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Topological superconductivity induced by a Kitaev spin liquid
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We study the effective low-energy fermionic theory of the Kondo-Kitaev model to leading order in the Kondo
coupling. Our main goal is to understand the nature of the superconducting instability induced in the proximate
metal due to its coupling to spin fluctuations of the spin liquid. The special combination of the low-energy modes
of a graphene-like metal and the form of the interaction induced by the Majorana excitations of the spin liquid
furnish chiral superconducting order with px + ipy symmetry. Computing its response to a U(1) gauge field
moreover shows that this superconducting state is topologically nontrivial, characterized by a first Chern number
of ±2.
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I. INTRODUCTION

Understanding, and suggesting platforms for topologi-
cal superconductivity (TSC) has become a central problem
in condensed-matter physics, largely motivated by its pos-
sible application in topological quantum computing [1–3].
Since materials that support this phase intrinsically are rare
in nature, the search for TSC has mainly been restricted
to interfaces between exotic magnets and conventional su-
perconductors [4–7]. In particular, a combination of strong
spin-orbit coupling and Zeeman fields is conjectured to induce
TSC in the superconductors of these proposed systems [2].
More recently, a system comprised of a skyrmion crystal inter-
faced with a normal metal was shown theoretically to produce
TSC at the interface, effectively removing the indispensable
component of previous suggestions, namely conventional su-
perconductors [8]. The model of the present paper is similar
in spirit, in the sense that neither Zeeman fields nor conven-
tional superconductors are required for the spin fluctuations to
induce TSC.

The study of quantum spin liquid (QSL) states of spin
systems [9–11], and particularly the construction of exactly
solvable Hamiltonians featuring QSL ground states [12], has
inspired the search for TSC. QSL states are exotic ground
states of spin systems that do not feature long-range magnetic
order, but rather display topological order and host fraction-
alized excitations [13,14]. While most of these properties are
poorly understood within traditional perturbative approaches,
there are fortunate rare cases where we are guided by ex-
act solutions. One example of this is the Kitaev honeycomb
model [12], which consists of localized spins on a honeycomb
lattice interacting through link-dependent Ising interactions.
For such systems coupled to itinerant fermions, it is natural
to ask whether the associated spin fluctuations can induce
superconductivity in the metal, and if so, to what extent
this state inherits the topological nature of the parent QSL.
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Following recent developments in the theory of Kitaev mate-
rials that couple spin models with (Kitaev) QSL ground states
to conduction electrons [15–19], the present paper aims to
answer these questions.

To this end, we consider a system comprised of local-
ized spins on a honeycomb lattice governed by the Kitaev
interaction with interaction strength K , itinerant electrons on
a proximate honeycomb lattice, and couple these through a
Kondo interaction with interaction strength J [see Eq. (3)].
For J = 0 and for sufficiently low temperatures, the system
exhibits the QSL phase. The perturbative regime of J/K finite
but small is continuously connected to the J = 0 limit [15,20].
However, it is conceivable that a finite, small J will induce an
attractive interaction between the conduction electrons, facil-
itating a superconducting instability of the Fermi sea. This is
analogous to the mechanism by which magnons of a ferro-
or antiferromagnet Kondo coupled to a conductor mediates
superconductivity [21–26], except that the mediators, in the
present case, are the fractionalized excitations of the spin liq-
uid. Increasing J/K beyond the perturbative regime J/K � 1,
conduction electrons will hybridize with the localized spins
and form Kondo singlets [27,28]. At sufficiently low temper-
atures, the metal will turn superconducting whereas at higher
temperatures it will be a heavy Fermi liquid. The transition
between the QSL phase and this superconducting phase will
generically be separated by a first-order transition, as it orig-
inates with the competition between two orders [29–31]. The
phase diagram of this system is schematically illustrated in
Fig. 1. The previous studies concerned with the superconduc-
tivity of this model chiefly focus on the phase denoted by SC
in this figure [15–17]. The regime we focus on is illustrated
as the pink region, fading over into a regime inaccessible to
our study, which is schematically extended by dashed lines to
qualitatively agree with those of [15,20].

II. THE KONDO-KITAEV MODEL

We consider a honeycomb lattice � � i with lattice con-
stant a. To each vertex of this bipartite lattice, we associate
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FIG. 1. Schematic phase diagram of the system, extended from
Refs. [15,20]. The quantum spin liquid phase is denoted by QSL
and the superconducting state where superconductivity of conduction
electrons coexists with the spin liquid phase is denoted by QSL+SC.
Beyond the perturbative regime of J/K one finds a heavy Fermi-
liquid (HFL) and a superconducting phase (SC), both due to the
Kondo effect as described by Ref. [20]. The wiggly line represents a
first-order transition separating the fractionalized Fermi-liquid phase
from the nonfractionalized one, due to competing order parameters.

a fermionic degree of freedom with creation and annihilation
operators c†

iσ and ciσ obeying the canonical anticommutation
relations

{ciα, c†
jβ} = δi jδαβ and

{c†
iα, c†

jβ} = 0 = {ciα, c jβ} (1)

and a spin-1/2 degree of freedom, whose components satisfy[
Sa

i , Sb
j

] = iδi jε
abcSc

i , a, b, c ∈ {x, y, z}, (2)

with summation over repeated indices. In the following,
we use Latin letters i jk . . . for lattice points, Greek letters
αβγ . . . for spin indices of itinerant fermions, and sans serif
letters abc . . . for components of the localized spin operators
and link indices (to be introduced shortly).

The Hamiltonian of the Kondo–Kitaev model is given by

H := Hel + HK + HJ , (3a)

where

Hel := −t
∑
〈i, j〉

∑
σ

c†
iσ c jσ − μ

∑
i∈�

∑
σ

c†
iσ ciσ , (3b)

HK := −K
3∑

a=1

∑
〈i, j〉a

Sa
i Sa

j , (3c)

HJ := +J

2

∑
i∈�

∑
αβ

3∑
a=1

c†
iασ a

αβciβSa
i . (3d)

The symbol 〈i, j〉a denotes the lattice point pair i and j corre-
sponding to the a link of the honeycomb lattice, as illustrated
in Fig. 2. The Kitaev interaction assigns an Ising interaction
on link a along the direction a in spin space.

Before studying the complete Kondo-Kitaev model we will
consider the mean-field ground state of HK on its own. To

FIG. 2. The honeycomb lattice with the x, y, and z links colored
in green, red, and blue respectively. The filled (hollow) lattice sites
belong to the A (B) sublattice, and the vectors n1,2 := a(

√
3,±1)T/2

are the lattice translation vectors of the hexagonal lattice.

this end, we employ a Majorana representation of the lo-
calized spins, discussed extensively in the literature [15,32].
We briefly revisit some properties of this representation for
completeness and refer back to these references for details.

A. Majorana representation of localized spins

For studying spin liquids, we start with a slave fermion
representation of the spin operators in terms of fermionic
creation and annihilation operators f †

iσ and fiσ as [33,34]

Si = 1
2 f †

iασαβ fiβ, (4)

which are constrained to satisfy ni↑ + ni↓ = 1 at the operator
level. By arranging these operators in a matrix

Fi :=
(

fi↑ − f †
i↓

fi↓ f †
i↑,

)
, (5)

one can translate the representation into one of Majorana
fermions, satisfying (χμ

i )† = χ
μ
i and the anticommutation re-

lations {
χ

μ
i , χν

j

} = δμνδi j, (6)

where μ, ν = 0, . . . , 3 [12,35]. The correspondence is estab-
lished by letting [32]

Fi = 1√
2

(
σ 0χ0

i +
3∑

a=1

iσ aχa
i

)
. (7)

Combining this expression with Eqs. (4) and (5), one finds
that

Sa
i = 1

4
trF †

i σ aFi = i

2

(
χ0

i χa
i − 1

2
εabcχb

i χc
i

)
, (8)

while the single-occupancy constraint can be cast in the form

Ja
i := − i

2

(
χ0

i χa
i + 1

2
εabcχb

i χc
i

)
= 0. (9)

In the above equation, we introduced the isospin Ja, and the
constraint identifies the physical Hilbert space with that of
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isospin singlets. Following Ref. [15], we write Eqs. (8) and
(9) in matrix form

Si = i

4
χ

μ
i Mμνχ

ν
i and Ji = i

4
χ

μ
i Gμνχ

ν
i , (10)

where the SO(4) matrices are given by

M1 := σ 3 ⊗ iσ 2 M2 := iσ 2 ⊗ σ 0 M3 := σ 1 ⊗ iσ 2,

G1 := −σ 0 ⊗ iσ 2 G2 := −iσ 2 ⊗ σ 3 G3 := −iσ 2 ⊗ σ 1.

Inspired by Kitaev’s exact solution [12] and assuming isospin-
singlet Majoranas, we can modify the spin operator to

Sa
K,i = i

4
χ

μ
i [Ma − Ga]μνχ

ν
i = iχ0

i χa
i . (11)

B. Functional integral formulation

In the functional integral representation, we give the anti-
commuting operators imaginary time dependence and replace
them with Grassmann-valued fields

ciσ (τ ) → ψiσ (τ ) and c†
iσ (τ ) → ψ̄iσ (τ ),

and likewise for the Majorana operators χ
μ
i (τ ), except that we

do not distinguish between the symbol used for the operator
and the Grassmann field in this case.

For the moment, we use the general Majorana spin repre-
sentation given in Eq. (10), such that the Kitaev interaction is
given by

SK = −K
∫ β

0
dτ

3∑
a=1

∑
〈i, j〉a

1

42
Ma

μνMa
ρσ iχμ

i χν
i iχρ

j χσ
j

≡ −
∫ β

0
dτ

3∑
a=1

∑
〈i, j〉a

V a
μνρσ iχμ

i χν
j iχρ

j χσ
i , (12)

with

V a
μνρσ := K

16
Ma

μσ Ma
νρ. (13)

The quartic Majorana term is decoupled via a Hubbard-
Stratonovich transformation by introducing a real auxiliary
field �

μν
i j alongside a measure D� normalized so that

1 =
∫

D� exp

⎛
⎝−
∫ β

0
dτ

3∑
a=1

∑
〈i, j〉a

�
μν
i j (V a)−1

μνρσ�
ρσ
ji

⎞
⎠.

(14)

For the moment, we keep the inverse (V a)−1 unspecified, but
note that it satisfies

(V a)−1
μνρσV a

ρσμ′ν ′ = δμμ′δνν ′ .

Regarding the pair of indices μν as a composite vector index
allows us to employ a matrix notation for the action of the
auxiliary field, namely

S� :=
∫ β

0
dτ

3∑
a=1

∑
〈i, j〉a

�T
i j (V

a)−1� ji. (15)

Using Eq. (14) and performing a linear shift in the � fields

�
μν
i j �→ �

μν
i j − V μνρσ iχρ

i χσ
j ,(

�T
i j

)μν �→ (�T
i j )

μν − V ρσμν iχρ
i χσ

j , (16)

we eliminate the quartic interaction between the Majorana
fermions in favor of linear couplings between Majorana bi-
linears and the auxiliary bosons.

To implement the isospin-singlet constraint Ja = 0, we
introduce a fluctuating bosonic field λ through the Gutzwiller
projection [27]

δ(Ja) =
∫ Dλ

2π
exp

(
− i

2

∑
i∈�

∫ β

0
dτ
∑

a

χ
μ
i λa

i Ga
μνχ

ν
i

)

≡
∫

DW exp

(
− i

2

∑
i∈�

∫ β

0
dτχT

i Wiχi

)
, (17)

where Wi := λa
i Ga is an SU(2)-valued auxiliary field. The

resulting Hubbard-Stratonovich transformed action of the sys-
tem reads

S[�,χ,W, ψ̄, ψ] = S� + Sχ + S�χ + Sψ + Sχψ, (18a)

with S� given in Eq. (15) and

Sχ := 1

2

∫ β

0
dτ
∑
i∈�

χ
μ
i [δμν∂τ + iW μν

i ]χν
i , (18b)

S�χ := −
∫ β

0
dτ

3∑
a=1

∑
〈i, j〉a

2iχμ
i χν

j �
μν
ji , (18c)

Sψ :=
∫ β

0
dτ
∑

i, j∈�

ψ̄i[δi j (∂τ − μ) − tδi+δ, j]ψ j, (18d)

Sχψ := J

2

∫ β

0
dτ
∑
i∈�

3∑
a=1

ψ̄iασ a
αβψiβ iχ0

i χa
i , (18e)

where we have used Eq. (11) directly in Sχψ , and denoted
the nearest neighbors of i ∈ � by i + δ. A justification for the
former will be provided in the saddle-point analysis.

C. Saddle-point analysis for J = 0

For completeness and to establish connections to previous
studies [12,15,32], we set J = 0 for the moment and solve the
saddle-point equations of Sχ + S�χ . In this calculation, we
leave the spin representation on the form given in Eq. (10)
and connect the results to the representation Eq. (11) towards
the end.

At the mean-field level, we assume that
(i) the � fields are static,
(ii) the W field can be neglected [36] and
(iii) that � is a diagonal matrix �μν = 1

4δμν�
μ.

The last assumption is a simplification, which amounts to
only having nonzero condensates of the form 〈iχμ

i χν
j 〉 for μ =

ν. In this scenario, the inverse of the interaction matrix (V a)−1

is simple to compute, since

(V a)μν = K

16
Ma

μνMa
μν = K

16
|Ma|μν ≡ K

16
|Ma|−1

μν . (19)
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Furthermore, we assume that (iv) �μ(a) = δμ0ua + δμau0,
where the u’s are simply the mean-field values, to connect
with the mean-field form found by Ref. [32]. Invoking these
assumptions, the mean-field action reads

Smf = 4βN

K

3∑
a=1

uau0 + 1

2

∫ β

0
dτ
∑
i∈�

χ
μ
i ∂τχ

μ
i

− 1

2

∫ β

0
dτ

3∑
a=1

∑
〈i, j〉a

iu0χa
i χa

j + iuaχ0
i χ0

j . (20)

Being quadratic in the Majorana fields χ , the χ ’s can be inte-
grated out exactly which in turn yields an effective mean-field
free energy for the u’s. Extremizing this free energy yields the
following zero-temperature saddle-point equations

ua = −1

2

K

4
sgn(u0), (21a)

u0 = −1

6

K

4
sgn(ua)

1

N

∑
k∈�

|δ(k)|, (21b)

where δ(k) :=∑a exp(ik · na), n3 := 0, and n1,2 :=
a(

√
3,±1)T/2 are the lattice translation vectors of the

hexagonal lattice, and � denotes the first Brillouin zone
(consult Refs. [15,32] for details). Equations (21) coincide
with those found in [15] and upon scaling K by 4 with those in
[32]. As discussed by Ref. [15], the discrepancy of the factor
of 4 is an artifact of the spin representation used, reflecting the
fact that some degrees of freedom are gauge equivalent upon
explicitly enforcing Ja = 0, while the connection between
the results is established by the particular mean-field ansatz
[assumption (iv)]. As noted by Ref. [32], projecting this state
onto the physical Hilbert space of isospin singlets yields
the exact ground state constructed by Kitaev [12]. Since the
choice of spin representation is qualitatively irrelevant, we
will use the Kitaev representation in Eq. (11) henceforth.

Since uμ are simply C numbers, it is clear from the mean-
field action in Eq. (20) that the χ0 fields will have a graphene-
like dispersion

Eχ0 (k) =
∣∣∣∣∣

3∑
a=1

uaeik·na

∣∣∣∣∣, (22)

while the χa modes are nondispersive, with the gap given by
|u0|. These dispersions are shown in Fig. 3.

III. LOW-ENERGY EFFECTIVE THEORY

In comparing the mean-field theory with Kitaev’s exact
solution, one identifies the ua field as the Z2 gauge field.
Having energy gaps of order K , this field should be treated
as static in the low-energy limit. Under this assumption,
Ref. [15] showed that the spin-spin interaction induced by the
Kondo-coupled Fermi liquid simply renormalizes the Kitaev
interaction strength by a correction of order J2/K . Beyond
the static limit of the visons, the electrons induce an RKKY

FIG. 3. Dispersion of the Majorana fermions together with those
of the conduction electrons and their chemical potential, similar
to Fig. 2 of Ref. [16]. The path traversed in the Brillouin zone is
illustrated in the inset as the teal line.

interaction in the spin sector [37]. However, any long-range
order effectuated by such a term is suppressed by the van-
ishing Majorana density of states [15]. The spin liquid state
of the Kitaev model is, therefore, not destabilized for small
J [15,20], and we can approximate the Kitaev model by its
fermionic mean-field action when working to leading order
in J/K . In the low-energy regime, this corresponds to three
flavors of massive, nondispersive fermions and one flavor
of massless Dirac fermions, with momenta restricted to lie
within a small range around k = K. The low-energy-projected
action of the conduction elections also gives rise to Dirac
fermions, with two flavors corresponding to the two Dirac
cones at k = ±K. The low-energy restriction of the bands
corresponds to focusing on the vicinity of the K point in
Fig. 3. Regarding the ratio t/K , we assume that K originates
with a mechanism similar to the one responsible for the usual
ferromagnetic Heisenberg interaction, in which case it is nat-
ural to take K < t .

Using these simplifications, the low-energy effective action
of the Kitaev model reads

Sχ + S�χ �
∫ β

0
dτ
∑

|k|<�

{
χ

0†
k (τ )(1∂τ + cχεi jσik j )χ

0
k (τ )

+
3∑

a=1

χ
a†
k (τ )
(
1∂τ + σ 3mc2

χ

)
χa

k (τ )

}
, (23)

where εi j is the antisymmetric symbol, 1 is the 2×2 unit
matrix, {σ i}3

i=1 are the Pauli matrices, and � is some momen-
tum cutoff appropriate for the projection onto the low-energy
sector of the theory. The constants appearing in this action
are determined from the mean-field solution and are given
by cχ ≡ √

3uaa/2 and mc2
χ = −u0 (see Appendix A for de-

tails). The low-energy fields appearing in this action are
two-component spinor fields constructed from the two sublat-
tice flavors around the Dirac point k = K and are to be found
in Appendix A.
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Equation (23) implies that the bare Majorana propagators
are given by

(D0)−1(k) = iωn1 − cχεi jσik j

⇒ D0(k) = iωn1 + cχεi jσik j

(iωn)2 − c2
χk2

, (24a)

(Da)−1(k) = iωn1 − σ 3mc2
χ

⇒ Da(k) = iωn1 + σ 3mc2
χ

(iωn)2 − (mc2
χ

)2 . (24b)

For the conduction electrons, we find a low-energy action
similar to that of χ0, except that there are two flavors (α =
1, 2) of low-energy fields for the conduction electrons corre-
sponding to excitations around k = ±K, and they additionally
carry a spin index (σ =↑,↓)

Sψ �
∫ β

0
dτ
∑

|k|<�

∑
ασ

ψ
α†
σk(τ )(1(∂τ − μ) + cψεi jσik j )ψ

α
σk(τ ),

(25)

where cψ ≡ √
3at/2 is in general a different effective velocity

than cχ .
The remaining part of the low-energy theory is the Kondo

interaction. Since our strategy is to eventually integrate out
the low-energy modes of the Kitaev spin liquid, it is necessary
to express the interaction using these coordinates rather than
the original fields. By denoting the composite operator repre-
senting the spin of an electron at sublattice λ as sλ := ψ

†
λσψλ

(suppressing all additional labels and functional dependencies
of ψ), we find that

Sχψ � J

N

∫ β

0
dτ

∑
|k1|,|k2|<�

∑
λ=A,B

sa
λ,k1−k2

(τ )

× [χ0†
k1

(τ )iMλχ
a
k2

(τ ) − χ
a†
k1

(τ )iM†
λχ

0
k2

(τ )
]
, (26)

where Mλ are 2 × 2 matrices derived in Appendix B.

IV. EFFECTIVE THEORY OF THE
CONDUCTION ELECTRONS

Using the schematic notation χ := (χ0 χa)T, the nonin-
teracting part of the action can be written as

S0 = Sψ +
∑

k

χ
†
k (−D−1(k))χk, with

D−1(k) :=
(

D−1
0 (k)

D−1
a (k)

)
, (27a)

and the Kondo interaction as

Sχψ =
∑
k1,k2

χ
†
k1
C (k1 − k2)χk2 with

C (q) :=
(

C a(q)
C a†(−q)

)
, (27b)

and

C a(q) ≡ J

βN

∑
λ=A,B

sa
λ(q)iMλ. (27c)

Integrating out the low-energy fields χ yields

Seff [�
†, �] = Sψ − tr log(−D−1 + C ). (28)

We now expand the tracelog in the formula above to leading
order in J , i.e., leading order in the interaction C , and neglect
the constant term representing the mean-field free energy of
the Kitaev model tr log(−D−1). This yields

Seff [�
†, �] � Sψ + tr(DC ) + 1

2 tr(DC DC ). (29)

The first correction O(J ) vanishes exactly since the matrix D
is diagonal while C is antidiagonal. Since each C is bilinear
in conduction electron fields, the leading correction term rep-
resents a perturbatively induced quartic interaction of O(J2).

A. Induced quartic interaction

Let us examine the second-order term in more detail. By
resolving the operator trace in momentum space and the trace
of the outermost matrix grading we find

1

2
tr(DC DC )

= trC2

∑
k,q

3∑
a=1

D0(k)C a(q)Da(k − q)C a†(+q). (30)

Moreover, using the form of the propagators together with
the explicit form of the Mλ matrices we can resolve the
remaining matrix trace as well (see Appendix C 1 for details)
and be left with

1

2
tr(DC DC )

= J2

(βN )2

∑
k,q

3∑
a=1

∑
λ=A,B

D0
0 (k)sa

λ(q)Da
0 (k − q)sa

λ(−q)

= 1

βV

∑
q

∑
a,λ

�a(q)sa
λ(q)sa

λ(−q), (31)

where

�a(iωm, q) ≡ J2a2

βN

∑
|k|<�

∑
n∈Z

D0
0 (k, n)Da

0 (k − q, n − m),

denotes the interaction potential and the 0 subscript on the
propagators refer to their Matsubara frequency components.
Due to the simple form of the propagators, � is in fact in-
dependent of the spatial transferred momentum q. Moreover,
working in the low-temperature and static limits, � can be
approximated by a negative constant value, �a(iωm) ≈ −γ

(see Appendix C 1).
Let us express the four-fermion interaction in terms of

the low-energy excitations of the ψ field. There are two
“band” flavors of these at each ±K, which have dispersions
ξp± = εp± − μ = ±cψ |p| − μ with p being a small momen-
tum around ±K. Denote these fields by �α

sσ (p), where s = ±
designates whether the dispersion is ±cψ |p|, and α = 1, 2
designates whether it refers to the +K or −K symmetry point,
and σ its spin, i.e.,

cψ

(
py + ipx

py − ipx

)
�α

±σ (p) = ±cψ |p|�α
±σ (p). (32)
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The bases for which the low-energy Hamiltonian of the con-
duction electrons take the form (32) are given by

ψ1
pσ :=

(
ψBK+pσ

ψAK+pσ

)
and ψ2

pσ :=
(

ψAp−Kσ

−ψBp−Kσ

)
. (33)

By diagonalizing the matrix, we find the eigenvectors Fs=± for
the two eigenvalues ±cψ |p|. These are given by

F± = 1√
2

(
± py+ipx

|p| 1
)T

. (34)

Defining

F 1
± := 1√

2

(
1 ± py+ipx

|p|
)T

and (35a)

F 2
± := 1√

2

(
± py+ipx

|p| −1
)T

(35b)

allows us to relate the λ-sublattice Fourier mode to the low-
energy modes by

ψλK+pσ =
∑
s=±

F̄ 1
sλ(p)�1

sσ (p) and (36a)

ψλp−Kσ =
∑
s=±

F̄ 2
sλ(p)�2

sσ (p). (36b)

In terms of the sublattice fermions, the interaction reads

Sint = − γ

βV

∑
kk′q

∑
a,λ

ψ̄λk+qαψλkβψ̄λk′−qγ ψλk′δσ
a
αβσ a

γ δ.

We can express this interaction in terms of the low-energy
modes by shifting k �→ k + K and k′ �→ k′ − K , where this
shift is understood to only act on the spatial momenta. The
combination of the transformation defined in Eq. (36) and a
positive-signature permutation of the Grassmann fields yields

Sint = − γ

βV

∑
kk′q

∑
a,λ

∑
s1···s4

F 1
s1λ

(k + q)F 2
s2λ

(k′ − q)F̄ 2
s3λ

(k′)F̄ 1
s4λ

(k)σ a
αβσ a

γ δ�̄
1
s1α

(k + q)�̄2
s2γ

(k′ − q)�2
s3δ

(k′)�1
s4β

(k), (37)

where the remaining momentum summations are to be under-
stood as the low-energy restricted ones in the vicinity of the
Dirac points of Fig. 3. Let us now feed the model with some
physically justified assumptions to simplify it. We consider
(i) only zero center-of-mass-momentum Cooper pairs, i.e.,
(k + q) = −(k′ − q). This assumption naturally eliminates
one momentum summation. Moreover, (ii) we assume only
pairing between low-energy modes of one and the same band,
i.e., s1 = s2 = s3 = s4. Without loss of generality, we may
take μ > 0, in which case the accessible low-energy modes
are in the s = + band [38]. With these simplifications, we can

do the summation over λ and be left with

Sint �− γ

βV

∑
kk′

∑
a

ḡkgk′σ a
αβσ a

γ δ

× �̄1
+α (k)�̄2

+γ (−k)�2
+δ (−k′)�1

+β (k′), (38)

where gk := (kx + iky)/|k|, and γ has been rescaled by 1/2.
By introducing the composite fermion fields Bs,m(k) rep-

resenting a Cooper pair with spin quantum number s and
Sz quantum number m one finds that the interaction can be
brought into the form (see Appendix C 2)

Sint[�̄,�] � − γ

βV

∑
kk′

ḡkgk′

[ ∑
m=−1,0,1

B†
1,m(k)B1,m(k′) − 3B†

0,0(k)B0,0(k′)

]
.

The interaction is repulsive in the singlet channel (s = 0).
Moreover, the factors gk appearing in the potential are odd
in k, making them incompatible with a spin-singlet gap. We
therefore discard the singlet term in the following and con-
sider

Sint[�̄,�] � − γ

βV

∑
kk′

ḡkgk′
∑

m=−1,0,1

B†
1,m(k)B1,m(k′). (39)

In two spatial dimensions or less, long-wavelength phase
fluctuations preclude long-range order at T > 0 [39,40]. The
normal state is restored by a loss of phase stiffness via a mech-
anism not captured by mean-field theory, at a considerably
lower temperature than the mean-field critical temperature we
could estimate from the above theory [41–43]. We therefore
focus on classifying the possible superconducting states aris-
ing from this interaction at T = 0.

B. BCS mean-field theory

The form of the quartic interaction derived in the preced-
ing section naturally leads to the definition of chiral p-wave
superconducting order parameters

�m(k) := gk〈B1,m(k)〉 and

�̄m(k) := ḡk〈B†
1,m(k)〉,

(40)

where the objects inside the brackets of Eq. (40) should be in-
terpreted as the operators on Fock space, which until now have
been represented by Grassmann-valued fields. Approximating
the interaction vertex as frequency-independent permits us to
define the momentum-independent gaps

�m := γ

βV

∑
k

�m(k). (41)

Since the propagators for the � fermions are spin degenerate,
and the interaction potentials for each of the spin triplets are
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the same, all the triplet superconducting gap amplitudes will
also be degenerate at the mean-field level.

Because the quartic interaction does not mix the differ-
ent triplet order parameters, any coupling between them in
the effective theory will only appear to fourth order in �

when integrating out the Ψ field. In particular, there will be
a “Josephson” term at this order, which involves the cosine of
twice the phase of the spin-polarized triplet gaps �±1 relative
to the phase of the unpolarized one �0. In interpreting the
effective field theory of the superconducting order parame-
ters as the free energy, and noticing that the Josephson term
multiplies an overall positive coefficient, the relative phases
are fixed to take values π/2 or 3π/2. The Z2 redundancy of
the ground-state manifold reflects the spontaneous breaking of
time-reversal symmetry in the chiral p-wave superconducting
state [44–46].

We define an eight-component spinor Ψ to set the stage for
integrating out the fermions of the theory, and later recast our
mean-field decoupled action in the form of a Bogoliubov–de-
Gennes (BdG) Hamiltonian

Ψ†(k) := (�̄↑(k) �̄↓(k) �↓(−k) �↑(−k)
)
, (42)

where �σ (k) := (�1
+σ (k) �2

+σ (k))T. The basis has a
particle-hole grading generated by the Pauli matrices ρμ, a
spin-1/2 grading generated by the Pauli matrices σ ν , and
a “valley” grading generated by the Pauli matrices τλ. The
particle-hole grading leads to a doubling of the kinetic terms
and requires symmetrizing the terms involving the supercon-
ducting gap. Introducing this spinor and symmetrizing the
action accordingly yields

Smf = βV

γ

∑
m

�̄m�m + 1

2

∑
k

Ψ†
k (−G −1)(k)Ψk, (43a)

with

G −1(k) = (iωnρ
0 − ξkρ

3) ⊗ σ 0 ⊗ τ 0

+ ḡkρ
+ ⊗ [�↑↑σ+ + �↓↓σ− + �↑↓σ 0] ⊗ τ 1

+ gkρ
− ⊗ [�̄↑↑σ+ + �̄↓↓σ− + �̄↑↓σ 0] ⊗ τ 1,

(43b)

where we introduced the shorthand notation 2σ± := σ 1 ± iσ 2

(analogously for ρ).
Assuming all spin triplet gaps to be degenerate �m ≡ �,

and fixing a choice of the relative phases compatible with the
analysis of the free energy of the system, eiϕ0 = 1, eiϕ1 = i,
and eiϕ−1 = i, we can derive the BCS gap equation for this sys-
tem [47]. This is done by first integrating out the Grassmann
fields Ψ and Ψ† and subsequently minimizing the resulting
free-energy functional with respect to �̄, yielding the saddle-
point equation

3
βV

γ
� = 1

2
tr

(
G

∂G −1

∂�̄

)

= 1

2

∑
k

∑
n∈Z

trC8{G (k, n)gk(ρ− ⊗ (σ 0 − iσ 1) ⊗ τ 1)}.

Inserting for the Green’s function and resolving the trace
yields the familiar BCS gap equation,

1 = 2γ

3

1

V

∑
k

1√
ξ 2

k + |�̃|2
tanh

(
β

2

√
ξ 2

k + |�̃|2
)

, (44)

where �̃ := √
2�. With a linear fermionic dispersion, one

cannot approximate the density of states at the Fermi level as
in normal BCS theory. Doing the remaining integral carefully,
in this case, yields

|�| �
√

2|μ| exp

(
− 3πc2

ψ

2γ |μ|

[
1 − 2

3πc2
ψ

γωc

])
, (45)

demonstrating that a zero-temperature gap amplitude exists in
the weak-coupling limit as long as μ �= 0 [48,49]. Let us also
remark that the quantity in the square bracket above needs to
be strictly positive for this equation to make sense. Indeed, in
our perturbative regime γωc/c2

ψ ∼ (J/K )2(K/t )2 � 1.
Having established a nontrivial superconducting state at

zero temperature, we now suggest to interpret Smf as a mean-
field Hamiltonian of the low-energy fermions. In doing so, we
drop the frequency dependence and multiply by β to get the
BdG Hamiltonian

H = 1

2

∑
k

Ψ†
kHkΨk, (46a)

where

Hk ≡
(

H0(k) Kk

K†
k −HT

0 (−k)

)
, (46b)

with H0(k) := ξk14 = H0(−k), and

Kk := ḡk�[eiϕ1σ+ + eiϕ−1σ− + eiϕ0σ 0] ⊗ τ 1. (46c)

Here, Kk = −KT
−k and H†

0 (k) = H0(k).

C. Symmetry aspects of the mean-field theory

By construction, the BdG Hamiltonian displays an explicit
particle-hole symmetry through the fact that

CHkC−1 = −H−k, with C := ρ1 ⊗ σ 0 ⊗ τ 0K, (47)

where K is the antiunitary operator implementing complex
conjugation, and the charge-conjugation operator satisfies
C2 = +1. Exhibiting neither time-reversal nor chiral symme-
try, the BdG Hamiltonian places the superconductor in class
D of the tenfold classification [50,51]. In d = 2, its (strong)
topological character is revealed by an integer (Z) topological
invariant, the first Chern number, which will be computed in
the next section.

V. TOPOLOGICAL RESPONSE TO A U(1) GAUGE FIELD

The topological invariant characterizing the superconduct-
ing state can be extracted as the coefficient controlling the
topological response of the system to a U (1) gauge field
[52–55]. We minimally couple the low-energy fermions to a
U(1) gauge field A via the substitution k → k − eA(q), where
e is the charge of the fermions and q is a slowly varying
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momentum, and subsequently integrate out the fermions. To
leading order in A,

G −1(k − eA(q)) � G −1(k) − eAμ(q)
∂G −1(k)

∂kμ

=: G −1(k) − �(k, q). (48)

Integrating out the fermions yields an effective action in the
form

Seff [A] = S0[A] − 1
2 tr log

(−G −1 + �
)
, (49)

where S0[A] is the usual Maxwell action of the U(1) gauge
field and the factor of 1/2 multiplying the tracelog comes

from the particle-hole doubling of the basis used to formu-
late the mean-field action [56]. By rescaling the gauge field
according to A �→ a := eA/(βV ), one finds that the effective
action contains a Chern-Simons term (see Appendix D for
details)

Seff [A] ⊃ i
k

4π

∫
d3xεμνρaμ∂νaρ. (50)

The level of the Chern-Simons term k is the first Chern num-
ber of the system [53]. From the computation presented in
Appendix D, we find that it is given by k = N3/2, with

N3 = 1

24π2
εμνρ

∫
d3ktrC8

[
G (k)

∂G −1(k)

∂kμ

G (k)
∂G −1(k)

∂kν

G (k)
∂G −1(k)

∂kρ

]
, (51)

in accordance with Ref. [57]. Resolving the matrix trace and
performing the remaining integral under the usual assump-
tions of BCS theory yields k � 2 × sgnμ.

Let us briefly interpret the topological invariant for this
system. At T = 0 and chemical potential μ > 0, the gap am-
plitude � is finite and the system enters a chiral topological
superconducting phase characterized by Chern number k = 2.
As μ is lowered to 0, there is no Fermi surface to support the
formation of Cooper pairs, and consequently, the gap ampli-
tude � vanishes. What is more, the Chern number at μ = 0
is zero, rendering the state topologically trivial. Lowering μ

even further again gives rise to a topological superconductor,
now characterized by k = −2. The T = 0 transition between
states of distinct topological nature is a quantum topological
phase transition, directly connected to the closing and reopen-
ing of the gap of the low-energy fermionic excitations as μ is
tuned through 0.

The nonzero value of the Chern number for the supercon-
ductor implies the existence of gapless Majorana fermions
at the boundary [51]. In particular, since k = ±2 the system
hosts a pair of such fermions, which effectively combine into
one massless Dirac fermion [58]. The presence of chiral,
complex edge modes and the Chern-Simons response to a
U(1) gauge field establishes a close analogy to the quantum
Hall effect [59]. The application of such a system in topologi-
cally protected quantum computing, however, relies on having
Majorana edge modes displaying non-Abelian statistics [1].
There have been multiple efforts to address the problem of
producing non-Abelian anyons from such spinful supercon-
ductors [58,60–62] and particularly prove their relevance to
topological quantum computing [63,64], but we leave these
considerations in the current model for future work.

VI. SUMMARY AND DISCUSSION

We have presented a detailed derivation of the supercon-
ducting instability induced in the metal of the Kondo-Kitaev
model to leading order in the Kondo coupling. Starting from
a low-energy treatment of the Kitaev honeycomb model, we
obtained a description of it in terms of Dirac fermions, which
we in turn integrated out to establish an effective theory

of the conduction electrons. To leading order in the Kondo
coupling, we found an induced attractive interaction between
pairs of electrons giving rise to a superconducting instability
with triplet pairing and chiral p-wave symmetry. The limit of
vanishing mean-field parameters of the Kitaev model appears
innocuous in the sense that it leaves the quartic interaction
potential finite. However, the existence of nonzero values of
these parameters is what allows us to characterize the excita-
tions out of the ground state and to sensibly integrate them out
of the theory, producing such an interaction. The coexisting
QSL state is therefore an implicit requirement for the induced
interaction.

The attractive interaction in the triplet channel is attributed
to the form of the interaction induced by the Kitaev spin
liquid, while the chiral px + ipy structure comes from the par-
ticular wavefunctions describing the low-energy excitations of
the conduction electrons on a honeycomb lattice. The px + ipy

structure has been identified before as a possible symmetry
associated with the superconducting state of doped graphene
[65]. However, it has been far less trivial to pinpoint a pairing
mechanism giving rise to it. In contrast to phonons on the
honeycomb lattice [66], the spin fluctuations out of the ground
state of the Kondo-Kitaev model have dispersions with a node
in Fourier space close to that of the conduction electrons, mak-
ing it possible to realize superconductivity at relatively small
dopings. Due to the chiral momentum structure of the gap,
the superconducting state spontaneously breaks time-reversal
symmetry. One could imagine this giving rise to an edge
current, which in turn would yield an effective magnetic field
and consequently alter the ground state of the Kitaev model.
However, the current responsible for this magnetic field will
be ∼|�|2 so this is a subleading effect that can safely be
neglected in our perturbative treatment.

By our analysis, the system is found to be a chiral topo-
logical superconductor of class D with first Chern number
given by 2sgnμ. At μ = 0 we expect no superconducting
state to emerge since there is no Fermi surface to support
the superconducting instability. It is therefore reassuring to
find a vanishing Chern number at μ = 0. Although the QSL
state responsible for the interaction features topological order,
the topological nature of the superconducting state has to be
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understood rather as a result of the induced attractive inter-
action in the triplet channel combined with the low-energy
structure of the proximate graphene-like metal. Nevertheless,
a nonzero value of the Kitaev order parameters was what en-
abled integrating out the Majoranas in the first place. Together
with the particular form of the induced interaction, this is a
crucial feature allowing for TSC to form.
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APPENDIX A: DETAILS OF THE LOW-ENERGY
EFFECTIVE THEORY

In this Appendix, we provide some details on the derivation
of the low-energy effective theory. Let us first consider the
Majorana fields, and assume the order-parameter fields uμ to
take their mean-field values. We introduce Fourier transforms
according to

χ
μ
λi = 1√

N

∑
k∈�/2

[
eik·riχ

μ

λk + e−ik·ri χ̄
μ

λk

]
, (A1)

where we restrict the sum to run over half of the Brillouin
zone, permitting us to treat the Fourier components χk and
χ̄k ≡ χ−k as independent degrees of freedom [67]. The two-
component field χ0

k := (−iχ0
Ak χ0

Bk )T is governed by the
Hamiltonian

Hχ0 = −
∑

k∈�/2

χ
0†
k

(
γ (k)

γ̄ (k)

)
χ0

k , (A2)

where γ (k) ≡ ua(1 + eik·n1 + eik·n2 ), giving rise to the disper-
sion in Eq. (22). The dispersion has a node at K = 4π

3a ŷ. Being
concerned with low-energy physics, we expand γ (k) around
this node to leading order in |p|a,

γ (±K + p) � ∓cχ (py ± ipx ), (A3)

where cχ ≡ √
3aua/2. Strictly speaking, ua can take both

positive and negative signs, as shown by the saddle-point
Eqs. (21). However, fixing the sign in these equations simply
corresponds to fixing a gauge in the Z2 gauge theory of the
ua field. We may therefore, without loss of generality, take
ua > 0 in the definition of cχ , in which case it faithfully
represents the effective velocity of the Dirac fermions. The
low-energy Hamiltonian reads

Hχ0 �
∑

|p|<�

χ
0†
K+p[cχ (σ × p) · ẑ]χ0

K+p. (A4)

In the following, we will simply drop the reference to the K
momentum and denote these fields by χ0

p .

Likewise, the two-component field X a
k := (χa

Ak χa
Bk )T is

governed by the Hamiltonian

Hχa =
∑

k∈�/2

∑
a

X a†
k

( −iu0eik·na

iu0e−ik·na

)
X a

k .

By diagonalizing this Hamiltonian and again restricting to
small momenta around K we find that the low-energy edition
of it is given by

Hχa �
∑

|p|<�

∑
a

χ
a†
K+p

(
mc2

χ

−mc2
χ

)
χa

K+p, (A5)

where the two-component fields χa are defined as

χa
k := 1√

2

(+ieik·naχAk + χBk

−ieik·naχAk + χBk

)
, (A6)

and mc2
χ ≡ −u0 > 0. As before, we restrict to negative u0

(corresponding to positive ua) by fixing the gauge. In the
following, drop the reference to the K momentum in the fields
as above.

Analogous to the low-energy treatment of χ0, the low-
energy-projected action of the conduction electrons also gives
rise to Dirac fermions, but in this case, two flavors corre-
sponding to the two Dirac cones at k = ±K appear. It is
straightforward to verify that the two-component fields

ψ1
p :=
(

ψBK+p
ψAK+p

)
and ψ2

p :=
(

ψAp−K
−ψBp−K

)
, (A7)

are governed by the low-energy Hamiltonian

Hψ �
∑

|p|<�

∑
ασ

ψα†
σp[cψ (σ × p) · ẑ]ψα

σp, (A8)

with cψ ≡ √
3at/2.

APPENDIX B: THE KONDO INTERACTION
IN TERMS OF LOW-ENERGY EXCITATIONS

Recall that the Kondo interaction is local in real space, and
therefore also local in the sublattice indices. We would like
to reexpress it rather in terms of the components of the low-
energy fields χ0 and χa. In terms of Fourier components, the
Kondo interaction reads

HJ � J

N

∑
|k1|,|k2|<�

∑
λ=A,B

[
sa
λ(k1 − k2)χ0†

λk1
χa

λk2
+ H.c.

]
.

Now, note that

χ̄0
Aχa

A = χ0†MAχa with MA := 1√
2

(−e−iϕa e−iϕa

0 0

)
, and (B1a)

χ̄0
Bχa

B = χ0†MBχa with MB := 1√
2

(
0 0
1 1

)
, (B1b)

where ϕa � K · na, and the two-component fields appearing on the right-hand side of the equations above refer to the low-energy
fields identified in the previous section. This establishes the form employed in Eq. (26).
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APPENDIX C: QUARTIC INTERACTION

In this Appendix, we elaborate on the intermediate steps
taking us from the induced quartic interaction to the one
formulated in terms of composite fermionic fields. We first
consider the interaction potential arising from the tracelog and
next consider the spin structure of this interaction.

1. Interaction potential

When computing the perturbatively induced quartic in-
teraction, we need to compute the trace over the matrices
appearing in the propagators of the low-energy Majorana
fields as well as those appearing in C . Specifically, the trace
reads

trC2

∑
kq

∑
a

D0(k)C a(q)Da(k − q)C a†(+q)

= J2

(βN )2

∑
kq

∑
a

trC2

{
D0(k)

[
sa

A(q)iMA + isa
B(q)MB

]
Da(k − q)

[−sa
A(−q)iM†

A − sa
B(−q)iM†

B

]}
. (C1)

At this point, a key observation to be made is that all terms except those coming from the frequency part of both propagators will
yield a vanishing result as they will give rise to either an integral over an odd function or a Matsubara sum of an odd summand.
The only relevant matrix trace we have to perform is therefore

trC2 (σμMi1M†
j ) = δi jδμ0, (C2)

which yields the form of the interaction shown in Eq. (31) with

�a(iωm, q) ≡ +J2v

βN

∑
|k|<�

∑
n∈Z

D0
0 (k, n)Da

0 (k − q, n − m)

= −J 2

β

∑
n∈Z

∫
|k|<�

d2k

(2π )2

ωn(ωn − ωm)(
ω2

n + c2
χk2
)(

(ωn − ωm)2 + (mc2
χ

)2)

= − J 2

4πc2
χ

1

β

∑
n∈Z

ωn(ωn − ωm)

(ωn − ωm)2 + (mc2
χ

)2 log

(
1 + c2

χ�2

ω2
n

)
, (C3)

where we have absorbed two factors of a2 = V/N =: v into
the new coupling constant J .

By the analytic continuation of the argument iωm → � +
i0, we can interpret � as the energy transfer of the two-body
interaction defined by the quartic term. Since both mc2

χ and
cχ� are of order K , K provides a natural energy scale for the
remaining Matsubara sum. Putting both of these equal to K
permits us to write

�a(iωm) = −J 2K

4πc2
χ

F (iωm/K ), (C4)

where we evaluate F (�/K + i0) numerically in the zero-
temperature limit. In the spirit of BCS theory, we approximate
F (�/K + i0) by its average value on a finite-frequency in-
terval. This endows the mean-field theory with an energy
cutoff, ωc, which in this case is chosen to be the bandwidth
of the Majorana dispersion in Fig. 3. The rationale for this is
that � also corresponds to the energy carried by the virtual
pair of Majoranas exchanged by the physical electron pairs.
Extrapolating �(� + i0) to � larger than approximately the
bandwidth of the Majoranas is therefore unphysical. This is
illustrated in Fig. 4. This justifies working in the static limit
and approximating the vertex by some representative negative
constant, � ≈ −γ = const.

2. Spin structure

Now, consider the interaction appearing in Eq. (38). By
using the identity

3∑
a=1

σ a
αβσ a

γ δ = 2δαδδβγ − δαβδγ δ, (C5)

−8 −6 −4 −2 0 2 4 6 8
Ω/K

−0.3

−0.2

−0.1

0.0

Γ
(Ω

+
i0

)/ J
2
K

4π
c2 χ

+ωc/K−ωc/K

Γ(Ω + i0)

−γ

FIG. 4. Zero-temperature interaction vertex as a function of real
frequency, together with its constant approximation.
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and splitting the remaining spin sums into the terms where the two spins are equal and opposite respectively, we can write the
induced interaction in Eq. (38) as

Sint[�̄,�] = − γ

βV

∑
kk′

∑
α∈{↑,↓}

ḡkgk′
[
�̄1

+α (k)�̄2
+α (−k)�2

+α (−k′)�1
+α (k′) + 2�̄1

+α (k)�̄2
+ᾱ (−k)�2

+α (−k′)�1
+ᾱ (k′)

− �̄1
+α (k)�̄2

+ᾱ (−k)�2
+ᾱ (−k′)�1

+α (k′)
]

≡ − γ

βV

∑
kk′

ḡkgk′ [A(k, k′) + 2B(k, k′) − C(k, k′)], (C6)

where the definitions of A, B, and C will turn out to be useful in a moment. In the above, we used the notation ↑̄ ≡↓ and ↓̄ ≡↑.
Now, let us introduce the following composite fermion fields:

B1,1(k) := �2
+↑(−k)�1

+↑(k), B1,−1(k) := �2
+↓(−k)�1

+↓(k), (C7a)

B1,0(k) := 1√
2

[
�2

+↑(−k)�1
+↓(k) + �2

+↓(−k)�1
+↑(k)

]
, B0,0(k) := 1√

2

[
�2

+↑(−k)�1
+↓(k) − �2

+↓(−k)�1
+↑(k)

]
. (C7b)

That is, Bs,m is the Cooper pair with spin quantum number s and Sz quantum number m. Now, notice that (suppressing
momentum dependence for brevity)

A = B†
1,1B1,1 + B†

1,−1B1,−1, B†
0,0B0,0 = 1

2 (C − B), and B†
1,0B1,0 = 1

2 (C + B), (C8)

so that

C = B†
1,0B1,0 + B†

0,0B0,0 and B = B†
1,0B1,0 − B†

0,0B0,0. (C9)

Thus,

2B − C = 2(B†
1,0B1,0 − B†

0,0B0,0) − (B†
1,0B1,0 + B†

0,0B0,0) = B†
1,0B1,0 − 3B†

0,0B0,0. (C10)

Using these results, we can write the interaction as

Sint[�̄,�] = − γ

βV

∑
kk′

ḡkgk′

[ ∑
m=−1,0,1

B†
1,m(k)B1,m(k′) − 3B†

0,0(k)B0,0(k′)

]
,

as advertised in the main text.

APPENDIX D: TOPOLOGICAL INVARIANT

In this Appendix, we elaborate on the derivation of the topological invariant. Expanding the tracelog of Eq. (48) to second
order in the gauge field and resolving the operator trace in momentum space yields

Seff [A] ⊃ +1

4
tr(G �G �)

= 1

4

∑
kq

trC8 [G (k)�(k, q)G (k − q)�(k,−q)]

= e2

4

∑
kq

trC8

[
G (k)Aμ(q)

∂G −1(k)

∂kμ

G (k − q)Aν (−q)
∂G −1(k)

∂kν

]
. (D1)

To simplify further, rescale the field according to A �→ a := eA/(βV ) where βV is the “volume” of the system, and expand

G (k − q) ≈ G (k) − qρ

∂G (k)

∂kρ

= G (k) + qρG (k)
∂G −1(k)

∂kρ

G (k), (D2)

where the last equality follows from the fact that

0 = ∂k
(
G G −1) = (∂kG )G −1 + G (∂kG

−1). (D3)

Inserting this into the quadratic term in the a fields, and focusing on the contribution from the term linear in q we find

Seff [A] ⊃ 1

4π

∫
d3q

(2π )3
aμ(q)qρaν (−q)Cμρν (D4)
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with

Cμρν ≡ π

∫
d3k

(2π )3
trC8

[
G (k)

∂G −1(k)

∂kμ

G (k)
∂G −1(k)

∂kρ

G (k)
∂G −1(k)

∂kν

]
. (D5)

Now, take notice of the following. The integral of aμqρaν vanishes unless the coefficient C is antisymmetric in μ and ν,
which can be seen easily by going to real space and doing integration by parts. Moreover, the trace term that multiplies it is
cyclic in all indices, meaning that we can extend the antisymmetry to any pair of indices. Hence we can write Cμρν = εμρνk and
by contracting the expression with the Levi-Civita symbol εμρν we find

3!k = πεμρν

∫
d3k

(2π )3
trC8

[
G (k)

∂G −1(k)

∂kμ

G (k)
∂G −1(k)

∂kρ

G (k)
∂G −1(k)

∂kν

]

⇔ k = 1

2

1

24π2
εμρν

∫
d3ktrC8

[
G (k)

∂G −1(k)

∂kμ

G (k)
∂G −1(k)

∂kρ

G (k)
∂G −1(k)

∂kν

]
. (D6)

Hence, the term we have computed corresponds to a Chern-Simons term

Seff [a] ⊃ i
k

4π

∫
d3xεμνρaμ∂νaρ, (D7)

with the level given by k in Eq. (D6).
Due to the antisymmetry of Cμρν , it suffices to compute it for μ = 0, ρ = 1 and ν = 2, and multiplying by 3! to obtain k.

Moreover, since ∂k0G
−1 = i18, we find

k = i

8π2

∫
d2k
∫

dk0trC8

[
G (k)G (k)

(
∂k1G

−1(k)
)
G (k)
(
∂k2G

−1(k)
)]

. (D8)

By expressing the Hamiltonian as Hk = mk · U, where U is a vector of 8 × 8 matrices, we find

k = i

8π2

∫
d2k
∫

dk0trC8

{
[(ik01 − mk · U)−1]2U α (ik01 − mk · U)−1U β

}
∂k1 mα

k∂k2 mβ

k . (D9)

Now, we fix a choice of relative phases of the BdG Hamiltonian in Eq. (46c) compatible with the analysis of the free energy
of the system, eiϕ0 = 1, eiϕ1 = i, and eiϕ−1 = i. Since we are studying topological properties, we are only concerned with Hk
up to an equivalence given by smooth deformations that do not close the gap. To simplify, we therefore perform an adiabatic
transformation on the single-particle Hamiltonian by continuously shrinking �↑↓ to 0. In doing so, we keep the Hamiltonian
gapped but reduce the gap from

√
2� to � [68]. Hence, this transformation should leave the topological character of the system

untouched.
Having performed such a transformation, the U matrices read

U 1 := ρ1 ⊗ σ 1 ⊗ τ 1, U 2 := ρ2 ⊗ σ 1 ⊗ τ 1, and U 3 := ρ3 ⊗ σ 0 ⊗ τ 0. (D10)

Importantly, these matrices satisfy the same commutation and anticommutation relations as the Pauli matrices. It is straightfor-
ward to check that the inverse propagator in this case is given by

(ik01 − mk · U)−1 = 1

(ik0)2 − m2
k

(ik01 + mk · U). (D11)

Multiplying out the terms and using the trace identity tr(U αU βU γ ) = 8iεαβγ yields

k = i

8π2

∫
d2k
∫

dk0
8iεαγβ(

(ik0)2 − m2
k

)3 [−(ik0)2 + m2
k

]
mγ

k ∂k1 mα
k∂k2 mβ

k

= − 1

π2

∫
d2kεαβγ mγ

k ∂k1 mα
k∂k2 mβ

k ×
∫

dk0
1(

k2
0 + m2

k

)2
= − 1

2π

∫
d2k

1

|m|3 εαβγ mγ

k ∂k1 mα
k∂k2 mβ

k . (D12)

Writing the inverse Green’s function as G −1(k) = ik01 − mk · U with the U matrices as defined in Eq. (D10) implies that

mk = (− �
|k|ky

�
|k|kx ξk

)T
. (D13)

Now, recall that a central assumption of BCS theory is that |�| � εF. Hence, away from the Fermi sea but within the BZ, the m
vector essentially points in the ẑ direction, and the integral consequently vanishes. We can therefore approximate the integral over
BZ by taking only the contributions arising from within the Fermi sea around the two symmetry points K and K ′. Incidentally,
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we find ourselves in the fortunate position of actually being able to do the remaining integral due to the simple dispersion of the
low-energy fermions within the Fermi surface

k = 2 × 1

2π
2π

∫ kF

0
dkk

�2cψ

k
((cψk − μ)2 + �2)−3/2

= 2�2cψ

∫ kF

0
dk((cψk − μ)2 + �2)−3/2

= 2
μ√

μ2 + �2
≈ 2sgnμ, (D14)

where we have used cψkF ≡ μ, and |�| � μ in the last transition.
Recall that we at some point in the derivation assumed that μ > 0 to restrict to only the + band of the low-energy fermions.

If we instead assumed μ < 0, the two first components of the m vector are left untouched due to the appearance of the same
gk factors, but the third would be ξk = −cψ |k| − μ. However, doing the integral, now from k = 0 to k = −μ/cψ , still yields
k = 2sgnμ, so the result persists even in this case.

[1] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[2] G. C. Ménard, A. Mesaros, C. Brun, F. Debontridder, D.
Roditchev, P. Simon, and T. Cren, Isolated pairs of Majorana
zero modes in a disordered superconducting lead monolayer,
Nat. Commun. 10, 2587 (2019).

[3] M. Sato and Y. Ando, Topological superconductors: A review,
Rep. Prog. Phys. 80, 076501 (2017).

[4] A. O. Zlotnikov, M. S. Shustin, and A. D. Fedoseev, As-
pects of topological superconductivity in 2D systems: Non-
collinear magnetism, skyrmions, and higher-order topology,
J. Supercond. Novel Magn. 34, 3053 (2021).

[5] S. Nakosai, Y. Tanaka, and N. Nagaosa, Two-dimensional
p-wave superconducting states with magnetic moments on
a conventional s-wave superconductor, Phys. Rev. B 88,
180503(R) (2013).

[6] W. Chen and A. P. Schnyder, Majorana edge states in
superconductor-noncollinear magnet interfaces, Phys. Rev. B
92, 214502 (2015).

[7] S. Rex, I. V. Gornyi, and A. D. Mirlin, Majorana bound
states in magnetic skyrmions imposed onto a superconductor,
Phys. Rev. B 100, 064504 (2019).

[8] K. Mæland and A. Sudbø, Topological superconductivity me-
diated by skyrmionic magnons, Phys. Rev. Lett. 130, 156002
(2023).

[9] P. W. Anderson, Resonating valence bonds: A new kind of
insulator? Mater. Res. Bull. 8, 153 (1973).

[10] V. Kalmeyer and R. B. Laughlin, Equivalence of the resonating-
valence-bond and fractional quantum Hall states, Phys. Rev.
Lett. 59, 2095 (1987).

[11] X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and
superconductivity, Phys. Rev. B 39, 11413 (1989).

[12] A. Kitaev, Anyons in an exactly solved model and beyond,
Ann. Phys. 321, 2 (2006).

[13] X. G. Wen, Mean-field theory of spin-liquid states with finite
energy gap and topological orders, Phys. Rev. B 44, 2664
(1991).

[14] X. G. Wen and A. Zee, Effective theory of the T- and P-
breaking superconducting state, Phys. Rev. Lett. 62, 2873
(1989).

[15] U. F. P. Seifert, T. Meng, and M. Vojta, Fractionalized Fermi liq-
uids and exotic superconductivity in the Kitaev-Kondo lattice,
Phys. Rev. B 97, 085118 (2018).

[16] W. Choi, P. W. Klein, A. Rosch, and Y. B. Kim, Topological
superconductivity in the Kondo-Kitaev model, Phys. Rev. B 98,
155123 (2018).

[17] V. S. de Carvalho, R. M. P. Teixeira, H. Freire, and E. Miranda,
Odd-frequency pair density wave in the Kitaev-Kondo lattice
model, Phys. Rev. B 103, 174512 (2021).

[18] P. Coleman, A. Panigrahi, and A. Tsvelik, Solvable 3D Kondo
lattice exhibiting pair density wave, odd-frequency pairing,
and order fractionalization, Phys. Rev. Lett. 129, 177601
(2022).

[19] A. M. Tsvelik and P. Coleman, Order fractionalization in a
Kitaev-Kondo model, Phys. Rev. B 106, 125144 (2022).

[20] T. Senthil, S. Sachdev, and M. Vojta, Fractionalized Fermi liq-
uids, Phys. Rev. Lett. 90, 216403 (2003).

[21] M. Kargarian, D. K. Efimkin, and V. Galitski, Amperean pairing
at the surface of topological insulators, Phys. Rev. Lett. 117,
076806 (2016).

[22] N. Rohling, E. L. Fjærbu, and A. Brataas, Superconductivity
induced by interfacial coupling to magnons, Phys. Rev. B 97,
115401 (2018).

[23] H. G. Hugdal, S. Rex, F. S. Nogueira, and A. Sudbø, Magnon-
induced superconductivity in a topological insulator coupled to
ferromagnetic and antiferromagnetic insulators, Phys. Rev. B
97, 195438 (2018).

[24] E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, En-
hancement of superconductivity mediated by antiferromagnetic
squeezed magnons, Phys. Rev. B 100, 100503(R) (2019).

[25] E. Erlandsen, A. Brataas, and A. Sudbø, Magnon-mediated
superconductivity on the surface of a topological insulator,
Phys. Rev. B 101, 094503 (2020).

[26] E. Thingstad, E. Erlandsen, and A. Sudbø, Eliashberg study of
superconductivity induced by interfacial coupling to antiferro-
magnets, Phys. Rev. B 104, 014508 (2021).

[27] P. Coleman and N. Andrei, Kondo-stabilised spin liquids and
heavy fermion superconductivity, J. Phys.: Condens. Matter 1,
4057 (1989).

[28] S. Chatterjee, Y. Qi, S. Sachdev, and J. Steinberg, Supercon-
ductivity from a confinement transition out of a fractionalized

184508-13

https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/s41467-019-10397-5
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1007/s10948-021-06029-z
https://doi.org/10.1103/PhysRevB.88.180503
https://doi.org/10.1103/PhysRevB.92.214502
https://doi.org/10.1103/PhysRevB.100.064504
https://doi.org/10.1103/PhysRevLett.130.156002
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.44.2664
https://doi.org/10.1103/PhysRevLett.62.2873
https://doi.org/10.1103/PhysRevB.97.085118
https://doi.org/10.1103/PhysRevB.98.155123
https://doi.org/10.1103/PhysRevB.103.174512
https://doi.org/10.1103/PhysRevLett.129.177601
https://doi.org/10.1103/PhysRevB.106.125144
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1103/PhysRevLett.117.076806
https://doi.org/10.1103/PhysRevB.97.115401
https://doi.org/10.1103/PhysRevB.97.195438
https://doi.org/10.1103/PhysRevB.100.100503
https://doi.org/10.1103/PhysRevB.101.094503
https://doi.org/10.1103/PhysRevB.104.014508
https://doi.org/10.1088/0953-8984/1/26/003


SONDRE DUNA LUNDEMO AND ASLE SUDBØ PHYSICAL REVIEW B 109, 184508 (2024)

Fermi liquid with Z2 topological and Ising-nematic orders,
Phys. Rev. B 94, 024502 (2016).

[29] Y. Imry, On the statistical mechanics of coupled order parame-
ters, J. Phys. C 8, 567 (1975).

[30] A. D. Bruce and A. Aharony, Coupled order parameters,
symmetry-breaking irrelevant scaling fields, and tetracritical
points, Phys. Rev. B 11, 478 (1975).

[31] P. Calabrese, A. Pelissetto, and E. Vicari, Multicritical phenom-
ena in O(n1)

⊕
O(n2)-symmetric theories, Phys. Rev. B 67,

054505 (2003).
[32] Y.-Z. You, I. Kimchi, and A. Vishwanath, Doping a spin-orbit

Mott insulator: Topological superconductivity from the Kitaev-
Heisenberg model and possible application to (Na2/Li2)IrO3,
Phys. Rev. B 86, 085145 (2012).

[33] A. A. Abrikosov, Electron scattering on magnetic impurities in
metals and anomalous resistivity effects, Phys. Phys. Fiz. 2, 5
(1965).

[34] I. Affleck, Z. Zou, T. Hsu, and P. W. Anderson, SU(2) gauge
symmetry of the large-U limit of the Hubbard model, Phys. Rev.
B 38, 745 (1988).

[35] A. M. Tsvelik, New fermionic description of quantum spin
liquid state, Phys. Rev. Lett. 69, 2142 (1992).

[36] As argued in previous studies, these turn out to vanish at the
mean-field level anyway [15,32]

[37] E. Kogan, RKKY interaction in graphene, Phys. Rev. B 84,
115119 (2011).

[38] We comment on the case of s = − at a later stage.
[39] P. C. Hohenberg, Existence of long-range order in one and two

dimensions, Phys. Rev. 158, 383 (1967).
[40] N. D. Mermin and H. Wagner, Absence of ferromagnetism

or antiferromagnetism in one- or two-dimensional isotropic
Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).

[41] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability
and phase transitions in two-dimensional systems, J. Phys. C
6, 1181 (1973).

[42] D. R. Nelson and J. M. Kosterlitz, Universal jump in the super-
fluid density of two-dimensional superfluids, Phys. Rev. Lett.
39, 1201 (1977).

[43] V. M. Loktev and V. Turkowski, Suppression of the super-
conducting transition temperature of doped graphene due to
thermal fluctuations of the order parameter, Phys. Rev. B 79,
233402 (2009).

[44] T. K. Ng and N. Nagaosa, Broken time-reversal symmetry
in Josephson junction involving two-band superconductors,
Europhys. Lett. 87, 17003 (2009).

[45] T. A. Bojesen, E. Babaev, and A. Sudbø, Time reversal sym-
metry breakdown in normal and superconducting states in
frustrated three-band systems, Phys. Rev. B 88, 220511(R)
(2013).

[46] T. A. Bojesen, E. Babaev, and A. Sudbø, Phase transi-
tions and anomalous normal state in superconductors with
broken time-reversal symmetry, Phys. Rev. B 89, 104509
(2014).

[47] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of super-
conductivity, Phys. Rev. 108, 1175 (1957).

[48] N. B. Kopnin and E. B. Sonin, BCS superconductivity of Dirac
electrons in graphene layers, Phys. Rev. Lett. 100, 246808
(2008).

[49] C. Xu and Y. Yang, Determination of gap solution and
critical temperature in doped graphene superconductivity,
Z. Angewandte Mathematik Phys. 68, 34 (2017).

[50] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes
in mesoscopic normal-superconducting hybrid structures,
Phys. Rev. B 55, 1142 (1997).

[51] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[52] S. C. Zhang, The Chern–Simons–Landau–Ginzburg theory of
the fractional quantum Hall effect, Int. J. Mod. Phys. B 06, 25
(1992).

[53] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field
theory of time-reversal invariant insulators, Phys. Rev. B 78,
195424 (2008).

[54] G. E. Volovik and V. M. Yakovenko, Fractional charge, spin and
statistics of solitons in superfluid 3He film, J. Phys.: Condens.
Matter 1, 5263 (1989).

[55] V. M. Yakovenko, Chern-Simons terms and n field in Hal-
dane’s model for the quantum Hall effect without Landau levels,
Phys. Rev. Lett. 65, 251 (1990).

[56] That is, Ψ and Ψ† are in fact only one independent field, made
manifest through Ψ(−k)Tρ1 ⊗ 14 = Ψ†(k)

[57] G. E. Volovik, The Universe in a Helium Droplet, International
Series of Monographs on Physics (Oxford University Press,
Oxford, 2009).

[58] M. Sato, A. Yamakage, and T. Mizushima, Mirror Majo-
rana zero modes in spinful superconductors/superfluids Non-
Abelian anyons in integer quantum vortices, Physica E, 55, 20
(2014).

[59] G. Volovik, Quantum Hall and chiral edge states in thin 3He-A
film, Pis’ma Zh. Eksp. Teor. Fiz. 55, 363 (1992) [JETP Lett. 55,
368 (1992)].

[60] D. A. Ivanov, Non-Abelian statistics of half-quantum vortices
in p-wave superconductors, Phys. Rev. Lett. 86, 268 (2001).

[61] T. Kawakami, T. Mizushima, and K. Machida, Zero energy
modes and statistics of vortices in spinful chiral p-wave super-
fluids, J. Phys. Soc. Jpn. 80, 044603 (2011).

[62] B. Huang, X. Yang, Q. Zhang, and N. Xu, Chiral Majorana edge
modes and vortex Majorana zero modes in superconducting an-
tiferromagnetic topological insulator, J. Phys.: Condens. Matter
34, 115503 (2022).

[63] B. Lian, X.-Q. Sun, A. Vaezi, X.-L. Qi, and S.-C. Zhang,
Topological quantum computation based on chiral Majorana
fermions, Proc. Natl. Acad. Sci. USA 115, 10938 (2018).

[64] J. J. He, T. Liang, Y. Tanaka, and N. Nagaosa, Platform of chiral
Majorana edge modes and its quantum transport phenomena,
Commun. Phys. 2, 149 (2019).

[65] B. Uchoa and A. H. Castro Neto, Superconducting states of pure
and doped graphene, Phys. Rev. Lett. 98, 146801 (2007).

[66] E. Thingstad, A. Kamra, J. W. Wells, and A. Sudbø, Phonon-
mediated superconductivity in doped monolayer materials,
Phys. Rev. B 101, 214513 (2020).

[67] P. Coleman, E. Miranda, and A. Tsvelik, Odd-frequency pairing
in the Kondo lattice, Phys. Rev. B 49, 8955 (1994).

[68] Specifically, multiplying �↑↓ by (1 − ζ ), we find that the gap
is given by �

√
2
√

1 + ζ (ζ/2 − 1), which is �= 0 for all ζ ∈
(0, 1).

184508-14

https://doi.org/10.1103/PhysRevB.94.024502
https://doi.org/10.1088/0022-3719/8/5/005
https://doi.org/10.1103/PhysRevB.11.478
https://doi.org/10.1103/PhysRevB.67.054505
https://doi.org/10.1103/PhysRevB.86.085145
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/PhysRevB.38.745
https://doi.org/10.1103/PhysRevLett.69.2142
https://doi.org/10.1103/PhysRevB.84.115119
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevB.79.233402
https://doi.org/10.1209/0295-5075/87/17003
https://doi.org/10.1103/PhysRevB.88.220511
https://doi.org/10.1103/PhysRevB.89.104509
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevLett.100.246808
https://doi.org/10.1007/s00033-017-0779-7
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1142/S0217979292000037
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1088/0953-8984/1/31/025
https://doi.org/10.1103/PhysRevLett.65.251
https://doi.org/10.1016/j.physe.2013.07.011
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1143/JPSJ.80.044603
https://doi.org/10.1088/1361-648X/ac4531
https://doi.org/10.1073/pnas.1810003115
https://doi.org/10.1038/s42005-019-0250-5
https://doi.org/10.1103/PhysRevLett.98.146801
https://doi.org/10.1103/PhysRevB.101.214513
https://doi.org/10.1103/PhysRevB.49.8955

