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Drude-Lorentz dielectric in the presence of a magnetic current density
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The dispersive propagation and absorption in the domain of a Drude-Lorentz dielectric modified by a
magnetic current are classically investigated, taking as the starting point the Drude electric permittivity, in
connection with the chiral magnetic effect. Using standard electromagnetic methods, the dispersion relations and
refractive indices are evaluated and discussed, as well as the group and the energy velocities. We consider three
configurations for the magnetic conductivity tensor: isotropic, antisymmetric, and symmetric. In all these cases,
we carry out the group velocity and the energy velocity, for investigating the properties of signal propagation.
We observe that the isotropic magnetic conductivity enhances the signal propagation at low and intermediary
frequencies, while the symmetric and antisymmetric conductivities severely constrain the wave propagation in
these frequency windows.
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I. INTRODUCTION

The Maxwell’s electrodynamics is a general framework to
describe the electromagnetic interaction in both classical and
quantum scales. The classical electrodynamics explains the
interaction of charges in motion via solutions of Maxwell’s
equations [1–3]. The quantum electrodynamics (QED) de-
scribes with excellent precision the interaction of the photons
with leptons at the MeV scale [4]. The electrodynamics ap-
plied to the material physics is one of the basic tools of
condensed matter physics (CMP). In theoretical CMP, many
models are developed to study the electronic properties of
solids. One of the examples is the Drude model, initially used
to explain the properties of the electrons transported through
the metals [5,6], providing a complex and dispersive con-
ductivity and refractive index associated with the absorption
of electromagnetic waves in metals [7]. The Drude model is
also applied to describe the optical propagation in dielectric
media [7–9], in which the electromagnetic waves interact with
vibrating atoms, considered as classical dipoles. This kind
of approach allows us to obtain optical properties of solids,
including dispersion, absorption and optical activity.

In some specific continuous media, there appears a mag-
netic current density linear in the magnetic field, originated
from an asymmetry between the density of the left- and
right-handed chiral fermions [10–12]. This is known as a
macroscopic manifestation of the quantum chiral magnetic
effect (CME), being investigated in different research areas
in physics, as cosmology, quark-gluon plasma, electroweak
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interactions and others [13–20]. In CMP, the CME is asso-
ciated with the Weyl semimetals (WSM) in which massless
fermions acquire velocity along the magnetic field whose
direction is driven by the chirality of these fermions [21]. In
WSM, the magnetic current density may present a general
form, J = α (E · B) B [22–24], with α being a constant, in
such a way the magnetic current,

J = σ B · B, (1)

is written in terms of an anisotropic magnetic conductivity
tensor denoted by σ B

i j , which depends on the material prop-
erties. Classical optical properties of a dielectric medium
endowed magnetic current were already investigated, suppos-
ing the medium is described by usual constitutive relations,
D = ε E and B = μ H [25]. The refractive indices, propa-
gating modes, and optical effects were examined for three
configurations of the magnetic conductivity tensor,

σ B
i j = � δi j, σ B

i j = εi jk bk, σ B
i j = 1

2 (ai c j + a j ci ), (2)

associated with isotropic, antisymmetric [26] and symmetric
currents, given as

J = � B, J = b × B, J = 1
2 [(a · B)c + (c · B)a], (3)

where a, b, c are constant vectors in space.
The electrodynamics of a continuous medium is described

by the Lagrangian density,

L = − 1
4 GμνFμν − JμAμ, (4)

where Fμν = ∂μAν − ∂νAμ and Gμν = χμνρλFρλ/2 are the
field strength electromagnetic tensors in vacuum and matter,
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and Jμ = (ρ, J) is the source four-current.1 The consti-
tive tensor χμνρλ satisfies the symmetry properties χμνρλ =
−χνμρλ, χμνρλ = −χμνλρ and χμνρλ = χρλμν . The action
principle applied to the Lagrangian (4) yields the field
equation

∂μGμν = Jν, (5)

while the EM strength field tensor satisfies the Bianchi iden-
tity, ∂μF̃μν = 0, where F̃μν = εμνρλFρλ/2 is the dual tensor.
Explicitly, the motion equations can be written in the standard
form

∇ · D = 0, ∇ × E + ∂B
∂t

= 0, (6a)

∇ · B = 0, ∇ × H − ∂D
∂t

= J, (6b)

where D and H are the fields in the matter represented by the
components G0i = −Di and Hi = εi jkG jk/2. In this paper, we
use the constitutive relations,

D = ε(ω) E, H = 1

μ
B, (7)

applied to a Drude-Lorentz dielectric, whose complex
permittivity

ε(ω) = ε0

[
1 + ω2

p

ω2
0 − ω2 − i γ ω

]
, (8)

takes into account the electron’s damped oscillation. Here,
ω0 is the free electron frequency, γ is the damping fac-
tor and ωp =

√
nq2/ε0m is the plasma frequency. From the

Drude-Lorentz model, q = −e is the electron charge, m is the
electron mass, and n is the number density. Equivalently, one
can write Eq. (8) as

ε(ω) = ε′(ω) + iε′′(ω), (9)

where

ε′(ω) = ε0

[
1 + ω2

p

(
ω2

0 − ω2
)(

ω2
0 − ω2

)2 + γ 2ω2

]
, (10a)

ε′′(ω) = ε0

[
γ ω2

p ω(
ω2

0 − ω2
)2 + γ 2ω2

]
. (10b)

This Drude dielectric, described by the usual constitutive
relations (7), will be examined in the presence of the non
conventional current constitutive relation,

Ji = σ B
i j B j . (11)

Substituting the plane wave solutions, E(r, t ) = E ei(k·r−ωt )

and B(r, t ) = B ei(k·r−ωt ) in the Maxwell relations, and using
the current density (11), we obtain the following equation for
the electric field E:

[ k2 δi j − ki k j − ω2 μεi j (ω) ]E j = 0, (12)

1We adopt natural units h̄ = c = 1, and the Minkowski metric
ημν = diag(+1, −1, −1, −1) throughout this paper.

with the effective permittivity,

εi j (ω) = ε(ω) δi j − i

ω2
σ B

iaεab j kb, (13)

where σ B
i j is the magnetic conductivity tensor, and ε(ω) is the

dielectric permittivity. Equation (12) can be written in terms
of the refractive index components ni = ki/ω, in which the
refractive index of the medium is defined by n = +√

ni ni.
Thereby, (12) can be cast into the form

Mi jE
j = 0, (14)

in which the tensor Mi j reads

Mi j = n2 δi j − ni n j − μεi j (ω). (15)

The nontrivial solutions for E j in Eq. (14) are obtained by re-
quiring det[Mi j] = 0, which provides the dispersion relations
of the model and all the useful information to obtain the group
and energy velocities. In dispersive media the electromag-
netic fields may be complex, E = E′ + i E′′, B = B′ + i B′′.
Additionally, in the presence of absorption the wave vector is
complex,

k = k′ + i k′′, (16)

with the energy balance being ruled by the Poynting’s theo-
rem [1], whose Poynting vector and electromagnetic energy
density (stored in the field) are

S = (E × H∗) = 1

μ′ (E × B∗), (17a)

uEM = 1

2

∂[ωε′]
∂ω

(E · E∗) + 1

2μ′ (B · B∗). (17b)

In the absence of sources (ρ = 0), the Gauss’s law is compat-
ible with the attainment of transversal modes,

(k′ · E′) = (k′′ · E′′) = 0, (18a)

(k′ · E′′) = (k′′ · E′) = 0, (18b)

for which the time-averaged quantities read

〈S〉 = E2

2ωμ′ k′, (19a)

〈uEM〉 = 1

4

[
ε′ + ω

∂ε′

∂ω
+ |k|2

μω2

]
E2. (19b)

In lossy media, the ratio of these quantities defines the energy
velocity,

vE = 〈S〉
〈uEM〉 , (20)

suitable to describe the energy transport in the presence of
absorption.

In a nonabsorbing dieletric (ε′′ = 0), the group velocity

vg = dω

dk
k̂, (21)

is a real quantity suitable for representing the signal propaga-
tion. However, in an absorbing medium, the group velocity
becomes complex, as vg = Re[dω/dk] + i Im[dω/dk], no
longer describing energy transport, being replaced by the en-
ergy velocity [27–35] in this respect.
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For the Drude dielectric permittivity, Eq. (19b) is rewritten
as

〈uEM〉 = ε0|E|2
4

[
1 + ω2

p

(
ω2

0 − ω2
)

�+(ω)
+ 2ω2ω2

p�−
�2+(ω)

+ |k|2
με0ω2

]
,

(22)

with �±(ω) = (ω2
0 − ω2)2 ± γ 2ω2, in such a way the energy

velocity reads

vE = k′

με0ω

[
1 + ω2

p

(
ω2

0 − ω2
)

�+(ω)
+ 2ω2ω2

p�−
�2+(ω)

+ |k|2
με0ω2

]−1

.

(23)

By definition, vE points along the k̂′ direction, also depending
on the dispersion relation of k(ω). In general non absorbing
dielectrics, energy velocity and group velocity are the same
one. But such an equality is lost in lossy media, where it holds
vE �= vg. Such results have been recently verified for disper-
sive, absorbing and lossless hyperbolic metamaterial (HMM)
[36], as far as general bianisotropic media [37]. In accordance
with the definition (20), the energy velocity depends on the
way the energy density and the dissipated energy density in a
lossy medium are written [38,39], which constitute an active
line of research actually [40,41].

An alternative procedure to investigate group and energy
velocities in dissipative dynamical systems [42] was used
recently to investigate the group and energy propagation in a
dielectric medium endowed with magnetic conductivity [43].
Such a study was performed considering ε′ = cte and ε′′ = 0
or ε′ = cte and ε′′ = σω−1, comparing group velocity and
energy velocity for the cases of isotropic, symmetric and
antisymmetric magnetic conductivity shown in Eq. (2).

In this paper, we investigate the properties of propagation
and absorption in a realistic Drude dielectric (DD) en-
dowed with magnetic conductivity following the procedures
of Ref. [43]. Initially, we obtain the solutions of refractive in-
dices, the propagating modes for the scenarios of an isotropic
conductivity magnetic, including evaluation of the group and
the energy velocities. Posteriorly, it is done for the case of
anisotropic conductivity magnetic tensor, antisymmetric and
a symmetric tensor. The features of the refractive indices are
discussed having as comparison basis the DD ones. The paper
is organized as follows. Section II is dedicated to the case the
isotropic tensor σ B

i j . In Sec. III, we obtain the results for an
antisymmetric magnetic conductivity tensor parametrized by
one constant vector. Section IV is devoted to examinining the
symmetric conductivity tensor configuration parametrized by
two constant vectors. All these sections are divided in two sub-
sections in which the optical properties and the group/energy
velocities aspects are addressed. For end, in Sec. V, we present
the conclusions and the final remarks.

II. THE CASE OF THE ISOTROPIC MAGNETIC
CONDUCTIVITY TENSOR

The magnetic current density with a diagonal current, the
isotropic conductivity magnetic tensor is

σ B
i j = � δi j, (24)

where � is a real and positive constant, in which the bar
permittivity tensor is

εi j (ω) = ε(ω) δi j + i �

ω
εi jk nk . (25)

The null determinant of the Mi j matrix implies into the n-
polynomial equation

[ n2 − με(ω) ]2 − n2 μ2�2

ω2
= 0. (26)

The solutions of the Eq. (26) are given by

n± =
√

μ(ε′(ω) + iε′′(ω)) +
(

μ�

2ω

)2

± μ�

2ω
. (27)

Substituting the dielectric permittivity (10), both solutions
can be split into their real and imaginary parts:

n± = �[n±] + i 	[n±], (28)

where

�[n±] =
√

|h(ω)|
2

I+ ± μ�

2ω
, (29a)

	[n±] =
√

|h(ω)|
2

I−, (29b)

with

I± ≡

√√√√√
1 + μ2

[
ε′′(ω)

h(ω)

]2

± sgn[h(ω)], (30a)

h(ω) = με′(ω) +
(

μ�

2ω

)2

, (30b)

where sgn represents the signal function of h(ω). Notice that
ε′(ω) from (10a) can assume negative values for a given range
of ω frequency. Consequently, the h(ω) function can also be
negative.

The general behavior of n± real and imaginary parts, writ-
ten in Eqs. (29a) and (29b), is illustrated in Figs. 1 and 2 in
terms of the dimensionless variable ω/ω0. We note that both
�[n±] indicate propagation regime for the range ω < ω0. Near
the origin the real part of n+ tends to infinity, an analog behav-
ior of magnetized plasmas [44]. At the resonance frequency,
ω = ω0, there occurs an absorption peak which coincides with
the beginning of the window for 	[n±] �= 0. Furthermore, im-
mediately after ω = ω0 the values of �[n±] rapidly decrease
(anomalous dispersion), being followed by a short increasing
region for the index n+, which in the sequel exhibits another
anomalous region (extending to the asymptotic limit); see
Fig. 1. As for the index n−, however, the anomalous dispersion
region is followed by a normal dispersion one; see Fig. 2.
For both indices, the absorption peak occurs in the region
ωi

1 < ω < ωi
2, with ωi

1 ≈ ω0, which defines the absorption
window. Note that near the origin, the real part of n− is null,
which is distinct from the conventional DD behavior.

It is worth mentioning that negative refraction occurs
for n− in the zone ωi

1 < ω < ω′′, which also contains the
absorption frequency window. This negative refraction is a
consequence of the isotropic magnetic conductivity. For n±,
the frequency ωi

2 defines the absorption zone limit, which
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FIG. 1. Refractive index n+ of Eq. (28). Solid (dotted) curves
represent the real (imaginary) parts of n+. The black lines represent
the usual case, where � = 0. The red ones represent the index for
� �= 0. Here, we have used: μ = 1, ε0 = 1, ωp/ω0 = 1.5, γ /ω0 =
0.01, and �/ω0 = 3. The frequency ωi

2 marks the end of absorp-
tion zone, which is now shortened by the presence of the magnetic
conductivity.

is reduced in the presence of the magnetic conductivity. It
is also interesting to note that, besides the absorption width
reduction, the indices n± also develop a nonnull real piece,
enabling energy transport in this region, not allowed in the
correspondent usual DD one. For ω > ωi

2, the absorption is
null and attenuation-free propagation occurs. For very high
frequencies (ω � ω0), one obtains �[n±] → √

με0.
For very low frequencies (ω � ω0), the refractive indices

behave as

n± �
√√√√με0

(
1 + ω2

p

ω2
0

)
+

(
μ�

2ω

)2

± μ�

2ω
, (31)

FIG. 2. Refractive index n− of Eq. (28). Solid
(dotted) curves represent the real (imaginary) parts
of n−. Black curves indicate the usual case, where
� = 0. The blue ones represent the index for � �= 0.
Here, we have used μ = 1, ε0 = 1, ωp/ω0 = 1.5, γ /ω0 = 0.01, and
�/ω0 = 3. The absorption window narrowing becomes evident for
� �= 0.

which near the origin yields n− = 0 and n+ � μ�/ω, thus
explaining the n+ divergence at ω → 0 in Fig. 1. It is worth
to point out that such low-frequency behavior, �[n+] → ∞,
�[n−] → 0, is already present in the case of a simple di-
electric with constant magnetic conductivity ε′ = cte, ε′′ =
σ/ω, � = cte. See Ref. [43]. As a consistency check, one
notes that when � → 0, the refractive indices of Eq. (31)
yield a finite and nonnull value in the origin, recovering
the standard scenario. See the black continuous lines in
Figs. 1 and 2.

The peak of the imaginary part is located at ω ≈ ω0. Using
Eq. (29b) and expressions (10a), (10b), the peak amplitude is

	(n±)|ω=ω0 =
√

με0

2
+

(
μ�

2
√

2ω0

)2

I, (32)

with

I =

√√√√√
√√√√1 +

[
4ω0ω2

pε0

γ
(
4ω2

0ε0 + μ�2
)]2

− 1, (33)

revealing that the magnetic conductivity also modifies the ab-
sorption peak magnitude. In the next section, we will discuss
the consequence of � on the imaginary part of n±.

A. Propagation modes and optical effects

Let us consider propagation along the Z axis, n =
(0, 0, n), such that the tensor Mi j becomes

[Mi j] =

⎡⎢⎢⎢⎣
n2 − με(ω) +iμ�

ω
n 0

−iμ�
ω

n n2 − με(ω) 0

0 0 −με(ω)

⎤⎥⎥⎥⎦. (34)

In order to find the propagating modes, we solve the equa-
tion Mi jE j = 0, including in the matrix (34) the solution of
Eq. (26), that is,

n2 − με(ω) = ± n
μ�

ω
, (35)

providing the following electric fields:

E± = 1√
2

⎛⎜⎝ 1

± i

0

⎞⎟⎠, (36)

which represent left-handed (LCP) and right-handed (RCP)
circularly polarized vectors, respectively. The two differ-
ent real refractive indices associated with the modes (36)
imply circular birefringence, ascribed to the isotropic mag-
netic conductivity, �, and expressed in terms of the rotatory
power (RP),

δ = −ω

2
[�(n+) − �(n−)], (37)

specialized for the indices (28) as

δ = −μ�

2
. (38)
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FIG. 3. Imaginary part of n± of Eq. (28) in terms of ω/ω0.
Here, we have set μ = 1, ε0 = 1, ωp/ω0 = 1.5, γ /ω0 = 0.01, and
�/ω0 = 2 (blue), �/ω0 = 10 (red), and �/ω0 = 20 (black).

It is a nondispersive RP that depends linearly on the magnetic
conductivity, being equal to the one that appears in nondisper-
sive dielectrics (ε′ = cte) endowed with isotropic magnetic
conductivity [25]. It is interesting to mention that the absorp-
tion peak amplitude decreases with an increasing magnitude
of the magnetic conductivity �. This is in agreement with
Eq. (32), which provides 	(n±) → 0 in the limit of very large
conductivity (� → ∞). In this limit, therefore, this Drude-
Lorentz-like dielectric exhibits a nearly null absorption. Such
an effect is represented by the different peak amplitudes
in Fig. 3.

In lossy systems, the dichroism takes place when one
propagating mode is more strongly absorbed than the other,
which is directly associated to the imaginary part of the re-
fractive indices. Dichroism represents a tool to distinguish
between Dirac and Weyl semimetals [45], being used also
for enantiomeric discrimination [46,47] and for developing
graphene-based devices at terahertz frequencies [48]. For cir-
cularly polarized modes, the difference of absorption between
left and right-handed circularly polarized modes [49] is given
by the circular dichroism coefficient,

δd = −ω

2
[Im(n+) − Im(n−)] . (39)

Concerning the modes (36) associated with the refractive in-
dices (28), the dichroism coefficient is null,

δd = 0, (40)

since these indices have equal imaginary parts, see Eq. (29b).
This is the same result obtained for the case of a simple dielec-
tric with constant magnetic conductivity ε′ = cte, � = cte
[43]. In this sense, the Drude permittivity, although being
complex and involved, does not modify either the RP or the
dichroism coefficient in relation to the optical panorama of a
simpler dielectric.

B. The phase, group, and the energy velocities

Implementing n =
√

k2/ω in Eq. (35), we obtain

k2 ∓ μ� k − μω2 ε(ω) = 0, (41)

whose the solutions read

k± = ω

√
με′(ω) + iμε′′(ω) + μ2�2

4ω2
± μ�

2
, (42)

with ε′ and ε′′ of Eqs. (10a) and (10b), respectively. These
solutions can also be written as k± = k′

± + i k′′
±, where

k′
± = ω

√
|h(ω)|

2
I+ ± μ�

2
, (43a)

k′′
± = ω

√
|h(ω)|

2
I− , (43b)

and the functions I± and h(ω) are given in Eqs. (30a)
and (30b).

For the propagation analysis, we consider the real part
Eq. (43a), which represents the two distinct modes, k+ and
k−. The phase velocities are

v
(±)
ph = ω

k′±
= 1

�[n±]
, (44)

yielding the phase velocity difference, �vph = v
(−)
ph − v

(+)
ph ,

namely,

�vph = 4ω μ�

2ω2 |h(ω)| I2+ − μ2 �2
, (45)

indicating that the magnetic conductivity � engenders distinct
modes propagating with different phase velocities and bire-
fringence. The group velocity is given in this case by

v(±)
g = 1

μ

k±/ω ∓ μ�/(2ω)

ε(ω) + (∂ωε)ω/2
, (46)

with ∂ωε = ∂ε/∂ω. Considering the expression (42), the
group velocity takes on the form,

v±
g = 1

μ

√
με′(ω) + iμε′′(ω) + μ2�2

4ω2

ε′(ω) + iε′′(ω) + ω
2 (∂ωε)

, (47)

which can be rewritten by separating its real and imaginary
parts as follows:

�[v(±)
g ] = (με0)−1

C2 + D2

√
|h(ω)|

2
( I+ C + I− D), (48a)

	[v(±)
g ] = (με0)−1

C2 + D2

√
|h(ω)|

2
( I− C − I+ D ), (48b)

where

C = ε′(ω) + ω

2

∂ε′

∂ω
, (49a)

D = ε′′(ω) + ω

2

∂ε′′

∂ω
. (49b)

For the real part of the group velocity, see Eq. (48a),
it goes to infinity for very low-frequencies (ω → 0), losing
physical meaning. Figure 4 illustrates the behavior of vg. In
the high-frequency regime (ω → ∞), one finds �[v(±)

g ] →
1/

√
με0 and 	[v(±)

g ] → 0. This asymptotic behavior is the
same one attained in the limit � → 0 and ωp → 0, which
implies ε′ → 1 and ε′′ → 0, recovering a nonabsorbing
dielectric.
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FIG. 4. Group velocity of Eq. (46) or Eq. (47) as a function of
the dimensionless parameter ω/ω0. Solid (dashed) lines represent
the real (imaginary) parts of vg, respectively. Here, we have used:
μ = 1, ε0 = 1, ωp/ω0 = 1.5, γ /ω0 = 0.01, and �/ω0 = 3 (blue),
and � = 0 (black, usual case). The vertical dashed lines indicate
ω/ω0 ≈ {1, 1.44, 1.8}, from left to right, accordingly with Eq. (51).

In scenarios where the group velocity is complex, the sign
propagation is better represented by the energy velocity, VE ,
which is here obtained by substituting the solutions (43a) and
(43b) in expression (23), yielding

V ±
E =

√
2|h(ω)|ωI+ ± μ�

2ωU I±
, (50a)

associated with k′
+ and k′

−, respectively, with

U I
± = με′

2
+ μω

2

∂ε′

∂ω
+ |h(ω)|

4
(I2

+ + I2
−) + μ2�2

8ω2

± μ�

2ω

√
|h(ω)|

2
I−. (50b)

Figure 5 illustrates the energy velocities as a function of the
dimensionless parameter ω/ω0. The characteristic frequencies
ωi

1,2 are given by the real non-negative solutions of the sixth-
order equation in ω,

γ 2

(
ω4 + μ�2

4ε0
ω2

0

)
+ (

ω2
0 − ω2

)
×

[
ω2

(
ω2

0 − ω2 + ω2
p

) + μ�2

4ε0

(
ω2

0 − ω2 − γ 2
)] = 0,

(51)

and ωi
1,2 define the limits of the absorption zone for the prop-

agating modes. This absorption effect modifies the behavior
of V ±

E with the frequency, as one can see. The frequency
ω′′ marks the end of the absorption window for a usual
DD, where the energy velocity is vanishing. Note, however,
that the energy velocity becomes non-null in the absorp-
tion zone of the DD modified by the magnetic conductivity
since the refractive indices develop a finite real part. It im-
plies the reduction of the lossy window, favoring the signal
propagation.

It is also relevant to note the much more involved energy
velocity of Fig. 5 in relation to the correspondent one of

FIG. 5. Energy velocities of Eq. (50a) in terms of the dimension-
less parameter ω/ω0. Red (blue) lines represent V ±

E , respectively.
The black dashed curve illustrates the usual case (23), where � = 0.
Here, we have used: μ = 1, ε0 = 1, ωp/ω0 = 1.5, γ /ω0 = 0.01, and
�/ω0 = 3. The vertical dashed lines indicate ω/ω0 ≈ {1, 1.44, 1.8},
from left to right, accordingly with Eq. (51).

Ref. [43], obviously a consequence of the intricate Drude
permittivity here considered.

The real non-negative solutions of Eq. (51) yield the
characteristic frequencies ωi

1,2 when � �= 0, and also the fre-
quencies ω′, ω′′ for � = 0. In the numerical examples we
have considered, one obtains ω′ ≈ ωi

1. This is the reason
only ωi

1 appears in the plots. Furthermore, we observe the
following.

(i) For 0 < ω < ωi
1, both modes propagates without at-

tenuation. In this regime, the energy velocity V ±
E increases

slowly with frequency, starting from zero. It decreases as
long as it approaches the resonance frequency, ω → ω0 ≈
ωi

1, where there is absorption peaks indicated by the dotted
lines in Figs. 1 and 2. At this frequency, the energy veloc-
ities V +

E and V −
E tend to zero. As for V −

E , it exactly holds
V −

E (ωi
1) = 0.

(ii) For ωi
1 < ω < ωi

2, there occurs propagation and ab-
sorption simultaneously (non-null real and imaginary parts
of n±), since the energy velocities assume non-null values.
In fact, V +

E is positive in this interval (see the red curve
in Fig. 5. On the other hand, the velocity V −

E is negative
in this zone, indicating negative refraction. This latter fea-
ture is in accordance with Fig. 2, where the real part of
n− (blue solid curve) is negative in ωi

1 < ω < ω′′. The fre-
quency ωi

2 defines the end of the absorption band, whose
width is shortened by the presence of magnetic conductiv-
ity. At the same time, the real part of the indices becomes
finite (positive or negative), allowing the signal propaga-
tion, V ±

E �= 0 (forbidden in this interval for a usual Drude
dielectric).

(iii) For ωi
2 < ω < ω′′, there is no absorption as one can

see in the dotted curves of Figs. 1 and 2. Consequently, the
energy velocities V ±

E start to increase progressively to their
asymptotic values (which coincide with the usual case ones).
Furthermore, in this range one still has V −

E < 0, which is in
agreement with the negative refraction of n− that occurs for
ωi

1 < ω < ω′′.
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(iv) For ω > ωi
2: it happens propagation without attenua-

tion for both modes n±.
One last comment, yet very subtle, concerns the similarity

between the black solid curves in Figs. 4 and 5. These curves
represent the real part of the group velocity and the energy
velocity, both for � = 0, respectively. Equations (50) and
(48a) for � = 0 read

V ±
E =

√
|h(ω)|

2 I+

μC + μ

2

√
ε′(ω)2 + ε′′(ω)2 − με′(ω)/2

,

(52a)

�[v±
g ] =

√
|h(ω)|

2 (I+C + I−D)

με0(C2 + D2)
. (52b)

These velocities are only equivalent when there is no absorp-
tion, γ = 0. Hence, applying this condition, one finds ε′′ = 0
and D = 0, such that

V ±
E − �[v±

g ] = −
√|ε′(ω)| + ε′(ω)

C
√

2με0

|ε′(ω)| − ε′(ω)

2C + |ε′(ω)| − ε′(ω)
,

(53)

where we have used

I ′
+ =

√
1 + sgn[με′(ω)]. (54)

Obviously, it holds

V ±
E − �[v±

g ] = 0, (55)

for ε′(ω) > 0 or ε′(ω) < 0. Note that one has (i) ε′(ω) > 0
for ω < ω0, or ω >

√
ω2

0 + ω2
p and (ii) ε′(ω) < 0, when ω0 <

ω <
√

ω2
0 + ω2

p.

III. THE CASE OF ANTISYMMETRIC MAGNETIC
CONDUCTIVITY TENSOR

In this case, the antisymmetric conductivity tensor is pa-
rameterized in terms of a vector b,

σ B
i j = εi jk bk, (56)

implying an antisymmetric magnetic current density,

J = b × B, (57)

where b is a constant vector in space. Such an antisymmetric
magnetic current was investigated in the context of Weyl
semimetals [26], where b̂ defines a direction in space. This
kind of allowed transverse chiral magnetic photocurrent (or-
thogonal to the B field) is induced by linearly polarized light
in WSMs in the presence of parity violation. The effective
permittivity tensor is

εi j (ω) =
[

ε(ω) − i

ω
(b · n)

]
δi j + i

ω
ni b j, (58)

which replaced in Eq. (14) yields the n-polynomial equation

n2 + i μ

ω
(b · n) − με(ω) = 0, (59)

whose solution provides the dispersive refractive index

n(ω) = − i μ

2ω
(k̂ · b) +

√
με(ω) − μ2

4ω2
(k̂ · b)2 , (60)

FIG. 6. Refractive index n of Eq. (61a). Solid (dotted) curves
represent the real (imaginary) parts of n. Here, we have used μ = 1,
ε0 = 1, ωp/ω0 = 1.5, γ /ω0 = 0.01, b/ω0 = 2.5, cos θ = 1 (red).
The black lines indicate the usual case. The frequency ωa

2 defines
the end of the modified absorption zone, enlarged in relation to the
one of a usual DD.

where k̂ is the direction of propagation.
Substituting the dielectric permittivity (8), the refractive

index (60) can be rewritten as

n(ω) = �[n(ω)] + i 	[n(ω)], (61a)

where the real and imaginary parts are

�[n] =
√

| f (ω)|
2

A+, (61b)

	[n] =
√

| f (ω)|
2

A− − μ

2ω
(k̂ · b), (61c)

with ε′ and ε′′ of Eqs. (10a) and (10b), respectively, and

A± =

√√√√√
1 + μ2ε2

0

[
ε′′(ω)

f (ω)

]2

± sgn[ f (ω)], (61d)

where f (ω) = με′(ω) − μ2(b · k̂)2/(2ω)2.
The general behaviors of �[n] and 	[n] are represented in

Figs. 6 and 7, considering two distinct configurations of the
vector b relative to the direction of propagation, cos θ = ±1,
defining propagation parallel and antiparallel to b, respec-
tively, with k̂ · b = b cos θ . The case θ = π/2 is effectively
equivalent to the situation of a dielectric stripped of magnetic
conductivity (b = 0), which is represented by a black line in
Figs. 6 and 7.

Near the origin, the real part of n goes to infinity for
cos θ = 1 whereas it goes to zero for the antiparallel propaga-
tion (cos θ = −1), a different behavior in comparison with the
conventional DD, as already mentioned. We notice in Figs. 6
and 7 that around ω/ω0 = 1 the real parts of n for parallel and
antiparallel propagation (cos θ = ±1) become equivalent and
nearly overlap to the black line. This superposition also occurs
in the very high-frequencies regime.

In the very high-frequency regime, the real part goes as
�[n](ω � ω0) → √

με0. For the very low-frequency limit,
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FIG. 7. Refractive index n of Eq. (61a). Solid (dotted) curves
represent the real (imaginary) parts of n. Here, we have used: μ = 1,
ε0 = 1, ωp/ω0 = 1.5, γ /ω0 = 0.01, b/ω0 = 2.5, and cos θ = −1
(blue). The black lines indicate the usual case. Here one also notes
the enlargment of the absorption zone in relation to the one of a
usual DD.

ω → 0, the refractive index becomes purely imaginary,

n � iμb

2ω
(− cos θ + | cos θ |), (62)

establishing �[n] = 0 near the origin. Further, it yields
	[n] = 0 for cos θ = 1 (see dashed line in Fig. 6) and a
diverging n for cos θ = −1 (see dashed line in Fig. 7).

Differently from the standard Drude-Lorentz model, where
the absorption occurs around the resonance frequency ω0,
the presence of a non-null magnetic conductivity, given by
b = |b|, enables absorption even in the small frequency
regime, ω � ω0, accordingly to Eq. (62). Therefore, in this
antisymmetric scenario for the magnetic conductivity, absorp-
tion effects can occur in regions outside the neighborhood of
the resonance frequency ω0. On the other hand, such an effect
does not happen by means of absorption peak as it occurs in
the DD.

The peaks of the real and imaginary parts are given by

�[n](ω = ω0) =
√

| f (ω0)|
2

A+(ω0), (63a)

	[n](ω = ω0) =
√

| f (ω0)|
2

A−(ω0) − μ

2ω0
(k̂ · b),

(63b)

where f (ω0) = με0 − μ2(b · k̂)2/(2ω0)2. A very subtle dif-
ference between the absorption peaks (imaginary part of n)
can be observed by comparing Figs. 6 and 7. One notices that
	[n]|θ=0 < 	[n]|θ=π , a direct consequence of the last term in
Eq. (63b), which reveals an observable distinction regarding
the propagation direction relative to the magnetic conductivity
vector b.

A. Propagation modes

The propagation modes are found for n along the Z axis,
and the vector b written as

n = (0, 0, n) , b = b(0, sin θ, cos θ ) ≡ (0, b2, b3), (64)

where θ is the angle between n and b. The matrix Mi j of
Eq. (15) is

[Mi j] =

⎡⎢⎢⎢⎣
n2 − με + n iμ

ω
b3 0 0

0 n2 − με + n iμ
ω

b3 0

0 −n iμ
ω

b2 −με

⎤⎥⎥⎥⎦,

(65)

with n · b = n b3. Replacing the index relation (59) in the
matrix (65), the condition Mi jE j = 0 provides two mutually
orthogonal propagation modes

E± = 1√
2(1 + |Q|2)

⎛⎜⎝±
√

1 + |Q|2
−1

iQeiα

⎞⎟⎠, (66)

with Q = b2N/(ωε), endowed however with a longitudinal
component. Here, we have rewritten the complex refractive
index as n = Neiα , with

N =

√√√√(√
| f (ω)|

2
A+

)2

+
(√

| f (ω)|
2

A− − μb cos θ

2ω

)2

,

(67)

and

tan α = A−
A+

− μb cos θ

ωA+
√

2| f (ω)| . (68)

For the particular case where b2 = 0, the solutions in Eq. (66)
simplify as

E± = 1√
2

⎛⎜⎝±1

−1

0

⎞⎟⎠, (69)

representing linearly polarized vectors, orthogonal to the
propagation direction. As the refractive index of Eq. (61a) has
an imaginary piece, there is absorption for both modes given
in Eq. (69) (in equal magnitude), measured in terms of the
absorption coefficient [1], α̃ = 2ω Im(n) = μ b3.

B. The group and energy velocities of the antisymmetric case

Rewritting Eq. (59) in terms of k, one has

k2 + i μ(b · k) − με(ω) ω2 = 0, (70)

whose solution yields the dispersion relation

k(ω) = − iμ

2
(b · k̂) +

√
με(ω) ω2 − μ2

4
(b · k̂)2, (71)
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FIG. 8. Group velocity of Eq. (75) for cos θ = ±1. The solid
(dashed) lines represent the real (imaginary) parts of vg. Here, we
have used μ = 1, ε0 = 1, ωp/ω0 = 1.5, γ /ω0 = 0.01, b/ω0 = 2.5
(blue), and b = 0 (black, the usual case). The vertical dashed lines
indicate ω/ω0 ≈ {0.59, 1, 1.8, 2.11} from left to right, accordingly
with Eq. (77).

with real and imaginary parts given as, respectively,

k′(ω) = ω

√
| f (ω)|

2
A+, (72a)

k′′(ω) = ω

√
| f (ω)|

2
A− − μ

2
(k̂ · b). (72b)

Taking the derivative in relation to ki-component in (70), the
ith component of the group velocity is

vi
g = ki + i μ bi/2

μω[ε(ω) + fε (ω) ω/2]
. (73)

Using now ki = ki′ + iki′′, one finds

vg = k′/(μω) + i ωε′′k̂′/(2k′)
C + iD

, (74)

with C and D defined by Eq. (49). The latter also indicates
that the group velocity is defined along the k′ direction. Sub-
stituting the solution (72), the group velocity is written as a
function of ω :

�[vg] = (με0)−1

C2 + D2

√
| f (ω)|

2
(A+C + A−D), (75a)

	[vg] = (με0)−1

C2 + D2

√
| f (ω)|

2
(A−C − A+D). (75b)

The group velocity behavior as a function of the di-
mensionless parameter ω/ω0 is shown in Fig. 8. For
high-frequencies, it holds �[vg] = 1/

√
μ0ε0 = 1 (for μ =

μ0), whereas the imaginary part goes to zero, 	[vg] = 0. At
the origin, its real part is well behaved whereas the imaginary
part goes to infinity. This latter behavior is also observed
in a dielectric with constant magnetic conductivity, ε′ = cte,
ε′′ = σ/ω, � = cte, as seen in Ref. [43].

Assessing now the energy propagation signal, we imple-
ment (72a) in (23), in such a way the energy velocity is

VE =
√

| f (ω)|
2

A+
U A

, (76a)

FIG. 9. Energy velocity of Eq. (76a) in terms of the dimension-
less parameter ω/ω0. The solid red line represents V E for cos θ =
±1. The black solid curve illustrates the usual case (23), where
b = 0. Here, we have used μ = 1, ε0 = 1, ωp/ω0 = 1.5, γ /ω0 =
0.01, and b/ω0 = 2.5. The vertical dashed lines indicate ω/ω0 ≈
{0.59, 1, 1.8, 2.11}, from left to right, accordingly with Eq. (77).

with

U A = με′

2
+ μω

2

∂ε′

∂ω
+ | f (ω)|

4
(A2

+ + A2
−) + μ2b2

8ω2
cos2 θ

− μb cos θ

2ω
A−

√
| f (ω)|

2
. (76b)

The behavior of the energy velocity is depicted in Fig. 9
in terms of ω/ω0. The frequencies ωa

1,2 define a region where
occurs an absorption peak followed by a strong reduction of
the real part of the refractive index n, as indicated in Figs. 6
and 7. In details, we observe that the following.

(i) For 0 < ω < ωa
1: one has a total absorption range, since

Re[n] = 0, where there is no propagation. Hence, the energy
velocity is null in this frequency window.

(ii) For ωa
1 < ω < ω′: there occurs propagation together

with absorption, since Re[n] �= 0 and Im[n] �= 0. As a conse-
quence, there is a non-null energy velocity in this small region,
as indicated in Fig. 9. As the frequency approaches ω′, there
occurs an absorption peak followed by a rapid decreasing of
Re[n] to zero, which marks the beginning of a second total
absorption zone, where VE vanishes. This behavior appears in
terms of a diminishing VE for ω approaching ω′ and VE = 0
thereafter. See Fig. 9.

(iii) For ω′ < ω < ωa
2: there is no propagation, Re[n] = 0,

as pointed in Figs. 6 and 7, in such a way only absorption
takes place and VE = 0. This interval magnitude represents
the enlargement of the absorption zone in the presence of the
antisymmetric magnetic conductivity, compared to the usual
DD absorption window, which is now incremented by �ω =
ωa

2 − ω′′.
(iv) For ω > ωa

2: the absorption starts to diminish while
the propagation regime is partially restored. As a conse-
quence, the energy velocity assumes increasing magnitude,
tending to its asymptotic value.

(v) The entire plot of Fig. 9 reveals a scenario where
the signal propagation is severely constrained for frequencies
below ωa

2, which is in contrast with the signal propagation in
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the absorption windows of the Drude isotropic conductivity
case, represented by the energy velocity of Fig. 5.

The characteristic frequencies can be determined by solv-
ing the sixth-order equation in ω,

γ 2

(
ω4 − μb2 cos2 θ

4ε0
ω2

0

)
+ (

ω2
0 − ω2

)
×

[
ω2

(
ω2

0 − ω2+ω2
p

) − μb2 cos2 θ

4ε0

(
ω2

0 − ω2−γ 2
)] = 0,

(77)

from which the real and positive solutions yield ωa
1,2,3 when

b cos θ �= 0, and ω′,′′ when b cos θ = 0. However, as ωa
3 ≈ ω′,

we have chosen to depict only ω′ in the plots.

IV. THE CASE OF THE SYMMETRIC
CONDUCTIVITY TENSOR

We write the magnetic conductivity tensor in the symmet-
ric form

σBi j = 1
2 (ai c j + a j ci ), (78)

where ai and c j are components of the orthogonal background
vectors a and c, respectively. In this case, the permittivity
tensor (13) is

εi j (ω) = ε(ω)δi j + i

2ω
[ai(c × n) j + ci(a × n) j]. (79)

The null determinant of the matrix Mi j with permittivity (79)
provides n-polynomial equations,

n2 − με(ω) ± i μ

2ω
n · (a × c) = 0. (80)

Writing n = n k̂, the solutions of (80) are

n±(ω) = ∓ i μ

4ω
k̂ · (a × c) +

√
με(ω) − μ2

16ω2
[k̂ · (a × c)]2

(81)

or

n± = �[n±] + i 	[n±], (82)

with

�[n±] =
√

|g(ω)|
2

S+, (83a)

	[n±] =
√

|g(ω)|
2

S− ∓ μ

4ω
k̂ · (a × c), (83b)

where

S± =

√√√√√
1 + μ2

[
ε′′(ω)

g(ω)

]2

± sgn[g(ω)] (84)

and

g(ω) = με′(ω) − μ2(k̂ · (a × c))2/(4ω)2. (85)

Notice that the expressions (83a) and (83b) can be obtained
from the results of the antisymmetric case (61b) and (61c)
by implementing b → ±(a × c)/2. The behavior of n± as
a function of ω/ω0 is illustrated in Figs. 10 and 11, where

FIG. 10. Refractive indices n± of Eq. (82). Solid (dotted) lines
indicate the real (imaginary) part of n±. The magenta (red) curves
illustrate n± for cos ϕ = 1, respectively. The black lines depicts the
usual case where |a × c| = 0. Here, we have used μ = 1, ε0 = 1,
ωp/ω0 = 1.5, γ /ω0 = 0.01, and |a × c|/ω0 = 2.5. The solid red and
magenta curves lie on top of each other. The plot also reveals the
opening of a new absorption band for low frequencies, while the
dominant lossy region width is slightly augmented.

we have used k̂ · (a × c) = |a × c| cos ϕ. From Eq. (82), one
notices that �[n+] = �[n−] and 	[n±]|ϕ=0,π = 	[n∓]|ϕ=π,0,
which indicates a kind of correspondence symmetry between
the absorptive terms of n± relative to the sense (positive or
negative) of propagation.

In the very high-frequency limit, the refractive indices be-
come n± → √

με0. On the other hand, in the low-frequency
regime, one obtains

n± � iμ|a × c|
4ω

(∓ cos ϕ + | cos ϕ|). (86)

FIG. 11. Refractive indices n± of Eq. (82). Solid (dotted) lines
indicate the real (imaginary) part of n±. The cyan (blue) lines repre-
sent n± for cos ϕ = −1, respectively. The black lines illustrates the
usual case, where |a × c| = 0. Here, we have used μ = 1, ε0 = 1,
ωp/ω0 = 1.5, γ /ω0 = 0.01, and |a × c|/ω0 = 2.5. The solid blue
and cyan curves are overlapped. One notes the opening of a new ab-
sorption band for low frequencies, while the dominant lossy window
length is slightly expanded.

184444-10



DRUDE-LORENTZ DIELECTRIC IN THE PRESENCE OF A … PHYSICAL REVIEW B 109, 184444 (2024)

Hence n+|ϕ=0 = n−|ϕ=π = 0 and n+|ϕ=π = n−|ϕ=0 � iμ|a ×
c|/(2ω), which explains the divergence in the origin observed
in Figs. 10 and 11.

A. Propagation modes

To evaluate the propagating modes, we choose an appro-
priate coordinate system where the magnetic conductivity
vectors are given by a = (a1, 0, a3), c = (0, c2, 0), such that

a × c = (−a3c2, 0, a1c2). (87)

For propagation along the Z axis, n = (0, 0, n), the matrix
Mi j is

[Mi j] =

⎡⎢⎢⎢⎣
n2 − με − i μ

2ω
a1c2n 0 0

0 n2 − με + i μ

2ω
a1c2 0

−i μ

2ω
a3c2n 0 −με

⎤⎥⎥⎥⎦,

(88)

where ε = ε(ω) is the complex electric permittivity. Thus, by
implementing Eq. (80) in Eq. (88), the relation Mi jE j = 0
provides the following polarization vectors:

E+ = 1√
1 + |A|2

⎛⎝ 1
0

−iA

⎞⎠ , E− =
⎛⎝0

1
0

⎞⎠, (89)

associated with n±, respectively, with A = a3c2/(2ωεn). We
observe that E± represent linearly polarized vectors, with
E+ endowed with a longitudinal component. Since the real
part of n± is the same one, there is no birefringence. On the
other hand, the imaginary parts are different, meaning that the
propagating modes are absorbed at different degrees, which
can be measured by the absorption difference per unit length,

�d

l
= 2π

λ0
[ Im(n+) − Im(n−) ], (90)

with λ0 being the vacuum wavelength of incident light. Hence,
for the indices of Eq. (82) and propagation along the z-axis,
the absorption difference is

�d

l
= −μa1 c2

2
. (91)

B. The group and energy velocities of the symmetric case

Backing to Eq. (80) in terms of k and ω, we rewrite it as

k2 ± i μ

2
k · (a × c) − μω2 ε(ω) = 0, (92)

whose solutions are

k±(ω) = k′
± + ik′′

±, (93)

with

k′
±(ω) = ω

√
|g(ω)|

2
S+, (94a)

k′′
±(ω) = ω

√
|g(ω)|

2
S− ∓ μ

4
k̂ · (a × c), (94b)

FIG. 12. Group velocity of Eq. (97) in terms of the dimension-
less parameter ω/ω0 for cos ϕ = ±1. Solid (dashed) lines represent
the real (imaginary) parts of vg. The solid blue line represents V ±

E

for cos θ = ±1. Here, we have used: μ = 1, ε0 = 1, ωp/ω0 = 1.5,
γ /ω0 = 0.01, |a × c|/ω0 = 2.5 (red), and |a × c|/ω0 = 0 (black).
The vertical dashed lines indicate ω/ω0 ≈ {0.33, 1, 1.8, 1.87}, from
left to right, accordingly with Eq. (99).

and S± of Eq. (84). Evaluating the derivative of Eq. (92) rela-
tive to ki component, one finds the following group velocities:

v±
g = ∂ω

∂k
=

k
μω

± i (a×c)
4ω(

ε′ + ω
2

∂ε′
∂ω

) + i
(
ε′′ + ω

2
∂ε′′
∂ω

) . (95)

Using Eq. (93), the group velocity (95) takes on the form

v±
g =

k′
μω

+ i ωε′′ k̂
2k′(

ε′ + ω
2

∂ε′
∂ω

) + i
(
ε′′ + ω

2
∂ε′′
∂ω

) , (96)

whose the real and imaginary parts are

�[v±
g ] = (με0)−1

C2 + D2

√
|g(ω)|

2
(S+C + S−D), (97a)

	[v±
g ] = (με0)−1

C2 + D2

√
|g(ω)|

2
(S−C − S+D). (97b)

Figure 12 shows the real and imaginary parts of the group
velocity given in Eq. (97) in terms of the dimensionless
parameter ω/ω0. We have considered the previous case
where a = (a1, 0, a3) and c = (0, c2, 0), such that a × c =
(−a3c2, 0, a1c2), and k̂ = ẑ. For high frequencies (ω � ω0),
one has �[vg] → 1/

√
μ0ε0 = 1 and 	[vg] = 0.

Considering a3 = 0, the propagating modes represented by
Eq. (89) turn out perpendicular to the direction of propagation,
satisfying the conditions (18a) and (18b) for the evaluation of
the energy velocity. In this sense, Eqs. (94a) and (94b) yield

V ±
E =

√
|g(ω)|

2

S+
U S±

, (98a)

with

U S
± = με′

2
+ μω

2

∂ε′

∂ω
+ |g(ω)|

4
(S2

+ + S2
−)

+ μ2|a × c|2
32ω2

cos2 ϕ ± |a × c|
4ω

cos ϕ

√
|g(ω)|

2
S−.

(98b)
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FIG. 13. Energy velocity V ±
E of Eq. (98a) in terms of the di-

mensionless parameter ω/ω0. The solid blue line represents V ±
E

for cos θ = ±1. The black solid curve depicts the usual case (null
magnetic conductivity) of Eq. (23). Here, we have used: μ = 1, ε0 =
1, ωp/ω0 = 1.5, γ /ω0 = 0.01, and |a × c|/ω0 = 2.5. The vertical
dashed lines indicate ω/ω0 ≈ {0.33, 1, 1.8, 1.87}, from left to right,
accordingly with Eq. (99).

The behavior of the energy velocity is represented in
Fig. 13 in terms of ω/ω0. As it happened in the antisymmetric
case, see Sec. III, the frequencies ωs

1,2 define the region where
occurs an absorption peak followed by an abrupt and strong
reduction of the real part of the refractive indices. Also, we
observe the existence of two lossy windows where the energy
velocity is null. In details:

(i) For 0 < ω < ωs
1: there does not occur propagation,

since Re[n±] = 0 and the energy velocity is null, V ±
E = 0.

(ii) For ωs
1 < ω < ω′: propagation and absorption occur

simultaneously and V ±
E �= 0, since the real and imaginary

parts of n± are non-null, see Figs. 10 and 11. Whereupon
the resonance frequency ω′, the parts Re[n±] undergo a rapid
deacreasing, implying a null energy velocity.

(iii) For ω′ < ω < ωs
2: only absorption occurs, since

Re[n±] = 0 and V ±
E = 0 (see Figs. 11 and 13).

(iv) Finally, for ω > ωs
2: the propagation of both modes

n± is restored, while the absorption effect diminishes rapidly
to zero. The energy velocity increases monotonically to its
asymptotic value.

To obtain the characteristic frequencies, we need to solve
the following the sixth-order equation:

γ 2
(
ω4 − s ω2

0

) + (
ω2

0 − ω2
)

× [
ω2

(
ω2

0 − ω2 + ω2
p

) − s
(
ω2

0 − ω2 − γ 2
)] = 0 (99)

with

s = μ

16ε0
|a × c|2 cos2 ϕ, (100)

in the place of the factor μb2 cos2 θ/4ε0 in Eq. (77). Equa-
tion (99) provides the roots ωs

1,2,3, when |a × c| cos ϕ �= 0,
and ω′,′′ when |a × c| cos ϕ = 0. We mention that ωs

3 ≈ ω′,
then we have depicted only ω′ in the previous plots.

V. FINAL REMARKS

In this paper, we have discussed the properties of wave
propagation and absorption in a Drude-Lorentz dielectric in
the presence of magnetic conductivity. The analysis was per-
formed for three configurations of the magnetic conductivity
tensor: isotropic, antisymmetric, and symmetric. For each
case, we have obtained the dispersion relation and refractive
indices as a functions of the frequency and of the Drude-
Lorentz parameters, with their properties properly scrutinized
for all configurations. The involved refractive indices were
examined in the range of low and high frequencies, be-
ing always compared to Drude’s usual dielectric behavior.
The group and the energy velocities were evaluated for all
cases, being the latter one used as tool to examine signal
propagation.

In lossy scenarios, as the group velocity becomes com-
plex and loses physical interpretation, the signal propagation
passes to be described by the energy velocity, which is real. In
the high-frequency limit, one obtained �[n] = √

με0, while
the energy velocity is reduced to VE = 1/

√
με0 (for all the

cases examined). The absorption goes to zero in this fre-
quency regime, 	[n] → 0. Near the origin and at intermediary
frequencies, however, the refractive indices behave in some
different ways.

The first case studied was the DD with isotropic mag-
netic conductivity, � �= 0, examined in Sec. II. The associated
refractive indices show distinct features in relation to the
conventional DD. Near the origin, it occurs �[n+] → ∞,
approaching the behavior of a magnetized plasma index, while
one has �[n−] → 0 (for ω → 0). These latter properties also
manifest in a simple dielectric, ε′ = cte, ε′′ = σ/ω, with � =
cte [43]. The absorption window now has its length reduced
by the magnetic conductivity. Moreover, the lossy interval
begins to support signal propagation, V ±

E �= 0, because the
refractive indices n± develop non-null real parts in the range
ωi

1 < ω < ω′′, in which the signal propagation is favoured.
See Figs. 1, 2, and 5 for the details. Thus the frequency
window where VE = 0 is nearly supressed in the presence of
the magnetic conductivity, � �= 0.

For the antisymmetric and symmetric cases of Secs. III
and IV, respectively, we observe that the frequency window,
where the energy velocity is null, is slightly “enhanced” due
to the presence of the magnetic conductivity (b cos θ �= 0, and
|a × c| cos ϕ �= 0). Such a feature occurs because the non-null
magnetic conductivity enlarges the frequency window where
absorption effects can take place, see Figs. 6 and 7 for the
antisymmetric case, and Figs. 10 and 11 for the symmetric
case. In both configurations, the energy velocity becomes pre-
dominantly null for frequencies approximately smaller than
2ω0, a window in which the signal propagation is severely
constrained. See the plots of Figs. 9 and 13. Such a behavior
states a sharp difference in relation to the DD with isotropic
conductivity of Sec. II, which presents enhanced progapation
in this window, as already mentioned. The properties of the

2Using the SI base units, one can find that AT−1 m−2 = �−1 s−1.
Here �−1 is the inverse of “ohm,” called “siemens.” Usually, this is
the unit for conductivities and its inverse for resistivity.
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TABLE I. Comparison of propagation properties of each modified scenario.

Refractive indices at origin Absorption zone Negative refraction Signal propagation

Drude dielectric (DD) n �= 0, n ∈ R intermediary one,
whereupon the resonance

no yes, except in the window
ωi

1 < ω < ω′′ of Fig. 5

DD with � n+ → ∞
n− → 0

	[n±] = 0

one intermediary
reduced window

no
yes

yes, favoured for
ω � 2ω0

DD/antisymmetric σ B
i j �[n±] = 0 for θ = 0

	[n] → 0 for θ = 0
	[n] → ∞ for θ = π

two zones: (i) near the
origin; (ii) whereupon the

resonance (enlarged)

no severely constrained for
ω � 2ω0

DD/symmetric σ B
i j �[n±] = 0

	[n+, n−] → 0 for ϕ = 0, π

	[n−, n+] → ∞ for ϕ = 0, π

two zones: (i) near the
origin; (ii) whereupon the

resonance (enlarged)

no severely constrained for
ω � 2ω0

DD refractive indices and DD with magnetic conductivity are
displayed in Table I.

As it is known in the literature, in nonabsorbing media the
energy velocity and group velocity are equal, vg = vE , equiv-
alence that disappears in lossy media where it holds vg �= vE .
In the present work all the analyzed scenarios are endowed
with absorption and ε′′ = 0, which justifies the attainment of
vg �= vE in all sections of the work.

As a final comment, we address the question of comparing
the present theoretical results with some experimental data.
As a fact of matter, we have no knowledge of works involving
exotic materials modeled by the Drude-Lorentz permittivity
and also having a magnetic conductivity, J = σ B · B, with
the magnetic conductivity assumed to be a property of the
material. The lack of experimental literature on this spe-
cific subject represents an obstacle to possible comparisons
between our theoretical/analytical results and experimental
data. Nevertheless, it is possible to approximately estimate
the order of magnitude of σ B based on another theoretical
investigation about magnetic currents, where there appears a
kind of transversal photocurrent (see Eq. (3) of Ref. [26]),
which is similar to our antisymmetric case for J = σ · B.
The authors found that, for a class of Weyl semimetals of
TaAs materials, currents of intensities of 0.75 µA (for type-I
Weyl semimetal) and 2.5 µA (for type-II Weyl semimetal) are
expected to occur when considering the numerical parameters
in Table 1 of of page 4, Ref. [26]. Assuming now that our
magnetic conductivity has the same order of magnitude as
the conductivity expected in the transverse photocurrents in

Weyl semimetals, we estimate the order of magnitude of our
σ B as follows. In such a Table 1, the authors have obtained
the magnitude of currents related to the parameters adopted,
including B = 0.5T . One may thus write i = JS, that is, i =
σ B S, which yields

σ � i

B
(m−2), (101)

where we are determining an approximate value for σ per unit
area S. Therefore, for type-I Weyl semimetal, we find

σ = 1.5 × 10−6A T−1 m−2, (102)

while for type-II Weyl semimetal, it holds

σ = 5 × 10−6 A T−1 m−2. (103)

These values seem to indicate that the magnetic conduc-
tivity considered in Ref. [26] has an order of magnitude
10−6 A T−1 m−2, or, equivalently2, σ ∼ 10−6 �−1 s−1. Such
an order of magnitude may be useful for experimental con-
cerned investigations.
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