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Inducing Z2 topology in twisted nodal superconductors

Kevin P. Lucht ,1 Pavel A. Volkov ,2,3 and J. H. Pixley 1,4

1Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

4Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA

(Received 13 February 2024; revised 15 April 2024; accepted 22 April 2024; published 6 May 2024)

Twisted nodal superconductors have been shown to exhibit chiral topological superconductivity under broken
time-reversal symmetry. Here we show how a time-reversal preserving topological superconductivity can be
induced in nodal triplet superconductor multilayers. For a bilayer system, the application of a Josephson spin
current in triplet superconductors induces a nonzero spin Chern number per node in momentum space. However,
we show that stabilizing a nontrivial global Z2 invariant requires an odd number of layers. As a specific example,
we consider trilayers with three forms of twist: chiral, alternating, and single-layer. For chiral and single-layer
case, we find that a gap opening in the dispersion leads to a nontrivial Z2 topological invariant. For single-layer
twists, we show how this invariant is nontrivial when extended to an arbitrary odd number of layers.
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I. INTRODUCTION

Twisted nodal superconductors are a promising platform
to realize topological superconductivity through the sponta-
neous or the induced formation of a chiral order parameter
[1–3]. Of potential superconducting candidate materials,
Bi2Sr2CaCu2O8+δ (BSCCO) has received considerable at-
tention due to its highly two-dimensional (2D) structure,
remaining superconducting even in the limit of a single layer
(comprising two CuO2 planes) with a similar transition tem-
perature as in its bulk counterpart [4]. Although twisted
bilayers have not been realized, twisted flakes have been
achieved leading to the observation of time-reversal symmetry
breaking (TRSB) interfacial superconductivity [5–8]. As ex-
perimental techniques advance, various forms of stacked and
twisted cuprates from one to several layers with the necessary
nodal structure are a plausible achievement in the near future.
Beyond twisted cuprates, other layered systems have been
predicted theoretically to exhibit topological characteristics.
Some of these predictions include chiral superconductivity
using layered triplet superconductors [9–11], heterobilayers
with higher order topology [12], or effective triplet supercon-
ductors formed via singlet superconductors [13].

The focus of the bulk of the proposals above has been
using TRSB to form Z topological superconductors (classified
as class C or D in the Atland-Zirnbauer (AZ) classification
[14]). However, in 2D, time-reversal invariant (TRI) topo-
logical superconductors can exist with a Z2 index for class
DIII [15–18]. TRI topological superconductors have been of
theoretical interest in part due to their analog to the quantum
spin hall state of TRI topological insulators. Furthermore,
TRI topological superconductors host a pair of helical edge
modes which are characterized as a Kramers’ pair of Majorana
fermions. This pair can also form around TRI defects and
manifest as an emergent supersymmetry [16], and as bound
states in junction devices which can be controlled for quantum

information processing [19]. For class DIII superconductors,
the TRI state is mainly reserved to triplet superconductors as
a singlet order parameter preserves the SU(2) spin symmetry.
However, various proximity effect arrangements [20–22] or
external fields [23] can yield a TRI topological phase without
the need for a triplet superconductor.

In analogy to previous work on chiral topological super-
conductivity [2], we will explore here the possibility to induce
Z2 superconductivity in twisted nodal superconductors by
external perturbations that preserve time-reversal symmetry.
In particular, spin current is one such perturbation that will be
a major focus of the following manuscript.

Spin currents in superconducting systems have been stud-
ied for their potential utility in spintronic applications [24],
with most of the works focusing on heterostructures involving
magnetic materials (primarily ferromagnets) and singlet su-
perconductors [25,26] or Rashba spin-orbit coupling [27,28].
For triplet superconductors, theoretical studies have shown
that spin currents, including nondissipative (Josephson) ones,
are related to misalignment of the d-vector of the order
parameters [29,30].

In this work, we demonstrate a strategy to create time-
reversal preserving Z2 topological superconductors in twisted
multilayers of triplet nodal superconductors. In particular, we
show that a Josephson spin current creates a misalignment
between the d-vectors of the layers leading to the opening of
a topological gap in the spectrum which is characterized by a
spin Chern number. The total spin Chern number of the system
forms a Z2 invariant and we show that it can be nontrival
only for systems with an odd number of layers. As an explicit
example, we use a three layer system (that we extend to N
layers) to show how the topological character depends on the
twisting arrangement, which is no longer unique beyond a pair
of layers. We focus on three common twisting arrangements
displayed in Fig. 1: where the twist angle between nearest
neighboring layers is constant and with the same sign dubbed
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FIG. 1. Twisting arrangements for N-layered systems. At the top of each twisting arrangement is the N = 3 layered case which are extended
below to arbitrary N . The arrow indicates the direction a given layer is rotated by an angle θ . (a) displays chiral twists (CTs) where each layer
n is rotated by angle nθ to form continually rotated layers with a fixed orientation. (b) displays an alternating twists (ATs) where odd layers
are rotated by angle θ and even layers by −θ . (c) displays a single-layer twist (SLT) arrangement where layer N is rotated at an angle θ while
the remaining N − 1 layers are not twisted.

chiral twists (CT) or with an alternating sign called alternating
twists (AT) and where only the top layer is twisted with the
remaining layers untwisted that we have dubbed single-layer
twists (SLTs) and is the main focus of the present work. While
the case of AT is topologically trivial [31], for the CT and
SLT systems with an odd number of layers, a topological gap
is formed with a nontrivial topological index. Focusing on
the SLTs for a three layer system, we explicitly show in a
small twist angle model how to compute the Z2 index, and
then extend this to an arbitrary number of layers to show its
stability with an odd number of layers.

The proceeding manuscript is organized as follows: in
Sec. II, we examine the topological classification of a gen-
eral superconducting Hamiltonian and perturbations of a
N-layered system. We attribute one of these perturbations to
a spin Josephson effect which is explored in Sec. III using a
two layered system which leads to a trivial topological invari-
ant. Section IV extends this spin Josephson effect to a three
layered system to show that in combination with their arrange-
ment has a nontrivial topological invariant. We conclude with
Sec. V and comment on the topological invariant in a general
N-layered system and its connection to 2.5-dimensional (2.5-
D) systems [32].

II. SYMMETRY CLASSIFICATION OF CONTINUUM
MODEL

To identify in general what twisted superconductors are
topological, we utilize the Cartan symmetry classifications
focusing on the superconducting Altland-Zirnbauer (AZ)
symmetry classes. To realize Z2 topology, we have to extend
the single-layer classification of 2D superconductors to an
N-layered system, and then identify perturbations which allow
for the formation of a TRI Z2 topological superconductor for
layered systems. In this extension, we will first ignore the
influence of twist angle, and then introduce contributions from
arbitrary small twist angles between layers.

The second quantized Hamiltonian for a N-layered system
in the continuum can be written as

H =
∑

k

�
†
kHN (k)�k, (1)

where we use Balian-Werthammer (B-W) spinors
�

†
k = (�†

k,1, �
†
k,2, . . . , �

†
k,N ) and �

†
k,l = (c†

k,↑,l , c†
k,↓,l ,

c−k,↑,l , c−k,↓,l ) for each layer l = 1, 2, . . . , N . This
Hamiltonian describes a single valley where the momenta k
are local to a Bogoliubov-de Gennes (BdG) Dirac node
positioned at KN such that k = K − KN where K is
an arbitrary momenta. The Bloch Hamiltonian will be
constructed in terms of h0(k) which is a single-layer
component with no twist local (in k space) to the Dirac
node centered at KN expressed as

h0(k) = ξτ3s0 + δ�̂(k), (2)

where ξ = vF k‖, δ = v�k⊥, τi is the Nambu basis, and si is
the spin basis. The parameters vF is the velocity of the normal
dispersion and v� is the “velocity” of the order parameter, and
k‖ is the momenta parallel to KN and k⊥ is the momenta per-
pendicular to KN . Local to the node at KN , k‖ and k⊥ forms an
orthogonal coordinate system (see Fig. 2). For our purposes,
we consider the order parameter �̂(k) to be expressed as

�̂s = s2τ2 (3)

or

�̂t (k) = (d(KN ) · s)(is2)τ1, (4)

which are singlet and triplet order parameters, respectively.
Without loss of generality, we will chose the d-vector of the
form d(KN ) = (d1(KN ), 0, 0) where d1(KN ) = −d1(−KN )
and |d1(KN )| = 1.

Treating the tunneling only between nearest neighboring
layers and identical between each layer, a general untwisted
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FIG. 2. An overview of the Brillouin zone of a twisted interface
with circular Fermi surfaces. The interior color represents the sign of
the superconducting order parameter with line of zeros displayed as
orange and purple. The intersection of the line of gap zeros with the
Fermi surface (black circles) depict the Dirac nodes. The nonrotated
layer in purple has reciprocal lattice vectors G1 and G2 and node
positioned at KN . From KN , a local coordinate system is constructed.
When the top layer in orange is rotated by an angle θ , its node
positioned at Kθ

N introduces a displacement vector QN along k⊥.
Higher order tunneling represented by the fading vector KN + G1

are neglected.

N layer Hamiltonian can be written as

HN (k) =

⎛
⎜⎜⎝

h0(k) T (k) 0
T ∗(k) h0(k) T (k) . . .

0 T ∗(k) h0(k)
...

. . .

⎞
⎟⎟⎠, (5)

where the off-diagonal interlayer tunneling matrix T (k) is
represented in terms of bases τi and s j . We will now address
the affect of introducing a small twist of angle ±θ to an
arbitrary layer n. The twist translates this layer’s node by in-
troducing a displacement QN along k⊥ as shown in Fig. 2 (for
more details see Ref. [10]). This affects the tunneling matrix
by involving both the untwisted momentum components k
and twisted momentum k′ = kθ such that T (k) → T (k, k′) ≈
T (k − k′) and

T (k − k′) = tk,k′τis j, (6)

where tk,k′ is the Fourier transformed tunneling strength.
Treating the tunneling strength as local in k-space to the node
KN , and neglecting momenta beyond the initial Brillouin zone
as shown in Fig. 2 as T falls off exponentially in this regime
[10], the tunneling strength can therefore be simplified to

tk,k′ ≈ tKN

�
≡ t, (7)

where tKN is the tunneling strength at the node KN and �

is the unit cell area of a layer (for technical details of this
approximation, see Ref. [10]). Furthermore, the displacement
also contributes a term Htw,n(k) which is added to the twisted
layer’s Hamiltonian of Eq. (2)

Htw,n(k) = ±αt�̂(k), (8)

where α = v�QN

t and the subscript n is the layer index where
the twist is applied.

We now aim to classify the Hamiltonian under the discrete
symmetry operators for time reversal T = UT K and charge
conjugation C = UCK , where UT,C are unitary operators. As
the contributions of twist do not affect the classification of the
Hamiltonian in Eq. (5), they are neglected. These operators
realize the T and C symmetries of the Hamiltonian as

U †
T H∗

N (k)UT = HN (−k), U †
C H∗

N (k)UC = −HN (−k). (9)

It is important to note that HN (k) represents a single valley
centered at KN and these discrete operations relate this valley
to another located at −KN . Since HN (k) can be decomposed
into single-layer components, we can likewise decompose the
unitary operators UT and UC in Eq. (9) as a direct sum

UT/C = U (1)
1,T/C ⊕ U (2)

1,T/C ⊕ · · · ⊕ U (N )
1,T/C, (10)

where the superscript corresponds to the layer index and
U1,T/C is the unitary operator for time reversal/charge con-
jugation corresponding to the single-layer Hamiltonian such
that

U †
1,T h∗

0(k)U1,T = h0(−k), U †
1,Ch∗

0(k)U1,C = −h0(−k).

These operators will also act on the tunneling matrix which
must obey the same relation above. We now focus on the
spin degrees of freedom as they play a crucial role in the
form of the unitary operators and ultimate topological clas-
sification of the superconductor. We start by considering the
unitary operators action on h0(k). With only a singlet com-
ponent (�̂ = �̂s), the Hamiltonian will have full spin SU(2)
symmetry, corresponding to a CI class with the time-reversal
symmetry operator T = K and charge-conjugation given by
C = τ2K . For a triplet superconductor (�̂ = �̂t ), the d-vector
defining the triplet order parameter characterizes the spin
degrees of freedom. For our purposes, we will assume we
the d-vector has a single component that breaks the SU(2)
symmetry down into U(1) and leaves us in class AIII with
time reversal T = is2K and charge conjugation C = τ1K .

We will now include perturbations to this Hamiltonian,
some of which can be generated by an external field or an
applied current (see below) that can be added to either h0(k)
or T (k) of the form

Hαβ
pert (k) = τα (hβ (k)sβ ), (11)

where α, β = 0, 1, 2, 3 and h(k) is a spin and momentum
dependent parameter corresponding to an external field. For
our purposes, we consider each term independently, and we
aim to find perturbations which

(1) preserve T and C in Eq. (9),
(2) open a gap in the spectrum,
(3) have a nontrivial topological index.
To satisfy condition (i) for a superconductor, we are au-

tomatically restricted to class DIII to form a Z2 invariant.
Analyzing the possible perturbations under the discrete sym-
metries (see Appendix A) leads to the term

HJSC(k) = h(k)σ0τ2s0, (12)

that satisfies conditions (i) and (ii) so long as h(k) = −h(−k).
Such a term can be considered as adding an ip component to
the order parameter with d-vector component along s2.
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FIG. 3. Cartoon depiction a two nodal p wave superconductors
rotated by an angle θ . The location of the Dirac nodes are denoted by
orange dots. Interlayer spin current (Iσσ

JSC where σ refers to the spin
channel) results in a spin Josephson effect. Consequently, a rotation
in spin space of the d-vector and Nambu space of the order parameter
occurs which forms a px + ipy/px − ipy order parameter.

Importantly, not all the momentum-odd character of
Eq. (12) is consistent with Fermi-Dirac statistics. The effect
of which results in differences for singlet and triplet super-
conductors. For a triplet superconductor, this term produces
a helical order parameter while for singlet superconductors it
violates Fermi-Dirac statistics. To amend this for singlet su-
perconductors, such a term would require introducing a triplet
order parameter which would produce a class AIII supercon-
ductor with a trivial topological classification in 2D [15]. The
affect on a triplet order parameter, however, is allowed and
sufficient to produce a class DIII superconductor. Starting
with the two layer case, we show how such a component is
generated by a Josephson spin current in triplet supercon-
ductors. To then satisfy condition (iii), we will compute a
Z2 index which will be shown to depend on N and twist
arrangement.

III. TOPOLOGICAL GAP OPENING WITH JOSEPHSON
SPIN CURRENT

Before considering the stack of N layers, we first consider
the effect of HJSC(k) defined in Eq. (12) on the low-energy
spectrum of a twisted bilayer:

H2(k) = ξτ3 + δd1(KN )τ1s3 − αtd1(KN )τ1σ3s3 + tτ3σ1,

(13)
where we take a triplet order parameter, and σi corresponds
to the layer basis. Since all three rotation arrangements are
equivalent for two layers, we take the layer to be rotated in
opposing directions (incorporated in the σ3 term) by a small
angle ± θ

2 . Compared to Eq. (8), the parameter α is halved due
to half the rotation angle applied. The off-diagonal tunneling
matrix is also captured by σ1 and is given an explicit form of
T (k) = tτ3 which addresses the essential physical affects of
twist while simplifying its form [10].

The application of the conventional charge (Josephson)
supercurrent between layers induces a phase difference ϕ be-
tween the layers. This generates a term ∝ τ2 in the low-energy
Hamiltonian that breaks time reversal symmetry and opens
a gap at the Dirac nodes [2,10]. Using the concept of the
interlayer current, we can relate HJSC(k) to an interlayer spin
current illustrated in Fig. 3. Here, application of a pure spin

current (which can be pictured as exactly compensated spin up
and down components of Josephson charge current, see Fig. 3)
leads to a misalignment of the d-vectors of the order pa-
rameters via a Josephson-like relationship (see Appendix C).
Analogously to the application of an interlayer current, the
order parameter will acquire a spin phase, i.e., with opposing
signs for each spin channel such that �1 → �1(eiϕs/2s↑↑ +
e−iϕs/2s↓↓) and �2 → �2(e−iϕs/2s↑↑ − eiϕs/2s↓↓) where s↑↑ =
s0+s3

2 and s↓↓ = s0−s3
2 . By using the current-phase relationship,

we can represent the current of each spin channel as Iσσ (�ϕs)
where �ϕs is the spin-phase difference between the layers.
The Josephson (spin) current IJC (IJSC) is then the sum (differ-
ence) of the spin channels [33]. In the context of a Josephson
junction, an applied spin current will induce a spin-dependent
phase difference (ϕs) that generates a Josephson spin current.
This realizes the spin Josephson effect, which is given by (see
Appendix C)

IJSC = 2t2ν0

h̄
sin(ϕs), (14)

where ν0 is the density of states at the Fermi energy. Since
the phase difference for each spin channel is equal and op-
posite, the current (spin current) will be zero (nonzero). For
a triplet superconductor, this acquired phase results in the
transformation of the initially aligned d-vector to d(KN ) =
d1(KN )(cos ϕs

2 , sin ϕs

2 , 0), resulting in the effective low-energy
Hamiltonian H2(k) → H̃2(k) + H2,JSC(k), where

H̃2(k) = ξτ3 + δ cos
ϕs

2
d1(KN )τ1s3

−αt cos
ϕs

2
d1(KN )σ3τ1s3 + tσ1τ3 (15)

and

H2,JSC(k) = −δ sin
ϕs

2
d1(KN )σ3τ2 + αt sin

ϕs

2
d1(KN )τ2.

(16)
Note the latter term in H2,JSC(k) corresponds to the gap-
opening perturbation identified in Sec. II. Compared to the
interlayer current, this spin current converts the Hamiltonian
into a class DIII topological superconductor with helical edge
modes of the form px + ipy/px − ipy. For singlet supercon-
ductors, the proposed mechanism of generating a TRI gap
would not work, as the singlet order is even under k → −k.
However, the fermionic commutation relations imply that
HJSC(k) has to be odd in k, or, in other words, will vanish
identically if it is assumed to be even in k. Moreover, ap-
plying a spin phase difference to an even order parameter
can only generate even terms, and thus the term of interest
will not be generated. Therefore opening a TRI gap in singlet
SC would require the formation of a secondary spin triplet
order parameter. Furthermore, if such a term is induced, it is
insufficient to produce a stable Z2 invariant which is explored
further in Appendix B and noted in Sec. II. Returning to the
triplet scenario, if we take the spin current as small such that
ϕs 
 1, we can treat H2,JSC(k) as a perturbation. The former
term vanishes to first order and produces a negligible term
of O(ϕ2

s ). Projected Eq. (13) and the latter term of Eq. (16)
into the zero energy basis of Eq. (13), we find the effective
Hamiltonian

Hlow(k) = −ξ̃ ζ3η3 − δ̃ζ1η3 − m̃ζ2η0, (17)
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where ζi and η j form our low-energy basis, ξ̃ = √
1 − α2ξ ,

δ̃ = √
1 − α2δ, and m̃ = tα

2 ϕs. Each 2 × 2 block acts as a
px ± ipy superconductor which provide the helical counter-
propagating edge modes.

We now aim to quantify the topological invariants of the
Hamiltonian. A general approach is taken where we distin-
guish the eigenstates by diagonalizing them in the degenerate
subspace with the Ŝz operator. For our two occupied states |να〉
where α = ±, this amounts to diagonalizing the matrix

Sα,β = |να (k)〉〈να (k)|σz|νβ (k)〉〈νβ (k)|. (18)

The Chern number for the occupied eigenstates of the matrix
can be computed as

C± = 1

2π

∫
d2kQK±(k), (19)

where [34]

QK±(k) = i(〈∂k‖ν±|∂k⊥ν±〉 − 〈∂k⊥ν±|∂k‖ν±〉). (20)

Performing this calculation, we find C± = ± sign(tαϕs )
2 . With

these terms, we can recognize the spin Chern number Cs

Cs = C+ − C− = sign(tαϕs), (21)

while the Chern number C is

C = C+ + C− = 0. (22)

The Z2 invariant can then be computed as the total spin Chern
number by summing over all layers as each one contributes an
additional node

ν =
N∑
i

Cs mod 2 ≡ Cs,tot mod 2. (23)

For the case of the two-layer Hamiltonian, this leads to a
trivial Z2 index always, as the numbers of valleys, each
containing two Dirac points, is even. Assuming each layer
contributes a nonzero Cs, we can naively expand this result
to any layer number N where any even number of layers is
topologically trivial, but opens the possibility of a nontrivial
Z2 index for an odd number of layers. The complication with
this general argument is that the twisting arrangements for
more than two layers is not unique (see Fig. 1) and may affect
the topology of the system. Using three layers as an example,
we will consider several simple twisting arrangements to show
when Eq. (23) can be applied to any N-layered system. In par-
ticular, we arrive at a nontrivial Z2 invariant for odd layered
systems for CT and SLT set ups. We are then able to extend
this result to N layers for the SLT cases.

IV. TRILAYER TWISTS

Given a spin current, the gap that is introduced provides a
well-defined spin Chern number for a node. Although ν = 0
for bilayers, an additional node in a trilayer system can pro-
vide ν = 1 so long as the additional node becomes gapped.
To express the Hamiltonian, we will start with Eq. (5) for
N = 3 and assume the tunneling matrix T = tτ3 as in Sec. III

resulting in

H3(k) =
⎛
⎝h0(k) tτ3s0 0

tτ3s0 h0(k) tτ3s0

0 tτ3s0 h0(k)

⎞
⎠. (24)

To introduce twists, we need to add the angle dependent
terms of Eq. (8) corresponding to each twisting arrangement.
Following the twisting orientations of Fig. 1, alternating twist
(AT) will have twists applied in opposing orientations which
leads to a twisting Hamiltonian

Htw,AT(k) =
N∑

n=1

(−1)nαd1(KN )τ1s1δn,n, (25)

where δn,n is the Kronecker delta acting in layer space. Chiral
twisting (CT) instead have the twist angle in the same orien-
tation leading to a contribution

Htw,CT(k) =
N∑

n=1

nαd1(KN )τ1s1δn,n. (26)

For single-layer twisting (SLT), only a boundary layer is ro-
tated while the other layers remain fixed which introduces a
twisting Hamiltonian

Htw,SLT(k) = αd1(KN )τ1s1δn,1, (27)

where we chose the first layer as the rotated layer.
Each case behaves differently as α increases. For the case

of ATs, the system can be treated as a bilayer and decoupled
monolayer due to their different behavior under a mirror plane
parallel to the layers [31,35,36]. As a result, an interlayer
supercurrent only induces a gap for the coupled bilayer while
the monolayer’s nodes remain fixed. For CTs and SLTs, all
layers are coupled where an interlayer supercurrent can gap
all nodes in the layers producing a topological phase. One
difference between the SLTs and the other two is that only
ATs and CTs can achieve a magic angle at αMA = √

2 marked
by a quadratic and cubic band touching, respectively [31].
However, as Fig. 4 displays, SLTs form no band touching.
Instead, at α = 0, the nodes lie along δ = 0 and as α starts to
increase briefly causes the nodes along k‖ to converge towards
the center node. The node at the center then travels along
k⊥ away from the two nodes which remain fixed along k‖.
Further increasing α causes the single node to continue to
travel further away along k⊥.

The results for both CTs and SLTs have a convoluted
analytical form, but we can obtain their response to an in-
terlayer spin current numerically. Once a spin polarized spin
difference is applied, the dispersion of both twist arrange-
ments becomes gapped for α �= 0. Figure 5 shows how the
gap energy evolves under increasing twist angle via α. For
CTs, all nodes have the same gap energy which increases until
αMA = √

2 where it plateaus and then decreases as α >
√

2.
For SLTs, the gap energy is different between the center node
and the pair of nodes along ξ . As α increases, the central
node’s gap energy exceeds the gap of the other two nodes.
Regardless, the gaps follow the trajectory of the CTs’ nodes
albeit with smaller magnitude for all α > 0.

To determine the topological invariant formed from the
interlayer spin current, we focus on the SLT case (see Fig. 6)
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FIG. 4. Dispersion of the SLT Hamiltonian. For no twist (α = 0),
three nodes lie along ξ . As twist starts to increase, the nodes move
together briefly. Afterwards, as shown when α = 1.5, the central
node moves away from the other two nodes along δ while the other
nodes remain fixed. The red arrow depicts the direction the central
node follows as α increases.

where we can treat the twist angle as small such that α 
 1. In
this approximation, we start with an untwisted stack where the
nodes lie along KN . In doing so, the contribution of the order
parameter and the twist along k⊥ are perturbations about the
zero energy eigenstates. The untwisted Hamiltonian can be
represented by HSLT(k)

HSLT(k) =
N=3∑
l=1

�
†
k,lξτ3�k,l + (�†

k,l−1tτ3�k,l + H.c.), (28)

FIG. 5. Normalized gap energy vs α. For CTs, all nodes have the
same gap which plateaus at αMA = √

2 highlighted by the red line.
For SLTs, all nodes are gapped but with different magnitude. This
difference is shown by the plots of the gap from the central node
in blue and the minimum gap contributed by the remaining nodes
in orange. Here, the gap energy is normalized by the maximum gap
energy �max, which is taken from the CTs’ nodes.

FIG. 6. Edge modes due to a finite Z2 index for the SLT trilayer
system. For a SLT trilayer system with a interlayer spin current,
a Dirac mass is introduced which forms a spin Chern number for
each layer. Here Iσ,σ represents the current spin channel of the order
parameter. The BdG quasiparticles in brown can be given a helicity
represented by the black arrows. These quasiparticles will form he-
lical edge modes around impurities in the lattice. The corresponding
Z2 formed by summing the spin Chern number provides a nontrivial
index ν = 1.

where �
†
k,l are the same as discussed in Eq. (1). The zero

energy eigenstates for this Hamiltonian can be written as a
superposition of Bloch states using open boundary conditions
for the layer hopping,

|�†
kz

i
〉 = 1

2

N=3∑
l=1

sin
(
kz

i l
)
�

†
k,l |0〉, (29)

where �
†
k,l is a B-W spinor composed of �

†
k,l = �

†
k,l −

�
†
k,−l . The momenta kz

i = iπ
4 , i = 1, 2, 3 is oriented along the

z direction which points perpendicular to the (k‖, k⊥) plane
along the stack of layers. The discrete index i comes from
Fourier transforming the layers and therefore corresponds to
the number of layers in the system.

We will now introduce a dispersion along k⊥ which intro-
duces a contribution from the order parameter as well as the
interlayer spin current,

Hδ (k) = δ
∑

l

�
†
k,l (cos(ϕsl )τ1s3 − sin(ϕsl )τ2s0)�k,l , (30)

such that each layer has a phase eiϕsl s↑↑ + e−iϕsl s↓↓ which en-
sures a phase difference between layers and opposing current
in the spin channels. Applying the twist to the first layer adds
a perturbation along the perpendicular direction,

Htw(k, ϕs) = αt�†
k,1(cos ϕsτ1s3 + sin ϕsτ2s0)�k,1, (31)

where the phase is incorporated from the spin current. Pro-
jecting these perturbations onto our low-energy basis, we find

Hδ

(
kz

i

) =
∑

kz
i

zδ

(
kz

i

)
�

†
kz

i
(cos(2ϕs)τ1s3 − sin(2ϕs)τ2s0)�kz

i

(32)
where

zδ

(
kz

i

) = δ
cos2 ϕs

2 cos ϕs

2 sin
(
ki

z − ϕs

2

)
sin

(
ki

z + ϕs

2

) sin2 kz
i (33)
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and

Htw
(
kz

i

) =
∑

kz
i

ztw
(
kz

i

)
�

†
kz

i
(cos ϕsτ1s3 − sin ϕsτ2s0)�kz

i
,

(34)
where

ztw
(
kz

i

) = αt

2
sin2 kz

i . (35)

The low-energy effective Hamiltonian about each node then
becomes

Heff
(
kz

i

) =
∑

kz
i

�
†
kz

i

(
ξ̃s0 δ̃s3 − im̃s0

δ̃s3 + im̃s0 −ξ̃s0

)
�kz

i
, (36)

where ξ̃ = ξ − ξkz
i
, δ̃ = zδ (kz

i ) cos(2ϕs) + ztw(kz
i ) cos ϕs and

m̃ = zδ (kz
i ) sin(2ϕs) + ztw(kz

i ) sin ϕs.
Since the contribution of both twist and current to the Dirac

mass is always |m̃| > 0, this leads to a well-defined Chern
number. Furthermore, since δ̃ > 0 for all kz

i , all gapped Dirac
nodes will produce a Chern number with the same sign. Since
the corresponding occupied eigenstates are orthogonal eigen-
states of Ŝz, we can evaluate the spin Chern number following
Eq. (21) such that each node contributes

Cs = sign(αt sin ϕs). (37)

For this three layer case, we find C (3)
s,tot mod 2 = 1, leading to

a stable Z2 index as illustrated in Fig. 6.
For SLTs we can now generalize this approach to N layers,

allowing us to write the Z2 index as

ν = C (N )
s,tot mod 2 =

N∑
l=1

Cs mod 2

=
{

0, N ∈ 2N
1, N ∈ 2N + 1 . (38)

Thus, for the SLT geometry we are able to complete the
computation of the Z2 index for N-layers spelled out in
Eq. (23). On closer inspection of zδ (kz

i ), when specifically
choosing ϕs = π

2 , this quantity vanishes. This result conse-
quently marks a transition to new Dirac nodes appearing along
k⊥. Examined numerically, a pair of nodes appear at kz

2 = π
2

along k⊥ leading to a total of three nodes at kz
2. A more de-

tailed investigation of current-driven generation of new Dirac
nodes is provided in Ref. [32]. One consideration for these
newly generated nodes is if they affect the Z2 invariant once
formed. Because these new nodes are gapped and always
introduced as pairs, their contribution will cancel and will
have no affect on the Z2 invariant. Therefore Eq. (38) can
be applied to any finite odd layered system and provide a
nontrivial Z2 index.

V. DISCUSSION AND CONCLUSION

For N-layered twisted triplet nodal superconductors, we
demonstrate how twist and spin current can produce a TRI
topological phase. Starting with the AZ classifications on
perturbations on a N-layer system, we identify one which is
related to a Josephson spin current. With the Josephson spin
current, we show that triplet twisted nodal superconductors
transform its AZ classification to a DIII superconductor with

a well-defined spin Chern number. This spin Chern num-
ber corresponds to a Z2 topological invariant which can be
nontrivial for odd layered systems depending on the twisting
arrangement, which is not unique.

To determine the influence of the twisting arrangement,
we study a three layer system under common twisting con-
figurations to show how chiral and single-layer twisting
arrangements form a topological gap with an interlayer spin
current. For the single-layer twists, we show with an effective
low-energy model that this topological gap is accompanied by
a nontrivial Z2 invariant. Extending into higher layer num-
bers where 2.5-D affects modify the distribution of Dirac
nodes [32], the Z2 invariant remains nontrivial and can there-
fore be generalized to any odd layer number. Although a
Josephson spin current hasn’t presently been experimentally
demonstrated, spin current measurements are well-known ex-
perimentally. This work represents a natural step forward in
the general realization of topological superconductivity using
twists and interlayer (spin) currents that now allow for a
nontrivial Z or Z2 index.

While evidence of spin triplet superconductors in lay-
ered systems are not currently conclusive, many potential
candidates are of current interest. Recent studies of trilayer
rhombohedral graphene [37–39] have been suggested to host
a f -wave order parameter, as well as potentially ZrNCl and
WTe2 serving as spin triplet platforms [40]. Our results may
also provide a framework to continue this program of us-
ing stacking and twisting to realize higher order topological
phases [41,42], which represents an interesting future direc-
tion. With advancements in finite size flakes of layered singlet
superconductors, their extension to triplet superconductors
and combination with spin current effects offer a future out-
look for twisted superconducting systems.
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APPENDIX A: PROJECTION OF TWO LAYER
PERTURBATIONS

For two layers, we can write perturbations in the form
Hαβ

pert (k) = σατβ (hβ (k) · s) where σi represents the layer basis
and h is a parameter stemming, for example, from an external
field. These perturbations are then applied to the two layer
Hamiltonian in Eq. (13),

H2(k) = ξτ3 + δd1(KN )τ1s3 − αtd1(KN )τ1σ3s3 + tτ3σ1.

(A1)
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TABLE I. Projections to the zero energy basis for allows terms
of the form σiτ j sk with σi along the vertical axis and τ j sk along
the horizontal. Here we assume that the perturbation is even under
inversion.

τ3s0 τ3s1 τ2s2

σ0 −√
1 − α2hζ3

√
1 − α2hη1 —

σ1 hζ3η3 −hη1 —
σ2 hαζ1 −hαη2ζ1 −hαζ2η2

σ3 αhζ1η3 2αhζ3η3 —

From the zero energy basis (represented by basis vectors
ηi and ζi) of the two layer Hamiltonian, we can take per-
turbations which satisfy C and T and find their nonzero
contribution via perturbation theory. For the case where
h(k) = h(−k), these projections are summarized in Table I.

We can also consider the case when the perturbation is
odd under inversion where h(k) = −h(−k). In this instance,
several more terms are permitted which are presented for σi

for i �= 2 in Table II and σ2 in Table III. Terms denoted by (∗)
have no contribution to first order, so the presented terms are
second order perturbations, and h̃ = h

√
1 − α2.

Let’s highlight terms which may induce a Dirac mass.
From the even terms, only σ2τ1s1 may be considered. Exam-
ined numerically, for a sufficiently large value of h, a gap can
open in the spectrum for α < αMA (including zero) where the
magic angle is shifted with the perturbation strength. After
the magic angle, a nodal ring forms which then separates into
two nodal rings which move away from one another along the
perpendicular axis. The odd terms offer several possibilities
which include those in the upper right of Table II:
• σ0τ2s0, σ0τ3s2, σ1τ2s0, σ1τ3s2.

From left to right, the first term σ0τ2s0 corresponds to an
equal spin current which opens a gap for all values of α. As
analysis of this term shows, it can indeed be treated as a Dirac
mass which produces a topological phase characterized by a
spin Chern number. The second term σ0τ3s2, however, forms
nodal rings which then move towards and away from one an-
other just as the nodal points in the unperturbed Hamiltonian.
For the third term σ1τ2s0, a gap opens for α < αMA where
the magic angle is shifted proportionally to the strength of
the perturbation. Once the magic angle is reached, two Dirac
nodes emerge and move along the perpendicular. The last term
acts like the second term where nodal rings form for α < αMA.
Except once the magic angle is reached, nodes form instead
of rings with move along the perpendicular as the twist angle
increases.

TABLE II. Projections to the zero energy basis for allows terms
of the form σiτ j sk with σi for i = 0, 1, 3 along the vertical axis and
τ j sk along the horizontal. Here we assume that the perturbation is
odd under inversion.

τ0s1 τ0s3 τ1s1 τ1s3 τ2s0 τ3s3

σ0 h̃η2ζ2 −hη3 −hη1ζ3 h̃ζ1 hζ2 −hη1ζ2

σ1 −hη2ζ2 h̃η3 h̃η1ζ3 −hζ1 −h̃ζ2 h̃η1ζ2

σ3 hαη1
h2

2t η3ζ
∗
3 − h2

2t η3ζ
∗
3 hαη3ζ3 − h2

2t η3ζ
∗
3

h2

2t η3ζ
∗
3

TABLE III. Projections to the zero energy basis for allows terms
of the form σiτ j sk with σi for i = 2 along the vertical axis and τ j sk

along the horizontal for perturbations that are odd under inversion.

τ2s2 τ3s0

σ2 − h2

2t η3ζ
∗
3

h2

2t η3ζ
∗
3

APPENDIX B: SINGLET SUPERCONDUCTORS

Repeating the equal spin current analysis for a singlet
superconductor likewise induces a spin phase. We will start
by rewriting Eq. (1) for a two layer system to form the Block
Hamiltonian H2,s(k),

H2,s(k) = ξτ3 + δτ1 − αtσ3τ1 + tτ3σ1, (B1)

by absorbing the spin component into the BW spinor �k →
(is2)�k. Applying the spin current transforms the Hamilto-
nian into H2,s(k) → H̃2,s(k) + H2,s,JSC(k)

H̃2,s(k) = ξτ3 + δ cos
ϕs

2
τ1 − αt cos

ϕs

2
σ3τ1 + tτ3σ1, (B2)

H2,s,JSC(k) = −δ sin
ϕs

2
σ3τ2s3 + αt sin

ϕs

2
τ2s3. (B3)

The imaginary component will break SU(2) symmetry but
have a remaining quantization axis in spin space. As a result,
this mechanism will transform the classification from CI to
AIII but not produce a topological index. Another important
remark is that the order parameter must also transform into
a triplet in order to satisfy Fermi-Dirac statistics, so simply
inducing a spin component to a singlet order parameter is
insufficient. Therefore, in order to transform the classifica-
tion for a singlet superconductor to DIII requires additional
contributions. For example, for a d-wave superconductor, the
order parameter must transform to d → d + ip (or another
triplet order parameter), and lose the spin quantization with
an additional Rashba spin-orbit coupling for example.

APPENDIX C: JOSEPHSON SPIN CURRENT IN TRIPLET
SUPERCONDUCTORS

Here we demonstrate that for c-axis interface, spin current
is related to a spin phase of the order parameter by a Josephson
relation (for the planar case see Ref. [29]). Let us first define
the charge (Ic) and spin (Is) currents as

Ic = iet

h̄

∑
k,σ

[c†
1,σ,kc2,σ,k − c†

2,σ,kc1,σ,k]

= et

h̄

∑
k,σ

�
†
kσ2�k, Iα=1,2,3

s = t

h̄

∑
k,σ

�
†
kσ2sα�k. (C1)

We will now compute the currents perturbatively in the
interlayer tunneling. This approach is sufficient at low
twist angles, since the main contribution comes away from
nodes [10]. In particular, we will consider here a px-
wave order parameter �̂ → �̂eiϕss3σ3/2: �0 cos(η)τ1s3 →
�0 cos(η)[cos(ϕs/2)τ1s3 + sin(ϕs/2)σ3τ2], where η is the an-
gle on the Fermi surface. Note that such an operation is not
possible for a singlet superconductor, since the spinful part
of pairing has to be odd-parity. Consequently, application of a
spinful phase difference to a singlet superconductor will result
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in a renormalization of �̂ by cos(ϕs/2) only, while the spinful
term will vanish identically due to fermion anticommutation.

Continuing with the z-polarized spin current, it is then
given by

I3
s = − it2

2h̄
T

∑
εn,k

Tr[σ2s3Ĝ(iεn, k)σ3τ1Ĝ(iεn, k)]

= 4t2�2
0 sin(ϕs)

h̄

∫
dεdk
(2π )3

cos2 η

(ε2 + ξ 2 + �2
0 cos2 η)2

∣∣∣∣∣
T =0

= 2t2ν0 sin(ϕs)

h̄
, (C2)

where ν0 is the density of states and the factor of 1/2
is to compensate for the summation over all the mo-
mentum space (rather than half due to extended spinor
structure). Note that the final result is only valid at T 

�0. In the case of I3

s �= 0, the contribution from equal and
opposite spin current will therefore results in no charge
current.

Importantly, one can further demonstrate that all
other components of spin current and charge current
vanish. Therefore we have demonstrated that driving
a spin current through a triplet twisted superconduc-
tor is equivalent to an application of spinful phase
difference.
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