen to be such that α = α′ = 0.2 and the
length of the middle layer is set equal to the coherence length L = ξ ′.
The overall scale of the current is normalized in units of J1c =
π�0/2eRint. For comparison we also presented CPR without the
correction terms, namely, J (�ϕ) = J1c sin(�ϕ/2)sgn[cos(�ϕ/2)]
shown as dashed (red) curve.

A. Usadel equations in S and S′ regions

We consider an infinitely long planar strip subjected to the
in-plane (Zeeman) magnetic field. In this limit the S regions
are infinitely long and straight. As in a standard situation,
a finite vector potential A exists in both S and S′ regions.
We choose the gauge in such a way that the vector potential
associated with the in-plane magnetic field vanishes within
the junction. This reflects the fact that the in-plane magnetic
field does not couple to the orbital degrees of freedom in the
considered geometry.

The Usadel equations [39] are obeyed by the quasiclassical
Green’s function ǧ(r, ωn) which in the case of spin-singlet
pairing is a 2 × 2 matrix in the particle-hole (Nambu) space.
The Usadel equations are discussed separately for S and S′
regions below.

1. S regions

We start with the S region, where the Usadel equa-
tions have a standard form

iD∇̂(ǧ∇̂ǧ) + [Ȟ, ǧ] = 0, (18)

where the covariant derivative includes magnetic field

∇̂ǧ = ∇ǧ − ieA[τ̌z, ǧ], Ȟ =
(−iωn −�

�∗ iωn

)
. (19)

Here [â, b̂] stands for the commutation relation, and ωn =
πT (2n + 1), n ∈ Z is the Matsubara frequency, and τ̌i are
unit (i = 0) and Pauli matrices for i = x, y, z operating in the
Nambu space.

The quasiclassical Green’s function is normalized ǧ2 = τ0.
In order to resolve this constraint, we employ the trigonomet-
ric parametrization [41]

ǧ(r, ωn) =
(

cos θ −i sin θeiχ

i sin θe−iχ − cos θ

)
, (20)

where θ (r, ωn) is the superconducting angle, χ (r, ωn) is the
phase of the anomalous Green’s function. For a fixed Matsub-
ara frequency ωn the matrix ǧ(ωn) is Hermitian. This implies
that the independent parameters θ and χ are real valued.

The gauge-invariant Usadel equations in the S regions
read as

D

2

d2θ

dx2
+ |�| cos (χ − ϕ) cos θ − ωn sin θ

− D

2
sin θ cos θ

(
dχ

dx

)2

= 0, (21a)

D

2

d

dx

(
dχ

dx
sin2 θ

)
= |�| sin (χ − ϕ) sin θ. (21b)

In Eq. (21) the OP has to be determined from the self-
consistency condition

|�| = πλT
∑

|ω|<ωD

ei(χ−ϕ) sin θ, (22)

where λ is the dimensionless coupling constant, and ωD is the
Debye frequency. The supercurrent in the S region takes the
form

J = 2πν0WDTe
∑

|ω|<ωD

sin2 θ
dχ

dx
. (23)

The charge conservation dJ/dx = 0 follows from Eq. (21b)
and the self-consistency condition (22).

Far from the junction the superconductor in the S region
has to approach the homogeneous current state in the infinite
superconductor. As such a state provides the asymptotic to
our solutions, we state the simplest solutions of the Usadel
equations (21) describing it.

For a homogeneous current, the solution is achieved for
spatially constant dχ/dx and θ implying χ = ϕ according to
Eq. (23). The last term of Eq. (21a) quadratic in phase gradient
term describes the pair-breaking effect of the impurities in
the presence of current. It is responsible for the nonlinear
Meissner effect [42]. This term is proportional to ∝α2 and
therefore does not affect the solutions (2) and (3) valid to the
first order in α. In result, in this work we omit this term.

To the linear order in the phase gradients, the BCS solu-
tions apply, namely,

cos θ = |ωn|/
√

�2
0 + ω2

n, sin θ = �0/

√
�2

0 + ω2
n. (24)

The current then reads as, from Eq. (23),

J = σ

e
W dϕ

dx
πT

∑
|ω|<ωD

�2
0

ω2
n + �2

0

≡ W
4πλ2

1

2e

dϕ

dx
. (25)

Equation (25) yields the standard result for the London
penetration depth of a disordered superconductor λ−2 =
4π2σ |�0| tanh(|�0|/2T ) (see [40], Sec. 22, [43], Sec. 2.12).

2By adding the Maxwell’s equation ∇ × H = 4π j to Eq. (25),
and the connection between the gauge-invariant phase gradient and
the magnetic field ∇ × (∇ϕ − 2eA) = −2eH, the penetration length
can be obtained from the equation for the current ∇2j = j/λ2. Here j
is the current density.
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2. S′ region

The Usadel equations for the S′ region have been derived
in Ref. [27]. In our parametrization defined by Eq. (20) they
take the form

D′

2

d2θ ′

dx2
+ |�′| cos(χ ′ − ϕ′) cos θ ′ − ω sin θ ′

− sin θ ′ cos θ ′
[

D′

2

(
dχ ′

dx
− 2eAeff

)2

+ �′
]

= 0,

(26a)

D′

2

d

dx

[(
dχ ′

dx
− 2eAeff

)
sin2 θ ′

]
= |�′| sin(χ ′ − ϕ′) sin θ ′. (26b)

The pair-breaking parameter �′ results from the combination
of the Zeeman field and the spin-orbit interaction, and for
the Rashba-Zeeman system is given explicitly in Ref. [27].
This term is present even at zero current and we keep it in
Eq. (26) for generality. The finite �′ does not change our
results qualitatively and we present the final expressions in
the limit �′ = 0 for simplicity.

The self-consistency condition has the same form as
Eq. (22),

|�′| = πλ′T
∑

|ω|<ω′
D

ei(χ ′−ϕ′ ) sin θ ′, (27)

where in general the BCS coupling constants are different
in the two regions λ �= λ′. The expression for the current
parallels Eq. (23), except for the additional effective vector
potential Aeff :

J = 2πν ′
0WD′Te

∑
|ω|<ωD

sin2 θ ′
(

dχ ′

dx
− 2eAeff

)
. (28)

B. Boundary conditions

In the limit of low transparency of the interfaces, one
can use the Kupriyanov-Lukichev boundary conditions [32].
In this case the conductance of the barrier per unit width
gint = Gint/W is the only input parameter characterizing the
barrier. The reason for such a universality is the isotropization
of the electron motion within the mean-free path distance from
the barrier.

Thanks to the symmetry of the system it is enough to focus
on the x = +L/2 boundary. In terms of the parametrization
(20) the boundary conditions read as

σ ′ dθ ′

dx
= gint[cos(χ − χ ′) cos θ ′ sin θ − sin θ ′ cos θ ], (29a)

σ
dθ

dx
= gint[cos θ ′ sin θ − cos(χ − χ ′) sin θ ′ cos θ ], (29b)

σ ′

gint
sin2 θ ′

(
dχ ′

dx
− 2eAeff

)
= σ

gint
sin2 θ

dχ

dx

= sin(χ − χ ′) sin θ ′ sin θ. (29c)

Here θ ′(x, ω) and χ ′(x, ω) are taken from the left of the
boundary x = L/2 − 0 and θ (x, ω), χ (x, ω) are taken to the
right x = L/2 + 0, respectively.

In addition to the boundary conditions at the interface, we
must add boundary conditions at infinity corresponding to the
current-carrying state of the system

θ (x → ∞, ω) = const, (30)

dχ (x → ∞, ω)

dx
= dϕ(x → ∞)

dx
= const. (31)

Taking into account the boundary condition (29c), the expres-
sion for the current, Eqs. (23) and (28), takes the form

J = πT

eRint

∑
|ω|<ωD

[sin(χ − χ ′) sin θ ′ sin θ ]x=L/2. (32)

C. Anomalous phase ϕ0

A finite anomalous phase shift ϕ0 is a direct consequence
of the finite Aeff in the S′ region. The magnetic vector poten-
tial A is pure gauge and is absorbed into a gauge-invariant
phase controlling the current. Clearly, therefore, A cannot in
principle give rise to a nonzero ϕ0. This should be contrasted
with the Aeff that is finite only within the S′ region. In this case
gauging out Aeff gives rise to a finite phase across the junction.

To eliminate Aeff from Usadel equations (26) and from the
boundary conditions (29) we perform the following transfor-
mation to the new variables denoted by the bars,

χ̄ ′(x) = χ ′(x) + 2eAeffx,
(33)

ϕ̄′(x) = ϕ′(x) + 2eAeff x

in the S′ region. To ensure the form of the boundary conditions
does not change the transformation in Eq. (33) should be
accompanied by the corresponding transformation in the S
region:

χ̄ (x) =
{
χ (x) + 2eAeff (L/2), x > L/2

χ (x) − 2eAeff (L/2), x < −L/2

ϕ̄(x) =
{
ϕ(x) + 2eAeff (L/2), x > L/2

ϕ(x) − 2eAeff (L/2), x < −L/2.
(34)

In terms of the new, barred variables, the Usadel equations as
well as the boundary conditions are the same as before the
transformation with Aeff set to zero.

We make two observations at this point. First, transfor-
mations defined by Eqs. (33) and (34) do not rely on a
particular way of solving the Usadel equations and accompa-
nying boundary conditions. The elimination of Aeff is entirely
general. For instance, it holds to all orders in the perturbation
theory developed in this work. Second, after the effective
potential has been eliminated the phase of the current-phase
relation shifts by a finite amount. In fact, in view of Eqs. (34)
and (33) we have

ϕ̄(L/2) − ϕ̄(−L/2) = ϕ(L/2) − ϕ(−L/2) + ϕ0, (35)

with the universal anomalous phase shift ϕ0 = 2eAeff L. For
instance, the current is zero for ϕ̄(L/2) = ϕ̄(−L/2). Yet,
this according to Eq. (35) requires ϕ(L/2)=ϕ(−L/2)−ϕ0.
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Stated differently, at zero phase difference ϕ(L/2) −
ϕ(−L/2) = 0 the current is finite since ϕ̄(L/2) �= ϕ̄(−L/2).

Having eliminated Aeff we remove the bars from all the
variables, and work with unbarred notations throughout the
paper. Hence, we solve the problem without Aeff with
the understanding that its effect amounts to the simple phase
shift, Eq. (35).

V. CONCLUSIONS

In this paper, we have studied the current-phase relation of
the quasi-2D SIS′IS Josephson junctions in the diffusive limit.
We have considered the spin-orbit-coupled S′ region placed in
a parallel magnetic field. To compute the current we have em-
ployed the perturbation theory in the small ratio of the barrier
conductance to the conductance of the normal-state material
on a coherence length. The effective potential generated by
the Lifshitz invariant can be eliminated to all orders in the
perturbation theory, leading to the simple phase shift of the
current-phase relation. Hence, we conclude that in the dirty
limit, the only effect of the Lifshitz invariant is the phase shift
of the current-phase relation.

To the first order in the above-mentioned perturbation the-
ory, the current is given by the Ambegaokar-Baratoff formula.
In this limit, the current is determined by the current-phase
relation of the SIS′ junction and is not sensitive to the spatial
extent of the S′ region. Besides, it is not sensitive to the
proximity effect.

In contrast to the second order in the perturbation theory,
the current-phase relation (i) acquires a finite second Joseph-
son harmonics, (ii) is sensitive to the length of the S′ region,
and (iii) is affected by the proximity effect. When the length
of the S′ region exceeds the coherence length, the properties
of the SIS′IS region are determined by the individual SIS′

junctions. When S and S′ have vastly different critical tem-
peratures the solution is limited to the long junctions where
the otherwise strong proximity effect is reduced.

In the simplest case of the single-band superconductors
the critical current is symmetric with respect to the current
direction (see Fig. 7). In contrast to the ballistic junction the
SDE is absent in this limit. The physical reason for this is
that the multiple scattering off the disorder effectively replaces
a large number of ballistic channels by a single collective
diffusive channel. This implies that the current-phase relation
is phase shifted as a whole.

The SDE is finite if the superconductors under consider-
ation contain more than one band [44]. The current-phase
relations in both bands contain the second harmonics. There
are two conditions for the SDE in this case. The ratio of the
second to the first Josephson harmonics has to be different for
the two bands. And, in addition, the phase shifts for the two
bands must be distinct. Clearly, both conditions are generi-
cally satisfied. We illustrate this point in Fig. 8.

The considered mechanism of SDE is somewhat similar
to the one proposed for the ballistic junctions. It is, however,
more universal in a sense that instead of infinitely many
ballistic channels only two effective diffusive channels con-
tribute. Experimentally, the second to the first harmonics ratio
is controlled by the barrier thickness and temperature. The
difference in the two phase shifts is defined by the applied

FIG. 8. Finite SDE is obtained for a two-band superconductor
SIS′IS junction. The SDE arises as the current-phase relation of the
two superconductors contains the second harmonics, and the OP in
the two bands experience different ϕ0 phase shifts.

field as well as the length of the S′ region. While the disor-
dered single-band SIS′IS structures have a reciprocal critical
current, the multiband SIS′IS structure exhibits a finite SDE.
In the latter case, the SDE can be experimentally controlled.
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APPENDIX A: PERTURBATION THEORY

In this Appendix we follow the general ideas of the method
outlined in Ref. [33]. In terms of the dimensionless variables
z ≡ (x − L/2)/ξ and y = (x − L/2)/ξ ′, the boundary condi-
tions (29) take the form (29a)–(29c) as

dθ ′(y = −0)

dy
= α′[cos(χ − χ ′) cos θ ′ sin θ

− sin θ ′ cos θ ]x=L/2, (A1)

dθ (z = +0)

dz
= α[cos θ ′ sin θ

− cos(χ − χ ′) sin θ ′ cos θ ]x=L/2, (A2)

1

α′ sin2 θ ′ dχ ′

dy

∣∣∣∣
−0

= 1

α
sin2 θ

dχ

dz

∣∣∣∣
+0

= sin(χ − χ ′) sin θ ′ sin θ

∣∣∣∣
x=L/2

. (A3)
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Here the dimensionless parameters α and α′ introduced in
Eq. (1) are assumed to be small. Physically the condition

α, α′ � 1 (A4)

follows from the condition of a weakness of the proximity
effect. Indeed, the condition (A4) follows if the deviation
of the absolute value of the OP |�(x)| from the bulk
value is small which implies (A4). This remains correct
even in the Ginzburg-Landau regime as further elaborated in
Appendix C4.

We apply the perturbation theory in the small parameters,
Eq. (A4). This means that we are looking for the solution of
the Usadel equations augmented by the boundary conditions
in the form of an expansion:

θ (z, ω) = θ0(ω) + αθ1(z, ω),

θ ′(y, ω) = θ ′
0(ω) + α′θ ′

1(y, ω), (A5)

�(z) = �0 + α�1(z), �′(y) = �′
0 + α′�′

1(y), (A6)

χ (z, ω) = δϕ + αχ1(z, ω), χ ′(y, ω) = α′χ ′
1(y, ω), (A7)

ϕ(z) = δϕ + αϕ1(z), ϕ′(y) = α′ϕ′
1(y). (A8)

Here we fix the current-carrying state by the parameter δϕ

phase jump of the OP ϕ(x) at each of the two interfaces
x = ±L/2:

δϕ ≡ ϕ(L/2) − ϕ′(L/2) = ϕ′(−L/2) − ϕ(−L/2). (A9)

The phase jump δϕ enters the system of the Usadel equa-
tions via the boundary conditions and determines the strength
of the proximity effect and the current flowing in the system.
It gives a compact expression for the current J and the OP
�. Having obtained the results in terms of δϕ, we recalculate
the current-phase relation in terms of the phase change of the
OP accumulated across the entire S′ region. This procedure is
presented in Appendix B 2

To the leading approximation, α = α′ = 0 the S and S′
regions are disconnected and the OPs take their respective
equilibrium values �0 and �′

0. The current is zero in this case.
In this approximation we have for the phases

θ (z, ω) = θ0(ω) ≡ arctan

(
�0

ω

)
, z > 0 (A10)

χ (z, ω) = ϕ(z) ≡ δϕ, (A11)

θ ′(y, ω) = θ ′
0(ω), −L/ξ ′ < y < 0, (A12)

(�′
0 − ω tan θ ′

0)2 = �′2 tan2 θ ′
0

1 + tan2 θ ′
0

, (A13)

χ ′(y, ω) = ϕ′(y) = 0. (A14)

With the phases θ , θ ′ given by Eqs. (A10) and (A12), and the
phases χ , χ ′ given by Eqs. (A11) and (A14) the current to the
leading order is given by Eq. (32):

J1(δϕ) = sin δϕ
2πT

eRint

∑
ω>0

sin θ0(ω) sin θ ′
0(ω). (A15)

In the limit of weak depairing �′ � max(�′
0, T ), Eq. (A13)

gives tan θ ′
0 ≈ �′

0/ω, and Eq. (A15) reproduces the celebrated
Ambegaokar-Baratoff formula (11).

Notice that the calculation of the current to the first order
in α (α′) requires the solution of the Usadel equations to the
zeroth order. This observation is general: the calculation of
the current to the (
 + 1)th order requires the solutions of the
Usadel equations to the 
th order. Hence, below we present
the solution of the Usadel equations to the first order in α (α′).
This allows us to obtain the current to the second order in the
same parameter(s).

1. Order-parameter amplitude in the S region

In this section we obtain the self-consistent expression
for �1(z) and θ1(z, ω) valid to the first order in perturbation
theory. Neglecting the α2 orders in the Eqs. (21a), (29b), and
real part of Eq. (22), we get the following system of equations:

d2θ1(z, ω)

dz2
+ �1(z)

�0
cos θ0(ω) − θ1(z)

sin θ0(ω)
= 0, (A16)

dθ1

dz
(z = +0) = cos θ ′

0 sin θ0 − cos δϕ sin θ ′
0 cos θ0, (A17)

�1(z) = πλT
∑

|ω|<ωD

θ1(z, ω) cos θ0(ω). (A18)

The resulting system of equations is linear and translationally
invariant. To solve it, we extend �1 and θ1 to the region
z < 0 to impose the boundary condition (A17) and reduce the
problem to the solution of the equations with a potential in the
form of the Dirac delta function. We obtain (in what follows
we omit the dependence of θ0, θ1 on ω for the sake of brevity)

d2θ1

dz2
+ �1

�0
cos θ0 − θ1

sin θ0

= 2(cos θ ′
0 sin θ0 − cos δϕ sin θ ′

0 cos θ0)δ(z). (A19)

Since the system is translationally invariant, we apply the
Fourier transform to solve it [ f (k) = ∫∞

−∞ e−ikz f (z)dz] which
gives

θ1(k) = sin θ0

k2 sin θ0 + 1

[
�1(k)

�0
cos θ0 − 2(cos θ ′

0 sin θ0

− cos δϕ sin θ ′
0 cos θ0)

]
. (A20)

We substitute the resulting relationship between θ1 and �1

[Eq. (A20)] into the self-consistency equation (A18). In order
to eliminate the dependence of θ1 and �1 on the coupling
constant λ and the high-energy cutoff ωD, we use the identity
following from the self-consistency equation (22) for the zero
order on α:

1

λ
= πT

�0

∑
|ω|<ωD

sin θ0. (A21)
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Using the identity (A21), the self-consistency relation (A18)
takes the form

πT
∑

|ω|<ωD

(
�1(k)

�0
sin θ0 − θ1(k) cos θ0

)
= 0. (A22)

Using the formula from Eq. (A20) in Eq. (A22), the log-
arithmically divergent part of the sum is reduced and the
whole sum converges, and hence we can continue the limits
of summation to infinity. As a result, we obtain

�1(k)

�0

= −2

∑
ω>0

sin θ0 cos θ0
k2 sin θ0+1 (cos θ ′

0 sin θ0 − cos δϕ sin θ ′
0 cos θ0)

k2
∑

ω>0
sin2 θ0

k2 sin θ0+1 +∑ω>0
sin3 θ0

k2 sin θ0+1

.

(A23)

In the limit of negligible depairing we obtain the result (4)
of the main text in terms of the auxiliary functions Ln,m(k)
introduced in Eqs. (5). Using the result for �1(z) we also
can find the first correction θ1(z, ω) from Eq. (A20) which
we write here for completeness:

θ1(z > 0, ω) = −
(

�0

�′
0

− cos δϕ

)[∫ +∞

−∞

dk

π
cos(kz)

× sin θ0(ω) cos θ0(ω)

k2 sin θ0(ω) + 1

L1,1(k) − L3,1(k)

k2L2,0(k) + L3,0(k)

− e−z/
√

sin θ0(ω)
√

sin θ0(ω) cos θ0(ω) sin θ ′
0(ω)

]
.

(A24)

2. Phases of the order parameter in the S region

In this section we obtain ϕ1(z) and χ1(z, ω) explicitly in
quadratures.3 Linearization of Eqs. (21b), (29c), and the imag-
inary part of (22) gives

sin θ0(ω)
d2χ1(z, ω)

dz2
= χ1(z, ω) − ϕ1(z), (A25)

dχ1

dz
(+0, ω) = sin δϕ

sin θ ′
0(ω)

sin θ0(ω)
, (A26)∑

|ω|<ωD

[χ1(z, ω) − ϕ1(ω)] sin θ0(ω) = 0. (A27)

In order to take advantage of the symmetrization of solutions
and Fourier transform we rewrite the obtained system of equa-
tions in terms of new functions

φ1(z, ω) ≡ χ1(z, ω) − ϕ1(z), �(z) = ϕ1(z) − z
dϕ1(+0)

dz
.

(A28)

3Note that in Ref. [33], a similar method was used to determine
the phase difference, but in the end the solution was reduced to the
search for solutions of the integral equation, which was carried out
only numerically. In this paper we give an answer how to solve such
systems analytically.

In terms of φ1(z, ω) and �(z), Eqs. (A25)–(A27) take the
form4

sin θ0
d2φ1(z)

dz2
+ sin θ0

d2�(z)

dz2
− φ1(z) = 0, (A29)

dφ1

dz
(+0) = sin δϕ

sin θ ′
0

sin θ0
− dϕ1(+0)

dz
, (A30)∑

|ω|<ωD

φ1(z) sin θ0 = 0. (A31)

Extending the functions φ1(z) and �(z) in an even way to the
region z < 0 we get

sin θ0
d2φ1(z)

dz2
+ sin θ0

d2�(z)

dz2
− φ1(z)

= 2 sin θ0
dφ1(+0)

dz
δ(z). (A32)

Passing to the Fourier images of φ1(z) and �(z) we obtain the
relation between these functions

φ1(k) = 1

k2 sin θ0 + 1

[
−k2�(k) sin θ0 − 2 sin θ0

dφ1(+0)

dz

]
.

(A33)

Using the expression above in the self-consistency equa-
tion (A31) we find �(k). The sum over Matsubara frequencies
in Eq. (A31) converges and ωD can be set equal to infinity:

−k2�(k) = 2
∑
ω>0

[dφ1(+0)/dz] sin2 θ0

k2 sin θ0 + 1

/∑
ω>0

sin2 θ0

k2 sin θ0 + 1
.

(A34)

Dividing both parts of the equation by ik the equation on �(k)
takes the form

ik�(k) = 2

ik

∑
ω>0

[dφ1(+0)/dz] sin2 θ0

k2 sin θ0 + 1

/∑
ω>0

sin2 θ0

k2 sin θ0 + 1

+ Cδ(k). (A35)

We determine the constant C from the condition
d�(+0)/dz = 0

d�(+0)

dz
= lim

z→+0

∫ +∞

−∞

dk

π

sin kz

k

∑
ω>0

[dφ1(+0)/dz] sin2 θ0

k2 sin θ0+1∑
ω>0

sin2 θ0
k2 sin θ0+1

+ C = 0. (A36)

4The convenience of the transition to new variables is due to the
fact that the function φ1(z) tends to zero at infinity since in the bulk
χ (x, ω) = ϕ(x), which avoids singular parts in the Fourier image
of φ1(k) [for example, Dirac delta function δ(k)]. In turn, since
d�/dz(z = 0) = 0, we can insert the boundary condition (A30) in
the Usadel equation only by breaking the derivative of the function
φ1(z) after symmetrization.
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After substituting the variable k → kz under the sign of the integral, we obtain

lim
z→+0

∫ +∞

−∞

dk

π

sin k

k

∑
ω>0

[dφ1(+0)/dz] sin2 θ0

(k/z)2 sin θ0+1∑
ω>0

sin2 θ0
(k/z)2 sin θ0+1

+ C = 0. (A37)

Let us give below the asymptotic behavior of sums in the integral in the limit k/z → ∞:

(
k

z

)2∑
ω>0

sin2 θ0

(k/z)2 sin θ0 + 1
≈

1∼(k/z)2�0/ω∑
ω>0

sin θ0 ≈ �0

2πT

[
ln

(
k2

z2

�0

2πT

)
+ O(1)

]
→ ∞, (A38)

lim
k/z→∞

(
k

z

)2∑
ω>0

[dφ1(+0)/dz] sin2 θ0

(k/z)2 sin θ0 + 1
= lim

k/z→∞

∑
ω>0

dφ1(+0)

dz
sin θ0 = 0. (A39)

The latter identity is a consequence of the self-consistency equation (A31) differentiated with respect to z. Thus, in the limit
k/z → ∞ the integral is 0, and therefore C = 0. Using the formula (A35) and the definition of � [Eq. (A28)] we find ϕ1(z):

ϕ1(z > 0) − ϕ1(+0) =
∫ z

0
dt
∫ +∞

−∞

dk

π

sin kz

k

∑
ω>0

[dφ1(+0)/dz] sin2 θ0

k2 sin θ0+1∑
ω>0

sin2 θ0
k2 sin θ0+1

+ z
dϕ1(+0)

dz
. (A40)

Substituting the boundary condition (A30) into dφ1(+0)/dz in the formula above the linear part zdϕ1(+0)/dz is canceled and
we obtain (the formula below does not imply �′ to be small) the expression in the form of Eq. (7) of the main text:

ϕ1(z > 0) − ϕ1(+0) = sin δϕ

∫ ∞

−∞

dk

π

1 − cos kz

k2

L1,1(k)

L2,0(k)
. (A41)

Since the phase jump of the OP is included in the definition of δϕ, the constant ϕ1(+0) is determined from the condition of
continuity of the ϕ1 correction on different sides of the interface, i.e., αϕ1(+0) = α′ϕ′

1(−0). This constant will be derived in
Appendix (A 4).

Using the relationship between φ1(k) and �(k) [Eq. (A33)], we find φ1(z, ω) [the function χ1(z, ω) can be found with the use
of definition of φ1(z, ω), Eq. (A28)]:

φ1(z > 0, ω) = sin δϕ

(∫ +∞

−∞

dk

π

sin θ0(ω) cos(kz)

k2 sin θ0(ω) + 1

L1,1(k)

L2,0(k)
− sin θ ′

0(ω)√
sin θ0(ω)

e−z/
√

sin θ0(ω)

)
. (A42)

The asymptotic behavior of the function ϕ1(z) [Eq. (A41)] within z → 0 and z → ∞ is given by the formulas

ϕ1(z → 0) − ϕ1(+0) ≈ sin δϕ
�′

0

�0
z, (A43)

ϕ1(z → ∞) ≈ sin δϕ
L1,1(0)

L2,0(0)
z + const. (A44)

The estimation of asymptotic at z → 0 can be done by analyzing the ratio of sums L1,1(k)/L2,0(k) in the limit k → ∞ in a
way similar to the result (A38). To evaluate the asymptotic at z → ∞ passing to the variable kz → k, the functions Ln,m(k/z)
change slowly on the scale of convergence of the integral and therefore the argument within the functions can be replaced by 0.
Since the derivatives of the function ϕ1(z) at z = 0 and ∞ are different, ϕ1(z) behaves nonlinearly for z > 0.

3. S′ region: Order parameter

In this section, we find explicit expressions for �′
1(y) and θ ′

1(y, ω) inside the S′ region, i.e., −L/ξ ′ < y < 0. To this end, we
linearize Eqs. (26a), (29a), and the real part of Eq. (27) with respect to α′:

d2θ ′
1(y, ω)

dy2
+ �′

1(y)

�′
0

cos θ ′
0(ω) − θ ′

1(y, ω)

β(ω)
= 0, (A45)

dθ ′
1(−0, ω)

dy
= −dθ ′

1(−L/ξ ′ + 0, ω)

dy
= cos δϕ cos θ ′

0(ω) sin θ0(ω) − sin θ ′
0(ω) cos θ0(ω), (A46)

�′
1(y) = πλ′T

∑
|ω|<ω′

D

θ ′
1(y, ω) cos θ ′

0(ω), (A47)

where β(ω) is defined the following way:

β−1(ω) ≡ sin θ ′
0(ω) + ω

�′
0

cos θ ′
0(ω) + �′

�′
0

cos 2θ ′
0(ω). (A48)
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The system of equations (A45)–(A47) is linear as in the previous cases, but is defined on the interval y ∈ [−L/ξ ′; 0]. Therefore,
we will use Fourier series expansion to solve this system5:

f (y) =
∞∑

n=−∞
fneikny, kn = 2πn

L/ξ ′ , fn = ξ ′

L

∫ L/2ξ ′

−L/2ξ ′
dy f (y)e−ikny. (A49)

We continue the functions �′
1(y) and θ ′

1(y, ω) in a periodic manner outside the interval y ∈ [−L/ξ ′; 0]. Thus, we can insert
the boundary condition (A46) into the Usadel equation (A45) defined on the entire axis

d2θ ′
1

dy2
+ �′

1

�′
0

cos θ ′
0 − θ ′

1

β
= −2

dθ ′
1

dy
(−0)

∞∑
n=−∞

δ

(
y − L

ξ ′ n
)

. (A50)

Applying the Fourier series expansion to Eq. (A50) we obtain the relationship between the Fourier coefficients

θ ′
1,n = β

k2
nβ + 1

[
�′

1,n

�′
0

cos θ ′
0 + 2

ξ ′

L

dθ ′
1(−0)

dy

]
. (A51)

Similarly as we obtained the relation (A23) we find the Fourier coefficients for �′
1(y) with the use of the self-consistency

equation (A47) and the connection between θ ′
1,n and �′

1,n:

1

λ′ = πT

�′
0

∑
|ω|<ω′

D

sin θ ′
0, (A52)

∑
|ω|<ω′

D

(
�′

1,n

�′
0

sin θ ′
0 − θ ′

1,n cos θ ′
0

)
= 0 (A53)

⇒ �′
1,n

�′
0

= 2
ξ ′

L

∑
ω>0

β cos θ ′
0dθ ′

1(−0)/dy

k2
nβ + 1

(
k2

n

∑
ω>0

β sin θ ′
0

k2
nβ + 1

+
∑
ω>0

sin θ ′
0 − β cos2 θ ′

0

k2
nβ + 1

)−1

. (A54)

In the limit �′ � max(�′
0, T ), β ≈ sin θ ′

0 and we obtain for �′
1(y) and θ ′

1(y, ω) [see the definition of L′
n,m sums, Eq. (5)]

�′
1(y)

�′
0

= −2
ξ ′

L

(
�′

0

�0
− cos δϕ

) ∞∑
n=−∞

cos(kny)
L′

1,1(kn) − L′
3,1(kn)

k2
nL′

2,0(kn) + L′
3,0(kn)

, y ∈ [−L/ξ ′; 0
]
, (A55)

θ ′
1(y, ω) = θ ′

1

(−L/ξ ′ − y, ω
) =

∞∑
n=−∞

sin θ ′
0(ω) cos θ ′

0(ω)

k2
n sin θ ′

0(ω) + 1

�′
1,n

�′
0

cos(kny) −
(

�′
0

�0
− cos δϕ

)

×
√

sin θ ′
0(ω) cos θ ′

0(ω) sin θ0(ω)
cosh[(L/2ξ ′ + y)/

√
sin θ ′

0(ω)]

sinh[L/2ξ ′√sin θ ′
0(ω)]

,

y ∈ [−L/2ξ ′; 0]. (A56)

When deriving θ ′
1(y, ω) we have used the formula

∞∑
n=−∞

einγ

n2 + a2
= π cosh [a(π − |γ |)]

a sinh πa
, γ ∈ [−π ; π ], a ∈ R. (A57)

4. S′ region: Phases

In this section we derive analytic expressions for ϕ′
1(y) and χ ′

1(y, ω). We linearize Eqs. (26b), (29c), and the imaginary part
of Eq. (27) with respect to α′:

sin θ ′
0

d2χ ′
1(y, ω)

dy2
= χ ′

1(y, ω) − ϕ′
1(y), (A58)

dχ ′
1(−0, ω)

dy
= dχ ′

1(−L/ξ ′ + 0, ω)

dy
= sin δϕ

sin θ0(ω)

sin θ ′
0(ω)

, (A59)∑
|ω|<ω′

D

[χ ′
1(y, ω) − ϕ′

1(y)] sin θ ′
0(ω) = 0. (A60)

5The condition dθ ′
1(−0)/dy = −dθ ′

1(−L/ξ ′ + 0)/dy and the junction symmetry with respect to the point y = −L/2ξ ′ means that the
functions �′

1(y) and θ ′
1(y, ω) are periodic with period L/ξ ′.
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Due to the symmetry6 of the system with respect to y = −L/2ξ ′ we set χ ′
1(−L/2ξ ′, ω) = ϕ′

1(−L/2ξ ′) = 0. We define functions
�′(y) and φ′

1(y, ω) as

φ′
1(y, ω) ≡ χ ′

1(y, ω) − ϕ′
1(y), φ′

1(−L/2ξ ′, ω) = 0, y ∈ [−L/ξ ′; 0], (A61)

�′(y) = �′(−L/ξ ′ − y) = ϕ′
1(y) − y

dϕ′
1(−0)

dy
. (A62)

In terms of new variables, Eqs. (A58)–(A60) take the form

sin θ ′
0

d2φ′
1(y, ω)

dy2
+ sin θ ′

0
d2�′(y)

dy2
= φ′

1(y, ω), (A63)

dφ′
1(−0, ω)

dy
= dφ′

1(−L/ξ ′ + 0, ω)

dy
= sin δϕ

sin θ0(ω)

sin θ ′
0(ω)

− dϕ′
1(−0)

dy
, (A64)∑

|ω|<ω′
D

φ′
1(y, ω) sin θ ′

0(ω) = 0. (A65)

Due to relation dχ ′
1(−0, ω)/dy = dχ ′

1(−L/ξ ′ + 0, ω) and the symmetry of the system with respect to y = −L/2ξ ′, the period
of functions φ′

1(y, ω) and �′(y) extended in the even way with respect to y = 0 over the interval [−L/ξ ′; 0] is equal to 2L/ξ ′.
Therefore, the Fourier series expansion will be carried out in wave vectors qn half as large as kn:

f (y) =
∞∑

n=−∞
fneiqny, qn = πn

L/ξ ′ , fn = ξ ′

2L

L/ξ ′∫
−L/ξ ′

dy f (y)e−iqny. (A66)

We insert the boundary condition (A64) into the Usadel equation (A63) using the Dirac delta function

sin θ ′
0

d2φ′
1

dy2
+ sin θ ′

0
d2�′

dy2
= φ′

1 − 2
dφ′

1(−0)

dy
sin θ ′

0

∞∑
n=−∞

(−1)nδ

(
y − 2L

ξ ′ n

)
. (A67)

Applying the Fourier series expansion to the resulting equation, we obtain a connection between the Fourier coefficients φ′
1,n

and �′
n:

φ′
1,n = sin θ ′

0

q2
n sin θ ′

0 + 1

{
−q2

n�
′
n + dφ′

1(−0)

dy

ξ ′

L
[1 − (−1)n]

}
. (A68)

Substituting the above relation into the self-consistency equation (A65) we find the coefficients �′
n (the formula below does not

imply �′ to be small):

�′
n = ξ ′

q2
nL

[1 − (−1)n]

{
sin δϕ

L′
1,1(qn)

L′
2,0(qn)

− dϕ′
1(−0)

dy

}
, �′

0 = 0. (A69)

Thus, we find the expression for ϕ′
1(y) presented in the main text as Eq. (9). Since in Eq. (A69) n only runs through odd values,

it is more convenient to proceed to summation over wave vectors kn+1/2 [Eq. (A49)]:

ϕ′
1(y) = sin δϕ

2ξ ′

L

∞∑
n=−∞

cos(kn+1/2y) − 1

k2
n+1/2

L′
1,1(kn+1/2)

L′
2,0(kn+1/2)

+ ϕ′
1(−0), (A70)

ϕ′
1(−0) = sin δϕ

2ξ ′

L

∞∑
n=−∞

1

k2
n+1/2

L′
1,1(kn+1/2)

L′
2,0(kn+1/2)

. (A71)

The last expression allows us to calculate the constant ϕ1(z = +0) [Eq. (A41)]:

ϕ1(z = +0) = α′

α
ϕ′

1(y = −0). (A72)

6Equations (A58)–(A60) allow searching for solutions in the form of odd functions f (−L/2ξ ′ − y) = − f (−L/2ξ ′ + y).
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We obtain the function φ′
1(y, ω) from Eq. (A69) [the function χ ′

1(y, ω) can be found with the use of definition of φ′
1(y, ω),

Eq. (A61)]:

φ′
1(y, ω) = − sin δϕ

2ξ ′

L

∞∑
n=−∞

sin θ ′
0(ω)

k2
n+1/2 sin θ ′

0(ω) + 1

L′
1,1(kn+1/2)

L′
2,0(kn+1/2)

cos(kn+1/2y) + sin δϕ
sin θ0(ω)√
sin θ ′

0(ω)

sinh[(y + L/2ξ ′)/
√

sin θ ′
0(ω)]

cosh(L/2ξ ′√sin θ ′
0(ω))

.

(A73)

When deriving expressions in Eqs. (A70) and (A73) we used the relation

∞∑
n=−∞

ei(2n+1)γ

(2n + 1)2 + a2
= π

2a

sinh
[(

π
2 − |γ |)a]

cosh (πa/2)
, γ ∈ [−π ; π ]. (A74)

APPENDIX B: JOSEPHSON CURRENT

In this Appendix we derive the current-phase relationship taking into account first-order perturbation theory corrections with
respect to α and α′ for � and ϕ in the S and S′ regions for the case of small �′ � max(�′

0, T ) [see Eqs. (4), (7), (A55), and
(A70)].

We use Eq. (32) and expand it to terms of order α2, α′2:

J (δϕ) = πT

eRint

∑
ω

sin[δϕ + αφ1(0) − α′φ′
1(0)] sin[θ0 + αθ1(0)] sin[θ ′

0 + α′θ ′
1(0)]

= J1(δϕ) + πT

eRint
cos δϕ

∑
ω

sin θ0 sin θ ′
0[αφ1(0) − α′φ′

1(0)]

+ πT

eRint
α sin δϕ

∑
ω

cos θ0 sin θ ′
0θ1(0) + πT

eRint
α′ sin δϕ

∑
ω

sin θ0 cos θ ′
0θ

′
1(0). (B1)

Applying Eqs. (A24), (A42), (A56), and (A73) we obtain the result for the current in the form (10). The leading contribution
J1(δϕ) is given by Eq. (11) and J (1,2)

2 are presented in Eq. (13) of the main text, respectively.

1. The sign of the correction to the first harmonic

The sign of the correction, Eq. (13), is opposite to the main contribution for any choice of parameters such as temperature,
the ratio �0/�

′
0, and length of the junction. Notice that according to the definitions (5),

[L1,1(k) − L3,1(k)]2

k2L2,0(k) + L3,0(k)
> 0, (B2)

L1,2(k) − L3,2(k) = 2πT

�0

∑
ω>0

sin θ0 cos2 θ0 sin2 θ ′
0

k2 sin θ0 + 1
> 0, (B3)

with the same conclusion for L′
n,m functions. From these inequalities it follows that S(k), S′(k) > 0. Therefore, the amplitude of

the first harmonic correction J (1)
2 (δϕ) is always negative.

2. Current-phase relation in terms of phase jump over the S′ region

Using Eq. (A70) for ϕ′
1(y) we find ϕcur:

ϕcur = α′[ϕ′
1(0) − ϕ′

1(−L/ξ ′)] = α′ sin δϕ
2ξ ′

L

∞∑
n=−∞

1 − cos(kn+1/2L/ξ ′)
k2

n+1/2

L′
1,1(kn+1/2)

L′
2,0(kn+1/2)

≡ α′
L sin δϕR(L/ξ ′), (B4)

with, α′
L = gintL/σ ′, where we defined dimensionless function

R(t ) ≡ 8

π2

∞∑
n=0

1

(2n + 1)2

L′
1,1[π (2n + 1)/t]

L′
2,0[π (2n + 1)/t]

. (B5)

In order to rewrite the current-phase relation in terms of �ϕ we find the solution of Eq. (15), δϕ(�ϕ). We consider the tunnel
limit, which assumes that the interface resistance is the largest scale resistance in the system [see Eq. (A4)], in particular
compared to the S′ region resistance, which means α′

L � 1. Up to first order in α′
L included the solution of Eq. (15) have
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the form

δϕ = �ϕ

2
− R(L/ξ ′)

2
α′

L(−1)n sin

(
�ϕ

2

)
− πn. (B6)

Since we are looking for the current-phase relation up to α2 (or equivalently 1/R2
int) the correction term with α′

L in Eq. (B6)
contribute to the correction to the first harmonic and second harmonic only in α3 (1/R3

int). Therefore, we should encounter this
correction only in the main order of the current-phase relation [Ambegaokar-Baratoff formula (A15)]

J1(δϕ) = sin δϕ
2πT

eRint

∑
ω>0

sin θ ′
0 sin θ0 =

[
(−1)n sin

(
�ϕ

2

)
− R(L/ξ ′)

4
α′

L sin (�ϕ)

]
�0

eRint
L1,1(0). (B7)

Thus, we obtain the current-phase relationship J (�ϕ) in the form of Eq. (16) with the separate contributions the functions
J1(�ϕ), J (1)

2 (�ϕ), and J (2)
2 (�ϕ) given by Eq. (17).

APPENDIX C: ASYMPTOTIC BEHAVIOR

In this Appendix we present the asymptotic behavior for the functions �, ϕ, J (1)
2 (�ϕ), and J (2)

2 (�ϕ) as a function of junction
length L and temperature T .

1. Long-junction approximation

In this section we consider the case L 	 ξ ′, �0,�
′
0 � T . Consider the functions �′

1(y) and ϕ′
1(y) [see Eqs. (A55) and

(A70)]. In this approximation, one can move from summation over wave vectors kn to integration over a continuous variable k.
As a result, the equations for �′

1(y) and ϕ′
1(y) take the form (6) and (A41), respectively, up to replacing �0 with �′

0 and vice
versa:

�′
1(y < 0)

�′
0

= −
(

�′
0

�0
− cos δϕ

)∫ +∞

−∞

dk

π
cos(ky)

L′
1,1(k) − L′

3,1(k)

k2L′
2,0(k) + L′

3,0(k)
, (C1)

ϕ′
1(y < 0) − ϕ′

1(0) = sin δϕ

∫ +∞

−∞

dk

π

cos ky − 1

k2

L′
1,1(k)

L′
2,0(k)

. (C2)

In a similar way we get the answer for the current-phase relation corrections (17b) and (17c):

J (1)
2 (�ϕ) = − sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint

[
α

�2
0

�′
0

∫ +∞

−∞

dk

π
S(k) + α′ �

′2
0

�0

∫ +∞

−∞

dk

π
S′(k)

]
, (C3)

J (2)
2 (�ϕ) = sin �ϕ

2eRint

{
α�0

∫ +∞

−∞

dk

π
[S(k) + P(k)] + α′�′

0

∫ +∞

−∞

dk

π
[S′(k) + P′(k)] − α′

L

2
�0L1,1(0)

L′
1,1(0)

L′
2,0(0)

}
. (C4)

Here we have used that the function R(t ) has a finite limit for t → ∞:

R(t → ∞) = 8

π2

∞∑
n=0

1

(2n + 1)2

L′
1,1(0)

L′
2,0(0)

= L′
1,1(0)

L′
2,0(0)

. (C5)

2. Short-junction approximation

Consider the limit L/ξ ′ � 1, �0,�
′
0 � T . When considering Eq. (A55) on �′

1(y) in the sum over wave vectors, all kn 	 1
except k0 = 0. In this case, the asymptotics of the answer is given only by the sum term with k = 0:

�′
1(y)

�′
0

= −
(

�′
0

�0
− cos δϕ

)
2ξ ′

L

L′
1,1(0) − L′

3,1(0)

L′
3,0(0)

. (C6)

When calculating the function ϕ′
1(y), Eq. (A70), since the wave vector k = 0 is absent in the sum, we set the argument inside the

functions L′
n,m(k) equal to infinity to calculate the asymptotics

ϕ′
1(y) ≈ sin δϕ

2ξ ′

L

∞∑
n=−∞

cos(kn+1/2y)

k2
n+1/2

L′
1,1(∞)

L′
2,0(∞)

= sin δϕ

(
y + L

2ξ ′

)
L′

1,1(∞)

L′
2,0(∞)

. (C7)

In the last formula we have used Eq. (A74). Performing operations similar to the derivation of Eq. (A38), we obtain

ϕ′
1(y) = sin δϕ

�0

�′
0

(
y + L

2ξ ′

)
. (C8)
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In the current-phase relation corrections J (1)
2 (�ϕ) and J (2)

2 (�ϕ), the main contribution to the leading order in terms of ξ ′/L 	 1
comes from the term S′(0) in the summation over wave vectors, which gives the answer in the form

J (1)
2 (�ϕ) = − sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint
α′ �

′2
0

�0

2ξ ′

L
S′(0), (C9)

J (2)
2 (�ϕ) = sin �ϕ

2eRint
α′�′

0
2ξ ′

L
S′(0). (C10)

3. Ginzburg-Landau regime

In this section we consider the limit when one the S, S′ regions or both at same time are near their critical temperature
T → Tc(T ′

c ). We consider each case separately, taking into account the dependence on the junction length L.

a. T → Tc < T ′
c , L � ξ′

In this limit �0 � T and we can use the standard equation for �0 from BCS theory (see Ref. [40]) (the same equations can
be written for �′

0 and sin θ ′
0 in the limit T → T ′

c )

�2
0(T ) = 8π2T 2

c

7ζ (3)

(
1 − T

Tc

)
, sin θ0 ≈ �0

|ω| . (C11)

We start from finding the functions �1(z). Since in formula (4) the sums Ln,m(k) vary on a scale of order k ∼ (ω/�0)1/2 	 1,
while the integral converges on a much smaller scale k ∼ [L30(0)/L20(0)]1/2 ∼ (�0/ω)1/2 � 1, we can put the argument k of
the functions Ln,m(k) equal to 0. We obtain

�1(z > 0)

�0
≈ −

(
�0

�′
0

− cos δϕ

)
L11(0)√

L20(0)L30(0)
exp

⎛
⎝−z

√
L30(0)

L20(0)

⎞
⎠. (C12)

Here we give an approximate expression for the sums Ln,m in the formula above (the same kind of evaluation is true for L′
n,m

sums in the limit T → T ′
c ):

La,0(0) = 2πT

�0

∑
ω>0

sina θ0 ≈ 2πT

�0

∑
ω>0

�a
0

ωa
= 2

(
�0

πT

)a−1(
1 − 1

2a

)
ζ (a), (C13)

La,b(0) = 2πT

�0

∑
ω>0

sina θ0 sinb θ ′
0 = 2

(
�0

πT

)a−1 ∞∑
n=0

(
1

2n + 1

)a

sinb θ ′
0(ωn). (C14)

For convenience, we introduce dimensionless parameters and variables that do not depend on temperature T :

ξ1 ≡
√

D

2πTc
, ξ ′

1 ≡
√

D′

2πTc
, ξ2 ≡

√
D

2πT ′
c

, ξ ′
2 ≡

√
D′

2πT ′
c

, (C15)

α1,2 ≡ gintξ1,2

σ
, α′

1,2 ≡ gintξ
′
1,2

σ ′ , (C16)

z1,2 ≡ x − L/2

ξ1,2
, y1,2 ≡ x − L/2

ξ ′
1,2

. (C17)

Thus, neglecting higher orders of �0 � Tc the answer for �1(z) takes the form

�1(z1 > 0)

�0
≈ 8
√

π

7ζ (3)
cos δϕ

(
Tc

�0

)3/2
[ ∞∑

n=0

1

2n + 1
sin θ ′

0(ωn)

]
exp

(
−z1

�0

Tc

√
7ζ (3)

π2

)
. (C18)

Similarly the way we derived Eq. (C12), we can estimate the phase of the OP ϕ1(z) [see Eq. (A41)]:

ϕ1(z1 > 0) − ϕ1(+0) ≈ 2 sin δϕ
L11(0)

L20(0)

∫ +∞

−∞

dk

2π

1 − cos kz

k2
≈ 8

π3/2
z1 sin δϕ

(
Tc

�0

)1/2 ∞∑
n=0

1

2n + 1
sin θ ′

0(ωn). (C19)

Now we find the J (1,2)
2 (�ϕ) corrections to the current. In the considered limit L/ξ ′ 	 1 one can use Eqs. (C3) and (C4). In the

calculation of J (1,2)
2 (�ϕ) we consider the contributions of the S and S′ regions separately and will take into account only the

main contributions with respect to �0 � Tc and L/ξ ′ 	 1.
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The S′ region part in the formula for current J (1)
2 (�ϕ) is proportional to �0/T and should be neglected, while in the S part

the first expression under the integral gives main contribution of the order ∼1 (see Eq. (5) and take into account that the first term
in S(k) under the integral (C3) converges on the scale k ∼ [L30(0)/L20(0)]1/2 ∼ (�0/ω)1/2 � 1). Carrying out similar estimates
for J (2)

2 (�ϕ) we come to the conclusion that the main contribution comes from the first term of the function S(k) in the S region.
Therefore,

J (1)
2 (�ϕ) ≈ − sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint
α

�2
0

π�′
0

∫ +∞

−∞
dk

L2
1,1(0)

k2L2,0(0) + L3,0(0)

≈ −α1 sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint

16π√
7ζ (3)

T 2
c

�′
0

[ ∞∑
n=0

1

2n + 1
sin θ ′

0(ωn)

]2

, (C20)

J (2)
2 (�ϕ) ≈ sin �ϕ

2eRint
α

�0

π

∫ +∞

−∞
dk

L2
1,1(0)

k2L2,0(0) + L3,0(0)
≈ α1 sin �ϕ

eRint

8π√
7ζ (3)

T 2
c

�0

[ ∞∑
n=0

1

2n + 1
sin θ ′

0(ωn)

]2

. (C21)

b. T → Tc < T ′
c , L � ξ′

In this limit, our estimates regarding the contribution of the S region to the response for the current are preserved, but now we
cannot neglect the contribution of the S′ region in J (1)

2 (�ϕ) given by Eqs. (C9). As for J (2)
2 (�ϕ) the contribution of the S′ region

is of the order ∼�2
0ξ

′/L, which we neglect in comparison with S-region contribution ∼T 2
c /�0. We obtain

J (1)
2 (�ϕ) ≈ − sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint

{
α

�2
0

π�′
0

∫ +∞

−∞
dk

L2
1,1(0)

k2L2,0(0) + L3,0(0)

+α′ �
′2
0

�0

2ξ ′

L

[
[L′

1,1(0) − L′
3,1(0)]2

L′
3,0(0)

+ L′
1,2(0) − L′

3,2(0)

]}

≈ − sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint

{
16π√
7ζ (3)

α1
T 2

c

�′
0

( ∞∑
n=0

1

2n + 1
sin θ ′

0(ωn)

)2

+ 4α′
1�0

ξ ′
1

L

[(∑∞
n=0

1
2n+1 sin θ ′

0(ωn) cos2 θ ′
0(ωn)

)2∑∞
n=0 sin3 θ ′

0(ωn)
+

∞∑
n=0

1

(2n + 1)2
sin θ ′

0(ωn) cos2 θ ′
0(ωn)

]}
, (C22)

J (2)
2 (�ϕ) ≈ 8π√

7ζ (3)

α1 sin �ϕ

eRint

T 2
c

�0

( ∞∑
n=0

1

2n + 1
sin θ ′

0(ωn)

)2

. (C23)

c. T → T ′
c < Tc, L � ξ′

In this case the answers for OP absolute value �′
1(y) and phase ϕ′

1(y), and the current corrections J (1)
1,2 (�ϕ) are given by

Eqs. (C18), (C19), and (C20) with replacing all quantities from the S region with quantities from the S′ region and vice versa. In
the case of J (2)

2 (�ϕ), it is also necessary to take into account the contribution of the term α′
L:

�′
1(y2 < 0)

�′
0

≈ 8
√

π

7ζ (3)

( ∞∑
n=0

1

2n + 1
sin θ0(ωn)

)(
T ′

c

�′
0

)3/2

cos δϕ exp

(
y2

�′
0

T ′
c

√
7ζ (3)

π2

)
, (C24)

ϕ′
1(y2 < 0) − ϕ′

1(−0) ≈ 8

π3/2
y2 sin δϕ

(
T ′

c

�′
0

)1/2 ∞∑
n=0

1

2n + 1
sin θ0(ωn), (C25)

J (1)
2 (�ϕ) ≈ − 16π√

7ζ (3)

α′
2 sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint

T ′2
c

�0

[ ∞∑
n=0

1

2n + 1
sin θ0(ωn)

]2

, (C26)

J (2)
2 (�ϕ) ≈ sin �ϕ

eRint

[ ∞∑
n=0

1

2n + 1
sin θ0(ωn)

]2(
8π√
7ζ (3)

α′
2T ′2

c

�′
0

− 4α′
LT ′

c

π

)
, (C27)
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d. T → T ′
c < Tc, L � ξ′

In this limit the junction is short L � ξ ′, thus we can use Eqs. (C6), (C8), (C9), and (C10). Implying �′
0 � T ′

c we obtain

�′
1(y2 < 0)

�′
0

≈ 16π5/2

7ζ (3)
cos δϕ

(
T ′

c

�′
0

)5/2
ξ ′

2

L

∞∑
n=0

1

2n + 1
sin θ0(ωn), (C28)

ϕ′
1(y2) = sin δϕ

�0

�′
0

(
y + L

2ξ ′

)
, (C29)

J (1)
2 (�ϕ) ≈ − 32π3

7ζ (3)

α′
2 sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint

ξ ′
2

L

T ′3
c

�0�
′
0

[ ∞∑
n=0

1

2n + 1
sin θ0(ωn)

]2

, (C30)

J (2)
2 (�ϕ) ≈ 16π3

7ζ (3)

α′
2 sin �ϕ

eRint

ξ ′
2

L

T ′3
c

�′2
0

[ ∞∑
n=0

1

2n + 1
sin θ0(ωn)

]2

. (C31)

e. T → Tc = T ′
c , L � ξ′

In this limit the answer for the current corrections J (1,2)
2 (�ϕ) is the sum of Eqs. (C20)/(C21) and (C26)/(C27), respectively.

Taking into account �0 = �′
0 we obtain

J (1)
2 (�ϕ) ≈ − π3

4
√

7ζ (3)

sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint
(α1 + α′

1)�0, (C32)

J (2)
2 (�ϕ) ≈ �0 sin �ϕ

eRint

[
π3

8
√

7ζ (3)

(
α1 + α′

1

)− π

16
α′

L

�0

Tc

]
. (C33)

These results coincide with the previously derived expressions in Refs. [33,45] under the additional assumption α′
L�0/Tc � α1.

f. T → Tc = T ′
c , L � ξ′

In this limit in order to find J (1,2)
2 (�ϕ) we use Eqs. (17b) and (17c) due to the shortness of the junction. Taking into account

�0 = �′
0 � Tc we obtain

J (1)
2 (δϕ) ≈ − π5

14ζ (3)

α′
1 sin (�ϕ/2)sgn[cos (�ϕ/2)]

eRint

ξ ′
1

L
Tc, (C34)

J (2)
2 (�ϕ) ≈ π5

56ζ (3)

α′
1 sin �ϕ

eRint

ξ ′
1

L
Tc. (C35)

4. Applicability conditions of the perturbation theory

When expanding � (�′) into a series with respect to the parameter α (α′), we assumed that the correction α�1 is small
compared to the bulk value of the order parameter �0 (see Ref. [33]). As a result, we write a criterion for the applicability of the
approximations we have made

α
|�1(z = 0)|

�0
� 1, α′ |�′

1(y = 0)|
�′

0

� 1. (C36)

Here we define the Ginzburg-Landau coherence length as follows:

ξ 2
GL(T ) ≡ πD

8Tc(1 − T/Tc)
, ξ ′2

GL(T ) ≡ πD′

8T ′
c (1 − T/Tc)

, (C37)

αGL ≡ gintξGL

σ
, α′

GL ≡ gintξ
′
GL

σ
. (C38)

For the limit T → Tc � T ′
c the applicability criterion of the perturbation theory in the S region extendable to arbitrary

temperatures T < Tc � T ′
c takes the form

α1 �
(

�0

Tc

)2/ ∞∑
n=0

1

2n + 1
sin θ ′

0(ωn) ⇔ αGL � �0

Tc

/ ∞∑
n=0

1

2n + 1
sin θ ′

0(ωn), Tc < T ′
c (C39)

α1 � �0

Tc
⇔ αGL � 1, Tc = T ′

c . (C40)
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For the limits T → T ′
c � Tc, L/ξ ′ � 1 (L/ξ ′ 	 1) the applicability of the perturbation theory in the S′ region extendable to

arbitrary temperatures T < T ′
c � Tc take the form

α′
GL �

(
�′

0

T ′
c

)2 L

ξ ′
2

/ ∞∑
n=0

1

2n + 1
sin θ0(ωn), T ′

c < Tc, L � ξ ′ (C41)

α′
GL � �′

0

T ′
c

L

ξ ′
2

, T ′
c = Tc, L � ξ ′ (C42)

α′
GL � �′

0

T ′
c

/ ∞∑
n=0

1

2n + 1
sin θ0(ωn), Tc < T ′

c , L 	 ξ ′ (C43)

α′
GL � 1, Tc = T ′

c , L 	 ξ ′. (C44)

The case of L/ξ ′ 	 1 is similar to the results above up to replacing �0, αGL with �′
0, α′

GL and vice versa.
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