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Coupling ferromagnetic and antiferromagnetic dynamics via phonons
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We predict a coherent nonlocal coupling of ferromagnetic and antiferromagnetic magnetization dynamics via
transverse phonon momentum current in a nonmagnetic insulator spacer. This coupling requires perpendicular
alignment of magnetic moments to the phonon propagation direction. Our results bridge the divide between
ferromagnetic and antiferromagnetic spintronics, offering pathways for integrating diverse magnetic elements
into spintronic devices.
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I. INTRODUCTION

The long-range transfer of spin angular momentum is a
significant challenge in the development of spintronic devices.
The nonlocal transport of spin in a ferromagnet [1,2] and an
antiferromagnet [3] via magnons, the collective excitations of
the magnet, has been observed over the micrometer scale.
Phonons, the collective excitations of lattice vibration, can
also serve as carriers of spin angular momentum [4–7], pro-
viding an additional mechanism for spin propagation. Due
to their inherent low acoustic damping, phonons can carry
spin angular momentum over distances that surpass the decay
length of magnons [4–7]. Magnetoelastic coupling (MEC) in
the strong-coupling regime leads to the formation of magnon
polarons [5,8–10], which can affect the spin and thermal trans-
port properties of magnetic insulators [11–15].

Magnetization dynamics in a magnetic insulator excite
transverse acoustic phonons, which propagate into an adjacent
nonmagnetic (NM) layer, carrying spin angular momentum
[4,16,17]. This phonon pumping creates an extra loss chan-
nel for magnetization dynamics [4], similar to the enhanced
damping from spin pumping into an attached normal metal
[18,19]. Recent experimental [16,20] and theoretical inves-
tigations [16,17,21–25] have provided compelling evidence
of spin angular momentum propagation across NM insula-
tors via phonons over micrometer and sub-millimeter length
scales. The propagation of spin-carrying phonons through a
NM insulator enables the coherent and long-range coupling
of magnetization in distant magnetic insulators, as observed in
ferromagnetic resonance (FMR) experiments [16], where the
emergence of bright and dark states is determined by the par-
ity of the phonon modes [20]. A dynamic coupling between
distant ferromagnets via attenuating elastic waves, offering
long-distance synchronization and non-Hermitian manipula-
tion of magnonic modes, has been proposed [26].

The coupling of magnons to optical [27,28] and acoustic
phonons [29–33] due to the MEC in antiferromagnetic (AFM)
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insulators has been studied. An anomalous feature detected
in the spin Seebeck response of an AFM insulator [29,30]
and predicted in nonlocal spin current [31] is attributed to
magnon-polaron formation. The nonlocal spin transport setup
has also revealed a characteristic length scale for magnon-
polaron formation in antiferromagnets [31]. Consequently, the
phonon pumping into an attached NM layer is anticipated to
be accompanied by spin angular momentum transfer.

Here we predict a nonlocal and coherent coupling between
ferromagnetic (FM) and AFM insulators over macroscopic
distances through phonons transmitted via a NM insulator.
Despite the distinct characteristics of FM and AFM magnons,
they couple through the same phonon mode of the NM
insulator, acting as a phonon waveguide. Magnons in the
antiferromagnet are converted into phonons which can then
be transferred to the distant ferromagnet and vice versa, de-
tectable by FMR and antiferromagnetic resonance (AFMR)
measurements. Notably, this nonlocal magnon-magnon cou-
pling occurs when the magnetic moments in the ferromagnet
and the antiferromagnet are perpendicular to the phonon prop-
agation direction, with a coupling strength comparable to that
observed between two ferromagnets [16]. A nonlocal cou-
pling mediated by cavity photons between two FM magnons
[34] and between FM and AFM magnons were demonstrated
[35]. The coupling via cavity photons is limited by the sig-
nificant difference in velocities of light and magnons, which
restricts the coupling of the cavity to magnons with zero wave
vector. Moreover, the weak interaction between antiferromag-
netic and magnetic fields, due to the vanishing magnetization
of the antiferromagnet, may hinder efficient coupling with the
cavity. This work heralds the integration of diverse magnetic
materials, propelling AFM spintronics alongside established
FM components.

This paper is organized as follows. Section II investigates
nonlocal coupling between FM and AFM layers via phonons,
and Sec. III establishes the theoretical framework for magne-
tization dynamics in the FM and AFM insulators coupled to a
NM material. Section IV presents our findings on the realiza-
tion of nonlocal phonon-mediated coupling between the FM
and AFM layers. In Sec. V, we conclude and summarize our
findings.
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FIG. 1. Schematic of the setup. A NM elastic layer of thickness
L separates insulating FM and AFM layers of equal thickness d . H
denotes the static external magnetic field in the x direction. mFM and
mAFM represent the magnetization of FM and AFM layers, respec-
tively, while nAFM is the Néel order parameter.

II. CONFIGURATION

We consider a heterostructure comprising insulating FM
and uniaxial AFM layers of equal thickness d , separated by a
NM insulator of length L, as depicted in Fig. 1. The FM layer
has a single right-handed magnon mode, while the uniaxial
AFM layer has both right- and left-handed magnon modes.
When aligning the magnetic moments with the phonon prop-
agation direction (the z axis), the FM and AFM right-handed
magnons, sharing the same polarization, couple to a circularly
polarized acoustic phonon mode of the same polarization.
However, the frequency mismatch hinders nonlocal cou-
pling between ferromagnet and antiferromagnet through this
phonon mode. The FM magnon mode and AFM left-handed
magnon mode, despite potentially having the same frequency,
couple to the same phonon modes but with independent po-
larizations due to their opposite spins, preventing nonlocal
magnon-magnon coupling. A viable solution could involve
reversing the applied field to one of the FM or AFM layers,
enabling coupling to the same phonon mode with the same
polarization.

To enable nonlocal coupling between FM and AFM
magnon modes, the magnetic moments should align perpen-
dicular to the phonon propagation direction, along the x axis.
This configuration breaks the rotational symmetry and allows
for equal coupling of magnons to both polarizations of the
phonon mode, viz., effectively coupling to a linearly polar-
ized phonon mode. Linearly polarized acoustic phonons can
interact with magnons of opposite spins, enabling a nonlo-
cal coupling between the FM magnon mode and the AFM
left-handed magnon mode. Unlike their circularly polarized
counterparts, linearly polarized phonons do not carry net an-
gular momentum [6,7]. Hence, our focus is on this specific
configuration, as illustrated in Fig 1.

III. THEORETICAL DESCRIPTION

We assume that a bias magnetic field is applied to both
ferromagnet and antiferromagnet perpendicular to the phonon
propagation direction, along the x axis. The magnetization
dynamics of ferromagnet is governed by the Landau-Lifshitz-
Gilbert (LLG) equation:

ṁFM = −γμ0mFM × Heff
FM + αG

FMmFM × ṁFM, (1)

where mFM = MFM/Ms,FM is the magnetization vector nor-
malized by the saturated magnetization Ms,FM, γ is the
gyromagnetic ratio, and αG

FM is the Gilbert damping constant.
The effective magnetic field Heff

FM combines the contributions
of Hmag

FM , which includes the external magnetic field Hext,
magnetostatic and anisotropy fields, and Hmec

FM arising from the
MEC. The external magnetic field consists of a static compo-
nent H x̂ parallel to the in-plane x direction and perpendicular
to the surface normal, along with a small dynamic compo-
nent hy,z(t ) oscillating in the yz plane. Thus, Hmag

FM can be
expressed as

Hmag
FM = 1

γμ0
[ωHx̂ − ωM(mFM)zẑ] + hy,z(t ), (2)

with ωH = γμ0[H − 2KFM/(μ0Ms,FM)] and ωM =
γμ0Ms,FM, where KFM is the anisotropy constant. The MEC
field can be expressed as Hmec

FM = −∇mFM Emec
FM /(μ0V Ms,FM),

where V is the volume of the ferromagnet and Emec
FM is the

MEC energy for the FM layer, which reads

Emec
FM = 2

∑
α�β

Bαβ

∫
V

mFM,α (r)mFM,β (r)Sαβ (r)dV, (3)

where Sαβ (r) = [∂Rβ (r)/∂rα + ∂Rα (r)/∂rβ]/2 is the strain
tensor with R(r) being the lattice displacement field, Bαβ =
δαβB‖ + (1 − δαβ )B⊥ denotes the MEC coefficients for a cu-
bic lattice [36], and α, β = x, y, z. The magnetization vector
of the FM layer, around its equilibrium configuration, is
expanded as mFM = x̂ + δmFM, where δmFM = δmFM,yŷ +
δmFM,zẑ. Hence, the MEC energy Emec

FM for the FM layer can
be written as

Emec
FM = B⊥,FMAδmFM,z

[
Rx

(
−L

2

)
− Rx

(
−L

2
− d

)]
, (4)

where B⊥,FM represents the off-diagonal MEC coefficient of
the FM layer, and A denotes the cross-sectional area. The
MEC energy is derived under the assumption of a uniform
lattice displacement field, Rα (r) = Rα (z). This approximation
is considered valid for generating phonons through magneti-
zation dynamics in thin layers, where the thickness is much
smaller than the cross-sectional area, i.e., d � √

A. The MEC
field thus reads

Hmec
FM = − ωmec

FM

γμ0d
RFMẑ, (5)

with ωmec
FM = γ B⊥,FM/Ms,FM and RFM = [Rx(−L/2) − Rx

(−L/2 − d )].
Substituting Heff

FM and mFM in Eq. (1), and considering the
leading order in the small dynamic fields, yields

δṁFM,y = −(ωH + ωM)δmFM,z − αG
FMδṁFM,z

+ hz − ωmec
FM

d
RFM, (6a)

δṁFM,z = ωHδmFM,y + αG
FMδṁFM,y − hy, (6b)

where hy(z) ≡ γμ0hy(z).
The exchange-coupled bipartite antiferromagnet consists

of two magnetic sublattices, denoted as a and b, with
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antialigned magnetic moments Ma and Mb, respectively,
where |Ma| ≈ |Mb| ≡ Ms, with Ms being the saturation mag-
netization of each sublattice. In the long-wavelength limit, the
average magnetization is given by MAFM = (Ma + Mb)/2 =
MsmAFM and the AFM order parameter is expressed as
LAFM = (Ma − Mb)/2 = MsnAFM, where mAFM and nAFM

represent the dimensionless average magnetization and the
Néel order vectors, and describes the magnetic state of the
antiferromagnet [37–41]. Below the Néel temperature mAFM ·
nAFM = 0 and m2

AFM + n2
AFM = 1 [39,41]. The magnetiza-

tion dynamics of antiferromagnet is governed by the LLG
equation as

ṁAFM = −γμ0
(
mAFM × Heff

mAFM
+ nAFM × Heff

nAFM

)
+αG

AFM(mAFM × ṁAFM + nAFM × ṅAFM), (7a)

ṅAFM = −γμ0
(
mAFM × Heff

nAFM
+ nAFM × Heff

mAFM

)
+αG

AFM(mAFM × ṅAFM + nAFM × ṁAFM), (7b)

the effective magnetic field for mAFM(nAFM) is given
by Heff

mAFM(nAFM ) = Hmag
mAFM(nAFM ) + Hmec

mAFM(nAFM ), where
Hmec

mAFM(nAFM ) is the MEC field and Hmag
mAFM(nAFM ) =

−∇mAFM(nAFM )E
mag
AFM/(μ0V Ms,AFM). Here Ms,AFM = 2Ms

represents the total saturated magnetization of the
antiferromagnet with volume V . The damping of mAFM

and nAFM are chosen to be the same and denoted by αG
AFM.

The magnetic free energy for the antiferromagnet, Emag
AFM,

which incorporates the exchange interaction, anisotropy, and
the external magnetic field energies, reads

Emag
AFM = Ms,AFM

γ

∫ (
ξ

2
m2

AFM + ν

2
[∇nAFM]2

− γμ0Hext · mAFM − KAFM

2
(nAFM,x )2

)
dV. (8)

Here ξ and ν are the inter- and intra-sublattice exchange
constants, respectively, and KAFM is the uniaxial anisotropy
constant taken along the x axis. Hence the corresponding
effective field Hmag

mAFM(nAFM ) can be obtained as

Hmag
mAFM

= − ξ

γμ0
mAFM + nAFM × (Hext × nAFM), (9a)

Hmag
nAFM

= ν

γμ0
∇2nAFM − mAFM(Hext · nAFM) + KAFM

γμ0
nAFM,xx̂.

(9b)

The Néel order parameter of the antiferromagnet inter-
acts with the lattice displacement field, resulting in the

corresponding MEC energy:

Emec
AFM = 2

∑
α�β

Bαβ

∫
V

nAFM,α (r)nAFM,β (r)Sαβ (r)dV. (10)

The magnetization and Néel vectors of the AFM layer
around the equilibrium configuration, i.e., nAFM = ±x̂
and mAFM ≈ 0, can be expanded as mAFM = δmAFM and
nAFM = x̂ + δnAFM, where δmAFM = δmAFM,yŷ + δmAFM,zẑ
and δnAFM = δnAFM,yŷ + δnAFM,zẑ. The MEC energy for the
antiferromagnet then simplifies to

Emec
AFM = B⊥,AFMAδnAFM,z

[
Rx

(
L

2
+ d

)
− Rx

(
L

2

)]
, (11)

with B⊥,AFM being the off-diagonal MEC coefficient of the
AFM layer, yielding the respective effective fields

Hmec
mAFM

= 0, (12a)

Hmec
nAFM

= − ωmec
AFM

γμ0d
RAFMẑ, (12b)

with ωmec
AFM = γ B⊥,AFM/Ms,AFM and RAFM = [Rx(L/2 +

d ) − Rx(L/2)].
By incorporating Heff

mAFM(nAFM ), mAFM, and nAFM into
Eqs. (7a) and (7b), the LLG equation can be linearized as

δṁAFM,y = −(KAFM − ν∇2)δnAFM,z − H0δmAFM,z

−αG
AFMδṅAFM,z − ωmec

AFM

d
RAFM, (13a)

δṁAFM,z = (KAFM − ν∇2)δnAFM,y + H0δmAFM,y

+αG
AFMδṅAFM,y, (13b)

δṅAFM,y = −(KAFM + ξ )δmAFM,z − H0δnAFM,z

−αG
AFMδṁAFM,z + hz, (13c)

δṅAFM,z = (KAFM + ξ )δmAFM,y + H0δnAFM,y

+αG
AFMδṁAFM,y − hy, (13d)

where H0 ≡ γμ0H . Moreover, Rx can be derived from the
elastic equations of motion for an isotropic medium, given by

px(z, t ) = ρ(z)Ṙx(z, t ), (14a)

ṗx(z, t ) = μ(z)∇2
z Rx(z, t ) − 2η(z)px(z, t ), (14b)

where px(z, t ) represents the transverse momentum den-
sity, and ρ(z), μ(z), and η(z) are the mass density, shear
modulus, and elastic damping constant, respectively. In the
FM(AFM) layer, these parameters are given by ρ(z) =
ρFM(AFM), μ(z) = μFM(AFM) = ρFM(AFM)c2

FM(AFM), and η(z) =
ηFM(AFM), while in the NM spacer, they are ρ̃, μ̃ = ρ̃c̃2, and
η̃, with cFM(AFM) and c̃ as the transverse sound velocities in
the magnetic and NM layers, respectively. Now, solving the
elastic equations of motion yields

Rx(z, t ) =

⎧⎪⎪⎨
⎪⎪⎩

A(ω)eikFMz−iωt + B(ω)e−ikFMz−iωt , −d − L/2 < z < −L/2,

C(ω)eik̃z−iωt + D(ω)e−ik̃z−iωt , −L/2 < z < L/2,

E (ω)eikAFMz−iωt + F (ω)e−ikAFMz−iωt , L/2 < z < L/2 + d,

(15)
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where kFM(AFM) = √
ω2 + 2iωηFM(AFM)/cFM(AFM) and k̃ =√

ω2 + 2iωη̃/c̃ are the phonon wave vectors of the FM(AFM)
layer and the NM spacer, respectively. The coefficients
A(ω), . . . , F (ω) are determined by satisfying the elastic con-
tinuity and momentum conservation boundary conditions.

The phonon pumping to the attached nonmagnet generates
a transverse momentum current at the FM(AFM)|nonmagnet
boundaries, given by jx(z) = −μ(z)∂Rx(z)/∂z. This momen-
tum current is related to the transverse momentum px by
ṗx(z) = −∂ jx(z)/∂z. The momentum current density is driven
by surface shear forces N(≡ ṗV ) = −∇Rα (z)Emec

FM(AFM) at the
boundaries

Nx(−L/2 − d ) = −Nx(−L/2) = B⊥,FMAδmFM,z,

Nx(L/2) = −Nx(L/2 + d ) = B⊥,AFMAδnAFM,z. (16)

The elastic continuity at the FM|NM interface and momen-
tum conservation at the boundaries of ferromagnet can be
written as

Rx(−L/2+) = Rx
(−L/2−)

,

jx(−L/2 − d+) = B⊥,FMδmFM,z,

jx(−L/2+) − jx(−L/2−) = −B⊥,FMδmFM,z, (17)

with corresponding boundary conditions at the AFM inter-
faces

Rx(L/2+) = Rx(L/2−),

jx(L/2−) − jx(L/2+) = −B⊥,AFMδnAFM,z,

jx(L/2 + d−) = B⊥,AFMδnAFM,z. (18)

The coefficients A(ω), . . . , F (ω), determined by the boundary
conditions, can be expressed as linear combinations
of δmFM,z and δnAFM,z as A(ω) = A1(ω)δmFM,z +
A2(ω)δnAFM,z, . . . , F (ω) = F1(ω)δmFM,z + F2(ω)δnAFM,z.
The analytical solutions for A1, . . . ,F2 are presented in
Appendix A. Consequently, the expressions for RFM and
RAFM in Eqs. (6a) and (13a) are obtained as

RFM = �1δmFM,z + �2δnAFM,z, (19)

RAFM = 
1δmFM,z + 
2δnAFM,z, (20)

with

�1(2) = 2isin(kFMd/2)

× [A1(2)e
−ikFM(L+d )/2 − B1(2)e

ikFM(L+d )/2], (21a)


1(2) = 2isin(kAFMd/2)

× [E1(2)e
ikAFM(L+d )/2 − F1(2)e

−ikAFM(L+d )/2]. (21b)

The detailed derivation of the coupled dynamics for the FM
and AFM layers is provided in Appendix B.

The microwave power absorption Pabs is an observable
in FMR/AFMR experiments and can be utilized as a probe
for nonlocal magnon-magnon coupling. We study Pabs by
FM and AFM layers when an external dynamical magnetic
field hy,z(t ) = e−iωt (hyŷ + hzẑ) is applied in the yz plane and
perpendicular to H . The power absorption is given by [16,42]

Pabs
FM(AFM)(H, ω) ∝ κFM(AFM)Im(h�

yδmy + h�
zδmz )FM(AFM),

(22)

where κFM(AFM) is the inductive coupling of FM(AFM) with
microwave antenna (see Appendix B), and � denotes the com-
plex conjugate.

IV. RESULTS AND DISCUSSION

Having obtained the solutions for the coupled magne-
toelastic dynamics, we compute observables that quantify
the long-range coupling between the FM and AFM mate-
rials mediated by phonons. Yttrium iron garnet (YIG) and
NaNiO2 are chosen as the FM and AFM materials, respec-
tively, both with thicknesses of d = 200 nm. Gadolinium
gallium garnet (GGG) is used as the NM spacer with a thick-
ness of L = 0.25 mm. We use the following parameters for
these three materials. For YIG, μ0Ms,FM = 0.1720 T, ρFM =
5170 Kg/m3, αG

FM = 9 × 10−5, B⊥,FM = 6.96 × 105 J/m3,
cFM = 3843 m/s, and KFM = −6.1 × 102 J/m3 [16,17,43].
For NaNiO2, μ0Ms,AFM = 0.580 T [35], KAFM = 62 GHz,
ξ = 1.68 THz [44], ρAFM = 4600 Kg/m3, αG

AFM = 10−4,
B⊥,AFM ≈ 16.5 × 105 J/m3, and cAFM = 3900 m/s. To the
best of our knowledge, the magnetoelastic coefficient for
NaNiO2 remains undetermined. Therefore, we estimated
B⊥,AFM based on values reported for similar magnetic mate-
rials [45,46]. For GGG, ρ̃ = 7070 Kg/m3, and c̃ = 3530 m/s
[47]. The phonon damping is taken to be equal throughout
this heterostructure, ηFM,AFM = η̃ = 0.35 × 2π × 106 rad/s
[16,21].

By neglecting the small Gilbert damping, the magnon
modes of ferromagnet and antiferromagnet can be determined
as follows:

[
ω2 − ω2

FMR

]
δmFM,y(z) = 0, (23)

[ω2 − (
√

KAFM(KAFM + ξ ) ± H0)2]δmAFM,y(z) = 0. (24)

The FMR mode, depicted by the solid line in Fig. 2(a)
is observable at ω = ωFMR = √

ωH(ωH + ωM). The AFM
right-handed (RH) and left-handed (LH) magnon modes,
represented by ω = √

KAFM(KAFM + ξ ) ± H0, are denoted
as ωRH

AFMR and ωLH
AFMR, respectively. These modes are

shown as dashed lines in Fig. 2(a). Notably, for mag-
netic fields below the spin-flop field, i.e., H < HSF =√

KAFM(KAFM + ξ )/(γμ0), coupling between the FMR and
LH AFMR modes occurs due to their interaction with the
same phonon modes.

The microwave absorption spectra of the FM and AFM
layers, obtained by varying the bias magnetic field and fre-
quency, are plotted in Fig. 2(b). The absorption spectra of the
FMR and AFMR modes, as described by Eqs. (23) and (24),
undergo frequency modulation due to their interaction with a
sequence of standing phonon modes.

Assuming that the acoustic impedances are matched
[ρFM(AFM)cFM(AFM) ≈ ρ̃c̃], which is valid at GHz frequen-
cies where the acoustic mismatch, ρFMcFM/ρ̃c̃ ≈ 0.8 and
ρAFMcAFM/ρ̃c̃ ≈ 0.72, is irrelevant, the acoustic resonance
frequencies are given by

ω
ph
n

2π
= n

2(d/cFM + d/cAFM + L/c̃)
, (25)
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FIG. 2. (a) FMR mode (solid line) in YIG and left- and right-hand AFMR modes (dashed lines) in NaNiO2 as a function of magnetic field.
(b) The absorption spectrum as a function of probe frequency and applied field near the FMR mode in YIG (left panel) and the left-hand AFMR
mode in NaNiO2 (right panel). (c) The contrast in FMR absorption |Pabs

FM (B⊥,AFM 
= 0) − Pabs
FM (B⊥,AFM = 0)| due to constructive/destructive

interference between FM and AFM layer dynamics. The bottom panel displays the intensity modulation along the blue dashed line, which
represents a cut parallel to the FMR mode. YIG and NaNiO2 are d = 200 nm thick, separated by GGG with L = 0.25 mm. Here κAFM/κFM = 7,
which is chosen to be close to the experiment [16].

which in the limit of L � d further simplifies to ω
ph
n /2π ≈

c̃/λph
n , where λ

ph
n = 2(2d + L)/n represents the wavelength

of standing acoustic waves formed across the total thick-
ness 2d + L with n being the phonon mode number (see
Appendix A). The periodicity of 7 MHz in Fig. 2(b) can
be attributed to the equidistant splitting of standing phonon
modes, i.e., (ωph

n+1 − ω
ph
n )/2π = c̃/2(2d + L) ≈ 7 MHz. The

level repulsion between phonon and magnon modes that
occurs at ωFMR/AFMR = ω

ph
n represents a strong coupling

between phonons and magnons and leads to the forma-
tion of magnon polarons. Typically, magnons at frequency
of ωFMR(AFMR)/2π ≈ 10.476 GHz (according to a magnetic
field of μ0H ≈ 0.2962 T for YIG and μ0H ≈ 1.4933 T for
NaNiO2) couple to an even phonon mode with mode number
n ≈ 1486, corresponding to an acoustic phonon wavelength
of λ

ph
n ≈ 337 nm.

The phonons pumped by the dynamics of each mag-
netic layer transmit transverse momentum current across the
0.25-mm thickness of GGG, with a characteristic decay length
of δ = c̃/η̃ ≈ 1.6 mm. Depending on the parity of the mode
number n (odd or even), the magnetization dynamics in one
layer either absorb or reflect the phononic momentum current
pumped from the other layer. This leads to constructive or de-
structive interference between the magnetization dynamics in
FM and AFM layers mediated by even or odd phonon modes,
resulting in a distinct power absorption contrast determined by
the ratio of microwave field amplitudes experienced by each
magnetic layer κAFM/κFM.

The magnetic absorption modulation, |Pabs
FM (B⊥,AFM 
= 0)

− Pabs
FM (B⊥,AFM = 0)|, resulting from the indirect coupling

mediated by the phonon between two magnetic layers, is
shown in Fig. 2(c). The FM absorption signal exhibits a
periodicity of 7 MHz, featuring a contrast in Pabs

FM between
consecutive phonon modes. The absorption modulation along
the blue dashed line, representing a cut parallel to the FMR

mode, is depicted in the bottom panel of Fig. 2(c). Similar
interference effects have been observed in an FM|NM|FM
system, through the dynamics of ferromagnet employing the
inverse spin Hall voltage [20] and via absorption power mea-
surement with a microwave antenna [16,20]. These effects
are anticipated to manifest in the FM|NM|AFM system via
FM/AFM dynamics, using similar techniques.

We present the eigenmodes of the coupled magnetoelastic
dynamics in Fig. 3(a), to assess the nonlocal coupling strength
between FM and AFM magnons. Here we focus on a disper-
sive regime, where the phonon mode’s frequency is slightly
off-resonant with the crossing point of FM and AFM magnons
(ωFMR = ωLH

AFMR). This allows us to determine the strength
of the phonon-mediated magnon-magon coupling. We select

FIG. 3. (a) The eigenmodes of the coupled YIG and NaNiO2 dy-
namics, depicted with dashed and solid lines representing dispersion
relations without and with MEC, respectively. YIG and NaNiO2 are
both 200 nm thick, while GGG has a thickness of 8 µm. (b) The
angular dependency of indirect coupling strength between YIG and
NaNiO2 dynamics, with θ denoting the angle between the external
magnetic field applied to the FM layer and the x axis in the xy plane.
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the n = 129 phonon mode with a frequency of ω
ph
129/(2π ) �

27.20 GHz positioned below the crossing point of the FM
and AFM magnon modes. The coupling strengths between
this phonon mode and the FM and AFM magnon modes are
2.7 and 20 MHz, respectively. The level repulsion between
FM and AFM magnon modes at their crossing point indicates
the nonlocal magnon-magnon coupling via coherent acoustic
phonon modes, leading to the formation of an eigenstate that
is a linear superposition of both magnons. The strength of the
phonon-mediated coupling, determined by the splitting at the
nominal crossing point, is 6 MHz. This coupling strength is
comparable to that observed between two YIG films [16,26].
The shifts in both FM and AFM magnon modes in the inter-
acting system, compared to the noninteracting system, depend
on the coupling strength with phonons. AFM magnons shift
more than FM magnons, due to their stronger coupling with
phonons.

The variation in nonlocal coupling strength between FM
and AFM layers with the angle between the external magnetic
field applied to the FM layer and the x axis within the xy plane
is shown in Fig. 3(b). The maximum and minimum coupling
strengths occur at 0 and π/2, respectively, corresponding to

the external field being parallel to the x and y axes. The
decrease in nonlocal coupling strength is attributed to the
reduced coupling of FM magnons with phonons.

V. CONCLUSIONS

In summary, our study unveils a phonon-mediated coupling
mechanism that enables coherent long-range magnetization
control between FM and AFM layers, separated by a NM
spacer. This coupling relies on the perpendicular alignment
of magnetic moments with the phonon propagation direction
and is mediated by phononic transverse momentum currents,
resulting in magnetic power absorption contrasts and level
repulsion in collective modes. These findings have significant
implications for future spintronic devices and advance our
understanding of magnon-phonon interactions.
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APPENDIX A: DERIVATION OF LATTICE DISPLACEMENT FIELD

Here, we calculate the lattice displacement coefficients in Eq. (15). By substituting the lattice displacement Rx and the
transverse momentum current jx into the boundary conditions given by Eqs. (17) and (18), we end up with

Ae−ikFML/2 + BeikFML/2 = Ce−ik̃L/2 + Deik̃L/2,

[BeikFM(L/2+d ) − Ae−ikFM(L/2+d )] = B⊥,FMδmFM,z

μFMikFM
,

μ̃ik̃[Deik̃L/2 − Ce−ik̃L/2] + μFMikFM[Ae−ikFML/2 − BeikFML/2] = −B⊥,FMδmFM,z,

Ceik̃L/2 + De−ik̃L/2 = EeikAFML/2 + Fe−ikAFML/2,

μAFMikAFM[EeikAFML/2 − Fe−ikAFML/2] + μ̃ik̃[De−ik̃L/2 − Ceik̃L/2] = −B⊥,AFMδnAFM,z,

[Fe−ikAFM(L/2+d ) − EeikAFM(L/2+d )] = B⊥,AFMδnAFM,z

μAFMikAFM
. (A1)

By solving these equations, the coefficients A(ω), . . . , F (ω) are determined as linear combinations of δmFM,z and δnAFM,z ex-
pressed as A(ω) = A1(ω)δmFM,z + A2(ω)δnAFM,z, . . . , F (ω) = F1(ω)δmFM,z + F2(ω)δnAFM,z, with A1, . . . ,F2 given below:

A1 = iB⊥,FMeikFML/2

2LμFMkFM
{eik̃LJ −

2 [μ̃ik̃ − 2μFMkFMeikFMd/2 sin(kFMd/2)] − e−ik̃LJ +
2

[
μ̃ik̃ + 2μFMkFMeikFMd/2 sin(kFMd/2)]}, (A2a)

A2 = −2μ̃ik̃B⊥,AFMeikFM(L/2+d ) sin2(kAFMd/2)/L, (A2b)

B1 = iB⊥,FMe−ikFML/2

2LμFMkFM
{−eik̃LJ −

2 [μ̃ik̃ − 2μFMkFMe−ikFMd/2 sin(kFMd/2)] + e−ik̃LJ +
2 [μ̃ik̃ + 2μFMkFMe−ikFMd/2 sin(kFMd/2)]},

(A2c)

B2 = −2μ̃ik̃B⊥,AFMe−ikFM(L/2+d ) sin2(kAFMd/2)/L, (A2d)

C1 = 2B⊥,FMe−ik̃L/2 sin2(kFMd/2)J +
2 /L, (A2e)

C2 = −2B⊥,AFMeik̃L/2 sin2(kAFMd/2)J −
1 /L, (A2f)

D1 = 2B⊥,FMeik̃L/2 sin2(kFMd/2)J −
2 /L, (A2g)

D2 = −2B⊥,AFMe−ik̃L/2 sin2(kAFMd/2)J +
1 /L, (A2h)

E1 = 2μ̃ik̃B⊥,FMe−ikAFM(L/2+d ) sin2(kFMd/2)/L, (A2i)
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E2 = −iB⊥,AFMe−ikAFML/2

2LμAFMkAFM
{−eik̃LJ −

1 [μ̃ik̃ − 2μAFMkAFMe−ikAFMd/2 sin(kAFMd/2)]

+ e−ik̃LJ +
1 [μ̃ik̃ + 2μAFMkAFMe−ikAFMd/2 sin(kAFMd/2)]}, (A2j)

F1 = 2μ̃ik̃B⊥,FMeikAFM(L/2+d ) sin2(kFMd/2)/L, (A2k)

F2 = −iB⊥,AFMeikAFML/2

2LμAFMkAFM
{eik̃LJ −

1 [μ̃ik̃ − 2μAFMkAFMeikAFMd/2 sin(kAFMd/2)]

− e−ik̃LJ +
1 [μ̃ik̃ + 2μAFMkAFMeikAFMd/2 sin(kAFMd/2)

]}, (A2l)

where

J +
1 = μ̃ik̃ cos(kFMd ) + μFMkFM sin(kFMd ), (A3a)

J −
1 = μ̃ik̃ cos(kFMd ) − μFMkFM sin(kFMd ), (A3b)

J +
2 = μ̃ik̃ cos(kAFMd ) + μAFMkAFM sin(kAFMd ), (A3c)

J −
2 = μ̃ik̃ cos(kAFMd ) − μAFMkAFM sin(kAFMd ), (A3d)

L = eik̃LJ −
1 J −

2 − e−ik̃LJ +
1 J +

2 . (A3e)

The acoustic resonance condition can be obtained as follows:

cos(k̃L)

[
ZAFM

Z̃
cos(kFMd ) sin(kAFMd ) + ZFM

Z̃
cos(kAFMd ) sin(kFMd )

]

+ sin(k̃L)

[
cos(kFMd ) cos(kAFMd ) − ZFMZAFM

Z̃2
sin(kFMd ) sin(kAFMd )

]
= 0, (A4)

where ZFM(AFM) = ρFM(AFM)cFM(AFM) and Z̃ = ρ̃c̃. When the
acoustic impedances are matched, ZFM(AFM) = Z̃ , the reso-
nance condition is given by kFMd + kAFMd + k̃L = nπ , with
n = 1, 2, . . . corresponding to the formation of standing
waves [21]. The acoustic resonance frequencies are then given
by Eq. (25).

To investigate the resonance condition in more detail, the
coefficient |A1(ω)| is plotted in Fig. 4 as a function of k̃L
for ω = ωFMR = 66.5 GHz and various values of kFMd =
kAFMd = (0.5, 1, 2, 3)π . As can be seen, the resonance oc-
curs at k̃L = qπ when kFM(AFM)d equals either (2p + 1)π/2
or (2p + 1)π , where q = 1, 2, . . . and p = 0, 1, . . . , con-
sistent with Eq. (25). As a result, the phonon excitation is
suppressed for d = 2pλph

n /2, which is in agreement with
Refs. [16,21], and favored for d = (2p + 1)λph

n /2. Under the
condition kFMd = kAFMd = (2p + 1)π and matched acoustic
impedances ZFM(AFM) = Z̃ , the coefficients A1, . . . ,F2 are
then simplified as

A1 = B⊥,FMeikFML/2

2μ̃k̃ sin(k̃L)
[2 cos(k̃L) − i sin(k̃L)], (A5a)

A2 = −B⊥,AFMeikFML/2/[μ̃k̃ sin(k̃L)], (A5b)

B1 = B⊥,FMe−ikFML/2

2μ̃k̃ sin(k̃L)
[2 cos(k̃L) + i sin(k̃L)], (A5c)

B2 = −B⊥,AFMe−ikFML/2/[μ̃k̃ sin(k̃L)], (A5d)

C1 = B⊥,FMe−ik̃L/2/[μ̃k̃ sin(k̃L)], (A5e)

C2 = −B⊥,AFMeik̃L/2/[μ̃k̃ sin(k̃L)], (A5f)

D1 = B⊥,FMeik̃L/2/[μ̃k̃ sin(k̃L)], (A5g)

D2 = −B⊥,AFMe−ik̃L/2/[μ̃k̃ sin(k̃L)], (A5h)

E1 = B⊥,FMe−ikAFML/2/[μ̃k̃ sin(k̃L)], (A5i)

E2 = −B⊥,AFMe−ikAFML/2

2μ̃k̃ sin(k̃L)
[2 cos(k̃L) + i sin(k̃L)], (A5j)

F1 = B⊥,FMeikAFML/2/[μ̃k̃ sin(k̃L)], (A5k)

F2 = −B⊥,AFMeikAFML/2

2μ̃k̃ sin(k̃L)
[2 cos(k̃L) − i sin(k̃L)]. (A5l)

When Z̃ � ZFM(AFM) and assuming kFM ≈ kAFM = k, the
acoustic resonance condition, Eq. (A4), becomes

Z

Z̃
cos(k̃L) sin(2kd ) + sin(k̃L) cos2(kd ) = 0, (A6)

where Z = ZFM ≈ ZAFM. For k̃L = qπ , the acoustic res-
onances occur at 2kd = (2p + 1)π , which agrees with
Refs. [4,48].

APPENDIX B: THE COUPLED EQUATIONS OF MOTION

We provide the detailed derivation of linearized equa-
tions of motion for magnetoelastic dynamics, allowing to
one determine both the dispersion relation of the interacting
system and the power absorption of the magnetic layers. Sub-
stituting RFM and RAFM into Eqs. (6a) and (13a), followed
by taking the time derivative of Eqs. (6) and (13) while
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FIG. 4. The coefficient |A1(ω)| as a function of k̃L for
ω = ωFMR = 66.5 GHz and various values of kFMd = kAFMd =
(0.5, 1, 2, 3)π . Here, ZFM/Z̃ ≈ 0.8 and ZAFM/Z̃ ≈ 0.72.

neglecting terms proportional to (αG
FM(AFM))

2, yields the cou-
pled frequency-domain equations of motion:

M11δmFM,y + M12δmAFM,y + M13δnAFM,y = P1, (B1a)

M21δmFM,y + M22δmAFM,y + M23δnAFM,y = P2, (B1b)

M32δmAFM,y + M33δnAFM,y = P3, (B1c)

N11δmFM,z + N13δnAFM,z = S1, (B1d)

N21δmFM,z + N22δmAFM,z + N23δnAFM,z = S2, (B1e)

N31δmFM,z + N32δmAFM,z + N33δnAFM,z = S3, (B1f)

where

M11 = ω2 +
(

2ωH + ωM + ωmec
FM

d
�1

)
iωαG

FM

− ωHωmec
FM

d
�1 − ω2

FMR,

M12 = −ωmec
FM

d

(
KAFM + ξ − iωαG

AFM

)
�2,

M13 = −H0ω
mec
FM

d
�2,

M21 = ωmec
AFM

d

(
iωαG

FM − ωH
)

1,

M22 = ω2 −
(

KAFM − ν∇2 + ωmec
AFM

d

2

)

× (
KAFM + ξ − iωαG

AFM

)
+ (KAFM + ξ )iωαG

AFM − H2
0 ,

M23 = −2

(
KAFM − ν∇2 + ωmec

AFM

2d

2 − iωαG

AFM

)
H0,

M32 = −2
(
KAFM + ξ − iωαG

AFM

)
H0,

M33 = ω2 − (KAFM − ν∇2)
(
KAFM + ξ − iωαG

AFM

)
+ (KAFM + ξ )iωαG

AFM − H2
0 ,

P1 =
(

iωαG
FM − ωH − ωM − ωmec

FM

d
�1

)
hy

− ωmec
FM

d
�2hy + iωhz,

P2 = −
(

KAFM − ν∇2 + ωmec
AFM

d

2 − iωαG

AFM

)
hy

− ωmec
AFM

d

1hy,

P3 = −H0hy + iωhz,

N11 = ω2 +
(

2ωH + ωM + ωmec
FM

d
�1

)
iωαG

FM

− ωHωmec
FM

d
�1 − ω2

FMR,

N13 = ωmec
FM

d

(
iωαG

FM − ωH
)
�2,

N21 = −H0ω
mec
AFM

d

1,

N22 = ω2 − (KAFM − ν∇2)
(
KAFM + ξ − iωαG

AFM

)
+ (KAFM + ξ )iωαG

AFM − H2
0 ,

N23 = −2

(
KAFM − ν∇2 + ωmec

AFM

2d

2 − iωαG

AFM

)
H0,

N31 = −ωmec
AFM

d

(
KAFM + ξ − iωαG

AFM

)

1,

N32 = −2H0
(
KAFM + ξ − iωαG

AFM

)
,

N33 = ω2 −
(

KAFM − ν∇2 + ωmec
AFM

d

2

)

× (
KAFM + ξ − iωαG

AFM

)
+ (KAFM + ξ )iωαG

AFM − H2
0 ,

S1 = (
iωαG

FM − ωH
)
hz − iωhy,

S2 = −(
KAFM − ν∇2 − iωαG

AFM

)
hz,

S3 = −H0hz − iωhy. (B2)
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Equations (B.1) reveal the coupled dynamics of FM and AFM
layers through MEC.

Equation (B1c) allows solving for δnAFM,y, which, when
inserted into Eqs. (B1a) and (B1b), results in

(
δmFM,y

δmAFM,y

)
= χ

(P1 − P3M13/M33

P2 − P3M23/M33

)
, (B3)

in which χ is the susceptibility tensor

χ−1 =
(

M11 M12 − M13M32/M33

M21 M22 − M23M32/M33

)
, (B4)

and similarly for Eqs. (B1d)–(B1f), we get

(
δmFM,z

δmAFM,z

)
= χ

(S1 − S3N13/N33

S2 − S3N23/N33

)
, (B5)

where

χ−1 =
(

N11 − N13N31/N33 −N13N32/N33

N21 − N23N31/N33 N22 − N23N32/N33

)
. (B6)
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