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Magnetic properties of Sohncke-type Pb(TiO)Cu4(PO4)4 exposed by resonant
x-ray Bragg diffraction
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The enantiomorphous (chiral) crystal class of Sohncke-type Pb(TiO)Cu4(PO4)4 permits the rotation of the
plane of polarization of light (optical activity). Copper ions participate in noncollinear antiferromagnetic order
below a temperature ≈ 7 K, with magnetoelectric and piezomagnetic effects permitted. Crystal and magnetic
symmetries of Pb(TiO)Cu4(PO4)4 are fully incorporated in calculated resonant x-ray Bragg diffraction patterns
that are successfully compared with existing limited experimental data [Misawa et al., Phys. Rev. B 103,
174409 (2021)]. Specifically, there is additional intensity of a Bragg spot (a chiral signature) from circular
polarization (helicity) in the primary beam of x rays. The chiral signature is shown to arise from Cu axial
magnetic dipoles, with the prospect of future experiments revealing interference between magnetic dipoles and
(Templeton-Templeton) chargelike quadrupoles. An expression for the additional intensity used by Misawa et al.
does not respect magnetic symmetry, and our symmetry-informed answer overturns their principal conclusions
about chirality and magnetic order. Dirac quadrupoles and octupoles are potentially strong sources of diffraction
when the reflection vector is parallel to the unique direction in the tetragonal lattice. Notably, a Dirac quadrupole
is a parity- and time-odd atomic multipole unlike a multisite spin entity previously mentioned in the context of
Pb(TiO)Cu4(PO4)4 [Kimura et al., Phys. Rev. B 97, 134418 (2018)].
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I. INTRODUCTION

The structural symmetry of crystals permits optical activity
(rotation of the plane of polarization of light) in only 15 of the
32 crystal classes. There are 11 enantiomorphous classes and
four nonenantiomorphous classes [1–3]. The Sohncke-type
structure of the compound Pb(TiO)Cu4(PO4)4 of immedi-
ate interest belongs to the enantiomorphic crystal class 422
[4]. Copper ions form a noncentrosymmetric antiferromag-
netic structure using the crystal class 4′22′ below a Néel
temperature ≈ 7 K [4]. Bulk magnetic properties include mag-
netoelectric (ME) and piezomagnetic (PM) effects. In more
detail, a Landau free energy compatible with 4′22′ includes
nonlinear contributions in electric (E) and magnetic (H)
fields. The latter are forbidden in crystal classes that contains
anti-inversion (1′), e.g., centrosymmetric compounds Cr2O3

(trigonal, magnetic crystal class 3′m′ [5]), GdB4 (tetragonal,
4/m′m′m′ [6]) and Co2V2O7 (monoclinic, 2/m′ [7]). Anti-
inversion in the magnetic crystal class imposes PT-symmetry,
and it protects x-ray diffraction patterns from circular polar-
ization (helicity) in the primary beam. The protection is absent
in the crystal class 4′22′. We calculate the intensity circular
polarization brings to a Bragg spot in the diffraction pattern,
and refer to it as a chiral signature (ϒ) for Pb(TiO)Cu4(PO4)4.
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In our view, knowledge of the magnetic properties of
Pb(TiO)Cu4(PO4)4 is in disarray after publication of a faulty
analysis of resonant x-ray Bragg diffraction patterns [8]. We
revisit diffraction amplitudes for Pb(TiO)Cu4(PO4)4 to argue
our position. To this end, we use the established magnetic
structure [4], and a theory of resonant x-ray Bragg diffraction
derived with standard Racah algebra for atomic multipoles
[9–11]. The theory is compatible with tried and tested sum
rules in dichroic signals [12,13]. This desirable attribute is
not fully realized in a phenomenological theory used by Mis-
awa et al. [8] that contains free parameters and a constraint
to cylindrical Cu site symmetry [14–17]. In consequence,
diffraction amplitudes are not compatible with the full mag-
netic symmetry of Sohncke-type Pb(TiO)Cu4(PO4)4 in which
Cu ions use sites devoid of symmetry. Perils from using the
theory in Ref. [14] with its cylindrical site symmetry are
explicit in diffraction amplitudes calculated for terbium man-
ganate [17]. Moreover, the particular application of the theory
contains a nontrivial error [8]. According to our calculations,
available diffraction data are not manifestations of crystal
chirality (handedness) and magnetic quadrupole interference
[4,8]. Returning to our elected theory, electronic multipoles
therein can be estimated using an atomic wave function
for the resonant ion [18–20], and simulations of electronic
structure [21,22].

II. LATTICE AND MAGNETIC SYMMETRIES

The parent lattice for Pb(TiO)Cu4(PO4)4 is P4212 (tetrag-
onal, No. 90, crystal class 422) [4]. Copper ions Cu2+ occupy
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general sites 8g devoid of symmetry, and coordinates x ≈
0.267, y ≈ 0.981, z ≈ 0.401 [4]. Inversion, mirror, improper
rotations, and glide symmetries are absent in Sohncke lat-
tices. A neutral screw axis 21 in P4212 is achiral while the
atomic structure around the axis is chiral [23]. (Of the 65
Sohncke lattices primitive ones are chiral and centered ones
are not. Orthorhombic and lower symmetry lattices do not
contain one of 11 enantiomorphous pairs and the related space
groups are achiral.) Below a temperature ≈ 7 K, axial copper
magnetic dipoles possess antiferromagnetic order described
by the magnetic space group P4′212′ (No. 90.97, crystal class
4′22′ [24]). We have established that this space group is equiv-
alent to the irreducible representation �2 deduced from an
analysis of a magnetic neutron diffraction pattern [4]. The
chemical and magnetic structures of Pb(TiO)Cu4(PO4)4 are
not centrosymmetric, not polar, and not compatible with fer-
romagnetism. Noncollinear magnetic order has a propagation
vector = (0, 0, 0). Notably, the magnetic structure of an
altermagnet possesses a zero propagation vector, but it is a
collinear centrosymmetric antiferromagnet [25]. For such an
altermagnet, a chiral signature and a PM effect are allowed,
and a linear ME effect is forbidden [26].

III. RESONANT X-RAY BRAGG DIFFRACTION

X-ray diffraction patterns gathered on crystalline materials
can contain Bragg spots that do not exist in patterns created
by spheres of atomic charge located at points on the par-
ticular lattice. Their inherent weakness is offset by tuning
the energy of primary x-rays from a synchrotron source to a
specific atomic resonance [14–20]. The weak Bragg spots are
not indexed by Miller indices for the lattice symmetry, i.e.,
they are space-group forbidden. Departures from spheres of
atomic charge are usually labeled by components of an axial
chargelike quadrupole (multipole rank = 2) that are invariant
with respect to operations in the symmetry of sites occupied
by the resonant ions (Neumann’s principle [27,28]). Specif-
ically, acentric sites such as those occupied by Cu ions in
Pb(TiO)Cu4(PO4)4 can harbor polar (parity-odd) multipoles
that are chargelike (time-even) or magnetic (time-odd Dirac
multipoles) [10,20,29,30].

States of x-ray polarization, Bragg angle θ , and the plane
of scattering are shown in Fig. 1. A conventional labeling of
linear photon polarization states places σ = (0, 0, 1) and π

= (cos(θ ), sin(θ ), 0) perpendicular and parallel to the plane
of scattering, respectively [10]. Secondary states are σ ′ = σ

and π ′ = (cos(θ ),− sin(θ ), 0). The x-ray scattering length in
the unrotated channel of polarization σ ′ σ ′, say, is modeled
by (σ ′σ )/D(E). In this instance, the resonant denominator
is replaced by a sharp oscillator D(E ) = [E − � + i�/2]/�
with the x-ray energy E in the near vicinity of an atomic
resonance � of total width �, namely, E ≈ � and � << �.
The cited energy-integrated scattering amplitude (σ ′σ ), one
of four amplitudes, is studied using standard tools and meth-
ods from atomic physics (Racah algebra) and crystallography
[10,31]. A vast spectrum of virtual intermediate states makes
the x-ray scattering length extremely complicated [19,20]. It
can be truncated following closely steps in celebrated studies
by Judd and Ofelt of optical absorption intensities of rare-
earth ions [32,33]. An intermediate level of truncation used

FIG. 1. Primary (σ , π ) and secondary (σ ′, π ′) states of x-ray
polarization. Corresponding wave vectors q and q′ subtend an angle
2θ . The Bragg condition for diffraction is met when q − q′ coincides
with a reflection vector τ(h, k, l). Lattice vectors (a, b, c) and the
depicted Cartesian (x, y, z) coincide in the nominal setting of the
crystal, and the beginning ψ = 0 of an azimuthal angle scan (rotation
of the crystal by an angle ψ about the reflection vector).

here reproduces sum rules for axial dichroic signals created by
electric dipole - electric dipole (E1-E1) or electric quadrupole
- electric quadrupole (E2-E2) absorption events [9,12,13]. The
attendant calculation presented in Ref. [31] and Sec. 5.2 in
Ref. [10] is lengthy and demanding. Here, we implement
universal expressions for scattering amplitudes and reduce
notation using (σ ′σ ) � Fσ ′σ , etc., for an amplitude Fσ ′σ listed
by Scagnoli and Lovesey, Appendix C in Ref. [11]. A similar
analysis exists for polar absorption events such as E1-E2
(Appendix D in Ref. [11]), and E1-M1 where M1 is the
magnetic moment [34,35].

Electronic degrees of freedom of Cu ions are encapsu-
lated in spherical multipoles 〈OK

Q〉, with rank K and (2K +
1) projections in the interval −K � Q � K. Cartesian and
spherical components Q = 0, ±1 of a vector n = (a, b, c),
for example, are related by a = (n−1 − n+1)/

√
2, b = i(n−1 +

n+1)/
√

2, c = n0. Complex conjugation of a multipole de-
noted by * is defined as 〈OK

Q〉∗ = (−1)Q 〈OK
−Q〉, meaning the

diagonal multipole 〈OK
0 〉 is purely real. The phase convention

for real and imaginary parts labelled by single and dou-
ble primes is 〈OK

Q〉 = [〈OK
Q〉′ + i〈OK

Q〉′′]. Whereupon, 〈O1
a〉 =

−√
2〈O1

+1〉′ and 〈O1
b〉 = −√

2〈O1
+1〉′′. For the most part, we

follow Misawa et al. and implement an E1-E1 absorption
event at the Cu L3 absorption edge (2p → 3d, E ≈ 930 eV) [8].
The reduced matrix element of appropriate parity-even multi-
poles 〈TK

Q〉 with K = 0, 1, 2 and a time signature σθ = (−1)K

appears in Sec. 5. 2 of Ref. [10]. Weaker parity-odd E1-E2
and E1-M1 absorption events occur at different energies [16].

IV. DIFFRACTION AMPLITUDES
AND CHIRAL SIGNATURES

An electronic structure factor,

�K
Q = [

exp(iκ · d)
〈
OK

Q

〉
d

]
, (1)

specifies a Bragg diffraction pattern for a reflection vector κ

defined by integer Miller indices (h, k, l). The implied sum in
Eq. (1) is over 8g sites d used by Cu ions. See the Appendix
for details concerning the calculation of �K

Q for P4′212′ (No.

184446-2



MAGNETIC PROPERTIES OF SOHNCKE-TYPE … PHYSICAL REVIEW B 109, 184446 (2024)

90.97, crystal class 4′22′ [24]). Scattering amplitudes used
here are derived directly from �K

Q and expressions listed by
Scagnoli and Lovesey [11].

For a diffraction vector (0, 0, l) and a generic multipole
〈OK

Q〉 [24],

�K
Q (0, 0, l ) = [1 + (−1)Q + 2σθ cos (πQ/2)]

[
γ
〈
OK

Q

〉

+ γ ∗(−1)K
〈
OK

−Q

〉]
, (2)

with γ = exp(i2π lz). The first factor in Eq. (2) imposes
�K

Q (0, 0, l) = 0 for odd Q. The structure factor is also zero
for Q = 0 and an odd time-signature [ magnetic σθ = −1 ]. In
consequence, axial magnetic dipoles 〈T1〉 that are parity-even
and time-odd, and anapoles that are parity- and time-odd do
not participate in diffraction for a wave vector (0, 0, l). [A
vector product (R × S) where R and S are electronic space
(time-even and polar) and spin (time-odd and axial) variables,
respectively, represents a spin anapole (Dirac dipole), for ex-
ample.] Evidently, there are no forbidden reflections of the
type (0, 0, l), and parity-even amplitudes (σ ′σ ) and (π ′π ) are
dominated by charge (Thomson) scattering [10,11]. Even so,
interesting information on the magnetic structure can reside
in the channel with rotated polarization. The parity of 〈OK

Q〉 is
absent in Eq. (2), and the electronic structure factor is valid
for axial and polar absorption events. One finds (π ′σ ) = 0 for
an E1-E1 event [11]. The amplitude for rotated polarization
can be different from zero using Dirac multipoles, however.
These multipoles for an E1-E2 event are denoted by 〈GK

Q〉 with
K = 1–3, and 〈G1〉 an aforementioned anapole [10,11,20].

Kimura et al. [4] invoke a magnetic quadrupole in their study
of Pb(TiO)Cu4(PO4)4 defined by multisite spins. This entity
is unrelated to an atomic quadrupole 〈G2

Q〉 in our theory of
E1-E2 diffraction amplitudes [10,11,20]. The result

(π ′σ )12

= √
(2/15) cos2(θ )

[
γ ′ cos(2ψ )

{〈
G2

+2

〉′ + 2
√

2
〈
G3

+2

〉′′}

+ iγ ′′ sin(2ψ )
{−〈

G2
+2

〉′′ + 2
√

2
〈
G3

+2

〉′}]
, (3)

follows directly from expressions listed in Appendix D of
Ref. [11] after setting σθ = −1 and K = 2, 3 in Eq. (2). The
crystal b axis is in the plane of scattering for ψ = 0. Subscripts
12 on the amplitude in Eq. (3) denote an E1-E2 absorption
event. Intensity of a Bragg spot |(π ′σ )12|2 is a fourfold peri-
odic function of the azimuthal angle ψ , in keeping with (0, 0,
l) parallel to the unique direction in the tetragonal structure.
The intensity in question is absent in the paramagnetic phase
of Pb(TiO)Cu4(PO4)4, and we reiterate that an explicit calcu-
lation yields (π ′σ ) = 0 for an E1-E1 event and a diffraction
vector (0, 0, l).

The conditions on Q in Eq. (2) are not universal for
Sohncke-type lattices. For orthorhombic P212121 (No. 19)
and cubic P213 (No. 198), for example, the condition on Q
is even (l + Q) [36]. Space group No. 19 describes many
molecular compounds. NaClO3 and NaBrO3 use the cubic No.
198 lattice, and possess the same chirality yet opposite senses
of optical rotation.

The electronic structure factor for a reflection vector
(h, 0, 0),

�K
Q (h, 0, 0) = 〈

OK
Q

〉
[{α + α∗(−1)Q} + σθ (−1)h exp(−iπQ/2) {β + β∗ (−1)Q}]

+ 〈
OK

−Q

〉
(−1)h+K [{α + α∗ (−1)Q} + σθ (−1)h exp(iπQ/2) {β + β∗ (−1)Q}], (4)

possesses space group forbidden reflections, i.e., �K
0 (h, 0, 0) = 0 for even K, σθ = +1, and odd h. Spatial phase factors α =

exp(i2πhx) and β = exp(i2πhy).
In practice, our chiral signature ϒ is the measured difference in intensities of a Bragg spot observed with oppositely handed

primary x rays. Thus, ϒ and XMCD signals are alike with regard to polarization requirements. For (h, 0, 0) with odd h and an
E1-E1 [ σθ = (−1)K ] absorption event

ϒ (h, 0, 0) = [(π ′π )∗(π ′σ )]′′

= (1/
√

2) cos(θ ) sin(2θ )
[ − A0A1 + 2 sin(2ψ )

{
A0(α′ + β ′)

〈
T2

+2

〉′′ − A1
(
α′′〈T2

+1

〉′ − β ′′〈T2
+1

〉′′)}]
. (5)

The definition of ϒ anticipates (σ ′σ ) = 0, and (π ′π )* is the complex conjugate of (π ′π ). Axial magnetic dipoles in Eq. (5) are
A0 = [4(α′ + β ′)〈T1

c〉] and A1 = [2
√

2(α′′〈T1
b〉−β ′′〈T1

a〉)]. The crystal c axis is normal to the plane of scattering at the start of
the azimuthal angle ψ = 0. Parity-even E1-E1 diffraction amplitudes for (h, 0, 0) and odd h are

(σ ′σ ) = 0, (π ′π ) = sin(2θ ) [(i/
√

2) cos(ψ ) A0 + sin(ψ ) A1],

(π ′σ ) = cos(θ ) [−(i/
√

2) sin(ψ ) A0 + cos(ψ ) A1 − cos(ψ ) B1 + i sin(ψ ) B2]. (6)

Chargelike quadrupoles (nonmagnetic Templeton-Templ-
eton multipoles) are B1 = [4i{α′′〈T 2

+1〉′ − β ′′〈T 2
+1〉′′}] and

B2 = [4i(α′ + β ′)〈T 2
+2〉′′]. Rotated amplitudes (π ′σ ) and

(σ ′π ) are related by a change in sign of the magnetic dipoles.
Misawa et al. [8] report Bragg spot intensities and simula-

tion data [22] for a reflection vector (1, 0, 0) and an azimuthal
angle ψ = 0. Notably, they observe a chiral signature in
the magnetic phase of Pb(TiO)Cu4(PO4)4 with a sample

temperature = 6 K (Néel temperature ≈ 7 K). According to
Eq. (5) the chiral signature ϒ(1, 0, 0) at ψ = 0 is a product
of magnetic dipoles. The corresponding expression for the
chiral signature offered by Misawa et al. [8] violates mag-
netic symmetry and it is fundamentally different from Eq. (5).
For simplicity, compare Eq. (19) for the chiral signature in
Ref. [8] with the value of ϒ(h, 0, 0) for ψ = 0. The latter
is proportional to a product of axial dipoles A0 ∝ 〈T 1

c 〉 and
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A1. By contrast, Eq. (19) in Ref. [8] includes the product
of 〈T 1

c 〉 and a Templeton-Templeton quadrupole denoted F2

in Eq. (8) in [8]. Correction of the chiral signature destroys
the claim to have observed interference between a magnetic
dipole and a nonmagnetic quadrupole [Templeton-Templeton
or anisotropy of the susceptibility tensor (ATS) scattering],
and negates evidence for chirality and magnetic quadrupole
order in Pb(TiO)Cu4(PO4)4 Misawa et al. [8]. An error in
the algebra for their chiral signature leads to an erroneous
factor cos(2ψ) multiplying the product of dipoles. Moving
to the paramagnetic phase and axial dipoles A0 = A1 = 0,
experimental data and simulation results displayed in Fig.
2(d) in Ref. [8] are consistent with |(π ′σ )|2 in Eq. (6) if
quadrupoles therein satisfy |B1| >> |B2|. Misawa et al. [8]
arrive at a similar conclusion.

Hexagonal P632′2′ (No. 182.183, 62′2′) is an example of
a magnetic Sohncke-type structure that possesses a chiral
signature akin to Eq. (5) using higher-order multipoles. For
a hexagonal lattice an E2-E2 event [ σθ = (−1)K ] is needed,
because projections on multipoles 〈TK

Q〉 for a reflection vector
(0, 0, l) with odd l are restricted to Q = ±3. The correspond-
ing chiral signature is a sum of octupoles [〈T 3

+3〉′〈T 3
+3〉′′] and

a product of octupoles and hexadecapoles (K = 4). Notably,
magnetic crystal classes 4′22′ used for Pb(TiO)Cu4(PO4)4 and
62′2′ possess identical Landau free energies ≈ [EH + EHH +
HEE].

V. CONCLUSIONS

In summary, we have investigated the magnetic properties
of Sohncke-type Pb(TiO)Cu4(PO4)4 using scattering ampli-
tudes for resonant x-ray Bragg diffraction by the 3d-transition
metal ion [10,23]. Our symmetry-informed results use the
magnetic space group P4′212′ (No. 90.97, magnetic crystal
class 4′22′ [24]) inferred from published neutron diffraction
patterns (Supplemental Material for Ref. [4]). Regarding the
theory of resonant x-ray diffraction, the spectrum of virtual
intermediate states in the photon scattering length is trun-
cated using the method pioneered by Judd and Ofelt for
optical absorption intensities of rare-earth ions [31,32,33,37].
Sum-rules for parity-even dichroic signals are completely ac-
counted for in the electronic multipoles of the resonant ions
[10,12,13].

A predicted magnetic chiral signature Eq. (5) accords with
limited diffraction patterns using handed (helical) x rays [8].
Future measurements can test changes to the signature with
rotation of the crystal about the reflection vector (an azimuthal
angle scan) and thereby pronounce on the worthiness of the
magnetic space group P4′212′ for Pb(TiO)Cu4(PO4)4. Mea-
sured and calculated paramagnetic diffraction agree when one

set of quadrupoles dominate. According to a calculation of the
amplitude in the rotated channel of photon polarization [de-
noted (π ′σ ) in Fig. 1], there is no diffraction enhanced by an
electric dipole– electric dipole (E1-E1) event for a reflection
vector parallel to the unique direction of the tetragonal struc-
ture. Diffraction by Dirac multipoles is allowed for this special
reflection vector, however, and we predict intensity expected
from the polar electric dipole - electric quadrupole (E1-E2)
absorption event. Dirac multipoles are local and single-site
(parity- and time-odd) unlike a multisite spin entity men-
tioned in the context of Pb(TiO)Cu4(PO4)4, cf. line 7 on p. 2
in Ref. [4].

Our diffraction patterns for an E1-E1 event overturn con-
clusions presented by Misawa et al.; specifically, the claim in
the title of their paper to have evidence of chirality and mag-
netic quadrupole order in Pb(TiO)Cu4(PO4)4 is unfounded.
In Sec. IV.F of their paper, Misawa et al. [8] submit that their
measured magnetoelectric-cooling effect on circular dichro-
ism is linked to magnetic quadrupole order. To this end,
the authors appeal to interference in diffraction between ax-
ial magnetic dipoles and a Templeton-Templeton quadrupole
(ATS scattering), alongside a nebulous magnetic quadrupole
defined by multisite spins [4]. It is an artefact of diffraction
amplitudes that are manufactured and unfaithful to magnetic
symmetry; see Sec. IV.C and Eq. (17) therein [8]. No such in-
terference exists in diffraction amplitudes for magnetic space
group P4′212′ inferred from magnetic neutron Bragg diffrac-
tion [4]. A direct connection between the atomic multipole
view used in the present study and the extended multipole
view used by Misawa et al. [8] is beyond the scope of the
present study.
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APPENDIX: ELECTRONIC STRUCTURE FACTOR

General sites 8g used by copper ions in tetragonal P4′212′
(No. 90.97) are devoid of symmetry. In a unit cell they are
related by translations, and rotations and antirotations referred
to Cartesian coordinates (x, y, z) with the z axis aligned with
crystal c axis. Specifically [24], 4′±

z = σθ 4±
z , 2x, 2y, 2z, 2′

x+y,
2′

x−y, with, for example, 2x+y(x, y, z) = (y, x,−z) and 2′
x+y

〈OK
Q〉 = σθ (−1)Kexp(iπQ/2) 〈OK

−Q〉. The electronic structure
factor �K

Q (P4′212′) is a sum of four 〈OK
Q〉 and four 〈OK

−Q〉
with coefficients that depend on Miller indices and general
coordinates listed in Sec. II. Equations (2) and (4) apply to
reflection vectors (0, 0, l) and (h, 0, 0), respectively.
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