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Bose-Einstein condensation of magnons under coherent pumping by light
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Coherent pumping of magnons by light in an optomagnonic cavity has been recently reported. Here we
propose and model the Bose-Einstein condensation of magnons pumped by a coherent pumping source in
an optical cavity composed of a ferromagnetic waveguide. To stabilize the condensation, a large number of
±k-magnon pairs should be pumped into the cavity. We calculate and analyze the methods of direct pumping
and indirect pumping by multiple confined optical modes. The results show that the condensation can be achieved
only by the direct pumping with threshold powers less than 1 watt.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) [1,2], one of the most
extraordinary macroscopic quantum phenomena associated
with a large number of bosons in the ground state sharing
with the same wave function, has been observed in many
systems of bosonic atoms, such as 4He [3], 87Rb [4], and H
[5]. Similar phenomena also occur for bosonic quasiparticles
in nonequilibrium state such as photons [6], excitons [7],
polaritons [8], and magnons [9]. Among these, magnon BEC
(mBEC) in films of yttrium iron garnet (YIG) stands out due
to its potential application in quantum information transfer
and processing [10] and an optical simulator of gravity for
studying gravitational waves and black holes [11,12] at room
temperature. Initially, the formation of mBEC is achieved by
microwave radiation, which increases the density of magnons
to exceed a critical value [9,13,14]. Recently, novel methods
of the formation of mBEC were proposed, such as using
rapid cooling [15], spin Hall effect [16] and spin current [17].
However, in the aforementioned systems, the detection of the
mBEC is performed using Brillouin light scattering (BLS)
technique. This raises the question that why not utilize laser
to generate mBEC.

In recent years, cavity optomagnonics—a hybrid quantum
system combining solid-state magnets with cavity, has been
extensively studied for its potential as quantum information
platforms [18]. The pioneering study of strong coherent cou-
pling between microwave photons and magnons in YIG by
Soykal and Flatté [19] unveiled the field of cavity opto-
magnonics followed by a series of experimental realizations
of strong coherent coupling in optomagnonic cavities [20,21].
The coupling between optical photons and magnons has also
been studied in other hybrid systems [22–24]. Šimić et al. [24]
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theoretically show that the detection of gigahertz magnons in
ferro/ferrimagnets with light by inelastic Brillouin light scat-
tering (BLS) can be enhanced in an optical cavity, indicating
the excitation of a large number of coherent magnons with
high momentum by light. Recently, Zhu et al. [25] experi-
mentally enhanced the optomagnetic coupling strength in YIG
waveguides by employing two laser beams of different modes
through the inverse Faraday effect, leading to the all-optical
excitation and detection of coherent magnons. These studies
make it possible to excite and detect mBEC by lasers in an
optical cavity.

In this paper, we propose an approach to achieving mBEC
within an optical cavity hybridized with a YIG waveguide.
Based on previous studies [22–24] that apply dual laser
beams to generate magnons of single mode via stimulated-
Raman-like scattering, we develop two distinct pumping
strategies—direct pumping and perpendicular pumping (an
indirect pumping)—to excite ±k-magnon pairs with specific
frequencies within a YIG waveguide. The formation of mBEC
after pumping relies on the four-magnon interactions. In-
spired by previous studies on mBEC formation in infinite
ferromagnetic films [26–29], our work delves deeper into un-
derstanding the cascade and kinetic instability (KI) processes
within an optical cavity environment. We rigorously analyze
the conditions and feasibility of mBEC formation, taking into
account the optomagnonic interactions that coherently excite
magnons within the cavity. Our paper not only advances the
theoretical understanding of mBEC but also offers practical
pathways for realizing mBEC in optomagnonic systems.

The paper is organized as follows. Section II is devoted to
the detailed theoretical model underpinning our approach to
generating mBEC within an optical cavity. Firstly, we review
the model for generating single-mode magnons in an optical
cavity, laying the groundwork for subsequent discussions.
Secondly, we elucidate the criteria for establishing stable
mBEC, highlighting the necessity of generating magnon pairs
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FIG. 1. (a) Schematics of the hybrid system. A static magnetic
filed is applied along y direction. P1 and P2 are two light powers.
(b) The Stokes process for ±k magnon modes. (c) Four laser frequen-
cies relative to ω0 used in the direct pumping process, where ω0 is the
cavity frequency. ω

(±)
i (with i = TE, TM) refers to the frequency

and polarization of the four input lights with “±” subscript represent
the light pair used to pump the ±k magnon modes.

with ±k wave vectors. Thirdly, we introduce our method for
generating magnon pairs through direct and perpendicular
pumping, and provide explicit expressions for the threshold
powers required to achieve mBEC formation via the cascade
and the KI processes, respectively. In Sec. III we conduct
numerical calculations to validate our theoretical framework.
Our results demonstrate that the threshold powers of light
needed for realizing mBEC in a rectangular ferromagnetic
waveguide through coherent pumping are less than 1 watt,
thus affirming the feasibility and practicality of our proposed
approach. Finally, in Sec. IV, we summarize the key findings
and contributions of our paper.

II. MODEL OF MBEC IN CAVITY

A. Pumping magnons by light

In a hybrid system composed of an optical cavity and
magnetic YIG waveguide as shown in Fig. 1(a), the gigahertz
magnons can be generated through stimulated-Raman-like
scattering. By adjusting the frequencies and wave vectors of
the incident and the Stokes side-band lights, specific modes
of magnons can be obtained, and the number of generated
magnons can be controlled by adjusting the input light powers
[24].

Here we use the result of Liu et al.’s model [23] to deal
with the magnon-photon interaction in the hybrid system. The
interaction determines the effective field caused by the input
light and is of essence in the calculation of threshold powers of
light for pumping magnons and forming mBEC in the cavity.
The total Hamiltonian can be written in the rotating-wave
approximation as

H = h̄�1a†
1a1 + h̄�2a†

2a2 +
∑

k

h̄ωkb†
kbk

+
∑

k

h̄g(+)
k a1a†

2bk +
∑

k

h̄g(−)
k a†

1a2b†
k, (1)

where �i = ωi − ω0 with i = 1, 2 denotes the detuning of
the input lights frequency from the optical cavity resonance
frequency. g(±)

k is the photon-magnon coupling strength.

In cavity optomagnonics, a pronounced nonreciprocity and
asymmetry exist in the Stokes and the anti-Stokes processes,
where g(+)

k is strongly suppressed in the Stokes process while
g(−)

k is suppressed in the anti-Stokes process [23,30]. We are
interested in generating magnons, and therefore, only g(−)

k is
taken into consideration.

According to Šimić et al. [24], magnons of frequency ωk

can be generated coherently by applying two laser beams of
frequencies ω1 and ω2 through stimulated-Raman-like scatter-
ing. Although they studied the interactions between magnons
in a YIG sphere and laser beams in an optical fiber, their find-
ings are also applicable to our hybridized cavity. We assume
ω1 ≈ ω2 = ωopt and P1 = P2 = P, considering the signifi-
cantly higher frequency of photons compared to magnons.
In this case, the coherent magnon number pumped by cavity
photons can be expressed as

nk = P2

P2
crit

, (2)

Pcrit = h̄κmωoptκopt

2|gk| , (3)

where P is the power of input light, κm (κopt) is the magnon
(cavity) damping rate, and gk refers to g(−)

k , whose expres-
sion has been given in Appendix A as gmm′n. In Sec. III,
we calculate the maximum coupling strength achievable for
±k magnon pairs generated by the Stokes process in the
optical cavity, where the coupling strength for exciting +k
magnons is g+k = 2π × 27 Hz and for exciting −k magnons
is g−k = 2π × 12 Hz. Therefore, the corresponding critical
powers required for exciting the two modes are different.

The corresponding classical spin wave amplitude is

b̃k = √
nke−iωkt , (4)

which will be used later when discussing the threshold power
for the formation of mBEC.

B. Stability of mBEC

Since the realization of BEC in alkali metal atoms such
as Na [31] and Li [32] at the end of the 20th century, the
influence of interactions on cold-atom systems has been a
subject of great interest among researchers. Studies [33,34]
have shown that the interactions between atoms play a crucial
role in the stabilization of BEC. At zero temperature, the BEC
of a dilute neutral atom gas can be described by a single wave
function �(r, t ), which is a solution to the Gross-Pitaevskii
(GP) equation [35,36],

ih̄
∂

∂t
�(r, t ) =

(
− h̄2∇2

2m
+ Vext (r) + g|�(r, t )|2

)
�(r, t ),

(5)

where m is the atom mass, Vext is the trapped potential, and
g is the coupling strength of binary collisions between the
atoms. When atom-atom interactions are repulsive (g > 0),
the system is unconditionally stable; while for attractive in-
teractions (g < 0), it will collapse once |�(r, t )|2 (the atom
number) exceeds a certain value.
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For quasiparticles like magnons, whose interparticle in-
teractions are much less than their kinetic energy, one can
use similar GP equation to study the stability of mBEC.
The mass of real atoms in Eq. (5) can be replaced by the
effective mass of quasiparticles, and the sign of g can be used
to determine the stability of the condensate. For quite a long
time, no one is interested in looking for mBEC in ferromag-
netic films, since the magnon-magnon interactions dominated
by magnetic dipolar interactions are attractive [37], implying
that a stable mBEC cannot exist. However, Demokritov et al.
[9] observed a room-temperature mBEC in a YIG film in
2006, raising a paradox. There was no satisfactory explana-
tion to this contradiction until 2018, when Dzyapko et al.
[38] provided both theoretical and experimental evidence. The
study showed that the mBEC realized in the experiment is a
degenerate two-component mBEC, that is the condensation
occurs at ±k0 states simultaneously. The magnons within
the same component exhibit a weak attractive interaction,
whereas those between different components exhibit a strong
repulsive interaction. As a result, the total interaction in the
YIG film appears repulsive.

Therefore, to create a stable mBEC in an optical cavity,
we have to generate a two-component mBEC, which requires
the initial magnons pumped into the system to be ±k-magnon
pairs. We propose two methods to pump magnons with oppo-
site wave vectors. The first one involves applying four laser
beams to the cavity to coherently pump two magnons with
opposite wave vectors but the same frequency as shown in
Fig. 1(c). The second one involves pumping a k = 0 magnons
first and letting the system go through a three-magnon in-
teraction to generate the ±k magnon pair. The latter one is
known as perpendicular pumping in microwave excitation of
magnons [39].

There are also two mechanisms to form mBEC after pump-
ing. One is that magnons are gradually scattered from the
pumping frequency to the bottom of the spectrum through a
cascade process [9,26]. The other one is through the kinetic
instability (KI) process where the pumped magnons are di-
rectly scattered into state near the bottom of the spectrum
[27,28]. The theoretical explanation for the cascade process
was proposed by Rezende [29], whereas the theoretical model
for KI process presented here was introduced in our study.
Altogether, we have four paths towards mBEC in an optical
cavity. In the following subsections, we will check the possi-
bility of the four procedures one by one.

C. Direct pumping and mBEC in cavity

Šimić et al. [24] have shown that a large number of co-
herent magnons at a selected mode can be excited in a YIG
sphere with two counterpropagating optical modes, similar to
stimulated-Raman scattering. Here, we apply their theory to
an optomagnonic cavity and generalize it to the excitation of a
magnon pair with opposite wave vectors in a YIG waveguide.
Figure 1(c) demonstrates the four laser beams applied to the
cavity. Lasers with “±” subscripts are used to pump the ±k-
magnon modes. For example, we need a TE light and a TM
light, which are blue detuned to the cavity mode and satisfy
ωTE < ωTM to excite the −k magnon mode.

In the direct pumping process, due to the different coupling
strengths of the +k and −k magnons as shown in Sec. III, it is
necessary to adjust the laser powers P(+) and P(−) to produce
an equal number of +k and −k magnons according to Eq. (2).
Here, we assume that the equal number is n.

1. Cascade process

We will discuss the formation of mBEC through the cas-
cade process first. In direct pumping, the total number of
pumped magnons is

Np = 2n, (6)

where n is determined by Eq. (2). After preparation of a large
number of magnons in ±k state far out of thermal equilibrium,
the laser beams can be switched off and the four-magnon
interaction will redistribute these pumped magnons to other
energy states in the range [ωk0 , ωk]. The redistribution process
is the same as that for parallel pumping by microwave pulses,
which has been discussed in detail by Rezende in Ref. [29].
We will apply Rezende’s result of critical magnon number to
derive the threshold power of input lasers in our system.

The redistributed magnons are in quasiequilibrium state
and have a temperature higher than the environment, which
are called reservoir magnons. The critical number of magnons
pumped into the reservoir should be

nD,c1 = 2NR

f4G(ωk0 )
, (7)

where the subscript D stands for direct pumping and c1 for
the critical value through the cascade process, NR is the total
mode number of magnons in the reservoir, f4 = 4ωM/(NS)
is the interaction coefficients with ωM = γ M = 3 × 1010 Hz
and NS the total spin in the film [40], and G(ωk0 ) is the
density of spectrum at the bottom of the spectrum normalized
weighted by the normalized Bose-Einstein distribution,

G(ω) = D(ω)nBE(ω)
1

�ωk

∫
nBE(ω)dω

, (8)

with D(ω) being the density of states of magnons, nBE(ω) the
Bose-Einstein distribution, and �ωk the frequency range of
the reservoir magnons. We have checked the critical magnon
number using the parameters obtained from the experiments
conducted by Demidov et al. [41]. The resulting number
is 0.9 × 1016, in good agreement with that converted from
the threshold power measured in the conventional microwave
pumping experiments, affirming the reliability of the theoreti-
cal model.

Combing Eq. (7) with Eq. (2), we obtain the threshold
power required for the formation of mBEC by direct pumping
in an optical cavity through the cascade process, which is

PD,c1 =
(

2NR

f4G(ωk0 )

)1/2 h̄κmωoptκopt

2|gk| . (9)

Above this threshold, the reservoir magnons can be divided
into two categories: one in quasiequilibrium obeying Bose-
Einstein distribution; the other one contains a larger number
of magnons and has frequencies in the vicinity of the lowest
frequency k0, which forms the mBEC.
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2. KI process

We consider now the large number of magnons in ±k states
pumped into cavity system that do not go through a cascade
redistribution but undergo a KI process via four-magnon
interactions instead. Although there has been experimental
demonstration of the KI process in the formation of mBEC
by microwave pumping, a significant gap remains in theo-
retical predictions regarding the threshold powers necessary
for this process to occur. In this subsection, we address this
gap by constructing a comprehensive theoretical model based
on four-magnon interactions. Our model not only clarifies
the fundamental mechanisms driving the KI process but also
offers a predictive framework for estimating the threshold
powers required to initiate mBEC formation through this
pathway.

In the KI process, a portion of the ±k magnons are scat-
tered to the bottom of the spectrum at (ωk0 ,±k0) while the rest
of them to the higher-energy states (ωk1 , k1) that hold energy
and momentum conservation,

ωk + ωk = ωk0 + ωk0 ,

k + k = k0 + k1. (10)

To provide a illustration of the KI process in phase space,
we need to know the dispersion relation of magnon [29]

ω2
k = γ 2[Hy + Dk2 + M(1 − Fk )sin2θk][Hy + Dk2 + MFk]

(11)

with

Fk = (1 − e−kd )/|k|d, (12)

where k2 = k2
x + k2

y is the magnon wave vector in plane,

γ = gμB/h̄ is the gyromagnetic, D = 2JSa2

gμBμ0
is the exchange

parameter, M is the magnetization of the material, and θ is the
angle between the 2D wave vector k and the direction of static
magnetic field Hy. The competition between the dipolar inter-
action and exchange interaction leads to a magnon spectrum
ωk with two minima located at ±k0 in 2D wave-vector space.
The YIG waveguide studied in our proposal has a length of
l = 8000 µm and a cross section of 2w × d = 400 × 4 µm2.
In this case, only the wave vector along the length direction
ky can be seen as continuous, and kx becomes discrete as
kx = nπ

2w
, where n = 1, 3, 5, 7, 9, ..., is the mode index of

magnons that can be excited in the waveguide under pinned
boundary conditions [42,43].

Figure 2 illustrates the KI process in k space where the
purple line represents the isofrequency surfaces with ωk =
4 GHz, the red dot locates k0 with the minimal energy ωk0 =
2.51 GHz, and the orange line represents the isofrequency
surfaces with ωk1 = 2ωk − ωk0 = 5.49 GHz. The green dots
denote the magnon modes that can be scattered to (ωk0 , k0)
state via the KI process at given frequency ωk .

The Hamiltonian of the KI process can be written as

H (4) = h̄
∑

k

h̄ f4bkbkb†
k0

b†
k1

+ H.c., (13)

where k1 = 2k − k0, and f4 is the same four-magnon interac-
tion coefficient as shown in Eq. (7).

FIG. 2. Illustration of the KI process for Hy = 0.858 Oe, γ =
2.8 GHz/kOe, M = 1.76 kG, and D = 2 × 109 Oe cm2. The purple
dot is the minimal energy with ωk0 = 2.51 GHz. The red and or-
ange lines represent the isofrequency surfaces of ωk = 4 GHz and
ωk1 = 5.49 GHz, respectively; the green dots denote the modes for
which the KI process can occur. The green arrows illustrate the KI
process.

In analogy to the second Shul process [39], we treat the
magnon operator bk , which is initially pumped into the sys-
tem, as a classical variable. Consequently, the four-magnon
interactions can be expressed as

H (4) = Heff =
∑

k

hρke−2iωkt b†
k0

b†
k1

+ H.c., (14)

where hρk = f4|bk|2 = f4Np. Combining with the Hamilto-
nian of free magnons

H0 = h̄
∑

k

ωkb†
kbk, (15)

we can get the equation of motion of bk0 and bk1 ,

dbk0

dt
= −(iωk0 + ηk0 )bk0 − ihρke−2iωkt b†

k1
,

dbk1

dt
= −(−iωk0 + ηk1 )bk1 + ihρke−2iωkt bk0 . (16)

where ηki is the magnon damping rate of k0 and k1. Introduc-
ing the slowly varying spin-wave amplitude b̃ki = 〈bki〉eiωki t

[39] with i = 0, 1, we can obtain

db̃k0

dt
= −(i�ωk0 + ηk0 )b̃k0 − ihρkb̃∗

k1
,

db̃∗
k1

dt
= −(−i�ωk1 + ηk1 )b̃k1 + ihρkb̃k0 , (17)

where �ωki = ωki − ωk and �ωk1
= �ωk0

. The above equa-
tion have solutions of the form b̃k0 ∝ exp(γkt ). Then it is easy
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to show that the two eigenvalues correspond to

γk = − 1
2 (ηk0 + ηk1)

± 1
2

[
(ηk0 + ηk1)

2 − 4ηk0ηk1 + 4
(
h2ρ2

k − �ω2
k

)]1/2
.

(18)

The spin wave instability occurs when γk > 0 (the eigen-
value with the upper sign), which makes magnon number
grow exponentially in time, and gives the threshold pumping
parameter

(hρk )c = [ηk0ηk1 + (�ωk )2]1/2. (19)

In magnon system, we assume that the relaxation rates are the
same for different modes ηk0 = ηk1 = ηm. And hρk = f4Np =
2 f4n is directly related to the pumped magnon number, so the
critical number of ±k magnon can be written as

nD,c2 =
[
η2

m + (�ωk )2
]1/2

2 f4
. (20)

The corresponding threshold laser power is

PD,c2 =
([

η2
m + (�ωk )2

]1/2

2 f4

)1/2
h̄κmωoptκopt

2|gk| . (21)

Notice that the critical number is related to the frequency
difference �ωk . The larger the difference is, the more pumped
magnons are in need. The coherent properties of KI-mBEC
will be proved in Appendix B using the methods of statistical
mechanics appropriate for bosonic systems interacting with a
heat bath [29,44].

D. Perpendicular pumping in cavity

Based on the first Shul process [39,40], the k = 0 magnon
can also split into a pair of ±k magnons, which is crucial
for stabilizing mBEC. The splitting can be described by a
three-magnon interaction induced by the magnetic dipolar
interaction,

H (3) = h̄

2

∑
k

f3b0b†
kb†

−k + H.c., (22)

where

f3 = − ωM√
2SN

sin 2θkeiϕk , (23)

is the three-magnon interaction coefficient [40]. Similar to the
KI process, we can transform H (3) into an effective field that
pumps ±k magnons,

H (3) = H ′
eff = h̄

2

∑
k

(hρk )effe
−iω0t b†

kb†
−k + H.c., (24)

where (hρk )eff = √
n0 f3 is the effective field. For ω0 = 2ωk ,

i.e., when �ωk = 0, the critical number of magnons occurring
in this process is given by

nc = (ηm/| f3|)2, (25)

where ηm is the magnon-magnon relaxation rate. Above this
critical number, the number of magnons in the k state with
ωk = ω0/2 is increased and achieves a steady state via the

four-magnon interaction as in [39]. The average magnon num-
ber in the steady k state is

NP,p = 〈nk〉 = [(n − nc)/nc]1/2

2 f4/ηm
, (26)

where n is the magnon number for k = 0. The following
treatment of achieving mBEC is the same as that for direct
pumping with replacing Np by NP,p in hρk . Here we give the
final results only. For the cascade process, the critical pumped
magnon number is

nP,c1 = nc

{
1 + 16NR

[ηmG(ωk0 )]2

}
, (27)

and the threshold power is

PP,c1 =
(

1 + 16NR

[ηmG(ωk0 )]2

)1/2 h̄κmηmωoptκopt

2|gk| f3
. (28)

For the KI process, the critical pumped magnon number is

nP,c2 = nc[5 + (�ωk/ηm)2], (29)

and the threshold power is

PP,c2 = [5 + (�ωk/ηm)2]1/2 h̄ηmκmωoptκopt

2|gk| f3
. (30)

III. NUMERICAL RESULTS

Up to now, we have introduced two ways to pump ±k
magnons and two mechanisms to generate mBEC after pump-
ing within an optical cavity. In this section, we will calculate
the critical magnon number and the threshold laser power for
the formation of mBEC with realistic parameters to check the
feasibility of our proposal.

In YIG waveguide, the lattice constant a = 1.23 nm,
and the net spin per formula unit is S = 5/2, so we ob-
tain NS = 1.72 × 1016, f3 = 162 Hz, f4 = 7 × 10−6 Hz, and
G(ωk0 )/NR = 9.5 × 10−10 Hz−1 in our model. The magnon-
magnon damping rate ηm = 5 × 107 Hz as in [29]. κm is
related to the Gilbert damping. We use the same parameter
α = 3 × 10−5 as in [25] and obtain κm = αωk = 0.12 MHz.
The optical damping rate is taken κopt = 35 MHz as in [23].

We begin by focusing on the magnon-photon coupling
strength (gk) to access whether a specific magnon mode can be
coherently pumped by light in the cavity. Detailed calculations
are presented in Appendix A. Figure 3 gives |gk| as a function
of magnon wave vector for a given frequency (4 GHz in the
figure). The results exhibit apparent nonreciprocity between
+k and k magnons. The red dots represent one of the magnon
pairs that can be excited within the cavity using the direct
pumping approach. Notably, the corresponding wave vectors
of these dots are −0.09 µm−1 and +0.1 µm−1, respectively,
which are not exactly symmetric around zero due to momen-
tum conservation imposed by the magnon-photon interaction.
However, considering a magnon linewidth of ηm = 50 MHz
at ω = 4 GHz, the wave-vector errors fall in the range of
[0.073, 0.108] µm−1. Consequently, it is reasonable to regard
them as a ±k pair. In contrast, the k = 0 magnon cannot
be excited in the optical cavity under examination due to
mode mismatch. In other words, the perpendicular pumping
scenario cannot be realized within the rectangular waveguide
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FIG. 3. The intrinsic magnon-photon coupling strength as a func-
tion of magnon wave vectors for different incident and scattered light
modes calculated from Eq. (A3) for the magnon width mode n = 3 in
an optical cavity. The blue(pink) area on the left(right) represents the
Stokes process for the −k(+k) magnons. The excited −k magnon
has a maximum coupling strength of 27 Hz at k = −0.09 µm−1,
represented by the red point in the blue area, while the excited +k
magnon has a coupling strength of 12 Hz at k = 0.1 µm−1, repre-
sented by the red point in the pink area.

considered here. Henceforth, all subsequent discussions are
based on the direct pumping process.

For cascade process after direct pumping, we obtain the
critical number ND,c1 = 5.51 × 1014 using Eqs. (7) and (9).
Because of the nonreciprocity we need two threshold powers
to pump the ±k magnons up to the same critical number.
We denote the pumping power for +k and −k magnons as
P(+) and P(−), respectively, for different coupling strength in
Appendix A. The corresponding power is P(+)

D,c1 = 87.8 mW,

P(−)
D,c1 = 37.6 mW.

For the KI process, the critical number for the formation of
BEC depends on the values of �ωk , when �ωk = 1.49 GHz,
we can obtain nD,c2 = 1.06 × 1014 using Eq. (21). The re-
sulting laser power is shown in Table I. The critical powers
of these two processes are very close, they are intended to
take place simultaneously by the direct pumping method if
the magnon modes localize at the KI points. As discussed
in Sec. II C, magnons have to be pumped in specific modes
(the green points for example) to launch the KI process.
Therefore, one can turn off the KI process and initiate the
cascade process only by adjusting the applied magnetic field

TABLE I. Critical magnon number and threshold laser power for
mBEC in direct pumping for different mechanism.

Critical value Cascade (D, c1) KI (D, c2)

n (×1014) 5.51 1.06
P(+)(mW) 87.8 38.4
P(−)(mW) 37.6 16.8

FIG. 4. (a) The dependence of G(ωk0 ) and NR on the thickness d .
(b) The effect of thickness on n = 0 mode, here �ωk is the frequency
between pumped magnon ωk and lowest energy magnon ωmin, the red
line represent n = 3 mode for d = 4 µm−1, and the red dot represent
n = 3 mode pumped into YIG film by laser.

to tune the pumped magnons away from satisfying the energy-
momentum conservations. In this way, the two mechanisms
of generating mBEC in an optical cavity can be examined
separately in experiments.

Furthermore, upon comparing the expressions [Eqs. (9)
and (21)] for the threshold powers of the cascade and KI pro-
cesses after direct pumping, we discovered that the waveguide
thickness plays a crucial role in determining these threshold
powers. Specifically, for the cascade process threshold power
(PD,c1), both G(ωk0 ) and NR are intricately linked to the density
of states of magnons, a quantity directly influenced by the
waveguide thickness, as illustrated in Fig. 4(a). Notably, the
total number of modes in the magnon reservoir (depicted
by the gray line) increases monotonously with increasing
thickness, whereas the spectral density G(ωk0 ) (shown by the
black line) initially rises and then declines with thickness,
reaching a peak at d = 0.5 µm. However, the net effect of
thickness on PD,c1 hinges on the ratio G(ωk0 )/NR (depicted by
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the brown line), which remains relatively stable across varying
thicknesses. Conversely, for the KI process following direct
pumping, the threshold power’s magnitude strongly correlates
with �ωk , which decreases monotonously as the waveguide
thickness decreases [Fig. 4(b)]. As per Eq. (21), a smaller
�ωk translates to a lower PD,c2. As a result, the KI process is
more likely to predominate over the cascade process in thinner
waveguides.

IV. CONCLUSIONS

In conclusion, we propose a platform to generate Bose-
Einstein condensation of magnons, which is in an opto-
magnonic waveguide. In order to stabilize the obtained
mBEC, pumping of ±k-magnon pairs is required. In an optical
cavity composed of a ferromagnetic insulator, magnons of
selected wave vector can be pumped coherently by two optical
cavity modes through stimulated-Raman-like scattering. Due
to the extremely low coupling strength between the k = 0
magnon and the cavity photons, an indirect optical pumping
method through three-magnon splitting is ruled out. But a
direct pumping of ±k-magnon pairs is proved to be realistic.
Based on the selection rule of the optomagnonic waveguide,
this can be achieved by applying four input lasers with powers
less than 1 watt, two of which are blue detuned and polarized
along the TM and TE modes, respectively. The other two
lasers should be red detuned with inverse polarizations. Both
the cascade and the KI processes toward mBEC are possible
after the coherent pumping of magnon pairs, with the KI
process predominant in thinner waveguides. However, one can
switch off the KI process by adjusting the applied magnetic
field. The realization of this optically driven mBEC will add
new options to genuine quantum magnonics.
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APPENDIX A: COUPLING STRENGTH

In a hybrid quantum system consisting of an optical cavity
and a magnetic YIG film, the total Hamiltonian of the system
can be expressed as

H = H0 + HI, (A1)

where H0 = ∑
q h̄ωqa†

qaq + ∑
k h̄ωkb†

kbk is the noninteracting
Hamiltonian. The modes of incident and scattered light in an
optical cavity are denoted by m and m′, respectively, and q
is the wave vectors of photon. The magnon modes are repre-
sented by width mode index n and wave vector k. HI stands
for the magnon-photon interaction,

HI =
∑

m,m′,kn

[h̄g(+)
mm′nama†

m′bknδ(qm − qm′ + kn)

+ h̄g(−)
mm′nama†

m′b
†
kn
δ(qm − qm′ − kn)], (A2)

where g(±)
mm′n is the coupling strength

g(±)
mm′n =

(
2h̄γ

M0V

) 1
2 c0

n2
0

[�MLBG(±)
44,mm′n ± �MCBK (±)

mm′n]. (A3)

�MLB and �MCB represent the magnetic circular birefringence
and magnetic linear birefringence, respectively. The overlap-
ping integration is shown to be

G(±)
44,mm′n = 1

S

∫ w

−w

dξ

∫ d

−d
dζ (e∗

1m,ze2m′,x ∓ ie∗
1m,ze2m′,y

+ e∗
1m,xe2m′,z ∓ ie∗

1m,ye2m′,z )φn(ξ, ζ ),

K (±)
mm′n = 1

S

∫ w

−w

dξ

∫ d

−d
dζ (e∗

1m,ze2m′,x ∓ ie∗
1m,ze2m′,y

− e∗
1m,xe2m′,z ± ie∗

1m,ye2m′,z )φn(ξ, ζ ), (A4)

where S = 4wd is the area of the film cross section, eαm(ξ, ζ )
is the normalized field function of the different modes in the
optical cavity. Because the thickness is much smaller than the
width, we can consider that the magnon mode wave function
along thickness direction is homogeneous, so the wave func-
tion of magnon is only related to the width direction, namely

φn(ξ, ζ ) = cos

(
nπξ

2w

)
, (A5)

where n = 1, 3, 5, 7, 9, ... and w is the half width of the film.
From the above expressions, it can be seen that the magnitude
of the coupling strength g(±)

mm′n primarily depends on the over-
lap integral between the cavity mode and the magnon mode.

In cavity optomagnonics system, a pronounced non-
reciprocity and asymmetry exist in Stokes process and
anti-Stokes process, which g(+) is strongly suppressed in
stokes process and g(−) is suppressed in anti-Stokes process
[30]. So we only calculate the coupling strength g(−)

mm′n in the
Stokes process. We choose an incident photon with a wave-
length of 1.55 µm to excite the magnons with a frequency
of 4 GHz. The calculation results show that the maximum
coupling strength g(−) ≈ 2π × 27 Hz can be obtained when
the incident light is TE00 and the scattered light is TM31

(TE00 → TM31 + φ3), and the magnon mode is n = 3, with
the corresponding magnon wave vector ky = −0.09 µm−1 as
shown in Fig. 3. By adjusting the external magnetic field
applied to the YIG film to Hy = 858 Oe, the excited magnons
in the cavity can be precisely located on the magnon spec-
trum with n = 3. As for the minimal wave vector of +k
magnon is taken ky = −0.1 µm−1 with g(−) ≈ 2π × 12 Hz,
corresponding to TM00 → φ3 + TE11. We also observed that
when n > 11, the coupling strength decreases to almost zero,
which means that it is unable to pump magnons of higher
width mode, and the modes that can be pumped in cavity
are illustrate in Fig. 5 for orange line. The reason is that as n
increases, the volume wave gradually change to surface wave,
resulting in a significant reduction in the overlap integral and
thus a decrease in the corresponding coupling strength, which
has also been verified through experiments [44].

We also studied the relationship between the magnon wave
vector and the corresponding coupling strength in the cavity
when the incident light is TE and the scattered light is TM. For
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FIG. 5. Different width modes for d = 4 µm, where the purple
line represent n = 0, which is the lowest energy mode, the orange
lines for n = 1, 3, 5, 7, 9, and the gray lines for much higher mode n.
The red dot represents n = 3 mode pumped into YIG film by laser.

a thickness of 2d = 4 µm−1, the lower limit of the magnon
wave vector that can be excited in the cavity is 0.09 µm−1,
and the upper limit is 1.27 µm−1. The excitation of magnons
in the cavity is determined by the energy and the momentum
conservations between photons and magnons. Since the op-
tical photon frequency is generally in the order of hundreds
of terahertz, while the magnon frequency is in the order of
gigahertz, the momentum difference between the incident and
scattered photons is actually very small. This leads to the
magnon momentum excited in the optical cavity being con-
fined to a relatively small range, typically only in the dipolar
part of the magnon.

We found that the magnons that can be excited in the film
also depend on the thickness of the film. Under the same
conditions, the thinner the film, the fewer magnon modes can
be excited in the cavity, and the larger the spacing between
different modes. In such cases, the lower bound of the magnon
wave vector that can be excited is further away from long-
wavelength limit. Due to the limitation of the lower limit of
magnon wave vectors that can be generated in the cavity, we
cannot pump magnons with k = 0, which makes perpendicu-
lar pumping impractical in the cavity. Only the direct pumping
can be used to generate magnons, and the wave vector in
the width direction of the pumped magnons is almost zero.
The magnons pumped by the cavity are all located in the y
direction.

APPENDIX B: COHERENT PROPERTY OF MBEC

The coherence of k0 magnon in the bottom of the spectrum
can be demonstrated by the statistical mechanics appropriate
for bosonic systems interacting with a heat bath. We follow
the same procedure used by de Araujo [45]. The cascade pro-
cess has been demonstrated in [29]. Here, we only study the
KI process.

Under the consideration of heat bath the total Hamiltonian
of the systems can be expressed as follows:

H = H0 + H (4) + Heff (t ) + HR + HRS,

H0 = h̄
∑

k1

ωkb†
kbk,

Heff = h̄
∑

k

hρke−2iωkt b†
k0

b†
k1

+ H.c.,

H (4) = f4

∑
k2,k3

bk0+k2 bk0−k2 b†
k0+k3

b†
k0−k3

. (B1)

The four-magnon interactions take place near k0 state, Heff is
the effective Hamiltonian that excites the k0 magnon in the
KI process. HR is the Hamiltonian for the magnon reservoir,
assumed to be a system with large thermal capacity and in
thermal equilibrium. HRS represents a linear interaction be-
tween the magnon system and the heat reservoir,

HR = h̄
∑

R

ωRB†
RBR,

HRS = h̄
∑
k,R

β∗
k,RB†

Rbk + βk,RBRb†
k . (B2)

The equations of motion of bk0 and bk1 can be obtained by
using the Heisenberg equation

dbk0

dt
= −(

iωk0 + ηk0 + i f4nk0

)
bk0 − ihρke−2iωkt b†

k1
+ Fk0 (t ),

db†
k1

dt
= −(

iωk1 + ηk1 + i f4nk1

)
b†

k1
− ihρke−2iωkt bk0 + F ∗

k1
(t ),

(B3)

where

Fk0 (t ) = −i
∑

R

βk0,RBRe−iωRt (B4)

is the Langevin random force of Markoffian systems. Trans-
forming Eq. (B3) to the representation of coherent state |αk〉,
and working with variables in a rotating wave frame bk|αk〉 =
αk (t )e−iωkt |αk〉, we obtain an equation of motion for the co-
herent state,

dαk0

dt
= −(

ηk0 + i f4nk0

)
αk0 − ihρke−2i(ωk−ωk0 )tα∗

k1

+ Fk0 (t )eiωk0 t , (B5a)

dα∗
k1

dt
= −(

ηk1 − i f4nk1

)
α∗

k1
+ ihρke2i(ωk−ωk1 )tαk0

+ F ∗
k1

(t )e−iωk1 t . (B5b)

Assuming that nk0 = nk1 = |αk0 |2 and after some manipu-
lation we obtain

dαk0

dt
− ( f4)2

ηk1

[
(hρk )2 − ηk0ηk1

( f4)2
− |αk0 |4

]
αk0 = Sk,

Sk = −i
hρk

ηk1

F ∗
k1

(t )e−i�1t + Fk0 (t )eiωk0 t , (B6)

where �1 = 2ωk − 2ωk0 + ωk1 . Equation (B6) is a typical
nonlinear Langevin equation that appears in Brownian motion
studies and laser theory. It shows that the magnon modes with
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amplitude k are driven thermally by the hot magnon reservoir
and also by an effective driving field. Using αk0 = rk0 eiφk0 , the
corresponding Fokker-Planck equation of Eq. (B6) is

∂P

∂t
+ β

1

rk0

∂

∂rk0

[(
n − r4

k0

)
r2

k0
P
]

= Q

(
1

rk0

∂

∂rk0

rk0

∂P

∂rk0

+ 1

r2
k0

∂2P

∂φ2
k0

)
, (B7)

where β = ( f4 )2

ηk1
, m = (hρk )2−ηk0 ηk1

( f4 )2 and

Q = 1

T

∫ T

0

∫ T

0
〈Sk (t1)S∗

k (t2)〉dt1dt2

= ηk0 (n̄(ωk0 ) + 1) + ηk�1

(hρk )2

ηk1

n̄(�1) (B8)

is calculated in [46]. The normalized Fokker-Planck equa-
tion can be obtained by dividing (βQ)1/3 on both sides

∂P

∂t ′ + 1

x

∂

∂x
[(A − x4)x2P] = 1

x

∂

∂x

(
x
∂P

∂x

)
+ 1

x2

∂2P

∂φ2
k0

, (B9)

where

t ′ = (βQ)1/3t, x =
(

β

Q

)1/6

rk0 , A =
(

β

Q

)2/3

m, (B10)

represent normalized parameters. Here we are interested only
in the stationary solution of Eq. (B9), that is, the equation is
independent of φk0 . Straightforward integration gives

P(x) = Cexp
(

1
2 Ax2 − 1

6 x6), (B11)

where C is a normalization constant, the integral of Eq. (B11)
from x = 0 to infinity is equal to 1. The parameter A in the
equation corresponds to different distributions of P. When
A < 0, P(x) represents a Gaussian distribution describing in-
coherent magnons at thermal equilibrium. When A > 0, P(x)
describes a state composed of both coherent and incoherent
magnons. When A � 1, P(x) represents a delta function dis-
tribution, describing coherent magnons. The parameter A is
mainly decided by m,in the case of (hρk )2 > ηk1ηk0 , m > 0,
and the condition of the KI process happened is (hρk )2 >

ηk1ηk0 + (�ωk0 )2, so we can draw a conclusion that the k0

magnon generated by KI process is coherent state. The coher-
ent property of k = 0 magnon BEC can also be demonstrated
using the same way.
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