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An important open puzzle in the superconductivity of UTe2 is the emergence of broken time reversal
superconductivity from a nonmagnetic normal state. Breaking time reversal symmetry in a single second-order
superconducting transition requires the existence of two degenerate superconducting order parameters, which
is not natural for orthorhombic UTe2. Moreover, experiments under pressure [D. Braithwaite et al., Commun.
Phys. 2, 147 (2019)] suggest that superconductivity sets in at a single transition temperature in a finite parameter
window, in contrast to the splitting between the symmetry-breaking temperatures expected for accidental
degenerate orders. Motivated by these observations, we propose a mechanism for the emergence of broken time
reversal superconductivity without accidental or symmetry-enforced order-parameter degeneracies in systems
close to a magnetic phase transition. We demonstrate using Landau theory that a cubic coupling between
proximate magnetic order and magnetic moments of Cooper pairs (pair Kondo coupling) can drive time reversal
symmetry-breaking superconductivity that onsets in a single, weakly first-order transition over an extended
region of the phase diagram. We discuss the experimental signatures of such transition in thermodynamic and
resonant ultrasound measurements. A microscopic origin of pair Kondo coupling is identified as screening of
magnetic moments by chiral Cooper pairs, built out of two nondegenerate order parameters, an extension of
Kondo screening to unconventional pairs.

DOI: 10.1103/PhysRevB.109.184501

I. INTRODUCTION

The coexistence of superconductivity and magnetism in
quantum materials brings with it a rich variety of possible
unconventional superconducting phases, and many fundamen-
tal questions about their interplay [1–14]. Here, we focus on
one key question: How do Cooper pairs interact with local
moments that are on the verge of ordering?

For a conventional singlet superconductor, a single mag-
netic impurity can only be screened by Kondo coupling to the
electron spin, so magnetic impurities are pair breaking and
host localized fermionic states inside the superconducting gap
[15–17]. Pairs with internal degrees of freedom, such as spin
or orbital, can, however, directly couple to the local moments
(Fig. 1) and we present below a microscopic derivation of
this exchange interaction, by which moments can be screened
without pair breaking.

A natural example of this local moment–superconductor
interplay is provided by a number of heavy-fermion
superconductors [5,7,8,10,13] in which superconductivity
emerges from a magnetic normal state, and coexists with
magnetism at low temperatures. A more interesting class of
materials involves the spontaneous breaking of time reversal
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(T ) at a superconducting transition, a counterintuitive phe-
nomenon for two ordering tendencies that seem by definition
antagonistic. The most celebrated instance of this class is the
A phase of superfluid 3He [18,19], described by the equal-spin
pairing potential of Anderson, Brinkman, and Morel [20,21]
�↑↑ = −�↓↓ ∼ (ky + ikz )/|k| where k is the momentum.
Another possible instance that has been extensively studied
[22–24] is Sr2RuO4, supported by muon-spin relaxation
[6] and magneto-optical Kerr effect [25] experiments, both
indicating the onset of T breaking at the superconducting
transition temperature Tc, although the question of whether
this is a bulk broken time reversal transition is legitimately
raised by the absence of any thermodynamic signature of a
split transition under strain [26–28].

From a theoretical perspective, crystalline symmetry im-
plies important restrictions on the onset of broken time
reversal superconductivity as a single transition. In a lattice,
spontaneous T -breaking at the onset of superconductivity is
usually expected only in high-symmetry crystals with at least
two-dimensional irreducible representations (irreps). The su-
perconducting order parameters belonging to nondegenerate
one-dimensional irreps are simultaneously eigenstates of T ,
as any complex phase can be absorbed into the U (1) phase.
A condensate that breaks T must therefore contain a complex
superposition of at least two such orthogonal pair eigenstates,
either from the same [29] or distinct irrep. In the absence of
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FIG. 1. Schematic demonstration of pair Kondo coupling for
triplet pairs: An S = 1, Sy = 0 triplet pair scatters off a local moment
into an S = 1, Sz = 0 state, rotating the d vector about the x axis
along which the moment is aligned. The process is equivalent to
an antiferromagnetic superexchange of the pair spin with the Sx

component of the moment.

two-dimensional irreps, broken T superconductivity can then
only arise from two distinct second-order phase transitions
with the two components of the complex pair wave function
condensing at different temperatures.

A vexing challenge to this general symmetry argument is
posed by the emergence of broken T superconductivity [30]
from a nonmagnetic normal state in UTe2 [31–34], whose
orthorhombic symmetry allows only one-dimensional irreps.
While the samples in Ref. [30] did show signatures of a two-
step transition, subsequent studies showed that when similar
samples were cut up, the two transitions appeared to come
from different fragments [35]. This suggests that intrinsically
there is a single transition, with Tc sensitively dependent on
the crystal environment. Currently, samples with a single
observable transition at ambient pressure have been grown
reproducibly by various groups [see Fig. 1(d) of the orig-
inal preprint [36]] and the best available samples with the
highest residual resistivity ratios (RRR) and Tc consistently
show no split in Tc [37,38]. However, even in these samples,
the splitting has been shown to appear under application of
pressure above a critical value [39,40], with no phase bound-
ary observed between the ambient pressure superconductor
and the superconducting phase at high pressure below the
split Tcs.

We note that the relation between splitting of Tcs at zero
pressure and broken time reversal is actively under inves-
tigation. Among the samples with no split in Tc, there are
a subset of crystals that are grown in a molten salt flux in
which zero-field muon spin relaxation experiments are unable
to discern any spontaneous magnetic fields in the supercon-
ducting state [41], and a subset of crystals grown by chemical
vapor transport in which muons do feel a static random
magnetic field in the superconducting state, suggestive of
moments frozen in a glass [42]. Moreover, local internal fields
in these latter samples are also supported by local magnetic
susceptibility measurements which can resolve spontaneous
vortex-antivortex pairs in zero external field [43]. A recent
paper [44] has reported the absence of a spontaneous Kerr
effect in both types of samples with no split in Tc (salt-flux and
CVT grown). However, under pressure the new generation of

salt-flux grown samples has also been shown to elicit a split
in Tc beyond a finite critical pressure [45].

The initial observations of potential broken time reversal
in UTe2 have motivated two scenarios: that broken T at Tc

is present only in inhomogeneous samples [46] with split Tc

or there is an accidental near degeneracy between two super-
conducting order parameters, with the split in Tc being below
experimental resolution in samples with high Tc and RRR. In
[47], a mechanism was proposed to stabilize such an acci-
dental degeneracy by studying the renormalization group flow
of interactions in an accidentally C4 symmetric band struc-
ture. However, such an accidental degeneracy should split
linearly in the presence of non-symmetry-breaking perturba-
tions [48], such as pressure. The vanishing of the splitting over
an extended range of pressure, rather than a single fine-tuned
pressure, presents a conundrum in the observed phase diagram
in Fig. 2(b): two second-order phase boundaries cannot merge
into one.1 This observation also poses a clear challenge for
the scenario of single-component superconductivity at low
pressures, including the ambient pressure systems. The pos-
sibility that we explore in this work is that the observed phase
boundaries in Fig. 3(b) are not all continuous second-order
transitions.

Here we present a generic mechanism for a weakly first-
order transition into a broken T superconductor in systems
close to a magnetic instability. The first-order character of
the transition allows the simultaneous appearance of multiple
order parameters at Tc, necessary to explain a single broken T
superconducting transition. As is shown below, it is sufficient
to have a near degeneracy between one superconducting order
and a magnetic order, rather than two superconducting order
parameters. There is extensive evidence that above the super-
conducting Tc UTe2 is also on the verge of a ferromagnetic
instability, from a divergent a-axis magnetic susceptibility
[14], a critical slowing down of magnetic fluctuations in
muon-spin rotation [49], emergence of low-frequency mag-
netic fluctuations in nuclear magnetic resonance [50], and
a divergent ferromagnetic susceptibility seen in field trained
polar Kerr effect measurements [51]. If the moments fluctu-
ate slowly on the timescale of electronic motion [52], even
in inhomogeneous samples, puddles of magnetic order [42]
can harbor puddles of magnetic superconductivity over the
magnetic correlation length. When these inhomogeneous pud-
dles grow with decreasing temperature, there is a first-order
transition into a state with phase coherence and long-range
superconducting order over the entire sample.

To capture this effect in a homogeneous system, we
introduce an interaction of unconventional pairs with local
moments, an extension of Kondo coupling to electron pairs
with an internal degree of freedom, such as spin. This is
captured by the local Hamiltonian

HPK = −iJM�×�′ (b†
�

′ b
†
�′ − b†

�′b
†
�

′ ), (1)

where b†
�(�′ ) creates a pair in the one-dimensional irrep �(�′)

and the pair bilinear couples to the component of the local

1The phase diagram in [39,40] is constructed from the bulk specific
heat on two different samples, making effects of inhomogeneity or
impurity phase unlikely to explain it.
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FIG. 2. (a) Theoretical phase diagram as a function of temperature and tuning parameter r. Solid black (blue) line is a first-
(second-) order phase boundary. SC2 is a T -invariant triplet superconductor with �1 �= 0,�2 = M = 0. SC1 is a broken T super-
conductor with �1, �2, M �= 0. Dashed lines indicate the underlying critical temperatures in absence of coupling between magnetic
and superconducting orders: Tc1/J = 1+0.001r, Tm/J = 1 − 0.002r, a2/J = 0.005(1 + 0.04r), b1 = b2 = bM = 2J, b1M = b2M = b12 = 0,

α1(1 + 0.001r) = αm(1 − 0.002r) = 1. Color scale is defined by the RGB values red = 255(1 − �1/Max), green = 255(1 − �2/Max),
blue = 255(1 − M/Max) with Max = 0.15J . (b) Experimental phase diagram from AC calorimetry (from Refs. [39,40]) as a function of
pressure and temperature, where the second transition at low pressure (dashed) is not observed. The observed phase boundaries at low-pressure
(boxed) are qualitatively captured by the free energy in (2). (c) Theoretical phase diagram for a different parametrization of the free
energy in (14) with Tc1/J = 1 + 0.001r, Tc2/J = 0.995(1 − 0.0004r), Tm/J = 1 − 0.0014r, b1 = b2 = bM = 2J = 2J, b1M = b2M = b12 = 0,

α1(1+0.001r) = 0.995(1 − 0.0004r)α2 = αm(1 − 0.0014r) = 1.

moment that transforms under the product of the two irreps.
This provides a generic route for coupling unconventional

FIG. 3. Free-energy profile, Eq. (2), as a function of order-
parameter magnitudes for temperature T above [(a), (c), (e)] and
below [(b), (d), (f)] the onset of superconductivity. We normalize
all quantities by setting Tc1 = Tm ≡ 1; the other parameters are b1 =
b2 = bM = 2, b1M = b2M = b12 = 0, α1 = αm = 1. (a), (b) For J =
1, a2 = 0.005, a first-order transition occurs between T = 1.018 and
1.019: in the ordered state (a), the local minimum at �1 = M = 0
(red arrow) coexists with the global minimum at �1 = M = 0.08.
(c), (d) For J = 1, a2 = 0.067, a second-order transition occurs at
T = 1. In the ordered state (c), there is no minimum at �1 = M = 0.
For T > 1 (d), the only true local minimum is at �1 = M = �2 = 0.
The apparent minima as a function of �1 = M are unstable to de-
creasing �2, which smoothly connects them to the �1 = M = �2 =
0, forming two “valleys.” (e), (f) For J = 0, a2 = 0.005, a second-
order transition occurs at T = 1 and neither additional local minima
nor valleys are present for T > 1.

pairs to proximate magnetism, so that unconventional pairs
can gain energy by coupling to slowly fluctuating moments as
a chiral combination b± = (b�

′ ± ib�′ )/
√

2 of the pairs b†
�(�′ )

which are eigenstates of T and point-group symmetries. As
a result, even when only one pair component is near critical,
coupling to proximate magnetism can induce the second
component, forming local broken T pairs that can condense
above the underlying superconducting and magnetic critical
temperatures. Note that this energy gain is available as long as
the fluctuations of the moments are slow compared to the pair
kinetic energy, whether the moments are near critical, as we
consider here or frozen in a glass, as suggested by Ref. [42].

The rest of the paper is structured as follows. We demon-
strate the onset of this direct transition from nonmagnetic
normal state to a broken T superconductor over an extended
parameter range when the coupling J exceeds a threshold
using a Landau free energy in Sec. II. Being a first-order
transition (Fig. 3), this reconciles the experimental phase di-
agram with thermodynamics. Since the superconducting and
magnetic order parameters are close to a continuous transition,
the transition is weakly first order and the associated jumps
in order parameters and peak in Cv/T may be small as is
demonstrated in Fig. 4.

A key question, then, relates to the strength of the cu-
bic coupling J between pairs and local moments in (1). We
present two complementary microscopic derivations of this
pair Kondo interaction in Sec. III, in terms of a weak-coupling
picture of single-particle spin exchange with an S = 1

2 local
moment and a strong-coupling picture of pair-spin exchange
with an S = 1 local moment. Conventional wisdom [53] sug-
gests that this coupling is proportional to the slope of the
density of states near the Fermi surface and is, therefore,
very weak. In the weak-coupling limit, we reproduce this
tendency in Sec. III A. Contrary to this conventional expec-
tation, in Sec. III B, we demonstrate a local strong-coupling
mechanism in which this coupling strength is governed by
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FIG. 4. (a) Entropy (blue) and (b) specific heat across
the first-order transition for α1 = αm = Tc1 = Tm = J, b1 = b2 =
bM = 2J, b1M = b2M = b12 = 0, a2 = 0.005J (cf. experimentally
measured specific heat in Ref. [38]). As J → Jc, �S → 0, and
cot θ → ∞, becoming nearly vertical. In addition, the red dashed
curve schematically indicates what would be expected if the first-
order transition is slightly broadened by disorder. Note that this is
very hard to distinguish from the entropy in a second-order transition.

atomic energy scales and is not small. In essence, we de-
scribe the two-particle analog of Kondo screening by pairs
rather than electrons, and derive a pair Kondo interaction
by a Schrieffer-Wolff decoupling of two-electron valence
fluctuations.

II. PHASE DIAGRAM AND WEAK FIRST-ORDER
TRANSITIONS VIA PAIR KONDO COUPLING

The presence of two pair potentials in distinct irreps allows
for a direct coupling of pairs to local moments as in (1),
without pair breaking. Scattering off slowly fluctuating local
moments results in a gain in pairing energy for chiral pairs
b�

′ ± ib�′ , relative to the pairs b†
�(�′ ) which are eigenstates of

T and point-group symmetries. This allows nondegenerate or-
der parameters 〈b†

�(�′ )〉 to condense simultaneously at a weak
first-order transition.

We demonstrate this mechanism by considering the Lan-
dau free energy of a system with three order parameters: two
superconducting ones �1,�2 and one corresponding to mag-
netism M. Two of the corresponding transitions are assumed
to be close to one another in parameter space. Below we
focus on the case where one superconducting order �1 and
a magnetic order M condense at close temperatures Tc1, Tm,
respectively, while the second superconducting order �2 does
not condense on its own. This assignment models the proxim-
ity of UTe2 to the ferromagnetic critical point (in accord with
experiments [14,49–51]) without assuming degeneracy of two
superconducting orders. We note that our analysis will also
apply for a different choice of two critical order parameters.
The Landau expansion for free energy takes the form

F = α1

2
(T − Tc1)|�1|2 + a2

2
|�2|2 + αm

2
(T − Tm)M2

− iJM

2
(�∗

1�2 − �1�
∗
2 ) + F4, (2)

where the cubic coupling in the free energy represents a cou-
pling of the total moment of the Cooper pairs to the proximate
magnetization and has been introduced on symmetry grounds

in [53–55] and

F4 = bM

4
M4 + b1

4
|�1|4 + b2

4
|�2|4

+ b1M

2
M2|�1|2 + b2M

2
M2|�2|2 + b′

12

2
|�1|2|�2|2

+ b′′
12

4

(
�2

1�
∗2
2 + �∗2

1 �2
2

)
, (3)

where all coefficients are positive so that F4 � 0. With this
phenomenological free energy we can study the phase dia-
gram as a function of Tc1 and Tm.

We begin with considering the behavior when Tc1 =
Tm. The individual critical temperatures depend on material
parameters such as pressure, strain, and fields and may gener-
ically have an accidental crossing. At this temperature, which
is the bicritical point in absence of the cubic coupling J = 0,
the free energy takes the form

Fbicr = a2

2
|�2|2 − iJM

2
(�∗

1�2 − �1�
∗
2 ) + F4. (4)

The cubic term here favors a π/2 phase between the or-
der parameters �1 and �2, such that we can take Im�1 =
Re�2 = 0 without loss of generality. As a2 > 0, F4 > 0 it
is evident that for sufficiently small J this free energy has
only a trivial minimum �2 = �1 = M = 0. However, mini-
mizing Fbicr with respect to the order parameters at arbitrary
J (see Appendix A for details) we find that for J > Jc =√

a2(b1M + √
b1bM ), a nontrivial global minimum appears.

Importantly, this minimum splits gradually from the trivial
one, such that for J → Jc one has �1, M ∝ √

J − Jc,�2 ∝
J − Jc for a generic choice of parameters.2 [The full ex-
pressions are given in Eq. (A13)]. While the new minimum
appears continuously at J > Jc, it leads to a first-order transi-
tion as a function of temperature. To estimate the jumps in the
order parameter at the transition, here we present a general
argument, with concrete calculations given in Appendix A.
Close to Jc, the free energy at the new minimum scales
as F min

bicr ∝ −|J − Jc|3. Increasing the temperature from the
erstwhile bicritical point T = Tm(= Tc1) introduces an addi-
tional positive quadratic term ∝(T − Tm)M2, (T − Tm)�2

1 ∝
(T − Tm)(J − Jc). This implies that the critical temperature at
which the new minimum’s energy will equal the normal-state
free energy scales as Tc − Tm ∝ (J − Jc)2. Such a temperature
difference, however, introduces only weak corrections to the
order parameters, implying a finite jump to zero at Tc. Indeed
(T − Tm)M2 ∝ (J − Jc)3 � M4 ∝ (J − Jc)2; thus, the effect
of temperature on the value of the order parameter can be
included in a perturbative renormalization of bM, b1.

Thus, there is a finite threshold for the pair Kondo coupling
Jc above which the two continuous phase transitions at Tc1, Tm

in the vicinity of the accidental crossing are preempted by
a single weakly first-order transition, at which both super-
conducting order parameters develop simultaneously with a
discontinuous jump. From the above quoted scaling properties
of the order parameters, the jumps in the order parameter at Tc

2In the fine-tuned case b′
12 = b′′

12, b2M = 0 the scaling of order pa-
rameters is �1, M ∝ (J − Jc )1/4,�2 ∝ √

J − Jc (see Appendix A).
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scale as δ�2 ∝ (J − Jc), δ(�1, M ) ∝ √
J − Jc as J → Jc + 0

(see also Appendix A).
We are now in position to discuss the phase diagram of the

model (2) in the generic case when Tc1 �= Tm. In particular,
we consider a linear variation of the underlying second-order
transition temperatures indicated by dashed lines in Fig. 2
with a tuning parameter r that stands in for pressure, strain, or
other perturbation. We then find the global minima of the free
energy in (2) numerically across the phase diagram in Fig. 2.
The red, green, and blue levels of the markers are mapped
to the normalized values of the three order parameters, so
that the disordered phase at high temperature is white and the
dark phase at low temperature has all three order parameters
finite.

For an extended range of r in Fig. 2, there is a weakly
first-order transition into the broken T superconductor (SC2)
with a jump in all order parameters. As the underlying phase
boundaries separate, beyond a critical rc, there is a two-step
transition: first into a T -invariant single-component super-
conductor (SC1) and then via a weakly first-order transition
where the second component and the concomitant magnetism
emerge discontinuously. The order parameters’ jump across
the first-order transition decreases as the underlying phase
boundaries separate further, and eventually at large r, the first-
order transition becomes second order after a critical point
(not shown).

A. Experimental prediction I: Latent heat

Above we have demonstrated that the pair Kondo coupling
provides a mechanism capturing the emergence of broken T
superconductivity from nondegenerate order parameters via a
weak first-order transition. We will now discuss the experi-
mental signatures of such a scenario.

We first discuss the calorimetric signatures of the weak
first-order transition. The latent heat of the first-order tran-
sition is given by the discontinuity in the entropy across the
transition �Q = Tc[S(T +

c ) − S(T −
c )] that corresponds to in-

tegrated weight in the spike in the specific heat Cv/T across

the transition �Q/Tc = ∫ T +
c

T −
c

dT Cv

T . We estimate the latent heat

to scale as (J − Jc)2 and the jump in the specific heat �CV
T to

scale as 1/(J − Jc) as J → J+
c (see Appendix A 2). In Fig. 4

we show the entropy and specific heat across the transition,
which is qualitatively similar to the observed specific heat in
Ref. [38].

In such a weakly first-order transition, the small spike in
the specific heat �S coexists with a much larger jump in the
specific heat �CV

T , and may be unobservable, as we emphasize
in Fig. 4. The key prediction of the theory, however, is that
as J → Jc the product approaches a constant. For a simpli-
fied case where α1(T − Tc1) = αM (T − Tm) ≡ a, b1 = b2 =
bM ≡ b, b12 = b1M = b2M = b′ (see Appendix A 2) we get

�S�
CV

T
∝ a2

2

b′J2
c

= a2

b′(b + b′)
. (5)

Note that while latent heat is suppressed, the jump in
the specific heat diverges α−2�Cv/Tc → 2a2/[Jc(J − Jc)]
as J → Jc. This will manifest itself as a strong deviation

from BCS expectation of �Cv/Tc = 1.43γN where γN is the
normal-state Sommerfeld coefficient. Furthermore, in the part
of the phase diagram where first-order transition occurs at a
lower temperature than a second-order one, the specific-heat
jump will be higher at the first-order transition. This contra-
dicts the usual intuition that a transition at lower temperature
should be accompanied by a smaller specific-heat jump due
to the depleted density of states. This is consistent with
the observations in UTe2 under pressure [39,40]. Alternative
mechanisms for such behavior involve a state with more nodes
on the Fermi surface condensing first [56].

B. Experimental prediction II: Ultrasound signatures

The change in the propagation of sound through the sample
as it undergoes a phase transition places strong constraints on
the symmetries of the order parameter. In particular, when a
two-component superconducting order parameter emerges at
a single second-order phase transition, there is a characteristic
jump in the velocity of a shear mode, whose size is related to
the specific-heat jump [57]. Understanding how the sound ve-
locities evolve across the weakly first-order transition allows
us to distinguish its signatures from other candidate scenarios.

The propagation of sound through the sample is governed
by the following Lagrangian density:

Lel =
∫

d3r
(

ρ
u̇2

2
− Uel[{εαβ}]

)
, (6)

where ρ is the mass density, u(r, t ) is the displacement of the
ion, u̇ = ∂u/∂t , and the elastic energy density Uel is a function
of the local strain εi j = 1

2 ( ∂ui
∂r j

+ ∂u j

∂ri
):

Uel =
(

c11
ε2

xx

2
+ c22

ε2
yy

2
+ c33

ε2
zz

2

)

+ (c12εxxεyy + c23εyyεzz + c31εzzεxx )

+ c44
ε2

yz

2
+ c55

ε2
xz

2
+ c66

ε2
xy

2
,

where ci j are the various elastic constants of an orthorhombic
lattice.

Although the theory so far has been completely general
with respect to the order-parameter symmetry and the nature
of the proximate magnetism, to demonstrate the coupling of
the order parameters in (2) with the local strain, we must
specify the irreps under which they transform. Since the near-
critical magnetism in UTe2 has its easy axis along x [14,58],
we assume the magnetic order parameter to be Mx which
transforms under the B3g irrep of D2h and the superconducting
order parameters �1 and �2 to transform under B1u and B2u,
respectively. The order parameters in (2) then have a linear
coupling to strain given by

U el-OP
1 = λεyz

(
�∗

B1u
�B2u + �∗

B2u
�B1u

)
+

∑
α

εαα

2

(
λ

(1)
α,1

∣∣�B1u

∣∣2 + λ
(1)
α,2

∣∣�B2u

∣∣2 + λ
(1)
α,MM2

x

)
(7)
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and a quadratic coupling to strain given by

U el-OP
2 = λ(2)εxyεxz

(
�∗

B1u
�B2u + �∗

B2u
�B1u

)
+

∑
α

ε2
αα

2

(
λ

(2)
α,1

∣∣�B1u

∣∣2 + λ
(2)
α,2

∣∣�B2u

∣∣2 + λ
(2)
α,MM2

x

)
+

∑
α

εααεββ

(
λ

(2)
αα,ββ,1

∣∣�B1u

∣∣2

+
∑

α

εααεββ + λ
(2)
αα,ββ,2

∣∣�B2u

∣∣2 + λ
(2)
αα,ββ,MM2

x

)

+
∑
α �=β

ε2
αβ

2

(
λ

(2)
αβ,1

∣∣�B1u

∣∣2

×
∑
α �=β

ε2
αβ

2
+ λ

(2)
αβ,2

∣∣�B2u

∣∣2 + λ
(2)
αβ,MM2

x

)
. (8)

We work in the low-frequency limit ωτ � 1, where ω is the
sound frequency and τ is the timescale over which the order
parameters equilibrate with the lattice. We can then describe
the system by the free energy F = FOP + V (Uel + U el-OP

1 +
U el-OP

2 ) with

FOP = a1

2

∣∣�B1u

∣∣2 + a2

2

∣∣�B2u

∣∣2 + am

2
M2

x

+ JMxIm
(
�B1u�

∗
B2u

) + b

4

(∣∣�B1u

∣∣4 + ∣∣�B2u

∣∣4 + M4
x

)
+ b′

2

(∣∣�B1u

∣∣2∣∣�B2u

∣∣2 + ∣∣�B1u

∣∣2∣∣M2
x + ∣∣�B2u

∣∣2∣∣M2
x

)
+ b′′

2

[(
�∗

B1u

)2
�2

B2u
+ (

�∗
B2u

)2
�2

B1u

]
, (9)

where a1 = α(T − Tc1), am = α(T − Tm), and V is the sys-
tem volume.

Minimizing the free energy in the presence of the strain
generically leads to a correction to the first-order transition
temperature

Tc({εαβ}) = T 0
c +

∑
α

γαεαα +
∑
αβ

γ ′
αβε2

αβ + O(ε3),

where T 0
c is the transition temperature at zero strain. The

free energy just below the transition temperature can then be
expanded as

F − FN = �S[T − Tc({εαβ})]

+ �Cv

2Tc
[T − Tc({εαβ})]2 + �c44

2
ε2

yz . . . , (10)

where FN is the free energy of the normal state. By taking
appropriate derivatives of this free energy, we can identify the
jumps in the specific heat, entropy, and the c44 shear modulus,
respectively (see Appendix B for details):

�Cv

Tc
→ α2 a2

Jc(J − Jc)
,

�S → α
a2(J − Jc)

2b′Jc
,

�c44 →
(

−2λ2

b′Jc
+ Jc

(
λ

(2)
αβ,1 + λ

(2)
αβ,M

)
2b′(b + b′)

)
(J − Jc) (11)

in the asymptotic limit J → Jc, where Jc is the critical value
of the cubic coupling above which the first-order transition
appears. Across this first-order transition, we predict the fol-
lowing discontinuities in the elastic constants measured in
resonant ultrasound:

(1) There should be jumps in all nonshear elastic moduli
cαβ , α, β = 1, 2, 3.

(2) The magnitude of the jumps should show small (∝
J − Jc) deviations from usual Ehrenfest relations λ−2

α1 �cαα >

α−2�Cv/Tc. This is due to the small jumps in the order param-
eters at the weak first-order transition which are quadratically
coupled to the strain coefficients in (8).

(3) In this case, nonlinear coupling to strain can lead
to small jumps in all shear moduli because of the terms∑

α �=β

ε2
αβ

2 (λ(2)
αβ,1|�B1u |2 + λ

(2)
αβ,2|�B2u |2 + λ

(2)
αβ,MM2

x ) in (8).
(4) These jumps in the shear moduli have the asymptotic

Ehrenfest relations as J → Jc,

�c44
αa2

2b′Jc
→ �Q

Tc

(
2λ2

Jcb′ + Jc
(
λ

(2)
yz,1 + λ

(2)
yz,M

)
2b′(b + b′)

)
,

�c55
αa2

2b′Jc
→ �Q

Tc

(
Jc

(
λ

(2)
xz,1 + λ

(2)
xz,M

)
2b′(b + b′)

)
,

�c66
αa2

2b′Jc
→ �Q

Tc

(
Jc

(
λ

(2)
xy,1 + λ

(2)
xy,M

)
2b′(b + b′)

)
, (12)

where �Q is the small (∝J − Jc) latent heat at the weak
first-order transition. For comparison, in case of an acciden-
tal degeneracy between two second-order phase transitions
at which �B1u and �B2u turn on simultaneously, the corre-
sponding jump discontinuity in the shear modulus would be
related to the specific-heat jump by the standard Ehrenfest
relation [57]

�c44 = −�Cv

Tc

(
∂Tc

∂εyz

)2 2b − 2b′′ + b′

16b′′ . (13)

C. Discussion and an alternate scenario

A recent preprint [59] has reported the results of a pulsed
echo ultrasound experiment on UTe2, finding no evidence of
jumps in any of the shear moduli at the superconducting tran-
sition. For a weakly first-order transition, as discussed above,
the shear moduli can be parametrically small in J − Jc, simi-
larly to the latent heat. Therefore, given a limited experimental
resolution, a weak first-order transition can be consistent with
the results of [59]. On the contrary, for a second-order tran-
sition with two accidentally degenerate orders, there is no
natural parameter that can make the shear moduli jumps small.
This scenario involving second-order transitions is therefore
inconsistent with the observations of [59]. We suggest that
the simplest way to reconcile the universal observation of
two transitions under pressure in UTe2 and the observation
of Kerr effect in split-Tc samples3 is to search for a small
latent heat that goes below the experimental resolution as we

3Notably, reproduction studies of the Kerr effect on these split-Tc

samples have not been reported, although a recent paper [44] has
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approach ambient pressure. As emphasized in the previous
subsection, we do predict a small jump in all shear moduli
at the superconducting transition, which becomes, however,
vanishingly small for J close to Jc. We note that the origin of
broken T superconductivity in our weakly first-order scenario
does involve superconducting order parameters in two irreps
of the nonmagnetic point group.

The phenomenological description above reconciles the
lack of an observed second transition in the low-pressure data
for UTe2 [Fig. 2(b)]. In particular, it is sufficient to have an
accidental degeneracy either between one superconducting
order and magnetism, or two superconducting orders to create
a finite region of the phase diagram where unsplit transition
into a broken T superconductor exists. In place of magnetism,
any symmetry-breaking local order that is nearly degenerate
with superconducting order can be used to motivate a similar
phase diagram with a single weakly first-order transition. The
experimental data are also consistent with three near critical
order parameters described by the free energy

F = α1(T − Tc1)

2
|�1|2 + α2(T − Tc2)

2
|�2|2

+ αm(T − Tm)

2
M2 − iJM

2
(�∗

1�2 − �1�
∗
2 ) + F4 (14)

with a crossing between say, Tc1 and Tm, as shown in Fig. 2(c),
if Tc2 is close enough that J2 > α2(Tc1 − Tc2)b. In this case,
the critical pair Kondo coupling may be parametrically small
if Tc1 − Tc2 → 0. Since the existence of a weakly first-order
transition depends on a delicate balance between the Lan-
dau free-energy coefficients and the pair Kondo coupling,
it is important to understand the microscopic origins of the
symmetry-allowed coupling constant J introduced in (1).

III. MICROSCOPIC ORIGIN OF PAIR KONDO COUPLING

We discuss the microscopic mechanism of pair Kondo
coupling, that we introduced phenomenologically in the pre-
ceding section. In particular, we identify a mechanism by
which Cooper pairs can change their symmetry representa-
tions by scattering off local moments. Here we consider two
cases. In the weak pairing or BCS limit, where Tc ∼ �1,2,
the change of symmetry proceeds via breaking of one pair,
spin scattering that rotates one of the two electron spins, and
recombination into another pair. Alternatively, in the strong
pairing limit, via coupling to a local moment, the pair spin
itself can rotate in the scattering process, as we demonstrate
for an S = 1 moment. In presence of spin-orbit coupling and
crystal fields, the intuition from spin rotation translates to a
change in the irreducible representation of the Cooper pair. We
capture this intuition by explicitly calculating the pair Kondo
coupling from microscopic Hamiltonians in the following
subsections.

found absence of spontaneous Kerr rotation in other UTe2 samples
with a single unsplit Tc.

A. Weak coupling to S = 1
2 moment

In a weak-pairing superconductor, the energy gain by pairs
coupling to moments should be proportional to S · mSC where
S is the total spin of the moments, and mSC is the magnetic
moment of the superconductor in absence of local moments.
The latter is known [18,53,60] to be proportional to the slope
of the normal-state density of states; if the density of states
is constant over the superconducting gap scale, the broken T
nonunitary superconductor has no net moment. Here we show
that this intuition also holds for order parameters above the
second-order critical temperatures: in the weak pairing limit,
the coefficient of the cubic coupling between two supercon-
ducting orders and magnetism scales with the slope of the
density of states. Starting from a Hamiltonian with generic
interactions that drive pairing in two channels and magnetism
in a third channel, the goal is to first decouple the interactions
by introducing auxiliary fields for each ordering tendency and
then examine the lowest-order coupling between the three
fields in the free energy.

Consider the model Hamiltonian

H = HK + H1 + H2 + HM,

where HK = ∑
k,α ξkc†

kac†
kα is the kinetic energy of noninter-

acting fermions on an arbitrary lattice with crystal momentum
k and spin α created by c†

kα ,

H1 = −
∑
k,k′

|V1|c†
kφ̂1kc†

−kc†
−k′ φ̂1k′c†

k′ ≡ −|V1|b†
1b1

is an attractive interaction for fermion pairs created by b†
1 ≡∑

kαβ c†
kα

φ̂1k,αβc†
−kβ with an Hermitian form factor φ̂1 that is a

matrix in spin space (α, β = {↑,↓}) and transforms according
to a one-dimensional irrep of the point group,

H2 = −
∑
k,k′

|V2|c†
kφ̂2kc†

−kc−k′ φ̂2k′ck′ ≡ −|V2|b†
2b2

is an attractive pairing interaction in an orthogonal channel
transforming under a different one-dimensional irrep,

HM =
∑

k,k′,q

VM (q)c†
k+qσc†

k · c†
k′−qσc†

k′ ≡
∑

q

VM (q)Sq · S−q

is a generic local magnetic exchange interaction that favors
ferromagnetism: VM (q = 0) < 0. Since we are interested in
systems close to a ferromagnetic instability, we ignore finite-
momentum spin scattering and set VM (q �= 0) = 0.

Decoupling the interactions using Hubbard-Stratonovich
fields �1,�2, M allows us to express the partition function
Z = ∫

�1,�2,M,ψ
e−S in terms of an action that is quadratic in

the fermionic fields

S = −T
∑
k,n

�
†
k,nG−1

k,n�k,n + O(|�1|2, |�2|2, M2),

where the Nambu spinor �
†
k = (ψ̄k ψ−k�) contains the

Grassmann fields of the fermions, � = iσyK (with K: com-
plex conjugation) is the time reversal operator, and the inverse
of the Nambu-Gorkov Green’s function G−1

k,n = G−1
0k,n − �k

can be decomposed into a bare inverse Green’s function
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G−1
0k = iωn − ξkτ3 and the self-energy

�k =
(

M · σ �1φ̂1k + �2φ̂2k

�∗
1φ̂1k + �∗

2φ̂2k M · σ

)
, (15)

where ωn = (2n + 1)β/2 are fermionic Matsubara frequen-
cies and τi are Pauli matrices in Nambu space. Integrating out
the fermionic fields, we arrive at the free energy at the saddle

point

F = T
∑
k,n

Tr ln G−1
k,n = FN + T

∑
k,n

Tr ln (1 + G0k,n�k ),

(16)

where FN = T
∑

k,n Tr ln G−1
0k,n is the normal-state free en-

ergy. The leading-order terms in the Taylor expansion of the
logarithm that survives the Nambu trace and the sum over the
Brillouin zone are F = F0 + F2 + F3 + · · · :

F2 = T
∑
k,n

Tr

[
|�1|2φ̂2

1k + |�2|2φ̂2
2k

(iωn − εk )(iωn + εk )
+ M2

(
1

(iωn − εk )2 + 1

(iωn + εk )2

)]
,

F3 = −T Mm

∑
k,n

Trσm
�1�

∗
2φ̂1kφ̂2k + �∗

1�2φ̂2kφ̂1k

(iωn − εk )2(iωn + εk )
+ �1�

∗
2φ̂2kφ̂1k + �∗

1�2φ̂1kφ̂2k

(iωn − εk )(iωn + εk )2

= −T Mm

∑
k,n

Trσm
Im[�1�

∗
2](φ̂1kφ̂2k − φ̂2kφ̂1k )

(iωn − εk )(iωn + εk )

(
1

(iωn − εk )
− 1

(iωn + εk )

)
,

where Mm = M�1×�2 , the component of the three-vector that transforms under the product irrep �1 × �2 of the pairing order
parameters. The Hermitian form factors φ̂1,2 can be expanded in the basis of Pauli matrices with real coefficients φ̂1k = φ0

1kσ0 +
d1k · σ, so that the lowest-order coupling between the magnetic order parameter and the two pairing order parameters takes the
form

F3 = −JPKMmIm[�1�
∗
2] (17)

with

JPK = T
∑
k,n

(d1k × d2k ) · m̂
∑

n

[(iωn − εk )−2(iωn + εk )−1 − (iωn − εk )−1(iωn + εk )−2].

Evaluating the Matsubara summations gives a closed-form expression for the coupling constant

JPK =
∑

k

m̂ · (d1k × d2k )

[
2

εk

(
df

dε

∣∣∣∣εk + df

dε

∣∣∣∣
−εk

)
− 2

ε2
k

[ f (εk ) − f (−εk )]

]
. (18)

To simplify this expression, we assume that the angular average of the d vectors DFS(ε) = ∫
FS(ε) d�(d1k × d2k ) is smooth near

the Fermi surface, and evaluate

JPK = 2D0
FS

∫ D

−D
dε N (ε)

[
2

εk

(
df

dε

∣∣∣∣εk + df

dε

∣∣∣∣
−εk

)
− 2

ε2
k

[ f (εk ) − f (−εk )]

]
, (19)

where D is the bandwidth, N (ε) is the density of states, and D0
FS = DFS(EF ) is the Fermi-surface average of the pair moment.

The first term can be integrated by parts to give∫
dε N (ε)

f ′(ε)

ε
= N (ε)

f (ε)

ε

∣∣∣∣
D

−D

−
∫

dε f (ε)

[
∂N (ε)

ε∂ε
− N (ε)

ε2

]
. (20)

Using this in (19), we find

JPK = 2D0
FS

(
N (ε) tanh βε/2

ε

∣∣∣∣
D

−D

−
∫ D

−D

dε

ε
[ f (ε)N ′(ε) + f (−ε)N ′(−ε)]

)
.

For a wide band where the first term vanishes, the cubic
coupling JPK is proportional to the slope of the density of
states near the the Fermi level, at any saddle point where
three order parameters are finite, even for local minima of the
free-energy landscape. This is consistent with the vanishing
magnetic moment of a nonunitary superconductor (cf. p. 105

in [53]), corresponding to the case where the saddle point is
the global minimum.

B. Strong coupling to S = 1 moment

Pairs can also couple to local moments by mediating
charge-2e valence fluctuations, similar to how electrons
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Kondo couple to moments by mediating charge-e valence
fluctuations. We demonstrate this process for a spin-1 f 2 local
moment with three states |Sx = 0〉, |Sy = 0〉, |Sz = 0〉 in the
SU(2)-symmetric ground-state manifold.

The kinetic energy of the conduction electrons is described
by the generic Hamiltonian

HK =
∑
kα

εc
kc†

kαckα +
∑
q,m

εb
q,mb†

qmbqm (21)

with bqm = N−1/2 ∑
j b†

jmeiq·r j , and b†
jm = ∑

δαβ c†
jαφ̂mδ,αβ

c†
j+δ,β

, where j runs over unit cells, α, β are indices for
internal electronic degrees of freedom, including orbital and
spin, and δ is a lattice displacement vector. b†

jm creates a pair
with the same local symmetry as a triplet pair with its d vector
along m. c†

kα creates a conduction electron in a Bloch wave of
orbital α (including spin) with momentum k and dispersion
εc

k. The pairs have the dispersion εb
q which is negative at

q = 0. The coupling of pairs to local moments that we derive
below is independent from the origin of the attraction between
pairs leading to εb

q=0 < 0. For concreteness, we work in the
strong-coupling regime, where the single-particle spectrum is
fully gapped, even in the absence of superfluid stiffness when
the pairs have no off-diagonal long-range order, i.e., above the
superconducting Tc. The only valence fluctuations of the local
moment are then mediated by the pairs at low energy.

Charge fluctuations of the local moment are captured by
the mixed-valence Hamiltonian

H =
∑

j

⎛
⎝E0X 00( j) +

∑
m={x,y,z}

(
V X 02

m ( j)b†
jm + H.c.

)⎞⎠,

(22)

where the Hubbard operator X 02
m = | f 0〉〈 f 2

m| removes two f
electrons from the Sm = 0 state of the ground-state triplet.

In the limit V/E0 � 1, the perturbative effect of virtual
valence fluctuations on the ground-state manifold is captured
by a Schrieffer-Wolff transformation after which the Hamil-
tonian eiSHe−iS is block diagonal to second order in V/E0.
This is effected by iS = ∑

jm E−1
0 (V X 02

m ( j)b†
jm − H.c.). The

transformed Hamiltonian is then

eiSHe−iS =
∑

j

|V |2
E0

[
X 00( j)b†

jmb jm − X 22
mm′ ( j)b jmb†

jm′
]

+
∑

j

E0X 00( j) + O((V/E0)3). (23)

The second term can be simplified using the Fierz identity
for Gell-Mann matrices [61] δαβδγ δ = 1

3δαδδγβ + 1
2λαδ · λγ β .

Thus,

X 22
mm′bmb†

m′ = X 22
mm′bnb†

n′δmnδm′n′

= 1
3 bmb†

m + 1
2

∣∣ f 2
m

〉
λmm′

〈
f 2
n

∣∣ · bnλnn′b†
n′ , (24)

where we can identify the three imaginary Gell-Mann matri-
ces as the S = 1 generators of SU(2) following Ref. [62] Sl =
i| f 2

m〉εlmn〈 f 2
n |. Projecting the canonically transformed Hamil-

tonian (23) to the low-energy spin sector of the f electrons,
and ignoring potential scattering of pairs, then gives the pair

Kondo Hamiltonian

HPK = JPK

∑
jlmn

iεlmnSl ( j)b†
jmb jn (25)

with JPK = |V |2
2E0

. If we restrict ourselves to zero-momentum
pairing in a translationally invariant system, and recall that
b†

jm = ∑
δ c†

j φ̂mδc
†
j+δ

then this takes the form

HPK = JPK

∑
jlmn

iεlmnSl,q=0

∑
k,k′

c†
kφ̂mkc†

−kc−k′ φ̂∗
nk′ck′ (26)

with φ̂mk = ∑
δ φ̂mδe−ik·δ/

√
N , describing a change in sym-

metry of the pairs via scattering off the uniform component of
the magnetization.

How does this idealized derivation in the presence of full
SU(2) rotational symmetry relate to the experimental reality
of UTe2? In general, the presence of spin-orbit coupling in the
local moment allows the moment to couple to the crystal fields
which break the full rotational invariance. The states |Sm = 0〉
should then be replaced by the crystal-field eigenstates that
transform under the same irrep as the spin component Sm. In
UTe2, the general consensus is that the uranium valence is
intermediate between an f 3 Kramer’s doublet configuration
and one or more nearly degenerate f 2 singlet configurations,
although the relative weight in each valence sector is under
debate [37,63–65]. For low-symmetry systems like UTe2, two
nearly degenerate f 2 states are sufficient for an anisotropic
coupling to local two-component pairs. The Hubbard operator
that connects these two states then transforms like one com-
ponent of spin, say Sx = i| f 2

B1u
〉〈 f 2

B2u
| − i| f 2

B2u
〉〈 f 2

B1u
|), so that

(26) is modified to describe coupling of one component of
magnetism Sx to two pairing components �B1u ,�B2u precisely
as in (9).

Note that as formulated, the pair Kondo coupling is not
restricted only to triplet pairs, but applies quite generally to
pairs which have local structure in orbital or sublattice space,
captured by the matrix form factor φ̂mδ. Thus, even in systems
where superconductivity is likely to be spin singlet, pairs
can couple to local moments by scattering between two or
more components with noncommuting form factors in (26) in
orbital or sublattice space, providing a mechanism for broken
time reversal superconductivity beyond UTe2.

This mechanism might explain the presence of the frozen
moments in early samples [42] and the absence of any in-
ternal fields in newer high-quality molten-salt-flux grown
samples [41]. At low concentrations of magnetic impurities,
pairs are able to screen the moments via pair Kondo cou-
pling, but as the concentration of impurity moments increases,
long-range interactions between them is expected to result in
glassy regimes, similar to the case of magnetic impurities in
metals [66].

IV. CONCLUSION

In this work we presented a mechanism where time re-
versal symmetry-breaking superconductivity can onset in a
single transition in a system without degeneracies between
pairing channels. The cubic coupling of Cooper pair mag-
netic moments to localized magnetic moments results in a
weakly first-order transition into a spontaneously broken T
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phase preempting individual second-order transitions in an
extended regime of the phase diagram (Fig. 2). Remarkably,
increasing separation between the bare second-order transi-
tion temperatures leads to a splitting of a single transition
into two: a second-order one at a higher temperature followed
by a weak first-order one at low temperature. All of these
features are in agreement with the reported behavior of UTe2

under pressure [39,40]. We have provided further experimen-
tal signatures of the proposed scenario in calorimetric and
ultrasound measurements. Remarkably, the latent heat for the
weak first-order transition can be continuously tuned to zero,
while the corresponding specific-heat jump concomitantly di-
verges. This offers an alternate explanation for violation of the
weak-coupling BCS ratio, while explaining the nonobserva-
tion of latent heat and shear modulus discontinuities in UTe2.
Finally, we discussed the microscopic mechanisms of pair
Kondo coupling in Sec. III, in the context of weak and strong
coupling, demonstrated for S = 1

2 moments and S = 1 local
moments, respectively. Importantly, while for magnetism of
purely itinerant electrons the pair Kondo coupling is expected
to be proportional to the energy derivative of the density of
states and thus weak, we find no such suppression for the case
of local moments being present.

The mechanism for broken T superconductivity via pair
Kondo coupling between nondegenerate pairs and local mo-
ments is applicable quite generally beyond UTe2, and is not
restricted to triplet pairing. In a single-band model, singlet
pairs in different irreps do not couple to local moments be-
cause the pairing form factors in (26) commute. However, in
multiorbital systems, the pairing form factor can have struc-
ture in orbital space that allows even spin-singlet pairs to
couple to local moments. This allows for a general scenario
of weak first-order transition into broken T superconducting
phase by the mechanism described above to be applicable
to a potentially wider range of materials. Furthermore, our
microscopic analysis indicates that systems where itinerant

electrons coexist with local moments may be promising for
realization of pair Kondo coupling effects.

Our results can also be straightforwardly extended to
the case where instead of magnetic order other particle-
hole order is considered, e.g., a cubic coupling between
nematic, s- and d-wave superconducting orders is allowed by
symmetry. Other possible combinations allowing for cubic
coupling would be uniform superconducting order, charge-
or spin-density wave and pair-density wave order parame-
ters, that may also have relevance to UTe2 [67–69]. Since
unconventional superconductivity in most cases occurs in sys-
tems close to other instabilities [70], our study provides a
unique possibility of weak first-order transitions to occur in
these systems.
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APPENDIX A: ANALYTICAL SOLUTION
OF THE LANDAU FREE ENERGY

In this Appendix, we derive the asymptotic expressions for
the jumps in the order parameters, the specific heat and the la-
tent heat at the point where the underlying second-order tran-
sitions at Tc1 and Tm are degenerate. These analytical expres-
sions hold when the cubic coupling between magnetism and
superconducting orders is near the critical coupling J → Jc,
and when the biquadratic couplings b′

12, b′′
12, b1M , b2M in (2)

are much smaller than the quartic couplings b1,2,M .
Starting with the most general form of the Landau free

energy describing these three order parameters,

F [�1,�2, M] = a1(T, p)

2
|�1|2 + a2(T, p)

2
|�2|2 + aM (T, p)

2
M2 − iJ

2
M(�∗

1�2 − �1�
∗
2 ) + bM

4
M4 + b1

4
|�1|4 + b2

4
|�2|4

+ b1M

2
M2|�1|2 + b2M

2
M2|�2|2 + b′

12

2
|�1|2|�2|2 + b′′

12

4

(
�2

1�
∗2
2 + �∗2

1 �2
2

)
, (A1)

where T is the temperature and p is an arbitrary symmetry-allowed tuning parameter, such as pressure. We assume that only two
order parameters are close to transition and treat the third one as inert:

a1(T, p) ≈ α1(p)[T − T1(p)]; aM (T, p) ≈ αM (p)[(T − TM (p)]; a2(T, p) = const, (A2)

where one can neglect the variations in α1,M for small variations of the tuning parameter p.
Without loss of generality, we can take �1 to be real. The cubic term then in (A1) explicitly favors the imaginary part of �2,

resulting in Re�2 = 0 in equilibrium, so that

F = a1(T, p)

2
�2

1 + a2(T, p)

2
�2

2 + aM (T, p)

2
M2 + JM�1�2 + bM

4
M4 + b1

4
�4

1 + b2

4
�4

2 + b1M

2
M2�2

1

+ b2M

2
M2�2

2 + b12

2
�2

1�
2
2, (A3)

where b12 ≡ b′
12− b′′

12 and we used Re�1 →�1; Im�2 →�2

for brevity. Written in this way, the free energy is explicitly
invariant if 2 and M are interchanged in all the coefficients.

Therefore, qualitatively similar phase diagrams (in terms of
energies and transition temperatures) are expected for the near
degeneracy between SC1 and SC2 or SC1 and M.
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1. Order-parameter scaling

We now set a1 = aM = 0 to find the scaling of the
order parameters as J → Jc. We start with simplified case
where biquadratic couplings bi j are neglected. In this case,
the condition the minima in the free energy by solving
∂F/∂�1 = ∂F/∂�2 = ∂F/∂M = 0 is as follows:

bMM3 + J�1�2 = 0,

b1�
3
1 + JM�2 = 0,

a2�2 + b2�
3
2 + JM�1 = 0. (A4)

From the first two equations one finds
√

b1bM (�1M ) =
±J�2 and �1/M = (bM/b1)1/4. Substituting in the third
one, we get a condition for the existence of a nonzero
solution:

J > Jc =
√

a2

√
b1bM . (A5)

For J2 ≈ a2
√

b1bM one can also compute the order-parameter
values

|�2| =
√

J2 − √
b1bMa2√

b2
√

b1bM

∝ √
J − Jc,

|�1| = (
b3

1bM
)−1/8√

J|�2| ∝ (J − Jc)1/4,

|M| = (
b3

Mb1
)−1/8√

J|�2| ∝ (J − Jc)1/4, (A6)

where the signs are such that sign[�1�2M] < 0. Most
importantly, �2 ∝ �1M � M,�1 close to Jc.

The full equations including biquadratic terms take the
form

bMM3 + J�1�2 + b1M�2
1M + b2M�2

2M = 0,

b1�
3
1 + JM�2 + b1M�1M2 + b12�

2
2�1 = 0,

a2�2 + b2�
3
2 + JM�1 + b2M�2M2 + b12�2�

2
1 = 0. (A7)

The first two equations do not allow a simple expression
for �1M now due to b1M , b2M , b12; however, we can study
perturbatively their effects. In lowest order b1M � b1, bM , one
can use �1/M = (bM/b1)1/4, which results in same equa-
tions as (A4), but with a renormalization b1 → b̃1 ≈ b1 +
b1M

√
b1/bM ; bM → b̃M ≈ bM + b1M

√
bM/b1. b12 and b2M

introduce subleading correction, which are however important
for what follows next.

The third equation in (A7), after substituting the perturba-
tive solution of the first two is modified in a more substantial
way:(

a2 − J2

√
b1bM

)
�2 − 3Jb2M

8

(
3(

b3
Mb1

)1/4 − 1√
b1bM

)

× �2
2 − 3Jb12

8

(
3(

b3
1bM

)1/4 − 1√
b1bM

)
�2

2 = 0, (A8)

where �2 < 0 is assumed, and the O(�3
2) term is dropped.

The leading term in the absence of biquadratic coupling is
actually small. While the critical value of coupling remains
the same, the scaling of the order parameters at J ≈ Jc is not

[cf. Eq. (A6)]:

|�2| ∝ (J − Jc), |�1| = (
b̃3

1b̃M
)−1/8√

J|�2| ∝ (J − Jc)1/2,

|M| = (
b̃3

Mb̃1
)−1/8√

J|�2| ∝ (J − Jc)1/2. (A9)

Assuming this scaling behavior allows one to calculate the
prefactors in (A9). In particular, neglecting the �3

2 term in the
third equation in (A7), we get

�2 = − JM�1

a2 + b2MM2 + b12�
2
1

≈ −JM�1

a2
+ JM�1

(
b2MM2 + b12�

2
1

)
a2

2

. (A10)

Note that to get the correct scaling we need to keep subleading
terms of order (J − Jc)2. Using the expansion (A10) for the
first two equations in (A7) we get

bMM2 −
(

J2

a2
− b1M

)
�2

1 + J2

a2

(
2b2M�2

1M2 + b12�
4
1

) ≈ 0,

b1�
2
1 −

(
J2

a2
− b1M

)
M2 + J2

a2

(
2b12�

2
1M2 + b2MM4

) ≈ 0.

(A11)

Solving these for �2
1 and M2, we find

�2
1 = a2

2bM

3J2b2M

(
J2

a2
− b1M

)2
− b1bM(

J2

a2
− b1M

)(
J2

a2
− b1M + b12bM

b2M

)
≈ 4a2(J − Jc)

3Jc

(
b2M

√
b1
bM

+ b12

) , (A12)

M2 ≈ 4a2(J − Jc)

3Jc

(
b12

√
bM
b1

+ b2M

) ,

�2 ≈ − 4(J − Jc)

3
(

b12

√
bM
b1

+ b2M

√
b1
bM

) , (A13)

where Jc =
√

a2(b1M + √
b1bM ). In principle, these expres-

sions can be used to obtain corrections of the order (J − Jc)2,
but we have written only the leading order after the ≈ sign.

2. First-order transition temperature, latent heat, and jump in
specific heat

We consider the case where a1 = aM ≡ a, b1 = b2 =
bM ≡ b, b12 = b1M = b2M = b′. Due to symmetry of
coefficients, �1 = ±M will be a solution; we pick
�1 = −M ≡ x without loss of generality. From the first
two equations (A9) we get

ax + bx3 − Jx�2 + b′x3 + b′�2
2x = 0 ⇒ x2

= J�2 − a − b′�2
2

b̃
,

(A14)

where b̃ ≡ b + b′. For this case one obtains a necessary con-
dition J�2 > a > 0. Inserting this into equation for �2 one
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gets

a2�2 + b2�
3
2 − Jx2 + 2b′�2x2

≈ 3b′J�2
2 − (J2 − a2b̃ + 2b′a)�2 + Ja + O

(
�3

2

)
b̃

= 0. (A15)

Assuming weak first-order transition, �3
2 term can be ne-

glected and we obtain

�2 = J2 − a2b̃ + 2ab′ ±
√

[J2 − a2b̃ + 2b′a]2 − 12J2ab′

6Jb′ ,

(A16)

where the “plus” sign is to be taken for the local minimum of
free energy. For J close to Jc =

√
a2b̃, one observes that the

nontrivial solution exists only for a < (J − Jc)2/3b′. In this
regime, the condition a < J�2 ∝ (J − Jc) is satisfied para-
metrically, note also that ab′/Jc < (J − Jc)2/3Jc � J − Jc.
The expression for �2 then simplifies to

�2 ≈ J − Jc +
√

(J − Jc)2 − 3ab′

3b′ . (A17)

We can now also compute the free energy as a function of a
for this solution.

Fmin = ax2 + a2

2
�2

2 − Jx2�2 + b̃

2
x4 + b′�2

2x2 + b2

4
�4

2.

(A18)

We drop the O(�4
2) term and simplify (A14) by exploiting

J�2 � a, b′�2
2(∼ (J − Jc)2) ⇒ x2 ≈ J�2/b̃:

Fmin ≈ −
[
(J − Jc)�2 − a − b′�2

2

]
Jc�2

b̃
. (A19)

From here, one can find the critical value of a from Fmin = 0

acr = (J − Jc)2

4b′ , (A20)

evaluate the jumps in the order parameters at Tc

δ�2 = J − Jc

2b′ , δx =
√

Jc(J − Jc)

2b′b̃
, (A21)

and the expansion of the minimal free energy at T → T −
c :

Fmin(T − Tc) ≈ a2(J − Jc)

2b′Jc
(a − acr ) − a2

2Jc(J − Jc)
(a − acr )2

= a2(J − Jc)α

2b′Jc
(T −Tc) − a2α

2

2Jc(J − Jc)
(T −Tc)2.

(A22)

From (A22), we can read off the latent heat and the specific-
heat jumps as J → Jc:

�Q = Tc�S ≈ Tc
a2(J − Jc)α

2b′Jc
,

�Cv

Tc
≈ a2α

2

Jc(J − Jc)
,

(A23)

and find that the product of the latent heat and the specific-heat
jump approaches a constant as J → Jc:

�Q

Tc

�Cv

Tc
≈ a2

2α
3

2J2
c b′ . (A24)

APPENDIX B: ANALYTICAL SOLUTION
IN PRESENCE OF STRAIN

We now find the corrections to the above solution in the
presence of small strain. The change in the sound velocities
at the phase transition arises from the coupling of the strain
to the order parameters captured by the free energy gathered
from (7)–(9):

F − FN = ā1

2

∣∣�B1u

∣∣2 + ā2

2

∣∣�B2u

∣∣2 + ām

2
M2

x

+ 2λεyzRe
(
�B1u�

∗
B2u

) + JMxIm
(
�B1u�

∗
B2u

)
+ b

4

(∣∣�B1u

∣∣4 + ∣∣�B2u

∣∣4 + M4
x

)
+ b′

2

(∣∣�B1u

∣∣2∣∣�B2u

∣∣2 + ∣∣�B1u

∣∣2∣∣M2
x + ∣∣�B2u

∣∣2∣∣M2
x

)
+ b′′

2

[(
�∗

B1u

)2
�2

B2u
+ (

�∗
B2u

)2
�2

B1u

]
, (B1)

where āi = ai + ∑
α λ

(1)
α,iεαα + ∑

α λ
(2)
α,iε

2
αα + 2

∑
αβ λ

(2)
αα,ββ,i

εααεββ + ∑
αβ λ

(2)
αβ,iε

2
αβ for i ∈ (1, 2, m). The linear coupling

to the shear strain induces a correction to the minimal values
of the order parameter found in the previous section

�B1u = −M = x, �B2u = �′
2 + i�′′

2, �′
2 ≈ −2λεyzx

a2

(B2)

with x ≈
√

J�′′
2

b̃
and �′′

2 ≈ J−Jc+
√

(J−Jc )2−3ab′

3b′ as before. With
these values inserted in (B1), the minimum of the free energy
just below Tc takes the form in (10), from which the jumps in
the shear moduli can be extracted by taking the appropriate
derivatives in presence of the order parameters:

�c44 = ∂2(F − FN )

∂ε2
yz

∣∣∣∣
{ε}=0

,

�c55 = ∂2(F − FN )

∂ε2
xz

∣∣∣∣
{ε}=0

,

�c66 = ∂2(F − FN )

∂ε2
xy

∣∣∣∣
{ε}=0

. (B3)
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