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Signatures of Majorana zero modes in an isolated one-dimensional superconductor
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We examine properties of the mean-field wave function of the one-dimensional Kitaev model supporting
Majorana zero modes (MZMs) when restricted to a fixed number of particles. Such wave functions can, in
fact, be realized as exact ground states of interacting number-conserving Hamiltonians and amount to a more
realistic description of the finite isolated superconductors. Akin to their mean-field parent, the fixed-number
wave functions encode a single electron spectral function at zero energy that decays exponentially away from
the edges, with a localization length that agrees with the mean-field value. Based purely on the structure of the
number-projected ground states, we construct the fixed particle number generalization of the MZM operators.
They can be used to compute the edge tunneling conductance; however, notably the value of the zero-bias
conductance remains the same as in the mean-field case, quantized to 2e2/h. We also compute the topological
entanglement entropy for the number-projected wave functions and find that it contains a robust ln(2) component
as well as a logarithmic correction to the mean-field result, which depends on the precise partitioning used to
compute it. The presence of the logarithmic term in the entanglement entropy indicates the absence of a spectral
gap above the ground state; as one introduces fluctuations in the number of particles, the correction vanishes
smoothly.
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I. INTRODUCTION

Majorana fermions are the real solutions of the Dirac
equation that act as their own antiparticles. Remarkably, in
the condensed matter setting, Majorana fermions emerge as
natural quasiparticles in magnetic [1–3] and superconducting
systems that exhibit topological order in one [4] and two
dimensions [5,6]. While the usual Dirac, or complex, fermions
can always be decomposed into pairs of Majorana fermions, it
is only in certain cases, when a system has topological order,
that one can realize spatially unpaired Majorana fermions
as quasiparticles. These states commute with the Hamilto-
nian and thus cost zero energy; they encode the topologically
protected ground-state degeneracy of the system and are re-
ferred to as Majorana zero modes (MZMs). Unlike complex
fermions or Abelian anyons whose exchange only results
in a phase transformation of the wave function, MZMs ex-
hibit non-Abelian exchange statistics, whereby their exchange
results in a unitary transformation on the multidimensional
ground-state manifold. This makes MZMs a valuable compo-
nent of putative quantum computers operating on a quantum
register of qubits encoded in the ground-state degeneracy of a
topological many-body system [7].

While MZMs can be built into certain interacting spin
models exactly, they are realized in superconductors as
zero-energy self-conjugate Bogoliubov quasiparticles γ [4,6],
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satisfying γ 2 = 1 within Bardeen-Cooper-Shrieffer (BCS)
mean field theory. At the mean-field level, superconductors
have a well-defined phase that is conjugate to the number
of electrons; thus, the ground state has a fluctuating num-
ber of electrons. If we consider an electrically isolated piece
of superconductor, such fluctuations are clearly impossible.
Therefore, strictly speaking, the mean-field description cannot
be correct in a finite system, and the survival of MZMs in this
setting becomes a nontrivial problem.

While this could be a matter of concern even in large
superconductors, it is particularly critical in thin-wire su-
perconductors where phase fluctuations are further enhanced
due to reduced spatial dimensionality and system-size effects.
Given that this is precisely the setting of some topologi-
cal quantum computing schemes based on manipulation of
MZMs [8,9], it is important to carefully examine the conse-
quences of going beyond the BCS mean-field limit.

To address the concerns about possible artifacts of the
BCS approximation on Majoranas, we examine the presence
of MZMs in a one-dimensional superconducting chain by
shifting focus from the Hamiltonian to the structure of the
many-body ground state. At the mean-field level, the Kitaev
p-wave superconducting chain has two MZMs in its topolog-
ical phase, one at each edge of the superconductor. Instead of
examining the full mean-field Kitaev ground state with a fixed
phase and a fluctuating number of electrons, we consider the
states obtained when |�K〉 is projected onto a fixed number N
of electrons, |N〉.

It may appear that the number projection procedure
on the BCS wave function is rather arbitrary and not
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guaranteed to give a good approximation of the many-body
wave function in a superconductor with a fixed number of
particles. One can show, however, that the number projection
procedure gives the same result as a variational calculation
of a fixed-number wave function using a number-conserving
interacting Hamiltonian [10]. In the case of a Kitaev wave
function, in fact, it is possible to explicitly construct a
number-conserving Hamiltonian for which |�K〉 is the exact
ground state [11,12]. The Hamiltonian is physically mean-
ingful, with only short-range hopping and interactions. Since
the Hamiltonian does not mix different number sectors, the
fact that |�K〉 is the ground state automatically implies that
that all projections |N〉 are the ground states as well. This
gives us an additional reason to study the properties of |N〉
in detail.

We generally find that the number-projected version of
the Kitaev wave function indeed retains some key features
typically associated with MZMs. Namely, the single-electron
spectral function has a zero-frequency peak near the edges
of the wire, in direct analogy to the mean-field MZMs. We
are also able to construct a proper generalization of Majorana
operators for the fixed number case, which induces exact tran-
sitions between ground states that differ by one in the number
of electrons, |N〉 ↔ |N + 1〉. Similar to the standard mean-
field Majorana operator, this operator (superficially) appears
local. However, in reality, it encodes nonlocal correlations via
a Cooper pair operator that it explicitly contains. The Cooper
pair P† induces a transition from state |N〉 to state |N + 2〉.
The form of the Majorana operators happens to match the
conjecture made recently in Ref. [8].

Focusing exclusively on the many-body ground-state wave
function allows us to make Hamiltonian-independent state-
ments. In this way, our approach is complementary to the
exact solutions of bulk models of topological superconduc-
tors available in some cases [11,13,14], bosonization analysis
[15–18], and DMRG [19,20]. However, it also makes it im-
possible to access some important quantities such as the gap
between the ground state(s) and the excited states. One can
partially address this issue by studying the entanglement prop-
erties of the wave function. For the projected Kitaev wave
function |N〉, we find that the topological entanglement en-
tropy (TEE) exhibits a robust ln(2) value, identical to that
observed for the mean-field wave function in the topolog-
ical phase. However, it additionally contains a logarithmic
correction that is dependent on the precise geometry of the
partitions used to compute the TEE. These results suggest
that such a wave function can only appear as the ground
state of a gapless Hamiltonian [21]. Although this does not
completely preclude the presence of topologically protected
zero modes [22], it may make the dynamical manipulation of
putative MZMs challenging. We leave the numerical study of
braiding and measurement-based computing with MZMs for
future work.

II. FIXED NUMBER WAVE FUNCTION

A. Mean-field model and its ground states

Our main object of study is the number-projected ground
state wave function of Kitaev’s model for the mean-field p-
wave superconductor [4]. To start, let us summarize the main

points about the mean-field model. Its Hamiltonian is

HMF = −
L−1∑
j=1

{ta†
j a j+1 + μa†

j a j − �a ja j+1 + H.c.} (1)

where a j, a†
j , and n j are fermionic annihilation, creation, and

density operators for the jth site, � is the superconducting
gap, t is a hopping amplitude, μ is the chemical potential, and
L is the chain length.

The topological phase persists as long as |μ| < 2t and
is characterized by the appearance of Majorana modes near
the system’s edges when placed on open boundary condi-
tions. For � = t and μ = 0, they are perfectly isolated on
the first and last sites of the chain and can be expressed
in terms of the physical electrons as γ1 = a1 + a†

1 and γ2 =
−i(aL − a†

L ). These operators, as well as the corresponding
complex fermion f = (γ1 + iγ2)/2, have a trivial Heisenberg
evolution. This implies that f is a zero-energy fermion mode.
Its occupation number n f = f † f = {0, 1} can be used to label
the single wire ground states. Explicitly, the two ground states
of the Hamiltonian at the special t = � point of (1) are [23]

|�e,o〉 = 1

2
L−1

2

∑
n1+...+nL=e,o

(a†
1)

n1 (a†
2)

n2
. . . (a†

L )
nL |0〉. (2)

Note that the sum goes over any combination {nj} such that
the total number of electrons is either odd or even, depend-
ing on the sector. Indeed, HMF|�e,o〉 = −(L − 1)|�e,o〉; that
is, odd and even states have the same energy. Moreover,
f |�e〉 = 0 and f †|�e〉 = |�o〉—the odd and even states
are the eigenstates of n f with the eigenvalues 1 and 0,
respectively.

B. Wave function projected to fixed number of particles

The mean-field BCS wave function is a superposition of
states with different numbers of electrons and thus cannot be
literally correct for an isolated system. An alternative varia-
tional treatment in a fixed-number sector, however, yields the
same BCS equations for the transition temperature and the gap
equation [10]. As one could anticipate, the fixed-number gen-
eralized BCS wave function is nothing but the mean-field BCS
wave function, projected onto a fixed number of particles.

Applied to the Kitaev chain, this procedure yields

|N〉 = 1√(L
N

) ∑
n1+...+nL=N

(a†
1)

n1 (a†
2)

n2
. . . (a†

L )
nL |0〉, (3)

Note the change in normalization factor since
(L

N

) = L!
N!(L−N )! is

the number of configurations with N electrons. Even though
the wave functions |N〉 are obtained from the mean-field wave
functions |ψe,o〉, we are interested in identifying Majorana-
like features contained in |N〉, irrespective of their mean-field
origin.

The eigenstates |N〉 could originate from a variety of
Hamiltonians. A particularly nice example is a fully con-
serving Hamiltonian of N spinless fermions hopping on an
L site one-dimensional wire with open boundary conditions
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constructed in Refs. [11,12]:

H = −J
L−1∑
i=1

{a†
j a j+1 + a†

j+1a j − n j − n j+1 + 2n jn j+1}. (4)

Via a Jordan-Wigner transformation, this Hamiltonian can be
written as a spin-1/2 ferromagnetic Heisenberg chain. The
ground states are fully polarized states with a total spin of L/2.
It has the degeneracy L + 1 due to the arbitrary orientation
of the total moment (number of distinct projections of the
total moment on any given axis). The energy gap between
the degenerate ground states and the first excited state cor-
responds to single magnon excitations and hence scales as
L−2. The (L + 1)-fold ground-state degeneracy of the Heisen-
berg model corresponds to the ground-state degeneracy across
L + 1 possible number sectors in the fermion picture.

While not important for most of the present paper, having
number-conserving Hamiltonians H will be needed when we
study a junction-type braiding protocol in future work; here
we focus exclusively on the properties of |N〉.

A final note. In this paper, we restrict ourselves to the
parent mean-field wave function |�K〉 constructed for μ = 0
due to its simplicity. Nevertheless, we will use it to access
|N〉 states with N values that correspond to the filling frac-
tion p other than half filling. Despite this simplification, the
localization length of MZMs predicted by this wave function
agrees remarkably well with the mean-field result even away
from half filling for a large range of p.

III. PROPERTIES OF PROJECTED WAVE FUNCTION

The mean-field solution of the Kitaev Hamiltonian has
a Bogoliubov quasiparticle at zero energy (i.e., at chemical
potential) with probability amplitude concentrated near both
ends of the chain. This quasiparticle leads to a zero-energy
peak in the density of states while tunneling into the edge
sites, but not into the bulk. Each of the edge modes in the
mean-field treatment is associated with a MZM.

In this section, we will see how these features manifest in
the number-projected wave function. We find that the spectral
function retains the zero-energy peaks near the edges and that
it is possible to construct operators analogous to the Majorana
operators that induce transitions between ground states with
N and N + 1 particles, perfectly in the limit of L, N → ∞. In
the process, we also construct a Cooper pair operator, which
switches between states N and N + 2.

A. Edge mode and spectral function

The hallmark of the edge Majorana modes in Kitaev wire
is the appearance of the peak in spectral function at zero
energy near the wire edges. In the mean-field treatment, this
originates from the self-conjugate Bogoliubov quasiparticles
at the edge. In the many-body setting, such quasiparticles a
priori may not exist, but the spectral function can be computed
for any number-projected ground states |N〉. It is defined as

Ai(ω) =
∑

n

|〈ψn|a†
i |N〉|2δ(ω − En + EN ), (5)

where the sum goes over all states |ψn〉 connected to |N〉 by
a single electron creation operator. Let us examine matrix

elements for the transitions between ground states; thus, we
may set |ψn〉 = |N + 1〉. As an example, suppose we try to
add an electron to site 1. The result is

a†
1|N〉 = 1√(L

N

) ∑
n2+...+nL=N

a†
1(a†

2)
n2 (a†

3)
n3

...(a†
L )

nL |0〉. (6)

There are (L − 1
N ) terms in this sum. The overlap with the

number-projected state with N + 1 electrons is therefore

〈N + 1|a†
1|N〉 =

(L−1
N

)
√(L

N

)( L
N+1

) →
√

p(1 − p), (7)

the latter valid in the limit of large L and N , and finite N
L ≡ p.

By symmetry, the same result holds for the matrix element of
a†

L.
We may also compute the amplitude to insert an electron

at an arbitrary site j, 〈N + 1|a†
j |N〉. Due to the anticom-

mutation of fermion operators, we may express this as a
sum over the number of fermions k that are present at the
sites 1 � k � j − 1:

〈N + 1|a†
j |N〉 =

j−1∑
k=0

(−1)k

( j−1
k

)(L− j
N−k

)
√(L

N

)( L
N+1

) . (8)

In the limit of large system size and j � L, the above expres-
sion simplifies as

〈N + 1|a†
j |N〉 =

(L−1
N

)
√(L

N

)( L
N+1

)

×
j−1∑
k=0

(
j − 1

k

)
(−1)k pk (1 − p) j−1−k

=
√

p(1 − p)(1 − 2p) j−1. (9)

The numerator in the prefactor, just as before, is the number of
states where one of N + 1 electrons is fixed in the lattice; the
terms under the sum correspond to the probabilities to have
k electrons in the first j − 1 sites, with the sign determined
by the parity of k. Note that below half filling (p < 0.5), the
matrix element has a positive sign, while above half filling,
it is oscillatory. Exactly at half filling, it is only possible to
create an electron on the first site without exciting outside the
ground-state manifold. Ignoring the sign changes, the general
expression of the inverse decay length is ξ−1

p = ln |1 − 2p|. In
Fig. 1, we compare the exact combinatorial evaluation of the
matrix element and the limiting result of Eq. (9) for a system
of total length L = 500. The agreement is very good near the
edges of the wire.

We can further compare the localization lengths for the
number-projected wave functions with those of the mean-field
ground states of the Kitaev Hamiltonian. At the special point
with t = �, the localization length of Majorana edge modes
in the topological phase is determined by ξ−1 = ln |μ|

2t [4]. The
chemical potential μ is related to average electron density; by
diagonalizing the mean-field Hamiltonian, we find

p(μ) =
∫ 2π

0

dk

4π

[
1 + t cos k + μ√

t2 + μ2 + 2tμ cos k

]
. (10)
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FIG. 1. Matrix element 〈�N+1|a†
k |�N 〉 for different fillings com-

puted using the exact combinatorial expression for L = 500. The
exponentially decaying amplitude for a single-electron matrix el-
ement between |�N 〉 and |�N+1〉 is strongly reminiscent of the
Majorana edge mode in the mean-field model. We further fit the
combinatorial result with the prediction from (9) (dashed lines) and
find good agreement near the edge of the wire.

In a finite-length chain, this value of filling p is only de-
fined approximately due to the uncertainty in the number of
particles that scales as

√
N in the mean-field ground state. The

fluctuation of fillings �p ∼ L−0.5 is also finite at intermediate
fillings. Thus, for large but finite system sizes, the mean-field
wave function at p �= 0.5 can be quite different from the one
at p = 0.5 (chemical potential μ = 0), which we use as the
parent wave function for our number-projected ground states.
Despite this difference, a direct comparison of the mean-field
Majorana localization length as a function of density and the
decay length of the single electron matrix element between the
number-projected ground states [Eq. (9)] shows an excellent
match in a finite range of fillings near p = 0.5; see Fig. 2.

Away from p = 0.5 and towards the boundaries of the
mean-field topological phase (μ = ±2t), the discrepancy
between the strictly linear relation produced by the number-
conserving wave functions and the Kitaev model grows. Also,
while the Kitaev model only has a topological phase within
a fixed range of filling fractions, this number-conserving
scheme finds evidence of Majorana edge modes down to arbi-
trarily low or high filling in the infinite system limit.

Turning back to Eq. (9), we note that creating an electron
at the edge site provides an O(1) matrix element for transition
between ground states with N and N + 1 electrons, which
have opposite parity. In this sense, the single electron operator
acts similarly to the intended behavior of Majorana operators
subject to the constraint that states must have fixed number of
electrons.

Building upon this observation, we next construct an opera-
tor 
 that converts between number-projected states perfectly,
satisfying |N + 1〉 = 
†|N〉. This is in contrast to a†

1 which
only gives a O(1) matrix element as demonstrated in Eq. (7).
The key ingredient to construct 
† is the Cooper pair op-
erator P†, which accomplishes the transition between states
|N + 2〉 = P†|N〉.

FIG. 2. Comparison of localization lengths ξ of Majorana zero
modes for the mean-field Kitaev model (orange) and number-
projected model (blue) as a function of filling fraction p at
t = � = 1. Near half- filling, we see strong agreement between the
mean-field and number-projected predictions. The gray dashed lines
indicate the boundaries of the topological phase for the Kitaev model.

B. Cooper pair creation operators at fixed N

We define the Cooper pair creation operator as the operator
that transforms |�N 〉 into |�N+2〉. It is simple to see that the
ansatz

P† =
L−1∑
i=1

a†
i a†

i+1 (11)

accomplishes precisely that for L, N → ∞, since

〈N + 2|P†|N〉√
〈N |PP†|N〉 → 1. (12)

That is, the normalized state P†|N〉 becomes identical to
|N + 2〉. To leading order in L, Eq. (12) can be written as
(L − 2

N )/
√

( L
N + 2)(L − 4

N − 2), which indeed approaches 1 for any fi-
nite p as L → ∞.

Viewing |N〉 as a superposition of bit strings, it might seem
surprising that P† creates all bit strings with N + 2 particles
since we only add particles on adjacent sites. However, the
set of N + 2 particle states that are reachable from |N〉 via
P† are those that have at least one pair of adjacent particles
somewhere within the system. At fixed filling p = N/L and
N, L → ∞, all random bit strings have such a local pair some-
where within the system with probability 1, meaning that P†

indeed reaches all N + 2 particle states in the large system
limit.

Interestingly, the Cooper pair operator of Eq. (13) is not
unique. It is easy to show that

P†
� =

L−�∑
i=1

a†
i a†

i+� (13)

also works. First, for L, N → ∞:

〈N + 2|a†
i a†

i+�
|N〉 = p(1 − p)(1 − 2p)�−1. (14)

Note that the decay law of this anomalous correlator (14)
is the same as the matrix element for a single-electron
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zero-energy transition between number-projected states in
Eq. (9). Only for p = 0.5 this matrix element vanishes for
� > 1. Normalizing in the same way as Eq. (12) shows that
P†

� |N〉 = sgn(1 − 2p)�−1|N + 2〉.
The redundancy in the definition of the Cooper pair opera-

tor thus implies that they all act identically in the ground-state
manifold of the number-projected states. This follows from
Eq. (12):

〈N |P|N + 2〉〈N + 2|P†|N〉 = 〈N |PP†|N〉.
Inserting the resolution of identity on the right-hand side
shows that the operator P† only connects one ground state to
another ground state with two additional electrons.

This perfect transformation also implies that a linear su-
perposition with arbitrary amplitudes α�,

∑
� α�P� is also a

legitimate Cooper pair operator (see Ref. [12], where αl =
const).

In what follows, we will assume that the Cooper pair oper-
ators are normalized, such that |N + 2〉 = P†|N〉.

C. Majorana operators at fixed N

We are now ready to define the Majorana operators 
†

for the number-projected case as an operator that induces a
perfect transition between ground states with N and N + 1
electrons:

〈N + 1|
†|N〉√
〈N |

†|N〉 → 1. (15)

Motivated by the mean-field analogy and the result in Eq. (9),
we look for operators of the form 


†
L = ∑L

j=1 β j−1(a†
j +

a jP†) at the left edge of the wire and, analogously, 

†
R =

i
∑L

j=1 β j−1(a†
L+1− j − aL+1− jP†) at the right edge of the wire.

Using the fact that P†|N〉 = |N + 2〉, in the limit of large L and
finite p, we find β = (1 − 2p), the same decay constant as in
Eq. (9). The minus sign in front of the annihilation operator
in 
R is evident for p = 0.5 since the parity of permutations
needed to apply a†

L to |N〉 is opposite from that needed to apply
aL to |N + 2〉. In both expressions, we ignore the overlap of

L with 
R, taking the L → ∞ and βL → 0 limits. Including
the normalization, we obtain



†
L = 4p(1 − p)

L∑
j=1

(1 − 2p) j−1(a†
j + a jP

†), (16)



†
R = i × 4p(1 − p)

L∑
j=1

(1 − 2p) j−1(a†
L+1− j − aL+1− jP

†).

(17)

Note that in the limit of large N and L, (
†
L )2 = (
†

R)2 =
P†. Thus, while these operators do not square to unity, as the
canonical Majorana operators do, they square to the opera-
tors that induce a transition between two neighboring ground
states of the same parity, which is as close to the trivial
operator as is possible in the number-conserving case.

Given the form of the ground-state wave functions, Eq. (6),



†
L induces transitions |N〉 → |N + 1〉, while the action of



†
R is more complex, |N〉 → i(−1)N |N + 1〉. This replicates

the canonical fermionic anticommutation relations 

†
L


†
R =

−

†
R


†
L, further extending the correspondence between the


 operators introduced here and the Majorana operators that

appear in the mean-field treatment of the Kitaev model. Note
that this by itself does not imply that the operators 
 are
simple fermionic operators, only that they act as such within
the ground-state manifold. Furthermore, since these operators
are constrained only with respect to their action on the ground
states, they may contain arbitrary terms that act in the orthog-
onal subspace with no visible effect for our purposes.

The 
L,R operators given by Eqs. (16) and (17) have an
explicit dependence on the number of particles N ; however,
this dependence is smooth, only via the filling p = N/L. To
make a connection with the mean-field limit, we recall that
there the number fluctuations are O(N1/2), which translates
into a variation of p of order O(L−1/2) that vanishes in the
large system limit. Therefore, for large systems, we can ex-
pect 
L,R to directly correspond with the mean-field MZM
operator γ . Indeed, 
L and 
R take a form closely similar to
the traditional MZM operators within mean-field theory, with
the annihilation operator part of the Bogoliubov quasiparticle
“decorated” by the Cooper pair operator for the wire. To
convert Eqs. (16) and (17) into the mean-field expressions, it is
sufficient to replace the Cooper pair creation operator with its
expectation value, which is merely the superconducting order
parameter. We finally note that the form of Majorana operators
in Eqs. (16) and (17) is precisely the one conjectured by Lin
and Leggett in Ref. [8].

IV. TOPOLOGICAL ENTANGLEMENT ENTROPY

We can measure the topological robustness of the system
whose ground state is a number-projected wave function by
examining the TEE. Proposed for two-dimensional gapped
topological systems [24], the TEE is designed to isolate a
constant long-range contribution to the entanglement entropy
and can be related to the topological degeneracy of the ground
state. Here we study a one-dimensional analog of this quantity
[25], Stopo, defined as

Stopo = SAB + SBC − SB − SABC, (18)

where SA refers to, for instance, the usual von Neumann
entanglement entropy of subsystem A.

For the mean-field Kitaev Hamiltonian, the behavior of
Stopo has been studied in great detail, even in the presence of
additional interactions, and changes abruptly from 0 to ln(2)
as one enters the topological Kitaev phase from the trivial
phase [25]. For � = t , the computation of the entanglement
entropies can be carried out exactly as in Ref. [25]; one finds
SAB = SB = SABC = ln(2) while SBC = 2 ln(2), which yields
Stopo = ln(2). The ln(2) implies a topological ground-state
degeneracy of 2 in this case, as expected. Note that the exact
size of regions A, B,C, D does not affect the outcome of the
calculations as one should expect for a topologically robust
phase; only SBC is different here, and this can be understood
from the fact that subsystem BC is composed of disjoint
parts as shown in Fig. 3. The ln(2) topological entanglement
entropy can be related to the presence of two MZMs at the
edge of the system. We note crucially, however, that topo-
logical entanglement entropy is not in itself a consequence
of the MZMs. This is most easy to see in the case � = t .
Turning on a boundary term in the Hamiltonian (1) δHMF =
b(a†

La1 − a†
La†

1 + H.c.) converts from the open to the periodic
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FIG. 3. Partitioning of the wave function into four regions
A, B, D,C to compute the topological entanglement entropy.

boundary conditions. It is easy to check that the mean-field
ground-state wave function (2) is also an eigenstate of δHMF

with the eigenvalue (−1)Pb; that is, the state (2) remains
an eigenstate regardless of the boundary conditions—even
though the energy of this state depends on the strength of
the boundary term and the fermion parity P. Clearly, in the
case of periodic (or twisted) boundary conditions, there are
no edge modes. The fact that the ground-state wave function
remains unchanged implies that the TEE as defined in Eq. (18)
is the same for open and periodic boundary conditions. We are
therefore led to conclude that this definition of TEE is sensi-
tive to the topological properties of the state even when the
system has no edges (reminiscent of the appearance of edge
modes in the entanglement spectrum of topological insulators
[26]).

We now evaluate Stopo for the fixed-N projected
states and analyze its robustness compared to the mean-
field limit. A straightforward calculation assuming the
thermodynamic limit N, L → ∞, with p ≡ N/L, q ≡ 1 − p
(details in Appendix A), yields

SL1 = 1
2 ln(2πepqL̃) (19)

where L̃ = L1L2/L depends on the partitioning, L1 + L2 = L,
and e is the Euler’s constant. For entanglement entropy of
disconnected segments, the expression is similar, with L1 now
being the total sum of their lengths, and with an additional
contribution ln(2):

SAB = 1
2 ln (2πepqLABLCD/L),

SBC = 1
2 ln (2πepqLBCLAD/L) + ln(2),

SB = 1
2 ln (2πepqLBLADC/L), (20)

SABC = 1
2 ln (2πepqLABCLD/L),

Stopo = 1
2 ln

(
LABLCDLBCLAD

LBLADCLABCLD

)
+ ln(2),

where subscripts denote which regions of the chain are
included in the entanglement partition.

In the limit where LAB � LCD, SAB ≈ 1
2 ln LAB; the loga-

rithmic behavior of the entanglement entropy indicates that
this wave function is the ground state of a gapless Hamil-
tonian [21], which is indeed true for the Hamiltonian in
Eq. (4). This contrasts with the result for the mean-field
Kitaev wave function for which the contributions to the
entanglement entropy are purely area law, as the parent Hamil-
tonian is gapped. However, we also see that the piece SBC

has a robust geometry independent ln(2) contribution which
ultimately comes from the fact that BC is a subsystem com-
posed of physically disjoint parts. This ln(2) contribution
agrees with the result for the mean-field Kitaev wave func-
tion and is a signature of topological order in the projected
wave function. We thus note that gaplessness does not pre-

FIG. 4. Topological entanglement entropy (TEE) Stopo plotted for
various filling fractions p. As we approach the infinite system limit,
the TEE saturates to a value of ln(8/3) for all p �= 0, 1. This is in
contrast to the mean-field Kitaev limit, where the TEE is log of 2
precisely in the topological phase and zero everywhere else.

clude the presence of robust edge modes which may be
algebraically or even exponentially localized [22]. From the
practical standpoint, however, it may be significantly more
challenging to reach the ground state or to perform braid-
ing operations with such modes without exciting above the
ground state.

To study the TEE more generally, we numerically compute
it in Fig. 4 for arbitrary filling fraction p = N/L for a partic-
ular partitioning of the system, with LA = LB = LC = LD, for
which Stopo = ln(8/3) at arbitrary but finite p [from Eq. (20)].
We find excellent numerical agreement with this result at
p = 1/2 and find that this value is robust for a broad range
of p around half filling. As the filling fraction approaches the
extreme values of p = 0, 1, Stopo approaches 0 as expected.
However, as the system size is increased, this transition
appears to become sharper.

Finally, we note that the picture does not appear to change
much when t �= � �= 1 or μ �= 0, indicating the robustness of
the result of Eq. (20). For further discussion and data to this
effect, see Appendix B.

V. TUNNELING CONDUCTANCE

Having constructed explicit many-body operators 

†
L and



†
R that induce transitions between |N〉 and |N + 1〉, we are

now ready to examine whether the tunneling conductance into
the edges of a wire whose ground states are given by Eq. (6)
differs from the well-known mean-field result of 2e2/h at zero
bias and temperature [27,28].

Without making any assumptions except that the wire has
degenerate ground states |N〉, the coupling to a tunneling
probe is described by the Hamiltonian

H = Hlead + HT

=
∑

k

εkc†
kck −

∑
k,N

′
tk|N + 1〉〈N |ck + tkc†

k |N〉〈N + 1|.

(21)
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Note that the
∑′

N |N + 1〉〈N | are precisely the 

†
L op-

erators that we constructed earlier, assuming that we limit
the range of values of N to [N̄ − M, N̄ + M] with M � N̄
(signified by the prime in the summation above). This is a
standard assumption within the tunneling approximation—
that in the course of tunneling, the system’s macroscopic
density does not deviate significantly from its initial value N̄ .
Here, it helps us to aggregate the tunneling terms for different
N into 


†
L, which are defined for a fixed filling fraction p,

Eq. (16).
To proceed, it is convenient to transform to the conju-

gate phase basis, |N〉 = ∫ 2π

0
dφ

2π
eiNφ|φ〉. In this basis, we have



†
L ∝ ∫ 2π

0 dφdφ′eiφ′
δφ−φ′ |φ′〉〈φ|, where δx is the Dirac delta

function with a finite width ∼1/M. To capture the fermionic
character of the 
 operator, we also introduce an auxiliary
Majorana fermion mode γL, which plays the same role as the
Klein factor in bosonization, yielding



†
L =

∑
N

|N + 1〉〈N |

= γL

∫ 2π

0

dφdφ′

4π2
eiφ′

δφ−φ′ |φ′〉〈φ|. (22)

This allows us to rewrite the tunneling problem Eq. (21)
in terms of the auxiliary Majorana operator γL, with the re-
placement of the number state representation by the phase
representation [29]:

HT =
∫ 2π

0

dφdφ′ δφ−φ′ |φ′〉〈φ|
4π2

∑
k

tk (eiφ′
ck + e−iφ′

c†
k )γL.

(23)

Note that despite the similarity with the mean-field Hamil-
tonian for tunneling into Majorana fermions [30], here there
is no assumption of the ordering of the superconducting
phase—the phase variable φ is a free parameter that has to
be integrated over.

To compute the tunneling conductance, we expand the
operator for the tunneling current:

Î = i

[∑
k

c†
kck, HT

]

= i
∫ 2π

0

dφdφ′ δφ−φ′ |φ′〉〈φ|
4π2

∑
k

tk (eiφ′
ck − e−iφ′

c†
k )γL.

The expectation value of the current as a function of bias
voltage defines the tunneling conductance. It can be computed
using the standard methods of linear response theory [31].

The tunnel current, or any other observable, is computed
as an expectation value over the initial state, which we can
choose, for instance, to be a product state of |N〉 in the su-
perconductor and the filled Fermi sea in the lead, with the
chemical potential different from the superconductor by the
value of the applied voltage.

We can first expand the expression for the tunneling current
to all orders in perturbation theory,

〈I (t )〉 =
∞∑

k=0

(−i)k

k!

∫ t

−∞
dt1 · · ·

∫ tk−1

−∞
dtk (24)

[HT (t1), · · · , [HT (tk ), Î (t )]] · · · ], (25)

where the kth order term in the series has k nested commu-
tators of HT . Note that the time dependence of HT (t j ) comes
from interaction picture evolution by the wire Hamiltonian in
Eq. (4).

In any order of perturbation theory, we will encounter a
contraction over the phase variable due to the insertions of
HT at various points in time. Owing to the presence of the
delta function of width 1/M, these contractions are trivial—
select a single value of the phase for all terms involved, until
we reach the order ∼M. Therefore, the result is equivalent
to computing expectation values at fixed phase φ, and then
taking the average over it. The last step selects only the terms
that are independent of φ. Given our choice of the fixed-N
wave functions as the number-projected version of the mean-
field wave function, the tunnel current into the Majorana states
is guaranteed to match the mean-field result.

We thus conclude that the tunneling conductance (or any
other observable computed perturbatively over the ground
state) would be the same, whether it is computed relative to
the number-conserving Kitaev ground-state or the mean-field
Kitaev ground state. In particular, we should expect the 2e2/h
zero-bias tunneling conductance result to remain unchanged.
An important caveat is that if the Hamiltonian is gapless, there
will generally be other contributions to conductance coming
from tunneling between the lead and the other low-energy
states. However, unlike the Majorana contribution, the tunnel-
ing into these states will become suppressed at weak tunneling
as t2

k and thus can be filtered out.

VI. SUMMARY AND DISCUSSION

Motivated by the question of which properties of MZMs
survive in isolated superconductors, we investigated the
ground state of the Kitaev chain projected to fixed electron
number sectors, |N〉. Using the exact form of these wave
functions at μ = 0, t = �, we were able to demonstrate the
presence of zero-energy edge excitations by explicit computa-
tion of the spectral function at zero energy. The localization
length of these edge modes obtained from these projected
wave functions closely matches the mean-field theory of
MZMs (at appropriate chemical potential) near half filling
but starts to deviate at filling fractions near the boundary of
the topological and trivial phases of the mean-field Kitaev
chain. Further, we constructed many-body Majorana opera-
tors in the number-conserving setting that transition between
different fixed number states. These operators explicitly in-
volve the Cooper pair operator and anticommute within the
ground-state manifold. Unlike the mean-field case, however,
they square to the Cooper pair operator instead of identity. We
further showed that tunneling from a lead into these modified
Majorana operators yields the same quantized value zero-bias
tunneling conductance as in the mean-field case.
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To shed further light on the entanglement structure of
the number-projected wave functions |N〉, we computed their
TEE and found it contains a logarithmic correction to the
mean-field result of ln(2). This can be done analytically
and exactly numerically for t = �,μ = 0. For t �= �,μ �= 0,
we computed TEE by projecting the mean-field Kitaev wave
functions to fixed filling fractions in a finite system; the
computed TEE agrees well with that predicted from the
projected mean-field μ = 0, t = � wave functions, pointing
at the universality of this result. However, the saturation
value that we obtained in (20) contains a geometric piece
that depends on the details of partitioning into subsystems
A, B, D,C. This indicates that the Hamiltonian [such as in
Eq. (4)] that realizes the wave functions |N〉 as ground states
is likely to be gapless. Yet, it is unclear how detrimen-
tal this is to the topological robustness of the MZMs and
thus requires further investigation. Whether it is possible to
solely extract the partition-independent contribution to the
TEE from the number-projected wave functions, e.g., by
placing the system on a nonopen wire geometry, is also an
open question.

In this paper, we focused on Hamiltonian-independent
properties, which could be gleaned purely from the ground-
state wave function. As a result, some important questions
remain outside the scope of this paper. In particular, it is
well established that braiding the mean-field MZMs leads
to nontrivial transformations in the degenerate ground-state
manifold, enabling topological quantum computation. It re-
mains to be seen whether a T-junction braid [23] within a fully
number-conserving regime recovers the non-Abelian statistics
realized in the mean-field limit. The presence of nontopolog-
ical low-energy modes may make braiding very challenging,
both in theory and in practice. It is also worth considering
whether a measurement-based approach to braiding could be
more robust to the presence of low-energy excitations. We
leave these questions to future work.

A related question is whether the procedure of computing
the ground state of a mean-field Hamiltonian and projecting
it to a fixed number can yield a state that is the ground state
of a gapped Hamiltonian. Such a state would enable a more
robust implementation of a dynamical braiding procedure
and allow for a way to solely extract the universal piece of
the TEE.
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APPENDIX A: CALCULATION OF TOPOLOGICAL
ENTANGLEMENT ENTROPY

1. Numerical computation of the entanglement entropy
at arbitrary filling

The wave function of interest is a linear superposition of
all possible bit strings that satisfy the constraint on the total

particle number, Eq. (6). Thus,

|ψN 〉 = 1√(L
N

) ∑
{ABDC}

|ABDC〉, (A1)

where {ABDC} represent all possible configurations of parti-
cles in the entire system satisfying the total particle number
constraint. To evaluate traces over subsystems, it is useful
to divide the Hilbert space into a tensor product of the sub-
space being traced out and its complement. To do so, it
is necessary to take care of the fermionic sign factors. For
instance,

|ABDC〉 = |AB〉 ⊗ |DC〉,
|ABDC〉 = (−1)NANB |B〉 ⊗ |ADC〉,
|ABDC〉 = (−1)NDNB |AD〉 ⊗ |BC〉. (A2)

Then, we can evaluate SAB as follows:

ρAB =
∑
{DC}

〈DC|ψN 〉〈ψN |DC〉

= 1(L
N

) ∑
{DC}

{AB},{AB′}
NAB=NAB′=N ′
NDC=N−N ′

|AB〉〈AB′|

= 1(L
N

) ∑
{DC}

NDC=N−N ′

⎛
⎜⎜⎝ ∑

{AB}
NAB=N ′

|AB〉

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

∑
{AB′}

NAB′=N ′

〈AB′|

⎞
⎟⎟⎟⎠

=
∑
N ′

( LDC

N−N ′
)(LAB

N ′
)

(L
N

) ∣∣ψAB
N ′

〉〈
ψAB

N ′
∣∣

=
∑
N ′

pN ′
∣∣ψAB

N ′
〉〈
ψAB

N ′
∣∣. (A3)

Here, |ψAB
N ′ 〉 are orthonormal wave functions (for different N ′)

that are defined on the AB subsystem. The density matrix is
thus already diagonalized and the entanglement entropy can
be computed directly as SAB = −∑

N ′ pN ′ ln(pN ′ ).
Similar considerations apply for computing the entangle-

ment entropies SB,SABC = SD which are effectively com-
posed of just a single contiguous subsystem.

The computation of ρBC is a bit more involved. We find

ρBC = 1(L
N

) ∑
{AD}

{BC},{BC′}
NBC=NBC′=N ′

NAD=N−N ′

(−1)ND(NB+NB′ )|BC〉〈BC′|

= 1(L
N

) ∑
{AD}

NAD=N−N ′

⎛
⎜⎜⎝ ∑

{BC}
NBC=N ′

(−1)NDNB |BC〉

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎝

∑
{BC′}

NBC′=N ′

(−1)NDNB′ 〈BC′|

⎞
⎟⎟⎟⎠
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= 1(L
N

) ∑
N ′

⎛
⎜⎜⎝ ∑

{AD}
ND=even

∣∣ψBC
N ′,+

〉〈
ψBC

N ′,+
∣∣

+
∑
{AD}

ND=odd

∣∣ψBC
N ′,−

〉〈
ψBC

N ′,−
∣∣
⎞
⎟⎟⎠. (A4)

Here, ∣∣ψBC
N ′,+

〉 =
∑
{BC}

NBC=N ′

|BC〉,

∣∣ψBC
N ′,−

〉 =
∑
{BC}

NBC=N ′

(−1)NB |BC〉 (A5)

are unnormalized wave functions that are orthogonal for dif-
ferent N ′ but not orthogonal to one another at the same
N ′. This is crucial in obtaining the extra ln(2) entropy
in SBC . These wave functions are easy to normalize by
themselves by simply counting the number of distinct con-
figurations {BC} with the number of particles N ′; the sums∑

{AD}
ND=odd/even

can then be replaced by appropriate sums over

binomial coefficients. If one notes that the two wave functions
|ψBC

N ′,+〉, |ψBC
N ′,−〉 are approximately orthogonal in the thermo-

dynamic limit, then the presence of the extra ln(2) factor
becomes evident—the probability of a state with N ′ particles,
pN ′ as evaluated in ρAB is effectively replaced by pN ′/2 for
two orthogonal states with the same total number of particles.
Thus, the entanglement entropy changes from −pN ′ ln(pN ′ ) to
−2 × pN ′/2 ln(pN ′/2) = −pN ′ ln(pN ′ ) − pN ′ ln(2). Summing
over all N ′, the second term yields the extra ln(2) entropy.

More accurately, since |ψBC
N ′,+〉, |ψBC

N ′,−〉 are not precisely
orthogonal in a finite system, we evaluate SBC numerically
by diagonalizing 2 × 2 sectors of the density matrix and com-
puting the von-Neumann entropy with the eigenvalues of this
diagonalized density matrix in the usual way.

2. Analytical calculation of the (topological) entanglement
entropy in the thermodynamic limit

The entanglement entropies noted above can be ana-
lytically computed in the thermodynamic limit using the
following argument. In general, we need to compute the en-
tanglement entropy for a probability distribution with weights

p(n1, n2) =
( l1

n1

)( l2
n2

)
(l

n

) (A6)

and for which n1 + n2 = n, l1 + l2 = l . Assuming we are at a
filling fraction p (and q = 1 − p), we can interpret the com-
binatorial factors as arising from a Binomial distribution and
relate the result, in the thermodynamic limit, to an appropri-
ate Gaussian distribution, using the central limit theorem. In
particular, using(

l

n

)
pnql−n ≈ 1√

2π pql
e− (n−pl )2

2pql , (A7)

and a bit of massaging, we obtain the result

p(n1, n2) ≈ 1√
2π pql1l2/l

e− (n1−pl1 )2

2pql1 l2/l . (A8)

Thus, the weights of the probability distribution of interest
can be interpreted as arising from a Gaussian of width σ 2 =
pql1l2/l , and mean μ = pl1.

It is simple to show that the von Neumann entropy associ-
ated with a Gaussian random variable is given by SGaussian =
1
2 ln(2πeσ 2). Using the value σ 2 = pql1l2/l for the distribu-
tion of interest, we obtain the result quoted in the main text in
Eq. (19). The entropies of contiguous blocks can be obtained
as a direct application of this result, and the entanglement
entropy of the discontiguous block, SBC , can be obtained by
noting the extra factor of 2 degeneracy in the entanglement
spectrum as noted above.

APPENDIX B: TOPOLOGICAL ENTANGLEMENT
ENTROPY COMPUTATION FOR GENERAL t, μ, �

In this Appendix, we discuss results for the TEE obtained
for projected wave functions at arbitrary t, μ,� beyond the
t = � and μ = 0 limit considered in the main text; the results
are shown in Fig. 5. Using exact diagonalization methods, we
compute the TEE of the mean-field wave function computed
at arbitrary t, μ,� that is then projected to a fixed particle
number represented by p, the filling factor, in the plots. In
Fig. 5 of the main text, we showed that when fixing μ = 0
one finds good agreement with the theoretical prediction in
Eq. (20) at filling fractions away from p = 0, 1, barring fi-
nite size deviations. Varying μ, we find that away from the
transition, the TEE again robustly clings on to the theoretical
prediction from μ = 0 for a large range of filling fractions
p away from p = 0, 1. Beyond the transition into the trivial
regime at |μ| > 2t , the entanglement entropy indeed starts
deviating significantly from the theoretical prediction in the
topological regime.

Note that, in general, away from the special t = �,μ = 0
point, the ground state will be only approximately doubly
degenerate in the topological phase, while the gap is finite
in the trivial phase. Since all eigenstates have definite parity,
we note that we can only extract wave functions with fixed
particle number |N〉 (and associated filling fractions p) if they
have the same parity as the true ground state. However, in
the plots below, we show the results for the TEE even for
wave functions |N〉 that correspond to the opposite parity as
the true ground state. In the topological regime, since the
degeneracy is exponentially small in the system size, the TEE
Stopo is approximately the same for wave functions |N〉 with
opposite parity. In the nontopological regime, however, we see
significant oscillations in Stopo as the gap becomes finite. The
lower values in the oscillations correspond to the states |N〉
extracted from the true ground state.

Further examining the plots, we note that if we keep μ =
0 fixed and vary t �= �, we find that for a large range of
fillings, the saturation value of the TEE deviates from the
value for t = �. However, this is a finite-size effect, as can
be observed by comparing the computation of the TEE for
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FIG. 5. Calculation of the topological entanglement entropy using exact diagonalization for (a) fixed t = � = 1, L = 16, varying μ; (b),
(d) fixed μ = 0, � = 1, L = 16, and L = 20, respectively; and (c) fixed μ = 0, t = � = 1, and different partitions. Dashed lines correspond
to the prediction according to Eq. (20) of the main text.

L = 16 and L = 20. Finally, to probe the nonuniversal piece
of the TEE, we plot Stopo for various entanglement partitions

(LA, LB, LC, LD); the numerics show very good agreement
with Eq. (20).
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