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Proximity effect at superconductor/antiferromagnet (S/AF) interfaces, which manifests itself as generation
of Néel-type triplet correlations, leads to sensitivity of the superconducting critical temperature to the mutual
orientation of the AF Néel vectors in AF/S/AF trilayers, which is called the spin-valve effect. Here we predict
that the spin-valve effect in AF/S/AF heterostructures crucially depends on the value of the chemical potential
of the superconducting interlayer due to the occurrence of the finite-momentum Néel triplet correlations. In
addition, we investigate equal-spin-triplet correlations, which appear in AF/S/AF structures for nonaligned Néel
vectors of the AFs, and their role in the nonmonotonic dependence of the superconducting critical temperature
of the AF/S/AF structure on the mutual orientation of the AF Néel vectors. The influence of impurities on the
spin-valve effect is also investigated.
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I. INTRODUCTION

Heterostructures constructed of superconductors and mag-
netic materials are objects of great interest for supercon-
ducting spintronics due to proximity effects occurring in the
nanoscale interface regions [1–4]. In particular, magnetic-
induced spin-splitting field leads to partial conversion of
singlet pairing correlations to triplet ones, which suppresses
conventional spin-singlet superconductivity. One of the pos-
sible spintronics devices based on such structures is a
superconducting spin valve, where the superconducting crit-
ical temperature Tc is sensitive to the mutual orientation of the
magnetic layer magnetizations (spin-valve effect). In particu-
lar, a switching between the superconducting and the normal
states, that is the absolute spin-valve effect, can be realized by
changing the mutual orientation of the magnetic layers.

Spin valves based on superconductor/ferromagnet (S/F)
proximity effect have been widely studied both theoretically
and experimentally. The F/S/F structure with insulating fer-
romagnets was theoretically considered by de Gennes [5],
who showed that the average exchange field felt by the su-
perconductor is proportional to cos (φ/2), where φ is the
misorientation angle between F magnetizations. This result
predicted the spin-valve effect in such systems: according to
it, the critical temperature in the case of parallel (P) mag-
netizations should be lower than in the antiparallel (AP)
configuration, which was later experimentally obtained by Li
et al. [6].

In trilayers with metallic ferromagnets the physics is more
complicated because the singlet and triplet superconducting
correlations can also penetrate into the ferromagnetic re-
gions due to the proximity effect. However, such structures

(F1/F2/S as well as F/S/F) are also well studied in terms of
the spin-valve effect [7–23]. Interestingly, theory for F1/F2/S
systems by Fominov et al. [12] shows the possibility of
both “standard” and “reverse” spin-valve effect (when the
critical temperature is lower in the P or AP configuration,
respectively) due to constructive or destructive interference
of the Cooper pair wave functions reflected from F1/F2 and
F2/S interfaces. Besides, the Tc dependence on the misori-
entation angle might be nonmonotonic with a minimum near
φ = π/2 [12,14,15,17–19,24] because of generation of the
long-range triplet component which provides an additional
way of superconductivity suppression in the case of non-
collinear magnetizations. Research on the spin-valve-based
devices is furthered [25] because, aside from their great sci-
entific interest, they have possible applications towards the
creation of nonvolatile magnetic memory elements. The su-
percurrents passed through these devices can also be spin
polarized [26–30], what can then lead to a low-energy spin-
transfer torque that can be used to control the magnetization
of nanoscale devices.

The dipolar stray fields and GHz frequency magnons in
F often cause parasitic detrimental influence in ferromagnet-
based spintronic devices including superconducting spin
valves. Employing antiferromagnets (AFs) could significantly
reduce these problems due to their zero net magnetization
and higher magnon frequencies [31–35]. Simultaneously, the
zero net magnetization of AFs has long been considered
to be an obstacle to the use of antiferromagnets in spin-
tronic devices. However, it was recently shown that the
superconducting spin-valve effect can also be realized in
three-layer antiferromagnet/superconductor/antiferromagnet
(AF/S/AF) structures despite the absence of macroscopic
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magnetization in the antiferromagnetic layers [36]. In that
work the AF/S/AF spin valve with insulating antiferromag-
nets and fully compensated S/AF interfaces (that is, with
zero interface magnetization) was theoretically investigated in
Bogoliubov–de Gennes (BdG) framework. It may seem that
such a system is invariant towards reversing the direction of
the Néel vectors in one of the AFs and, consequently, there is
no physical difference between parallel and antiparallel con-
figurations. However, each of the S/AF interfaces generates
triplet correlations called Néel triplets [37]. The amplitude of
these correlations changes its sign between the adjacent lattice
sites in the superconductor in the same way as the magnetic
order in the antiferromagnet does. The Néel triplets generated
by the both S/AF interfaces may interfere constructively (de-
structively) inside the superconducting layer, thus suppressing
superconductivity more (less) strongly. Therefore, the spin-
valve effect is expected even in AF/S/AF heterostructures
with fully compensated S/AF interfaces.

In [36] it was obtained that the critical temperature is sen-
sitive to mutual orientation of the Néel vectors of the AFs and
complete suppression of Tc, or the absolute spin-valve effect,
is achievable. In this work we supplement those results with a
more detailed study of Tc(φ) behavior in various regimes. In
particular, it is shown that similar to other important physical
effects in S/AF hybrids, such as dependence of the criti-
cal temperature on impurity concentration [37,38], magnetic
anisotropy of the critical temperature in the presence of spin-
orbit coupling [39], and dependence of the critical temperature
on the canting angle [40], the physics of spin-valve effect
is also very sensitive to the value of the chemical potential
μS in the superconducting layer. We observed an interesting
and nontrivial dependence of Tc on the misorientation angle
between the Néel vectors of the AFs. In AF/S/AF structures
there is some freedom in determination of the misorientation
angle. In [36] the misorientation angle θ was defined as the
angle between the Néel vectors of the closest to the S/AF
interfaces antiferromagnetic layers. Here we focus on other
aspects of physics of AF/S/AF heterostructures and it is more
convenient to choose a unified division of the entire AF/S/AF
structure into two sublattices and to define the misorienta-
tion angle φ as the angle between the magnetizations of two
antiferromagnets at the same sublattice (see Fig. 1 and the
description of the model for further details of the definition).
In [36] it was shown that near half-filling, that is at μS ≈ 0,
the critical temperature is always lower for the parallel state
corresponding to φ = 0 [Tc(0) ≡ T P

c ] than in the antiparallel
state corresponding to φ = π [Tc(π ) ≡ T AP

c ]. Please notice
that the parallel and antiparallel orientations are defined using
the convention followed in this paper. It is explained by the
fact that in this case the Néel triplets generated by the both
interfaces are effectively summed up and strengthen each
other inside the S layer. Here we demonstrate that if we move
away from half-filling the opposite result T P

c > T AP
c can be

realized depending on the width of the S layer. We unveil
the physical reason of this phenomenon, which is connected
with the generation of finite-momentum Néel triplet pairs
[41]. Further, in [36] it was indicated that the dependence
Tc(φ) contains a contribution ∼sin2 φ, which was ascribed to
generation of equal-spin-triplet correlations of conventional,
not Néel, character. But near half-filling this contribution was

FIG. 1. Sketch of the AF/S/AF system. Red and green arrows
show Néel-type magnetizations of the AFs. The unified division into
two sublattices with unit cells containing two sites belonging to A
and B sublattices is also shown. The misorientation angle φ is defined
as the angle between the magnetizations of two antiferromagnets at
the same sublattice. It is important to note that this definition of the
misorientation angle differs from the definition used in [36].

found to be small. Here we investigate equal-spin contribu-
tion in more detail, provide its analytical description, and
find parameter regions, where it is rather strong and results
in the nonmonotonic dependence Tc(φ). Finally, we discuss
the dependence of the spin-valve effect on the presence of
impurities in the S layer and demonstrate that the difference
T P

c − T AP
c is suppressed by impurities due to the sensitivity of

the Néel triplet correlations to impurities, but spin-valve effect
produced by equal-spin pairs, which can be quantified by the
difference T P

c + T AP
c − 2Tc(φ = π/2), is not suppressed by

impurities in the superconductor.
The paper is organized as follows. In Sec. II we present

semianalytical results obtained in the framework of the quasi-
classical theory. Section II A is devoted to description of the
model of the AF/S/AF trilayer we study and the formalism
of the two-sublattice quasiclassical theory applicable to S/AF
hybrid structures. In Sec. II B we present some analytical
results and discuss the structure of triplet correlations respon-
sible for the spin-valve effect in the AF/S/AF trilayer, while
in Sec. II C the dependencies Tc(φ) obtained in the frame-
work of our quasiclassical theory are provided and discussed.
Section III is devoted to the presentation of numerical results
obtained in the framework of the BdG approach. Section III A
briefly describes the method. In Sec. III B we study the de-
pendence of the spin-valve effect on the value of the chemical
potential of the S layer, and Sec. III C is devoted to the influ-
ence of impurities on the investigated effect. In Sec. III D we
describe the requirements for materials. Section IV contains
the conclusions from our work. In the Appendix some techni-
cal details of the quasiclassical calculations are provided.

II. QUASICLASSICAL THEORY: STRUCTURE
OF TRIPLET CORRELATIONS AND SPIN-VALVE EFFECT

A. Model and method

We consider an AF/S/AF trilayer system with fully
compensated interfaces, depicted in Fig. 1. A conventional s-
wave singlet superconductor with thickness dS is sandwiched
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between two insulating antiferromagnets with the same thick-
nesses dAF. For simplicity we study a two-dimensional system
and employ periodic boundary conditions along the interfacial
direction. We introduce a unified division into two sublattices
for the entire AF/S/AF system. The misorientation angle φ is
defined as the angle between the magnetizations of both anti-
ferromagnets at the same sublattice (see Fig. 1). Please note
that this definition of the misorientation angle differs from
the definition used in [36]. In that paper the misorientation
angle θ was defined as the angle between the Néel vectors of
the closest to the S/AF interfaces antiferromagnetic layers.
Both definitions coincide for odd number of layers in the
superconductor, but they differ by π if the number of layers
in the superconductor is even.

In order to obtain some analytical results on the struc-
ture of superconducting correlations in the S layer, including
triplet ones, we investigate the clean case Tc(φ) dependence
in the framework of the two-sublattice quasiclassical theory
[37]. The unit cell containing two sites belonging to different
sublattices A and B is shown in Fig. 1. The Hamiltonian of
the superconducting layer in the two-sublattice representation
takes the form

Ĥ = − t
∑

〈i jνν̄〉,σ
ψ̂

ν†
iσ ψ̂ ν̄

jσ +
∑
i,ν

(
�ν

i ψ̂
ν†
i↑ ψ̂

ν†
i↓ + H.c.

)

− μS

∑
iν,σ

n̂ν
iσ +

∑
iν,αβ

ψ̂
ν†
iα

(
hν

i σ
)
αβ

ψ̂ν
iβ. (1)

Here i is the radius vector of a unit cell as a whole, ν = A, B
denotes the two sites in the unit cell corresponding to different
sublattices, ν̄ = B(A) if ν = A(B). ψ̂

ν†
iσ (ψ̂ν

iσ ) is the creation
(annihilation) operator for an electron with spin σ at the site
of the unit cell i = (ix, iy)T and sublattice ν. The x and y
axes are taken normal to the S/AF interfaces and parallel to
them, respectively. 〈i jνν̄〉 means summation over the nearest
neighbors, t denotes the hopping between adjacent sites, μS

is the electron chemical potential, and n̂ν
iσ = ψ̂

ν†
iσ ψ̂ν

iσ is the
particle-number operator at the site (i, ν). �ν

i and hν
i denote

the onsite s-wave pairing and magnetic order parameter at the
site (i, ν), respectively. σ = (σx, σy, σz )T is the vector of Pauli
matrices in spin space.

As we consider G-type antiferromagnets, the magnetic or-
der parameter in the left and right AFs can be taken in the form
hA(B)

i = +(−)hl,r . It is assumed that the antiferromagnetism
is due to the localized electrons and the amplitude of the
onsite magnetization is not influenced by the adjacent metal.
Therefore, we do not calculate the magnetic order parameter
self-consistently and consider it to have a constant value h in
the AF regions and zero value in the S region. For the onsite
s-wave pairing in the S �A

i = �B
i = �i. �i is nonzero only in

the superconductor.
As all the parameters in the considered problem are slow

functions of the lattice site spatial coordinate, we can intro-
duce a continuous spatial variable R instead of the discrete
index i. Then the two-sublattice formalism allows us to de-
scribe the system with the quasiclassical Green’s function
ǧ(R, pF , ωm), which is an 8 × 8 matrix in the direct product
of spin, particle-hole, and sublattice spaces [pF is the electron
momentum at the Fermi surface, ωm = πT (2m + 1) is the
fermionic Matsubara frequency].

Let us choose the coordinate system ex, ey, ez, so that ex

is parallel to hl × hr , ez is parallel to hl + hr , and x = 0
corresponds to the middle of the S layer. Then hl,r can be
written in the form

hl = h

⎛
⎝ 0

sin(φ/2)
cos(φ/2)

⎞
⎠, hr = h

⎛
⎝ 0

− sin(φ/2)
cos(φ/2)

⎞
⎠. (2)

The quasiclassical Green’s function in the superconductor
obeys the following Eilenberger equation in the ballistic limit
[37]:

[(iωmτz + μS + τz�̌(R) − h(x)σρzτza)ρx, ǧ] + ivF ∇ǧ = 0,

(3)

where h(x) = hlδ(x + dS/2) + hrδ(x − dS/2), vF is the
Fermi velocity for the trajectory pF , τi and ρi are Pauli
matrices in particle-hole and sublattice spaces, respectively,
�̌(R) = �(R)τx. The term proportionate to hl,rσaδ(x ±
dS/2) accounts for the exchange field at the left and right
S/AF interfaces x = ∓dS/2, a is the lattice constant of the
superconductor along the x direction.

As we consider the system translationally invariant along
the S/AF interfaces, the Green’s function depends only on
the x coordinate, normal to the interfaces. Then the term
ivF ∇ǧ in (3) is reduced to ivF,xdǧ/dx. We define the Green’s
functions corresponding to the trajectories, incident to the
right S/AF interface and reflected from it, respectively, as
ǧ+(x) ≡ ǧ(x, v) and ǧ−(x) ≡ ǧ(x,−v), where for brevity we
introduce the notation v ≡ |vF,x|. In addition to the Eilen-
berger equation (3), the quasiclassical Green’s function for a
given trajectory ǧ+(−)(x) obeys the normalization condition

[ǧ+(−)(x)]2 = 1 (4)

and the boundary conditions at the S/AF interfaces x =
∓dS/2, which, due to the symmetrically chosen coordinate
system, are reduced to one boundary condition at one of the
interfaces (for the following calculations we take the right
interface x = dS/2).

In the problem under consideration the S layer width dS

is assumed to be much smaller than the superconducting
coherence length ξS = vF /2πTc0, where Tc0 is the supercon-
ducting bulk critical temperature. Therefore, we can consider
the superconducting order parameter in the S region spatially
constant: �(R) ≈ �. The explicit structure of the Green’s
function in the particle-hole space takes the form

ǧ =
(

ĝ f̂
ˆ̃f ˆ̃g

)
τ

, (5)

where all the components are 4 × 4 matrices in the direct
product of spin and sublattice spaces. As we study the system
at temperatures close to the critical temperature, the Eilen-
berger equation (3) can be linearized with respect to �/Tc.
The diagonal components ĝ and ˆ̃g are to be calculated in
the normal state of the superconductor and the anomalous

components f̂ and ˆ̃f are of the first order with respect to �/Tc.
For the normal-state Green’s function

ǧN =
(

ĝ 0
0 ˆ̃g

)
τ

(6)
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the Eilenberger equation (3) takes the form

[[iωmτz + μS − h(x)σρzτza]ρx, ǧN ] + ivF,x
d

dx
ǧN = 0 (7)

and leads to the following boundary condition at x = dS/2
(see the Appendix):

δǧN ≡ ǧN
−(x = dS/2) − ǧN

+(x = dS/2)

= 2τz

v

[
ahrσρy,

ĝ+(x = dS/2) + ĝ−(x = dS/2)

2

]
. (8)

The detailed calculation of ǧN , as well as some extra con-
ditions on it resulting from symmetry, are presented in the

Appendix. Let us define the following expansions of ĝ, f̂ , ˆ̃f ,
and ˆ̃g over the Pauli matrices in the sublattice space and over
the direct product of Pauli matrices in spin and sublattice
spaces:

ĝ =
∑

α

ρα ĝα, ĝ =
∑
α,β

σαρβgαβ, (9)

and similarly for f̂ , ˆ̃f , and ˆ̃g. The symmetry also gives us
the following relation between ǧ−(x) and ǧ+(−x) (see Ap-
pendix for details of the derivation):

ǧ0α,−(x) = ǧ0α,+(−x),

ǧxα,−(x) = −ǧxα,+(−x),

ǧyα,−(x) = −ǧyα,+(−x),

ǧzα,−(x) = ǧzα,+(−x), (10)

where

ǧβα,+(−) ≡
(

gβα,+(−) fβα,+(−)

f̃βα,+(−) g̃βα,+(−)

)
. (11)

Therefore, in the following text we write the expressions only
for ǧ+(x) ≡ ǧ(x). The solution for the particle component of
the normal-state Green’s function takes the form

ĝ = sgn ωm[g0xσ0ρx + gx0σxρ0

+ Bσy(iρy sinh κx + ρz sgn vF,x cosh κx)

+ Aσz(iρz sgn vF,x sinh κx − ρy cosh κx)], (12)

where κ = 2(iμS − ωm)/v and the coefficients g0x, gx0, A,
and B are found from the normalization condition (4) and the
boundary condition (8) and take the form (see Appendix for
the derivation)

g0x = 1√(
1 + γ 2

a

)(
1 + γ 2

b

) ,

gx0 = γaγb√(
1 + γ 2

a

)(
1 + γ 2

b

) ,

A = γa√(
1 + γ 2

a

)(
1 + γ 2

b

) ,

B = γb√(
1 + γ 2

a

)(
1 + γ 2

b

) , (13)

where γa = 2ahz/[v sinh(κdS/2)], γb = 2iahy/[v cosh (κdS

/2)], hy,z ≡ (hl )y,z. The hole component ˆ̃g is obtained from

(12) by the relation

ˆ̃g(ωm, hr, μS) = ĝ(−ωm,−hr, μS). (14)

The anomalous Green’s function f̂ is found from the lin-
earized with respect to �/Tc Eilenberger equation

{[iωm − h(x)σρza]ρx, f̂ } + μS[ρx, f̂ ] + �(ρx ˆ̃g − ĝρx )

+ ivF,x
d

dx
f̂ = 0, (15)

where {F1, F2} = F1F2 + F2F1 means anticommutator. And
the boundary condition

δ f̂ ≡ f̂−(x = dS/2) − f̂+(x = dS/2)

= 2

v

{
ahrσρy,

f̂+(x = dS/2) + f̂−(x = dS/2)

2

}
. (16)

The details of the calculation of f̂ are presented in the Ap-
pendix. It is convenient to define the following 2 × 2 matrices
in the sublattice space:

Ĝ0 = �(ĝ0 − ˆ̃g0),

Ĝx = �(ĝx − ˆ̃gx ),

Ĝy = −i�(ĝy + ˆ̃gy),

Ĝz = i�(ĝz + ˆ̃gz ). (17)

Let us write the following expansions up to the first order with
respect to x for the matrices (17): Ĝβ = ∑

α σαGαβ, Ĝy,z =
Ĝ0

y,z + Ĝ′
y,zx. Then in the linear order with respect to x/ξS the

solution for the anomalous Green’s function takes the form
f̂ = ∑

α,β σαρβ fαβ with the following nonzero components:

f00 = A0
2ωm

v
x sgn vF,x,

f0x = −A0 + G0x

2iωm
,

fxx = −Bx
2ωm

v
x,

fyy =
(

Cy
2μS

v
+ G′

yy

2iμS

)
x,

fyz = sgn vF,x

[
Cy + 1

2iμS

(
−G0

yz + v

2μS
G′

yy

)]
,

fzy = Dz + 1

2iμS

(
G0

zy + v

2μS
G′

zz

)
,

fzz = −x sgn vF,x

(
Dz

2iμS

v
− G′

zz

2iμS

)
, (18)

where the coefficients A0, Bx, Cy, and Dz are obtained from
the boundary condition (16) and explicitly written in the Ap-
pendix.

The critical temperature for each value of the misorienta-
tion angle φ is calculated from the self-consistency equation

�(x) =
∫

d�

4π
iπλTc

∑
ωm

f0x(x), (19)
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where
∫

d�
4π

means averaging over the Fermi surface and λ is
the dimensionless coupling constant. The amplitude of onsite
singlet correlations f0x is spatially constant in the first order
with respect to x.

B. Structure of triplet correlations

Now our goal is to discuss the results for the dependence
Tc(φ) in the framework of the quasiclassical theory. First,
let us analyze the expression for the full anomalous Green’s
function in order to find out the types of triplet correlations
that different parts of this expression correspond to. It can be
written in the form

f̂ = f̂0σ0 + f̂lheff,lσ + f̂rheff,rσ + f̂cross(heff,l × heff,r )σ,

(20)

where the amplitudes f̂i are matrices in the sublattice space
and we introduce the combination heff,l (r) = hl (r)a/dS, which
is called effective exchange field and physically corresponds
to the averaging of the interface exchange field over the whole
width dS of the S layer. Further, we also use the absolute
value of the effective exchange field heff ≡ ha/dS. The ampli-
tudes f̂l and f̂r contain only ρy,z contributions, which means
they are correlations of the Néel type. On the contrary, the
cross product amplitude f̂cross contains only ρx contribution
and, consequently, corresponds to conventional onsite equal-
spin even-momentum odd-frequency triplet correlations. The
cross-product correlations are maximal at φ ≈ π/2. To the
leading order with respect to dS/ξS the amplitude f̂cross takes
the form

f̂cross = − 2�xdSρ̂x

v2

(
sgnωm√

(ωm − iμS)2 + 4h2
eff,z

− sgnωm√
(ωm + iμS)2 + 4h2

eff,z

)
, (21)

where heff,z = heff cos φ/2. It is seen that f̂cross is of the first
order with respect to dS/ξS and, therefore, is not pronounced
in structures with thin S layers. This behavior differs from
the behavior of f̂l,r , which remain finite at dS/ξS → 0 with
f̂l = f̂r , what means that for the thin S layers the Néel corre-
lations are only determined by the vector sum of the effective
exchange fields produced by the both S/AF interfaces, that is
indeed the resulting effective exchange field ∝cos φ/2, as it
was reported for ferromagnets [5].

Moreover, in the framework of the quasiclassical approx-
imation f̂cross is an odd function of μS and consequently
f̂cross = 0 at μS = 0. It is in agreement with the smallness of
the sin2 φ contribution in [36], where the case μS = 0 was
considered and, therefore, the equal-spin-triplet correlations
could contribute to this term only beyond the quasiclassical
approximation.

C. Dependence of the critical temperature
on the misorientation angle

Figures 2 and 3 demonstrate the dependence of the critical
temperature on the misorientation angle φ. In the limit of thin
S layer the influence of the Néel exchange field of the AFs

FIG. 2. Tc(φ) for the AF/S/AF structure in the framework of
the quasiclassical approach for fixed heff = Tc0 and different dS.
μS = Tc0. Tc is measured in units of the superconducting bulk critical
temperature Tc0 throughout the text.

on the S layer is determined by the effective exchange field
heff = ha/dS. That is, the narrower the S layer is, the stronger
effective exchange it feels due to the proximity effect with
the antiferromagnets. Figure 2 shows Tc(φ) for a fixed heff .
The spin-valve effect is well pronounced in all the results in
this subsection. The suppression of the critical temperature
is maximal at φ = 0 according to the dependence of the
effective exchange field on the misoriention angle, which is
2heff cos(φ/2). Thus, here we reached agreement with the
expected relation Tc(φ = 0) < Tc(φ = π ).

Figure 2 shows that the valve effect is reduced for larger su-
perconducting width dS: the Tc suppression becomes weaker
at φ = 0 and increases at φ = π . This general trend is phys-
ically clear. From physical considerations it follows that in
the limit dS 
 ξS the valve effect should disappear because
the two S/AF interfaces do not feel each other and the su-
perconductivity suppression at each of them does not depend
on the direction of the Néel vector. On the contrary, for the
thinnest superconductors dS � ξS the critical temperature is
not suppressed from its bulk value at φ = π due to the exact
compensation of the Néel triplets generated at the both inter-
faces. Therefore, at φ = π the maximal value of the critical
temperature is reached for the thinnest S layers with dS � ξS,

FIG. 3. Tc(φ) for a fixed dS = 0.126ξS and different heff . For
larger values of heff the spin-valve effect is absolute: μS = Tc0.
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at larger dS the critical temperature is lower due to the uncor-
related superconductivity suppression by the Néel exchange
field at the S/AF interfaces separately.

Another feature of the results presented in Fig. 2 is the
following. For short superconducting interlayers (blue and
green curves) the Tc(φ) dependence is smooth, but for wider
dS the distortion in the vicinity φ = π/2 is seen. This is
the manifestation of the cross-product term ∼hl × hr , which
influences singlet correlations with the maximal effect at φ =
π/2. At dS/ξS → 0 this term disappears, and all the effect
of the antiferromagnets on the S layer is described by the
total effective exchange field 2heff cos φ/2. For this reason
in the framework of our analytical first-order approxima-
tion with respect to dS/ξS it is not possible to obtain more
pronounced signatures of these correlations (in the form of
dips): higher orders of dS/ξS need to be taken into account.
We demonstrate more pronounced dip features at the depen-
dence Tc(φ) in the framework of the BdG approach below.
From our quasiclassical theory it follows that at heff � Tc the
dependence Tc(φ) takes the form Tc = Tc,‖ + �Tc,‖ cos φ +
�Tc,⊥ sin2 φ, as it was phenomenologically proposed in [36].
Here Tc,‖ = [Tc(0) + Tc(π )]/2, �Tc,‖ = [Tc(0) − Tc(π )]/2,
�Tc,⊥ = Tc(π/2) − Tc,‖. However, at higher heff plots in
Fig. 2 show a clear deviation from this formula, due to the
fact that the contributions of higher powers of (heff,lheff,r ) and
heff,z(y) become more significant.

Figure 3 demonstrates that for the system under considera-
tion the absolute spin-valve effect, that is the full suppression
of superconducting state for a range of misorientation angles,
is also possible. This result is in agreement with the one
presented in [36].

III. BOGOLIUBOV–DE GENNES APPROACH:
DEPENDENCE OF THE SPIN-VALVE EFFECT

ON CHEMICAL POTENTIAL AND IMPURITIES

A. Method

The system is described by a tight-binding Hamiltonian
(1), but for the Bogoliubov–de Gennes calculations [42] it is
convenient to get rid of sublattices:

Ĥ = − t
∑
〈i j〉,σ

ψ̂
†
iσ ψ̂ jσ +

∑
i

(�iψ̂
†
i↑ψ̂

†
i↓ + H.c.)

− μ
∑
i,σ

n̂iσ +
∑
i,αβ

ψ̂
†
iα (hiσ )αβψ̂iβ. (22)

Here ψ̂
†
iσ (ψ̂iσ ) is the creation (annihilation) operator for an

electron with spin σ at the site with the radius vector i =
(ix, iy)T . 〈i j〉 means summation over the nearest neighbors,
n̂iσ = ψ̂

†
iσ ψ̂iσ is the particle-number operator at the site i. �i

and hi denote the onsite s-wave pairing and magnetic order pa-
rameter at the site i, respectively. The Néel exchange field can
be taken in the form hi,l = (−1)ix+iy hl and hi,r = (−1)ix+iy hr

in the left and the right AF regions, respectively. It is worth
noting that in the present section the considered AF insulator
is also described by hopping Hamiltonian (22). As a result it
has a finite band gap such that there is a leakage of the elec-
tronic wave functions into the AFs. In fact, the wave functions
penetrate to two to three sites. This is in contrast with the ideal

antiferromagnetic insulators considered in Ref. [36] and the
quasiclassical theory above.

We diagonalize the Hamiltonian (22) by the Bogoliubov
transformation:

ψ̂iσ =
∑

n

(
ui

nσ b̂n + vi∗
nσ b̂†

n

)
, (23)

where b̂†
n (b̂n) are the creation (annihilation) operators of Bo-

goliubov quasiparticles. Then the resulting Bogoliubov–de
Gennes equations take the form

−μui
n,σ − t

∑
j∈〈i〉

u j
n,σ + σ�iv

i
n,−σ + (hiσ)σαui

n,α = εnui
n,σ ,

−μvi
n,σ − t

∑
j∈〈i〉

v j
n,σ + σ�∗

i ui
n,−σ + (hiσ

∗)σαvi
n,α = −εnv

i
n,σ ,

(24)

where j ∈ 〈i〉 means summation over the nearest neighbors j
of the site i and εn are the eigenstate energies of the Bogoli-
ubov quasiparticles. The superconducting order parameter in
the S layer is calculated self-consistently:

�i = g〈ψ̂i↓ψ̂i↑〉 = g
∑

n

(
ui

n,↓vi∗
n,↑(1 − fn) + ui

n,↑vi∗
n,↓ fn

)
,

(25)

where g is the coupling constant. The quasiparticle dis-
tribution function is assumed to be the equilibrium Fermi
distribution fn = 〈b†

nbn〉 = 1/(1 + eεn/T ).
Since the simulations can only deal with a small number

of lattice sites, it is typical in the BdG approach to employ
rescaled parameters that respect the hierarchy of energy scales
[42], but do not completely mimic an actual material. For
example, in a realistic material, we expect t ∼ 1000Tc0. How-
ever, this choice would necessitate the numerical evaluation
of eigenenergies with an impossibly high precision. Thus,
we choose Tc0 ∼ (0.01 − 0.1)t and heff = ha/dS ∼ Tc0. Our
analysis then faithfully reproduces realistic systems in which
the essential physics depends on the relative strengths of h and
Tc0, but not on t in consistence with the quasiclassical limit
t 
 Tc0.

B. Dependence of the spin-valve effect on the chemical potential

In this subsection, applying the described technique, we
investigate the influence of the chemical potential on the
dependence Tc(φ). In [36] it was demonstrated that at small
h � (μS, t ) (which means that heff/μS < h/μS is also small)
the spin-valve effect is negligible with respect to the effect
observed at half-filling μS = 0. This is due to the fact that
away from half-filling, that is at μS � Tc0, the amplitude of
the Néel triplets, mediating the spin-valve effect, is ∼heff/μS

[38]. However, in relation to real systems the both cases
h > μS and h < μS can be realized. Therefore, the parameter
region heff ∼ μS looks reasonable and also requires investiga-
tion. Here we demonstrate that the spin-valve effect persists
in this regime. Moreover, in contrast to the case μS = 0,
where the relation Tc(0) < Tc(π ) always holds, at larger μS

the relation between Tc(0) and Tc(π ) can be opposite. Below
we demonstrate this result and discuss its physical reasons.
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FIG. 4. Tc(φ) for the AF/S/AF structure in the framework of
BdG approach at half-filling μS = 0. Different curves correspond
to different dS, dAF = 4 (all widths are measured in the number of
monolayers), μAF = 0, h = 0.5t , Tc0 = 0.07t .

In this subsection we assume no impurities in the S layer.
Then the translational invariance allows us to consider the
cluster infinite along the interfacial direction and solve a
one-dimensional (1D) problem for a system with the width
W = dAF + dS + dAF along the x direction. The dependencies
Tc(φ) at μS = 0 and μS = 0.2t are shown in Figs. 4 and
5, respectively. For the data presented in these figures ξS =
vF /2πTc ≈ 6 monolayers. We can observe that at μS = 0
the results are in agreement with our quasiclassical results
presented in the previous section and also they are in agree-
ment with [36]. The relation Tc(0) < Tc(π ) is fulfilled for all
considered values of dS. However, as it is seen from Fig. 5,
at larger μS the relation between Tc(0) and Tc(π ) depends on
the value of dS and opposite cases can be realized. The reason
is the finite momentum, acquired by the Néel triplet Cooper
pairs [41] in systems with broken translational invariance
via the umklapp scattering processes at the S/AF interfaces.
Due to the finite momentum of the Néel triplet Cooper pairs
their wave function oscillates in the S layer with the period
Losc = πvF/|μS|. Depending on the width of the S layer dS the
Néel triplets generated by the opposite S/AF interfaces can
interfere constructively or destructively in the S layer, which

FIG. 5. Tc(φ) for the AF/S/AF structure in the framework of
BdG approach at μS = 0.2t . Different curves correspond to different
dS, dAF = 4, μAF = 0, h = 0.5t , Tc0 = 0.07t .

FIG. 6. Tc(0) and Tc(π ) as functions of dS at μS = 0.9t . dAF = 4,
μAF = 0, h = t , Tc0 = 0.03t . heff = ha/dS � μS, consequently for
this set of parameters Losc = πvF /μS ≈ 7, what is in agreement with
the data: four periods [minima Tc(dS) for φ = π ] are shown on the
plot by vertical blue lines, so Losc = 35−9

4 = 6.5. The small local
minima inside some periods are caused by Friedel oscillations due
to unrealistic small number of sites used in the BdG aproach.

manifests itself in the oscillating behavior of the resulting
Néel triplet amplitude for a given φ upon varying dS. This
physical picture is further supported by the demonstration of
the dependence of Tc(0, π ) on dS presented in Fig. 6. The
oscillations of the difference Tc(π ) − Tc(0) with the period
Losc are clearly seen.

The other feature worth mentioning is the nonmonotonicity
of the curves in Fig. 5. The dip in the critical temperature at
φ close to π/2 can be explained by generating of equal-spin-
triplet correlations determined by hl × hr . These correlations
are not of sign-changing Néel type and are usual equal-spin-
triplet correlations. The dip can be clearly seen for dS = 13
monolayers. For lower values of the S width the equal-spin-
triplet correlations are too weak to result in the pronounced
dip feature because they vanish at dS/ξS � 1 [see Eq. (21)].
For some higher values of dS the influence of the equal-spin-
triplet correlations can be superimposed by the interference
effects due to the finite-momentum Néel triplet pairing, which
also mask their effect.

C. Dependence of the spin-valve effect on impurities

Now we discuss the influence of impurities in the S region
on the Tc(φ) dependence and spin-valve effect. The impurities
are modeled as random changes of the chemical potential μS

at each site of the superconductor:

μi = μS + δμi, δμi ∈ [−δμ, δμ], (26)

which break the translational invariance along the interface.
For this reason we now investigate the 2D cluster with the
previously defined width W and finite length L under periodic
boundary conditions along the y direction. It has to be noted
that realistic samples should contain a much larger number of
sites than it is possible to use in our calculations without mak-
ing them incredibly time consuming. In order to reasonably
simulate this in the framework of our approach, we average
the results for the critical temperature over 5–10 realizations
of the impurity pattern. In this subsection we present the
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FIG. 7. General suppression of Tc due to impurities. Tc(φ = 0)
is plotted as a function of the impurity strength δμ. At the other
values of misorientation angle the critical temperature demonstrates
the same general trend. Tc is normalized to its value at δμ = 0.
Each point represents the averaging of the data obtained for 5–10
realizations of the random disorder restricted by a given δμ. The
dashed line is just a fit to provide a guide to eye. μS = 0.9t , μAF = 0,
h = t , dAF = 4, dS = 20, Tc0 = 0.03t .

results of Bogoliubov–de Gennes calculations of the critical
temperature in the presence of impurities in the S region.
Figures 7–9 show three different effects that we observed. All
the results were obtained for the system with length L = 100
atomic layers.

The first effect, presented in Fig. 7, is the general suppres-
sion of the critical temperature with increasing of the impurity
strength, reported in [38,43,44]. In this subsection we set
μS = 0.9t 
 Tc0. In this regime, when the chemical potential
is large with respect to the superconducting energy scales,
the nonmagnetic impurities in the superconductor work as
effectively magnetic [38]. This results from the two sublattices
and the consequent emergence of two electronic bands in the
system thereby leading to the observed suppression.

Figure 8 demonstrates the gradual disappearing of the
valve effect under the influence of impurities, which is

FIG. 8. Suppression of the spin-valve effect by impurities. The
difference �Tc,‖ is plotted as a function of the impurity strength δμ.
The difference is normalized to its value at δμ = 0. All parameters
are the same as in Fig. 7.

FIG. 9. �Tc,⊥, normalized to its value at δμ = 0, plotted as a
function of the impurity strength δμ. All parameters are the same as
in Fig. 7.

equivalent to the decreasing value of the difference �Tc,‖ =
[Tc(φ = 0) − Tc(φ = π )]/2. This is explained by the fact that
the spin-valve effect is produced by the Néel triplets, which
appear due to interband electron pairing [37] and therefore
are suppressed by impurities.

The third effect we studied is the dependence of the
depth of the dips at Tc(φ) curves at φ = π/2 on the
impurity strength, which we perform by plotting the expres-
sion �Tc,⊥ = Tc(φ = π/2) − [Tc(φ = 0) + Tc(φ = π )]/2 as
a function of δμ. The results are presented in Fig. 9. We
see that this quantity tends to be insensitive to the presence
of impurities. This trend is in agreement with the physical
understanding that the dip is mainly produced by the cross-
product correlations fcross, which are conventional (not Néel)
triplets and correspond to intraband s-wave odd-frequency
triplet electron pairing. Such an intraband or zero-momentum
s-wave pairing is not suppressed by nonmagnetic impurities.

D. Materials

In our analysis above, we have obtained a broad picture
of the spin-valve effect in the trilayer system under investiga-
tion including its dependence on the chemical potential and
impurity concentration. This, in turn, provides guidance with
respect to the choice of materials. The predicted spin-valve
effect is the largest for superconductors with small chemical
potential, as defined in our considerations above, which will
harbor strong Néel correlations. Nevertheless, as it is demon-
strated in this work, the spin-valve effect is also pronounced
for superconductors with large chemical potential provided
that the exchange field h of the AFs is strong enough. Further-
more, disorder due to impurities or interfacial lattice mismatch
should be minimized. On the other hand, if one is interested
in the equal-spin triplets that lead to a dip in the critical tem-
perature around φ = π/2, the requirements are less stringent.
This is because the chemical potential can be relatively large
and disorder does not play a significant role. Finally, while our
theoretical considerations have focused on antiferromagnetic
insulators for simplicity, one can also use metallic AFs. Hav-
ing these constraints in mind, we note that our investigation
is partly inspired by previous experiments observing critical
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temperature modifications in FeMn/Nb [45], IrMn/Nb [46],
and IrMn/NbN [47] bilayers. Since these combinations pro-
duce an observable effect, they should also be good candidates
for investigating our proposed trilayers.

IV. CONCLUSIONS

In this work we study AF/S/AF heterostructures with
insulating antiferromagnets and fully compensated S/AF
interfaces numerically by solving Bogoliubov–de Gennes
equations and analytically in the framework of the quasiclas-
sical Green’s functions approach. We have demonstrated that
the Néel triplet correlations lead to the dependence of super-
conducting critical temperature on the angle between the Néel
vectors (spin-valve effect) and, in particular, to the complete
suppression of superconductivity for a range of misorientation
angles (absolute spin-valve effect), which is in agreement
with the results presented in [36]. Our calculations confirm
the previous finding of [36] that near half-filling the critical
temperature is always lower for the parallel configuration of
the Néel vectors than in the antiparallel T P

c < T AP
c , keeping

in mind the new definitions of parallel and antiparallel used
in this paper. It is explained by the fact that in this case the
Néel triplets generated by the both interfaces are effectively
summed up and strengthen each other inside the S layer.
However, in this work we investigated the spin-valve effect
in the full range of μS values and found that if we move away
from half-filling the opposite result T P

c > T AP
c can be realized

depending on the width of the S layer. This behavior results
from the interference of finite-momentum Néel triplet Cooper
pair wave functions generated by the S/AF interfaces.

Further, we investigate cross-product equal-spin-triplet
correlations fcross, which appear in the AF/S/AF structure
for nonaligned Néel vectors of the AFs. We provide their
analytical description, prove that these correlations are of
conventional (not Néel) s-wave odd-frequency type, and find
parameter regions, where they are rather strong and result
in the nonmonotonic dependence Tc(φ). Finally, it is shown
that the presence of impurities leads to disappearing of
the “0 − π” spin-valve effect �Tc,‖ = (T P

c − T AP
c )/2 due to

the fact that impurities suppress Néel triplets. At the same
time, the “perpendicular” spin-valve effect �Tc,⊥ = Tc(φ =
π/2) − (T P

c + T AP
c )/2 is not suppressed by impurities, what

can be considered as a proof of its origin from equal-spin
cross-product triplet correlations, which should be insensitive
to impurities according to their physical nature.

Therefore, our results significantly expand the current
understanding of the physical processes in AF/S/AF spin
valves, as well as they hopefully might inspire some new
research in the area of spintronic devices based on proximity
effects in superconductor/antiferromagnet hybrids.
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APPENDIX: CALCULATION OF THE
GREEN’S FUNCTION

Let us obtain the boundary condition for the normal-state
Green’s function at the right S/AF interface x = dS/2, which
is the relation between the incident and reflected Green’s
functions ǧN

+(x) and ǧN
−(x). Near the right edge of the super-

conductor the Eilenberger equation (3) takes the form

[(iωmτz + μS − hrσρzτzaδ(x − dS/2))ρx, ǧN ]

+ ivF,x
d

dx
ǧN = 0, (A1)

which gives us the relation

iv(ǧN
−(x = dS/2) − ǧN

+(x = dS/2))

=
∫

C
[hrσaρzρxτzδ(x − dS/2), ǧN ]dx, (A2)

where the integral is taken over the set C = [dS/2 −
ε, dS/2] ∪ [dS/2, dS/2 − ε], ε → 0. This leads to the bound-
ary condition (8). The boundary condition (16) is obtained
likewise from the Eilenberger equation (15) for the anomalous
Green’s function f̂ .

For simplifying the following calculations we analyze con-
sequences of the symmetry of the considered system. Let us
make the rotation by angle π around the axis z:

x → −x, y → −y, z → z. (A3)

After rotation (A3) different objects which are present in
our problem are transformed in the following way: scalars
in spin space do not change [A(x) → A(−x)], components of
vectors in spin space change as Ax(x) → −Ax(−x), Ay(x) →
−Ay(−x), Az(x) → Az(−x). Due to the symmetric choice of
the coordinate axes the system itself does not change after
rotation (A3), but the reflected Green’s function goes to the
incident one. This gives us the following relations:

ǧ0α,−(x) = ǧ0α,+(−x),

ǧxα,−(x) = −ǧxα,+(−x),

ǧyα,−(x) = −ǧyα,+(−x),

ǧzα,−(x) = ǧzα,+(−x), (A4)

where

ǧβα,+(−) ≡
(

gβα,+(−) fβα,+(−)

f̃βα,+(−) g̃βα,+(−)

)
. (A5)

In the following text Green’s functions without indices + (−)
correspond to incident trajectories, and the reflected Green’s
functions can be obtained from the relations (A4).

Now let us note that the simultaneous transformation from
sublattice A to sublattice B and h → −h does not change the
system and, therefore, does not change the Green’s function.
Therefore, if we write ǧ in the form ǧ = ǧ0 + ǧh, where ǧ0

and ǧh are even and odd functions with respect to h → −h,
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the transformation A ↔ B leads to ǧ0 → ǧ0 and ǧh → −ǧh.
On the other hand, the transformation A ↔ B changes sign
of ρy,z components of the Green’s function in the sublattice
space, remaining ρ0,x components unchanged. Consequently,
ǧ0 has nonzero ρ0,x components and ǧh has nonzero ρy,z

components. Then, from two vectors hl,r , which characterize
our system, we can make the following basic combinations,
which describe the Green’s function in the spin space: hl , hr ,
hlhr , and hl × hr . The first two items are odd functions with
respect to h → −h and enter into the σy,z components of the
Green’s function, and the second two items are even functions
and enter into the σ0,x components of the Green’s function.
Thus, we can conclude that ǧ0 and ǧx have only σ0, σx nonzero
components in the expansion over Pauli matrices in the spin
space, while ǧy and ǧz have only σy, σz nonzero components.
Another consequence of the symmetry towards rotation (A3)
and the structure of boundary conditions (8) and (16) is the
following expanding of (A4), which can also be considered
an ansatz:

ǧzy,+(x) = ǧzy,+(−x) = ǧzy,−(x),

ǧzz,+(x) = −ǧzz,+(−x) = −ǧzz,−(x),

ǧyy,+(x) = −ǧyy,+(−x) = ǧyy,−(x),

ǧyz,+(x) = ǧyz,+(−x) = −ǧyz,−(x). (A6)

The Eilenberger equation on the particle component ĝ of
the normal-state Green’s function takes the form

[(iωm + μS)ρx, ĝ] + ivF,x
d

dx
ĝ = 0 (A7)

apart from the S/AF interfaces and can be expanded over
components in the sublattice space:

d

dx
ĝ0 = 0,

d

dx
ĝx = 0,

2(−ωm + iμS)ĝy + ivF,x
d

dx
ĝz = 0,

2(ωm − iμS)ĝz + ivF,x
d

dx
ĝy = 0. (A8)

As was discussed above, the components
gxy, gxz, g0y, g0z, gz0, gzx, gy0, gyx are equal to zero because of
symmetry. Considering (A6), we write the solutions for other
components:

g00 = const,

gx0 = const,

g0x = const,

gxx = const,

gyy = iB sinh κx,

gzy = −A cosh κx,

gyz = B sgn vF,x cosh κx,

gzz = iA sgn vF,x sinh κx, (A9)

where κ = 2(iμS − ωm)/v and A, B are unknown coefficients.
From the boundary condition (8) we obtain

δg00 = 0,

δgx0 = −(gyy(x = dS/2)γz − gzy(x = dS/2)γy),

δg0x = +(gzz(x = dS/2)γz + gyz(x = dS/2)γy),

δgxx = 0,

δgyy = +gx0(x = dS/2)γz, (A10)

δgzy = −gx0(x = dS/2)γy,

δgyz = −g0x(x = dS/2)γy,

δgzz = −g0x(x = dS/2)γz,

where γy,z = 4iahy,z/v. Equation (A10) gives us g00 = gxx =
0. Coefficients gx0, g0x, A, and B can be found from the nor-
malization condition (4), which takes the form

A2 + B2 + g2
0x + g2

x0 = 1, (A11)

and substituting solutions (A9) for gyy, gyz, gzy, gzz into the last
four equations of the system (A10). We obtain

g0x = 1√(
1 + γ 2

a

)(
1 + γ 2

b

) ,

gx0 = γaγb√(
1 + γ 2

a

)(
1 + γ 2

b

) ,

A = γa√(
1 + γ 2

a

)(
1 + γ 2

b

) ,

B = γb√(
1 + γ 2

a

)(
1 + γ 2

b

) , (A12)

where γa = −iγz/2 sinh(κdS/2), γb = γy/2 cosh(κdS/2). In
the first order with respect to κdS γa = 2ahz/(−ωm +
iμS)dS, γb = −2ahy/v.

The Eilenberger equation on the anomalous Green’s func-
tion f̂ takes the form

iωm{ρx, f̂ } + μS[ρx, f̂ ] + �(ρx ˆ̃g − ĝρx ) + ivF,x
d

dx
f̂ = 0

(A13)

apart from the interfaces and can be expanded over compo-
nents in the sublattice space:

2iωm f̂x + ivF,x
d

dx
f̂0 = �(ĝx − ˆ̃gx ) ≡ Ĝx,

2iωm f̂0 + ivF,x
d

dx
f̂x = �(ĝ0 − ˆ̃g0) ≡ Ĝ0,

−2iμS f̂z + ivF,x
d

dx
f̂y = i�(ĝz + ˆ̃gz ) ≡ Ĝz,

2iμS f̂y + ivF,x
d

dx
f̂z = −i�(ĝy + ˆ̃gy) ≡ Ĝy. (A14)

Let us expand Ĝy,z up to the first order with respect to
x: Ĝy,z = Ĝ0

y,z + Ĝ′
y,zx. Then the general solution of (A14)
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is

f̂0 = Â sinh

(
2ωm

v
x

)
+ B̂ cosh

(
2ωm

v
x

)
+ Ĝ0

2iωm
,

f̂x = −Â cosh

(
2ωm

v
x

)
− B̂ sinh

(
2ωm

v
x

)
+ Ĝx

2iωm
,

f̂y = Ĉ sin

(
2μS

v
x

)
+ D̂ cos

(
2μS

v
x

)

+ Ĝ0
y + Ĝ′

yx

2iμS
+ v

4iμ2
S

Ĝ′
z,

f̂z = Ĉ cos

(
2μS

v
x

)
− D̂ sin

(
2μS

v
x

)

− Ĝ0
z + Ĝ′

zx

2iμS
+ v

4iμ2
S

Ĝ′
y, (A15)

where Â, B̂, Ĉ, D̂ are 2 × 2 spin matrices of unknown coef-
ficients. f0y, f0z, fxy, fxz, fy0, fyx, fz0, fzx are equal to zero due
to symmetry, and for other components we obtain in the linear
order with respect to x:

f00 = A0
2ωm

v
x sgn vF,x + B0 + G00

2iωm
,

f0x = −A0 − B0
2ωm

v
x sgn vF,x + G0x

2iωm
,

fx0 = Ax
2ωm

v
x +

(
Bx + Gx0

2iωm

)
sgn vF,x,

fxx =
(

−Ax + Gxx

2iωm

)
sgn vF,x − Bx

2ωm

v
x,

fyy =
(

Cy
2μS

v
+ G′

yy

2iμS

)
x + Dy sgn vF,x

+ (
G0

yy + v

2μS
G′

yz

) sgn vF,x

2iμS
,

fyz = Cy sgn vF,x −
(

Dy
2μS

v
+ G′

yz

2iμS

)
x

+ (−G0
yz + v

2μS
G′

yy

) sgn vF,x

2iμS
,

fzy =
(

Cz
2μS

v
+ G′

zy

2iμS

)
x sgn vF,x + Dz (A16)

+ (
G0

zy + v

2μS
G′

zz

) 1

2iμS
,

fzz = Cz −
(

Dz
2μS

v
+ G′

zz

2iμS

)
x sgn vF,x

+ (−G0
zz + v

2μS
G′

zy

) 1

2iμS
,

where we have used the expansions Â = ∑
α σαAα, B̂ =∑

α σαBα, Ĉ = ∑
α σαCα, D̂ = ∑

α σαDα, Ĝβ = ∑
α σαGαβ .

The solution for the normal Green’s function gives us
G′

yz = G′
zy = G0

yy = G0
zz = G00 = Gxx = 0, and the relations

(A6) lead to B0 = Ax = Dy = Cz = 0. Other unknown
coefficients are found from the boundary condition (16):

A0 = i
{
G′

zzhzav4 + 4μS
[
v2

(
G0

zyhzav + dSG0
yzhyaμS

) − 2Gx0hyhza2
(
v2 + d2

Sμ2
S

)]}
4dSv3μ2

Sωm
,

Bx = iGx0

2ωm
,

Cy = i
[
G′

yyv
3 + 2μS

(− G0
yzv

2 + 2dSGx0hzaμS
)]

4v2μ2
S

,

Dz = i(G′
zzv

2 + 8Gx0hyaμS)

8vμ2
S

. (A17)
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