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Electronic structure and magnetism in P4/nmm KCoO2
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KCoO2 has been found in 1975 to exist in a unique structure with P4/nmm space group featuring Co atoms
in a square pyramidal coordination. The Co atoms in the plane are linked by O in a square arrangement
reminiscent of the cuprates. However, its electronic structure has not been studied until now. Unlike Co atoms
in LiCoO2 and NaCoO2, which are in octahedral coordination and are nonmagnetic band structure insulators,
the unusual coordination of d6 Co3+ in KCoO2 is here shown to lead to a magnetic stabilization of an insulating
structure with high magnetic moments of 4μB per Co. The electronic band structure is calculated using the
quasiparticle self-consistent (QS)GW method and the basic formation of magnetic moments is explained in terms
of the orbital decomposition of the bands. The optical dielectric function is calculated using the Bethe-Salpeter
equation including only transitions between equal spin bands. The magnetic moments are shown to prefer an
antiferromagnetic ordering along the [110] direction. Exchange interactions are calculated from the transverse
spin susceptibility and a rigid spin approximation. The Néel temperature is estimated using the mean-field and
Tyablikov methods and found to be between ∼100 and ∼250 K. The band structure in the AFM ordering can be
related to the FM ordering by band folding effects. The optical spectra are similar in both structures and show
evidence of excitonic features below the quasiparticle gap of ∼4 eV.
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I. INTRODUCTION

Among the alkali oxocobaltates, LiCoO2 and NaCoO2

have received much more attention than the larger cation ones
because of their role in Li-ion batteries and the reported su-
perconductivity in hydrated Na1/3CoO2:H2Oy. Both of these
exhibit the layered R3̄m structure, which can be viewed as
consisting of edge sharing, octahedrally coordinated CoO2

layers with a triangular Co lattice stacked in an ABC stack-
ing with intercalated Li or Na. The octahedral coordination,
splitting d levels in a sixfold degenerate t2g, and a fourfold
degenerate eg level, leads to a simple nonmagnetic insulat-
ing band structure for the d6 configuration of Co3+ resulting
from Li or Na donating their electron to the CoO2 planes.
However, starting with K, the alkali ions are too large to fit
in this structure. Only half the amount of K can be main-
tained in between CoO2 layer in this KxCoO2 structure. For
larger x, this structure becomes unstable and other structures
were reported. In 1975, two different synthesis methods for
KCoO2 were reported and led to two totally different crystal
structures with different Co coordination. The first is a unique
layered structure with square pyramidal coordination, with the
P4/nmm space group [1]. The other is a stuffed cristobalite-
type structure in which Co is tetrahedrally coordinated with O
in an open network of corner sharing tetrahedra, filled with K
ions. Two related forms with space groups I 4̄ and I 4̄2d were
found and called respectively β and α-KCoO2 [2]. Besides
these two papers, there seem to be no other experimental
studies reported on KCoO2. Only very recently, a new syn-
thesis method was developed for KCoO2 in the pyramidal
coordination and P4/nmm space group [3]. KCoO2 in the
P4/nmm structure was recently identified as a candidate for

K batteries in a computational theoretical search based on
structures available in Materials Project [4]. It was found to
have a rather high diffusion barrier for K compared to Li
and Na in their corresponding cobaltates, which makes it less
attractive as cathode material although it was found to have
a high theoretical capacity. Besides a magnetic moment of
2.99 μB, no details on its electronic structure of magnetic
properties were provided in this study.

Because of the occurrence of a square coordination of
CoO2, which resembles that of CuO2 in high-Tc materials, this
phase may be of interest for nonconventional superconductiv-
ity. We will further show that it is actually antiferromagnetic
and in that sense may play the role of the La2CuO4 parent
compound of high-Tc superconductors. The occurrence of a
d6 in other than the octahedral environment is of interest
because it has particular stability in the octahedral environ-
ment where it exactly fills the lower t2g levels and leads to a
simple band insulating behavior. In the pyramidal or tetrahe-
dral environment this is not the case, hence we expect that
stabilization of these environments requires formation of a
magnetic moment. The square pyramidal environment in the
P4/nmm structure is highly unusual such that a closely bound
O and an electropositive K ion occur on the opposite sides of
the square plane. Here we present first-principles electronic
structure calculations of this material, which lead to a basic
understanding of its magnetic properties.

II. COMPUTATIONAL METHODS

The calculations in this study combine density functional
theory (DFT) with many-body perturbation theory (MBPT).
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While DFT is used as a starting point for the electronic struc-
ture, the generalized gradient approximation (GGA) (used
here in the Perdew-Burke-Ernzerhof (PBE) parametrization
[5]) is not sufficiently accurate to make accurate predictions
for band gaps and optical properties. To calculate the quasi-
particle band structure, we use Hedin’s GW method [6,7]
in which G is the one-electron Green’s function and W is
the screened Coulomb interaction. More specifically, we here
use the quasiparticle self-consistent version of GW (QSGW )
[8,9], which becomes independent of the starting DFT ap-
proximation by including a nonlocal exchange correlation
potential extracted from the GW self-energy and updating
the noninteracting H0 Hamiltonian. By noninteracting, we
here mean that the dynamical (energy-dependent) interac-
tions are not included but only a static interaction as in
DFT.

The band structure method used to solve the Kohn-Sham
equations underlying both the DFT and QSGW method is
the full-potential linearized muffin-tin orbital (FP-LMTO)
method as implemented in the QUESTAAL codes [10]. This
is an augmentation method in which the basis set consists
of atom-centered smoothed Hankel function spherical waves
[11], augmented inside the muffin-tin spheres with solutions
of the radial Schrödinger equation of the all-electron poten-
tial at a linearization energy and their energy derivatives.
Core states, calculated with atomic boundary conditions at the
muffin-tin radius, are thus fully included in the charge den-
sity (thereby including core-valence exchange) and semicore
states are further included in the basis set as local orbitals
with a fixed boundary condition at the sphere radii. Here we
include K 3p states as local orbitals.

In the LMTO implementation of the GW method, two-
point quantities such as the bare and screened Coulomb
interaction are expanded in an auxiliary mixed product basis
set, which incudes products of partial waves inside the spheres
and interstitial plane waves. Such a basis set is more efficient
than a plane-wave basis set to describe the screening and
reduces the need to include high-energy empty bands.

The optical dielectric function is calculated using the
Bethe-Salpeter equation (BSE) in the Tamm-Damcoff ap-
proximation and using a static W [12] as implemented by
Cunningham et al. [13] in the LMTO basis set within the
QUESTAAL package.

The basis set and other convergence parameters are dis-
cussed along with the results. A well-converged �-point
centered k mesh of 8 × 8 × 4 and the tetrahedron method are
used for the Brillouin zone integrations in the DFT calcu-
lations. The atom-centered basis set allows us to interpolate
the GW self-energy via a Fourier transform to real space
and back to any desired k point even when using a some-
what coarser 5 × 5 × 3 mesh of points on which the GW
self-energy is evaluated. The BSE calculations are performed
including 24 valence and 16 conduction bands per primitive
cell.

To study the magnetic exchange interactions, we use the
approach of Kotani and van Schilfgaarde [14], which extracts
the exchange interactions from the transverse spin susceptibil-
ity within a rigid spin approximation within each muffin-tin
sphere. The noninteracting spin-spin response function is first
calculated from the spin-dependent QSGW eigenstates and

eigenvalues,

χ0+−
q (r, r′, ω)

=
occ∑
kn↓

unocc∑
k′n′↑

�∗
kn↓(r)�k′n′↑(r)�∗

k′n′↑(r′)�kn↓(r′)

ω − (εk′n′↑ − εkn↓) + iδ

+
unocc∑
kn↓

occ∑
k′n′↑

�∗
kn↓(r)�k′n′↑(r)�∗

k′n′↑(r′)�kn↓(r′)

−ω − (εkn↓ − εk′n′↑) + iδ
, (1)

with k′ = k + q. It is then coarse grained by averaging over
the spheres, which constitutes the rigid spin approximation,

D0(q, ω)aa′ =
∫

a
d3r

∫
a′

d3r′ēa(r)χ0+−
q (r, r′, ω)ēa′ (r′), (2)

with ea(r) = Ma(r)/Ma, Ma = ∫
a d3rMa(r), ēa =

ea(r)/
∫

a d3r|ea(r)|2. So the ēa(r) ∝ ea(r) is a vector along
the local magnetization density Ma(r) = n↑(r) − n↓(r),
normalized by the total moment per sphere Ma, which is
normalized by

∫
a d3rēa(r)ea(r) = 1. Following Antropov

[15], the exchange interactions defined by

Jαβ (r, r′) = − δ2E

δMα (r)δMβ (r′)
(3)

corresponds to the inverse of the transverse susceptibility
J = χ−1 because the changes in magnetization originate from
an external magnetic field and χ is the response function
vs the external magnetic field. This differs from the above
noninteracting susceptibility, which defines the response with
respect to the total field, including the one generated by
the interactions. Assuming now that the similarly sphere-
averaged interaction term is q independent and site diagonal,
Ūaa′ (q, ω) = Ūa(ω)δaa′ Kotani and van Schilfgaarde show that
one can find Ūa(ω) by requiring to fulfill a sum rule and the
ω → ∞ asymptotic behavior. This then yields directly the
inverse of the interacting D(q, ω) as

[D(q, ω)]−1
aa′ = ω

Ma
δaa′ − J̄aa′ (q, ω),

J̄aa′ (q, ω) = −[D0(q, ω)]−1
aa′

+
(∑

b

Mb[D0(q = 0, ω)]−1
ba /Ma

)
δaa′ . (4)

This J̄aa′ is closely related to the Heisenberg exchange inter-
actions, as discussed further in [14],

[DH(q, ω)]−1
aa′ = ω

Ma
δaa′ − JH(q), (5)

which suggest taking JH(q) = J (q, ω = 0)aa′ , i.e., the static
limit. Here Jaa′ differs from J̄aa′ only by removing the on-site
term of [D0]−1. Although, we sketched here the more general
presentation of [14] of the enhanced susceptibility, in the end,
we obtain the exchange interactions from the static version
of the inverse of the bare susceptibility [D0]−1. This is also
compatible with the Liechtenstein et al. multiple scattering
formulation of the linear response theory [16].

The Heisenberg exchange interactions in real space J0T
a,a′

can then be obtained by inverting the Bloch sum Jaa′ (q) =∑
T eiq·TJ0T

a,a′ , i.e., by an integral over the Brillouin zone.
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FIG. 1. P4/nmm crystal structure of KCoO2 in two different pro-
jections, the first emphasizing the square pyramidal coordination of
Co, and the second projecting on the c plane emphasizing the Co-O
square arrangement reminiscent of the cuprates. Small red spheres
are O, large blue spheres in the center of the pyramids are Co, and
the pink large spheres are K.

Thus, if we calculate the Jaa′ (q) on a N × N × N mesh in
the Brillouin zone, then a discrete inverse Fourier transform
gives us the J0T

a,a in a N × N × N supercell, or the exchange
interactions out to a distance |τa′ − τa + Tmax| where τa is
the position in the unit cell of the atom labeled a. Tmax is the
largest lattice translation vector corresponding to the superlat-
tice.

We can then use various methods to estimate the critical
temperature Tc, such as the mean-field approximation, or the
random phase approximation (RPA) developed by Tyablikov
et al. [17] and Callen [18] and more recently used by Rusz
et al. [19]. In the case (which occurs here) of several magnetic
sites per unit cell, the critical temperature in the mean-field
approximation is obtained by diagonalizing the matrix of the
J0

ab = ∑
T J0T

ab , where if a = b, the on-site term J00
aa is excluded

from the sum, ∑
b

[
J0

ab − jδab
]〈Sb〉 = 0. (6)

The mean-field critical temperature is then given by kBTc =
2 jmax/3 with jmax the highest eigenvalue [20]. The normal-
ized eigenvectors tell us the relation of the average spins on
the sites in the cell, i.e., the type of magnetic ordering. The
mean-field critical temperature is used as starting point for
the RPA iterative procedure. Typically, the latter gives an
underestimate while the mean-field method gives an upper
limit.

III. RESULTS

A. Band structure and magnetic moments
in ferromagnetic structure

The crystal structure is shown in Fig. 1. In our calculations,
we used the structural information [21] obtained by the Mate-
rials Project [22] in the generalized gradient approximation
(GGA), listed as data set mp-20528. The tetragonal lattice
constants are a = 3.8482, c = 8.0021 Å. These are about 1%
larger that the experimental values given in the Inorganic
Crystalline Structure Database (ICSD) ICSD-15770 referring
to the original data of Ref. [1]. The Wyckoff positions of the
atoms in the primitive unit cell and the .cif (crystallographic
information files) can be found there.

There are two types of O, the O(1) lying close to the K c
plane, which are strongly bonded to the Co in the z direction
at a bond distance of 1.741 Å, and the O(2), which lie in the
Co-O(2) layer and have a bond length to Co of 2.063 Å. The
K-O(1) in-c-plane bond length is 2.732 Å and along the c
axis is 2.791 Å. Within spin-polarized GGA, we find a high
magnetic moment of 4 μB per Co atom and a ferromagnetic
semiconductor band structure with a small gap.

The high magnetic moment can be understood as follows.
In a pyramidal environment, the local point group is C4v . The
point group of the crystal is D4 because the two formula units
per cell are related by an inversion center. The d states will
split into a1 (3z2 − r2), b1 (x2 − y2), b2 (xy), and orbitally dou-
bly degenerate e (xz, yz) states, as labeled by their irreducible
representations. The spin polarization is clearly induced by
putting two electrons with parallel spin in the doubly degener-
ate state, which is favored by Hund’s rule. This then induces
spin splittings in the other states. From the detailed orbital
analysis of the bands given later, we can see that for the xz, yz
like states, the spin splitting between majority and minority
spin is larger than 10 eV. Apparently, the induced splitting
in the 3z2 − r2 and x2 − y2 states is similar and keeps their
minority spin states empty but the spin splitting of the xy
state is smaller and keeps both majority and minority bands
derived from the xy orbitals filled. Hence, the configuration
can be described as b2

2e2
↑a1

1↑b1
1↑ and results in a net magnetic

moment of 4μB. The reason why the xy states have a smaller
spin splitting is less obvious at this point but will be addressed
later by examining the band orbital composition.

The spin splitting is the larger energy scale compared to
crystal field splittings. In an octahedral environment, eg states
(x2 − y2, 3z2 − r2) are well known to lie above the t2g states
(xy, xz, yz) because the former points most directly to sur-
rounding anion charges. In a square pyramidal environment
there is only one apical O in the z direction (O(1)) and in the
present case there is an opposite charge of K on the other side.
Even though the bond length of O(1) to Co in the z direction
is smaller than the bond lengths to O(2) in the plane, this
will lower the 3z2 − r2 relative to the x2 − y2 and the xz, yz
relative to xy. The band analysis below will show that for the
same spin, the typical splitting between x2 − y2 and 3z2 − r2

or between xz, yz and xy is in order of 1–2 eV, significantly
smaller than the spin splitting.

One can also view this from the perspective of forming
bonding and antibonding states with O-p orbitals. The 3z2 −
r2 and x2 − y2 point directly to O-p orbitals, forming strong
σ -type bonding and antibonding states while the xz, yz, xy
states can only form weaker π bonds. The xy states form
π bonding and antibonding states with four O-p states in
the plane, while the xz state form π bonds with only three
oxygens. However, the ordering of the corresponding bands
depends on whether these bands have bonding or antibonding
character. There is in fact strong hybridization between O-p
and Co-d . The high spin splitting results in the majority spin
states of Co-de states being pushed below the O-2p so that the
bonding states have more Co character and the antibonding
states have more O character. Therefore, we find a rather
strong majority spin O-p character near the top of the valence
band. On the other hand, for the minority spin states, the op-
posite is true. They lie above the O-2p, hence the antibonding
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FIG. 2. Spin-polarized band structure in GGA of KCoO2 in the
P4/nmm phase, red majority spin, blue minority spin.

states are Co-like. There remains the question why the xy
states have a smaller spin splitting. The two Co atoms in the
unit cell lie slightly above and below the O plane along a [110]
direction, thus their xy orbitals point directly to each other.
This would indicate stronger Co-Co band formation, hence
delocalizes these states, which could qualitatively explain
the lower spin polarization since these spins become more
itinerant.

The spin-polarized band structure at the GGA level is
shown in Fig. 2. Interestingly, a small gap opens between
spin-up and spin-down bands with rather flat bands. The GGA
result is sensitive to details of the calculation. For example,
in Materials Project (mp-20258), the gap is listed as zero,
although a integer magnetic moment of 4μB, characteristic of
an insulator, is obtained. The gap becomes significantly larger
in the QSGW method as seen in Fig. 3. We can see that the

FIG. 3. Band structure of KCoO2 in QSGW approximation for
the P4/nmm structure. Red majority spin, blue minority spin.

TABLE I. Band gaps in P4/nmm KCoO2 in QSGW approximation.

Type kv kc Spin type Gap (eV)

direct M M ↑↓ 3.99
indirect M � ↑↑ 5.07
direct M M ↑↑ 8.38
direct � � ↑↑ 5.90
indirect 0.8Z-R M ↓↓ 4.83
direct M M ↓↓ 4.95
direct 0.8Z-R 0.8Z-R ↓↓ 5.05

valence band maximum (VBM) occurs at M for the majority
spin while the conduction band minimum (CBM) has minority
spin character. The reason why the VBM occurs at M is that
the antibonding interaction of the x2 − y2 orbitals with O-pσ
orbitals is optimized at this k point by the Bloch function
phase factors because the same sign lobes point toward the
Co for each O along in the square coordination of Co. The
majority spin CBM occurs at �. The majority spin highest
valence band is quite flat. The majority spin and minority
spin band gaps are staggered with respect to each other. The
relevant gaps are summarized in Table I. These calculations
used a 2κ LMTO basis set with smoothed Hankel function
envelope functions up to l = 2 (spdspd) for K and O, and
(spdf spd) for Co. Without the Co- f , the gap is slightly higher
(4.17 eV).

The total and partial densities of states (PDOS) on various
orbitals are shown in Fig. 4. The orbital contributions of the
bands are shown in Figs. 5–7. The PDOS refers to a partial
wave decomposition while the bands correspond to a decom-
position in muffin-tin-orbital basis functions. These results
were obtained with the slightly smaller basis set without the
Co- f basis functions but for the qualitative features, this is
of no importance. The PDOS and colored band plots provide
consistent information.

We can see that the bands with predominantly xy character
are filled for both spins. On the other hand, the minority spin
x2 − y2, 3z2 − r2, and xz, yz contributions occur mostly in
the empty bands. This is consistent with the above described
origin of the large magnetic moment of 4μB. The valence
bands also have a significant contribution from O-p as shown
in Fig. 6. The K contributions (shown in Fig. 7), as expected,
occur mostly in the conduction band. They do not contribute
significantly to the lower lying set of minority spin bands. This
is consistent with K donating electron to the CoO2 layer.

One can further see that the majority spin VBM in terms of
Co-d has mostly x2 − y2 contribution but its dominant charac-
ter is O(2)-p. In other words, it is an antibonding state between
O(2) − p in the CoO2 layer and Co-d-x2 − y2 orbital with
mostly O character. The corresponding bonding states with
the highest majority spin Co x2 − y2 character lie near −6 eV,
indicating that the majority spin Co states of this orbital lie in-
deed below the O-p states with which they form σ bonds. The
conduction band minimum, which nominally occurs at M but
corresponds to a rather flat band, has predominantly minority
spin 3z2 − r2 character on Co and a much smaller O-p char-
acter. In other words, the antibonding states of minority spin
have Co character. We can further see that the very bottom of
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FIG. 4. Total and partial densities of states for KCoO2 in P4/nmm structure.

the valence bands have strong xz, yz majority spin character,
while their minority spin counterparts are centered about 1 eV
above the CBM. The xy derived bands have a notably smaller
spin splitting. One can detect some xy character indicated in
green in Fig. 5 (bottom panels) for both spins over a wide
energy range in the valence band, from the very bottom to
about −1 eV for minority spin and −3 eV for majority spin.
This is an indication of their stronger dispersion, which we
relate to direct Co-Co hopping along the [110] direction. This
delocalization of xy-like states is responsible for its lower
exchange splitting, which ultimately results in xy-like states
being occupied for both spins.

Because of the dominant O character of the VBM and the
Co character of the CBM, direct optical transitions from the
VBM to the CBM can be characterized as charge transfer
type, but would only be allowed for circularly polarized light
because they are from spin-up to spin-down. For linearly po-
larized light, the optical transitions would be mostly between
the minority spin bands, which are both quite flat and have
both Co-d character, however, with xy character for the VBM
of minority spin and 3z2 − r2 character for the conduction
band minimum. This would require a change of m orbital
character of m = 2 and is therefore forbidden in the elec-
tric dipole approximation. Such rules, of course, only strictly
apply in spherical symmetry and the symmetry breaking of
the crystal can make them allowed but one might still expect
rather weak transitions. On the other hand, for majority spin,
the transitions would be indirect and therefore also forbidden.

These optical properties are rather unique and intriguing. The
optical properties are further discussed in Sec. III D.

B. Magnetic ordering

Having established the formation of large magnetic mo-
ments as a basic way to stabilize the d6 configuration in the
unusual pyramidal environment, we now turn to the question
of their ordering.

We start from the ferromagnetic unit cell with two Co
atoms labeled 1 and 2, (note that in Fig. 8 these correspond
to dark blue and grey squares) and use the procedure outlined
in Sec. II. Table II shows some of the near-neighbor-exchange
interactions and their cumulative sums. The J0

ab matrix has the
form

J0 =
(

J0
11 J0

12

J0
12 J0

11

)
(7)

with eigenvalues J0
11 ± J0

12, hence we find a mean-field Tc =
(2/3kB)(J0

11 − J0
12) of −149 K. The negative value indicates

that the system actually wants to order antiferromagnetically.
Indeed, we find that the average spins on site 1 and 2 are
opposite for the eigenvalue J0

11 − J0
12. However, we also see

that the atoms in (100) neighboring cells also have a negative
exchange interaction, which is in fact an order of magnitude
larger. Thus, the system would prefer AFM ordering along
the [110] direction, with parallel spins in (110) planes and
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FIG. 5. Orbital weights of Co d of the bands, left for majority and right for minority spin; top row (red) x2 − y2 and (blue) 3z2 − r2; bottom
row (red) xz, yz and (green) xy.

FIG. 6. Orbital weights of O p of the bands for left (majority) and right minority spin; red(O2), green (O1).
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FIG. 7. Orbital weights of K s (red) and p (green) for left (majority) and right (minority) spin.

alternating up and down spin from plane to plane but also have
the two atoms inside the cell with opposite spin.

The spin arrangement is illustrated in Fig. 8. Within the
RPA method, we obtain a slightly lower critical temperature
of 131 K. Given that the dominant exchange interaction cor-
responds to two Co atoms in line with an O in between,
we can interpret this as an antiferromagnetic superexchange
interaction, which might be dominated by the Co-d x2 − y2 σ

bonds with O-p orbitals along the line. We can also see that the
exchange interactions rapidly decrease beyond the first few
neighbors.

Based on the above prediction of antiferromagnetic or-
dering, we then construct a doubled cell rotated by 45◦ and

FIG. 8. Spin arrangement on the Co sites, the dark blue squares
indicate the Co pyramid of Co slightly below the plane and the grey
ones the Co slightly above the plane. The purple spheres are the K
on top of the Co. The red spheres are the O and the yellow arrows
indicate the spins on Co. The spins are labeled 1–4 in relation to
Table III and Fig. 9 and the AFM unit cell is indicated by the light-
blue line.

recalculate the exchange interactions based on this AFM ref-
erence state. We calculated the total energies in the GGA
while adding the energy-independent self-energy matrix to
the one-particle Hamiltonian to have the correct gaps. This
gives EAFM − EFM = −0.240 eV/Co atom. So, the AFM or-
dering is definitely preferable. Setting EAFM − EFM = 2zJeff

with z = 4 the number of neighbors, this corresponds to
an effective AFM exchange interaction Jeff = −30 meV. In
the mean-field approximation TN = 2Jeff/3kB and we find
TN ≈ 232 K. However, this assumes there is only an effective
nearest-neighbor interaction.

Next, we calculate again the exchange interactions from
the magnetic susceptibility for this case. We now have four
magnetic sites per cell as labeled in Fig. 8. The exchange
interactions between near neighbors are given in Table III and
plotted as a function of distance in Fig. 9.

One can note that the cumulative sum only slowly con-
verges. The nearest-neighbor interactions between atoms 1
and 2 in the AFM cell corresponds to the interaction between

TABLE II. Exchange interactions in mRy; a and b label the
magnetic atoms in the cell, T gives the lattice vector in reduced
coordinates, z the number of equivalent neighbors in the star, J0T

ab

the exchange interaction in mRy, and the last column gives the
cumulative sum, with the last row for a given block of a, b giving
the cumulative sum up to |τa − τb − T| < rcut = 5 in units of the
in-plane tetragonal lattice constant a.

a b T z J0T
ab

∑
T J0T

ab

1 1 (1,0,0) 4 −0.3725 −1.490
1 1 (1,1,0) 4 −0.0362 −1.635
1 1 (2,0,0) 4 0.0012 −1.630
1 1 . . . −1.561

1 2 (0,0,0) 4 −0.0342 −0.137
1 2 (1,0,0) 8 0.0024 −0.118
1 2 (0,0,1) 4 −0.0024 −0.127
1 2 . . . −0.137
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TABLE III. Exchange interactions in [110] AFM cell; magnetic
atom labels a, b, lattice vector (in Cartesian coordinates and units of
a in x, y directions and c in z direction) of the P4/nmm primitive
cell, number of equivalent atoms in the star, J0T

ab in mRy and their
cumulative sum.

a b T z J0T
ab

∑
T J0T

ab

1 1 (−1, 1, 0) 2 0.0525 0.105
1 1 (1,1,0) 2 −0.0174 0.070
1 1 (0,2,0) 4 −0.0518 −0.137
1 1 (0, 0, ±1) 2 −0.0002 −0.138
1 1 (−1, 1, ±1) 4 0.0035 −0.124
1 1 (1, 1, ±1) 4 −0.0003 −0.125
1 1 (2,2,0) 2 0.016 −0.093
1 1 (−2, 2, 0) 2 −0.0107 −0.111
1 1 (2, 0, ±1) 8 0.0009 −0.107

1 2 (1,0,0) 4 −0.6139 −2.456
1 2 (1,2,0) 4 −0.0019 −2.463
1 2 (−2, 1, 0) 4 −0.0006 −2.466
1 2 (1,0,1) 8 −0.0002 −2.467
1 2 (0,3,0) 4 0.0006 −2.465
1 2 . . . −2.464

1 3 (0,0,0) 2 −0.1144 −0.229
1 3 (0,1,0) 4 0.0020 −0.221
1 3 (0, 0, −1) 2 −0.0016 −0.224
1 3 (1,1,0) 2 −0.0012 −0.226
1 3 (0.1, −1) 4 −0.0010 −0.227
1 3 . . . −0.231

1 4 (0,0,0) 2 −0.1538 −0.308
1 4 (0,1,0) 4 −0.0263 −0.413
1 4 (0, 0, −1) 2 0.0080 −0.397
1 4 (−1, 1, 0) 2 0.0518 −0.293
1 4 (0, 1, −1) 4 −0.0003 −0.294
1 4 (0,0,1) 2 0.0009 −0.292
1 4 (0,2,0) 4 0.0162 −0.228
1 4 (−1, −1, −1) 2 0.0044 −0.219
1 4 (0,1,1) 4 0.0008 −0.216
1 4 (2,1,0) 4 0.0106 −0.173

FIG. 9. Exchange interactions in AFM case as function of dis-
tance. The labels in each panel correspond to the atom pairs ab in the
AFM unit cell as identified in Fig. 8. The distance on the horizontal
axis is |τa − τb − T|.

atoms 1 in neighboring cells in the (100) direction in the
FM cell and is seen to be the dominant interaction, which is
antiferromagnetic. Its value −0.6139 is almost twice as large
as when we started from the FM reference state, −0.3725.
The nearest interactions between 1 and 3 correspond to the
interaction between the Co originally in the same FM cell and
between Co slightly above and slightly below the plane. Its
value is −0.1144, which is also about three times larger in
absolute value than in the FM cell. Similarly, the interaction
between 1 and 4, which also corresponds to 1 and 2 in the FM
cell is even larger at −0.1538. All of these values are in mRy.
The matrix of exchange interactions in this case has the form

J0 =

⎛
⎜⎜⎝

a b c d
b a d c
c d a b
d c b a

⎞
⎟⎟⎠ (8)

with a = −0.107, b = −2.464, c = −0.231, and d =
−0.173. Its largest eigenvalue is a − b − c + d and yields a
mean-field temperature of 254 K. The Tyablikov approach
yields a significant reduction to 97 K. The spin arrangement
of atoms 1,2,3,4 is ↑↓↓↑, which in fact, the same as the
reference state we started from, so that now the Tc indeed
comes out positive. Also, note that the mean-field estimate
here is close to the very simple model with an effective Jeff

obtained from the AFM-FM total energy difference. That
effective interaction represents the sum over all individual
exchange interactions in the periodic system, in other words
the J0

12 = ∑
T J0T

12 , excluding the on-site term, which indeed is
−2.464 mRy corresponding to 259 K. So, these different ways
of estimating the mean-field Tc are roughly consistent with
each other. Comparing with the prediction starting from the
FM reference state, we consistently obtain an AFM ordering
along alternating (110) planes and all spins in these planes
parallel, both in the down-pointing and up-pointing square Co
pyramids, or the two sites in the primitive cell. The mean-field
approach gives a substantially larger Tc when starting from the
AFM reference state, but the final RPA estimates, which are
expected to give a lower bound are not that far from each other
93 K vs 130 K. Thus, we can safely conclude that the Néel
temperature is approximately 100 K.

The large value of the exchange interaction between Co
in line with the O between nearest-neighbor primitive cells
suggests that it is derived from superexchange via the O be-
tween dx2−y2 orbitals. The AFM interaction between the two
Co within the primitive cell on the other hand, is likely to be
a direct interaction between dxy orbitals, which would nearly
point to each other except that the Co atoms are in slightly
different horizontal planes. The dxz, dyz orbitals or their super-
position along a [110] direction could also contribute to this
via direct antiferromagnetic coupling.

The magnetic ordering is thus rather interesting with large
magnetic moments of 4 μB interacting differently via the
different Co-d orbitals involved. The dominant interaction
is superexchange but a smaller direct interaction between
atoms in the same unit cell also plays a role. One might
speculate that spin fluctuations of this smaller interactions
combined with doping to create a metallic state, either p or
n-type doping might lead to interesting effects and possibly
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FIG. 10. Band structure of AFM KCoO2 in the QSGW approach.

spin fluctuations mediated superconductivity. We hasten to
say that at this moment this is a speculative point. However,
an antiferromagnetic parent compound with Mott-insulating
behavior as we find here, since the occurrence of the gap is
related to the magnetic moment stabilization, is the generic
scenario from which doping and spin fluctuations can lead to
superconductivity. A study of the doping and its consequences
is beyond the scope of the present study as it might require
more advanced methods to treat strong correlations in the
rather flat band edges.

C. AFM band structure

The antiferromagnetic band structure is shown in Fig. 10.
The relation between the FM primitive cell Brillouin zone and
the AFM cell Brillouin zone is shown in Fig. 11. The new
� − X direction is half the old � − M direction and the bands
are essentially folded in two in that direction. The new M point
corresponds to the old X point. The band structure now has a
direct gap at � of 3.94 eV because the spin up VBM state at M
becomes folded on the new � state. Both the top valence and
bottom conduction bands become almost entirely flat along
�Z .

FIG. 11. Relation between primitive cell tetragonal Brillouin
zone labeled in black and doubled cell 45 degree rotated Brillouin
zone for AFM case, labeled in red and with primes.

FIG. 12. Optical dielectric function for two polarizations in IPA
and BSE, assuming transitions only between the equal spins for
(a) FM and (b) AFM case.

D. Optical dielectric function

The optical dielectric function was calculated assuming
only transitions between majority to majority spin states, and
minority to minority spins, treated separately. They were cal-
culated in the independent-particle approximation (IPA) and
using the Bethe-Salpeter equation (BSE), which includes lo-
cal field and electron-hole interaction effects. The results are
shown for both the real and imaginary part in Fig. 12. Within
both IPA and BSE, we assume here that the allowed dipole
transitions are spin separated. Strictly speaking, the exchange
Coulomb interaction matrix elements in the BSE

Vvckv′c′k′ =
∫

d (1)d (2)ψvk(1)ψck(1)∗v(|r − r′|)

× ψv′k′ (2)∗ψc′k′ (2) (9)

require the valence (v) and conduction (c) band at one k to
have the same spin and also at the other k’ point because the
integral over coordinates (1) or (2) includes spin summation,
but the spins of vck and v′c′k′ may differ. So, an inter-
action between up and down spin band-to-band transitions
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FIG. 13. Oscillator strengths of two-particle levels and quasipar-
ticle gaps.

is mediated by the exciton exchange interaction Vvck,v′c′k′ .
However, if the optical transitions of the separated spins are
sufficiently well separated, we may ignore this interaction.
This is the approximation we currently are making. Note that
for nonspin-polarized systems, this is manifestly not the case
since the up-up and down-down transitions are degenerate.
However, in that case the spin structure of the excitons is clear
[23] and leads to dark spin triplets involving only the −W ma-
trix elements with the screened Coulomb interaction, whereas
the spin-singlet ones involve 2V̄ − W with V̄ the microscopic
part of the above defined exciton exchange interactions (i.e.,
excluding the average or long-range macroscopic interaction).
At present we include V̄ − W but separately for each spin. In
the calculation in Fig. 12 we include 24 valence bands and 16
conduction bands for the FM case. This includes the 12 O-2p
bands and 10 Co-d bands of each spin. For the AFM case,
the spin-up and spin-down levels are again degenerate but the
eigenstates forming the basis of the two-particle Hamiltonian
to be diagonalized in BSE are not the same since the spin-up
and spin-down contributions are on different atoms in the
cell. Thus, one may expect that the Coulomb matrix elements
between vck of spin-down and spin-down are small. In that
sense it is again reasonable to neglect them.

With this understanding of the approximations made, we
now examine the results. First, we may note that the electron-
hole effects have a significant impact with excitonic peaks
occurring below the quasiparticle gap. Interestingly, there
seems to be almost a uniform red shift of ∼2 eV from IPA
to BSE. The sharp peaks below the lowest direct quasiparticle
gap between equal spins, of about 5.0 eV according to Table I,
indicates excitonic transitions. Excitons with large binding
energies were recently also found to occur in other layered
oxides, such as LiCoO2 [24,25] and V2O5 [26,27]. Figure 13
shows the two-particle Hamiltonian eigenvalues with their
oscillator strengths separately for majority and minority spin
transitions. We can see that the lowest peaks in the ε2(ω)
correspond to transitions between minority spin bands. We
also indicate the lowest indirect and direct quasiparticle gaps
for both majority and minority spin bands and the forbidden
spin-flip quasiparticle gap. Clearly, the peaks below about

5 eV are all excitonic in nature. We can also discern an
almost dark exciton just below 1 eV. A detailed study of the
nature of these excitons is postponed to future work. We note,
however, that they appear to be primarily transitions between
Co minority spin states for the FM case.

Next, we caution that the optical matrix elements of the
velocity matrix elements may be overestimated because of
difficulties in evaluating the contributions from the nonlocal
self-energy operator of the GW approximation, which require
estimating the d�/dk numerically. This has been found in
other systems to overestimate the magnitude of ε2(ω) com-
pared to evaluating the ε2(q, ω) at finite small q and then
extrapolating to q → 0 numerically. This then also leads to
an overestimate of the ε1(ω) below the gap and in particular
its limit limω→0 ε1(ω), which gives the electronic screening at
the static limit. This “static limit” does not include phonon
contributions (conventionally referred to as ε∞) and corre-
sponds to the square of the index of refraction n2 in the range
sufficiently well below the gap, but higher than any of the
phonon modes. Also, at present we cannot yet calculate the
transitions between up and down spin bands, which would be
of great interest in this system, but are expected to occur only
for circularly polarized light.

The optical dielectric function of the AFM state is shown
in Fig. 12(b). It is calculated here using Nv = 48 valence
bands and Nc = 40 conduction bands and a 3 × 3 × 3 k mesh.
It is rather similar to the corresponding FM case shown in
Fig. 12 although not quite identical. In both cases, we may
note a substantial redshift between the IPA and BSE ε2(ω) and
excitonic features below the quasiparticle gap of 3.94 eV. The
lowest excitons with quite small oscillator strength occur near
1 eV. We note that the sharp features for E ⊥ c at 22 and 24 eV
may be artifacts of the truncation of the active space in the
BSE calculation. For a smaller set, similar features appeared
for E ‖ c around 15 eV but these disappear or are weakened
when more conduction bands were included. The calculation
may be deemed to be converged up to about 12 eV as in this
range they are the same with higher or lower Nc.

IV. CONCLUSIONS

The main conclusions from our study are summarized
as follows. KCoO2 has large magnetic moments of 4μB on
the Co atoms, corresponding to a d2

xy, {dxz, dyz}2
↑, {dx2−y2}1

↑,
{d3z2−r2}1

↑ configuration, arising from the square pyramidal
coordination with a K ion on the opposing apical site. The
magnetic moments prefer to order antiferromagnetically along
the [110] direction. The exchange interactions are dominated
by an antiferromagnetic super-exchange coupling between
dx2−y2 orbitals σ bonding with O-p orbitals between them
in a 180◦ alignment of order ∼8 meV but with smaller di-
rect exchange between the two Co per primitive cell, thus
aligning all spin on atoms in successive (110) planes. The
Néel temperature was predicted to be about 100 K using the
Tyablikov-Callen approach and using exchange interactions
extracted from the transverse spin susceptibility in a rigid-
spin approximation per sphere and including a converged
summation of exchange interactions. In the mean-field ap-
proximation, a larger critical temperature of about 250 K is
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obtained, which provides an upper limit. In the ferromagnetic
state, the band structure exhibits an indirect gap between the
conduction band minimum at � of minority spin and a valence
band maximum of majority spin at M, the corner of the Bril-
louin zone in the kz = 0 plane. The optical transitions between
equal spin were calculated including electron-hole interaction
effects and show strongly bound excitons arising primarily
from minority spin electron-hole pairs. In the AFM case, the
band edges of the gap show extremely flat regions along the
direction perpendicular to the layers and a direct quasiparticle
gap of 3.94 eV. The combination of large magnetic moments,
relatively small exchange interactions of different types and
flat band edge states indicate that strong correlation effects
may be present in this system and could lead to interesting

effects, in particular when doping is considered to modify the
antiferromagnetic insulating ground state.
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