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Optical properties and energy propagation in a dielectric medium supporting magnetic current
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We examine a dielectric medium supporting a magnetic current in connection with optical properties
and energy propagation. The dispersion relations, propagating modes, and some optical effects are exam-
ined for isotropic and anisotropic magnetic conductivity tensors, with the latter ones implying nonreciprocal
permittivities. The eigenvalues of the effective permittivity are carried out and associated with the optical
symmetries (uniaxial, biaxial) and the subjacent crystal systems. Aspects of electromagnetic energy transport
for such systems are also discussed, with the group and energy velocities being presented and carried out for all
the particular cases addressed. Our results suggest that a dielectric supporting magnetic current breaks the usual
equivalence between group velocity and energy velocity that holds in a nonabsorbing medium, while establishing
the equivalence between them in an effective absorbing scenario, two unexpected behaviors.
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I. INTRODUCTION

A magnetic linear current law, as J = σBB, appears in some
systems due to an asymmetry between the number density of
left- and right-handed chiral fermions as a macroscopic man-
ifestation of the quantum chiral magnetic effect (CME) [1].
Such an effect has been extensively investigated in physics,
passing in several distinct scenarios, such as quark-gluon plas-
mas with a chiral chemical potential under the influence of
an external magnetic field [2,3], cosmic magnetic fields in
the early universe [4,5], cosmology [6], neutron stars [7,8],
vacuum induced currents [9], chiral plasmas [10], and elec-
troweak interactions [11,12]. In condensed-matter systems,
the CME is connected with the physics of Weyl semimet-
als (WSMs) [13], where the massless fermions acquire a
drift velocity along the magnetic field, whose direction is
given by their chirality. Opposite chirality implies oppo-
site velocities, creating a chiral-fermion imbalance that is
proportional to the chiral magnetic current. In WSMs, the
chiral current may be different from the usual CME linear
relation J = σBB when parallel electric and magnetic fields
are applied, yielding a current of the type J = σ (E · B)B,
which corresponds to a conductivity effectively proportional
to B2 [14–16]. WSMs and CME have been examined in
several scenarios and respects, considering the absence of
Weyl nodes [17], anisotropic effects stemming from tilted
Weyl cones [18], the CME and anomalous transport in Weyl
semimetals [19], quantum oscillations arising from the CME
[20], computation of the electromagnetic fields produced
by an electric charge near a topological Weyl semimetal
with two Weyl nodes [21], the chiral superconductivity [22],
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wave-packet scattering connected with transport properties
[23], and evaluation of the Goos-Hänchen lateral shift for
reflection at a Weyl semimetal interface [24].

The parity-odd Maxwell-Carroll-Field-Jackiw model
(MCFJ) [25] is a Lorentz-violating electrodynamics
characterized by the term

LCFJ = − 1
4εμναβ (kAF )μAνFαβ, (1)

where (kAF )μ is the 4-vector background which violates
Lorentz symmetry. This CPT-odd U(1) model is a piece of the
standard model extension (SME) [26], proposed to examine
and to constrain the possibility of Lorentz violation in nature.
The MCFJ theory is a proper theoretical framework to address
the CME in an effective classical way [27] since it provides a
modified Ampère’s law including the magnetic current JB =
k0

AF B, where the zero component k0
AF works as the magnetic

conductivity. The MCFJ model is also a possible version
of the axion coupling [28], θ (E · B), when the axion field
presents constant derivative, (kAF )μ = ∂μθ . Axion theories
constitute a relevant topical research area actually [29–31].
A classical description of wave propagation, refractive in-
dices, and optical effects, in the context of a matter medium
governed by the MCFJ electrodynamics, was discussed in
Ref. [32], which also addresses higher-order derivative terms.
Very recently, the MCFJ model has been connected with
the London equation in parity-odd [33] and time-violating
Weyl superconductors [34]. The MCFJ electrodynamics was
much examined, including studies with radioactive correc-
tions [35], topological defects solutions [36], supersymmetric
generalizations [37], classical solutions with boundaries [38],
classical dipole radiation [39], quantum aspects and unitarity
analysis [40]. Lorentz violation in continuous media [41,42]
has been a focus of attention in the latest years due to its
potential to describe interesting effects of the phenomenology
of new materials, such as Weyl semimetals [43].
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In a recent work [44], it was examined the classical wave
propagation in a conventional dielectric medium D = ε E,
B = μ H in the presence of a magnetic density current Ji =
σ B

i j B
j , in which σ B

i j is the magnetic conductivity. This study
was first performed for the case of an isotropic current, which
describes the CME observed in Weyl semimetals, Ji

CME =
σ B Bi, with the attainment of the refractive indices and elec-
tric fields for the propagating modes. Configurations with the
anisotropic conductivity tensor were also investigated, with
some interesting results and repercussions in the literature
[45].

As well known, the electromagnetic energy balance in
a continuous medium is stated by the Poynting’s theorem
[46–48]

∇ · S + ∂uEM

∂t
= − J · E, (2)

in which the Poynting vector is defined by

S = E × H∗, (3)

and uEM represents the electromagnetic energy density stored
in the field. For an isotropic dispersive media such an energy
density is given by [46,47]

uEM = 1

2

∂[ωε′]
∂ω

(E · E∗) + 1

2

∂[ωμ′]
∂ω

(H · H∗), (4)

where ε′ and μ′ are the real pieces of the permittivity and
permeability, i.e.,

ε(ω) = ε′(ω) + iε′′(ω), μ(ω) = μ′(ω) + iμ′′(ω), (5)

also endowed with imaginary pieces ε′′(ω), μ′′(ω) in the gen-
eral situations. For an electric dispersive medium ruled by the
isotropic constitutive relations

D = ε(ω) E, H = μ−1 B, (6)

whose Poynting vector and energy density are

S = 1

2μ′ (E × B∗), (7a)

uEM = 1

2

∂[ωε′]
∂ω

(E · E∗) + 1

2μ′ (B · B∗), (7b)

where the fields, in general, may be complex:

E = E′ + i E′′, B = B′ + i B′′. (8)

Considering a plane-wave ansatz for the fields

(E, D) = (E0, D0) ei(k·r−ωt ), (9a)

(B, H) = (B0, H0) ei(k·r−ωt ), (9b)

where ω is the harmonic frequency, and the k is the wave vec-
tor, the Faraday’s law reads as ω B = k × E. In the presence
of absorption, the wave vector is complex,

k = k′ + i k′′, (10)

so that the Poynting vector and energy density read as

〈S〉 = E2

2ωμ′ k′, (11a)

〈uEM〉 = 1

4

[
ε′ + ω

∂ε′

∂ω
+ |k|2

μω2

]
E2, (11b)

which holds for the case of total transversal modes, that is,

(k′ · E′) = (k′′ · E′′) = 0, (12a)

(k′ · E′′) = (k′′ · E′) = 0. (12b)

In a dispersive and nonabsorbing medium (ε′′ = 0), the
electromagnetic signal propagation is governed by the group
velocity

vg = dω

dk
k̂, (13)

which is a real quantity. For a dispersive and absorbing
medium (ε′′ �= 0), however, it becomes a complex velocity

vg = Re[dω/dk] + i Im[dω/dk]k̂, (14)

whose physical interpretation is usually unclear [49]. Even
in this scenario, the real and imaginary pieces of (14) may
find physical interpretation, being useful to address aspects of
Gaussian wave packets propagating in an absorbing medium
[50,51]. Indeed, in the saddle-point approximation the quan-
tity dω/d[Re(k)] yields the velocity of packet peak spatial
maximum xM , while the imaginary part shifts the central wave
number kc, which is in general no longer conserved [52,53].

The failure of the complex group velocity (14) for describ-
ing energy transport in absorbing media was first noticed by
Brillouin [54], leading to the definition of the energy velocity
[55–58], a ratio between the averaged Poynting vector and the
averaged energy density

vE = 〈S〉
〈uEM〉 , (15)

that also includes the dissipation terms. For an absorbing
medium supporting transversal modes, the time averages
(11a) and (11b) yield the energy velocity

vE = k′/(μω)
ε′
2 + ω

2
∂ε′
∂ω

+ |k|2/(2μω2)
, (16)

which depends on the permittivity and the dispersion relation
of the medium enclosing the absorption contribution (inside
|k|2). For a nonabsorbing medium, the group and energy ve-
locities are equal, vg = vE , while for an absorbing medium,
such equality does not hold anymore,

vg �= vE = 〈S〉
〈uEM〉 . (17)

In lossy scenarios, where the group velocity becomes com-
plex and different from vE , the question of physical velocity
that can be measured arises. The time interval for a signal
to reach its destination in a medium is called time delay,
being used to define the signal velocity in dispersive and lossy
media [59], which is a physical [60] and measured quantity
[61]. The energy velocity coincides with the signal velocity
in certain frequency ranges [62], therefore representing the
physical quantity measured by experimental devices [61,63]
for these situations. Furthermore, reading from exotic group
velocities information pieces about the signal velocity is also
a relevant topic [64].

Furthermore, it is known the dependence of the energy
velocity on the way one evaluates the energy density and
the dissipated energy density in a lossy medium since there
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exist different forms to do it [65,66]. In this sense, attempts
to determine the correct expressions of storage energy and
dissipated energy densities have been developed [67,68].
Electromagnetic energy propagation and energy storage in
a dispersive and absorbing hyperbolic metamaterial (HMM)
have also been recently examined using the concept of energy
velocity as far as its equality to the group velocity in a lossless
HMM [69].

Connections between group and energy velocities were
also explored in dissipative dynamical systems [70]. Part of
this procedure was used here to investigate the group and en-
ergy propagation in a chiral dielectric medium endowed with
magnetic conductivity, which is still an open issue. Such a
study is one of the main topics examined in this work, that also
complements the results attained in Ref. [44]. In this context,
we point out that a dielectric medium (ε′ �= 0, ε′′ = 0), in
the presence of isotropic magnetic conductivity, presents real
refractive indices and no absorbing behavior [see Eq. (33)].
Such a nonabsorbing medium, however, possesses group ve-
locity distinct from the energy velocity, an unexpected result
stemming from the presence of magnetic conductivity. For an
antisymmetric conductivity tensor, the opposite unexpected
behavior is reported. Indeed, in this case, the refractive index
is complex, there existing absorption, but it holds vg = vE .

This work is outlined as follows: In Sec. II we review basic
aspects of chiral electrodynamics in matter, examining the
propagating modes, some optical effects, and also discussing
features of parity and reciprocity. For each configuration of the
conductivity tensor, the structure and eigenvalues of the per-
mittivity are related to optical symmetries (uniaxial, biaxial)
and possible crystal systems. In Sec. III we discuss aspects of
the energy stored in the electromagnetic field and energy flux
by electromagnetic waves. By introducing the chiral magnetic
current Ji = σ B

i j B j , we study the cases in which the magnetic
conductivity tensor σ B

i j is diagonal (isotropic), antisymmetric,
and symmetric. We investigate the group velocity and the
energy propagation velocity for these particular scenarios.
The group velocity and energy velocity are calculated in all
these cases. We compare the scenarios of an absorbing and
nonabsorbing medium with the results of the literature. In
Sec. IV we summarize our results, also remarking aspects of
plasmon-polaritons possible solutions and the magnitude of
the magnetic current in physical systems.

II. ELECTRODYNAMICS WITH A MAGNETIC
CONDUCTIVITY AND OPTICAL EFFECTS

In this section, we review some basic aspects of a clas-
sical electrodynamics in the presence of a magnetic current
density, as previously developed in Ref. [44], also examining
the correspondent optical effects in accordance with general
procedures for anisotropic crystal media [71–73]. We take as
a starting point the Maxwell equations for a linear, homoge-
neous, and isotropic medium are

∇ · D = ρ, ∇ × E + ∂B
∂t

= 0, (18a)

∇ · B = 0, ∇ × H − ∂D
∂t

= J, (18b)

where ρ and J are classical sources of charges and cur-
rents. Using the constitutive relations (6), the magnetic current
J = σB B, plane-wave solutions ansatz [(9a) and (9b)], and
the Faraday’s law, the Ampere-Maxwell’s law (18b) can be
written as

k × k × E + με ω2 E + i μσB k × E = 0. (19)

For an anisotropic medium, the magnetic current

Ji = σ B
i j B j (20)

is written in terms of the conductivity tensor σ B
i j , depending

on the material properties. With it, Eq. (19) reads as

(k × k × E)i + με ω2 Ei + i μσ B
i j (k × E) j = 0. (21)

The wave equation for the electric field amplitude is

[ k2 δi j − ki k j − ω2μεi j (ω)]Ej = 0, (22)

where we have defined the permittivity tensor

εi j (ω) = ε(ω) δi j − i

ω2
σ B

ia εab j kb, (23)

which in general is non-Hermitian, being thus associated with
absorption effects [48,78]. Relation (22) is also written as
Mi jE j = 0, with

Mi j = k2 δi j − ki k j − ω2μεi j (ω). (24)

The nontrivial solutions require that the determinant is null

det[Mi j] = 0, (25)

which provides the dispersion relations of the model. In the
next sections, we consider materials whose constitutive re-
lations are given by Eq. (6) and endowed with the magnetic
conductivity (20) parametrized through isotropic, symmetric,
and antisymmetric configurations for the magnetic conductiv-
ity tensor σ B

i j . It is worth mentioning that the permittivity given
in Eq. (23) represents, in general, nonreciprocal media since
it does not satisfy the Onsager relations [48,72–76], namely,

εi j (ω, k) = ε ji(ω,−k), (26)

which constitutes a criterion to establish reciprocity in elec-
tromagnetic systems1 [75–77], in principle consistent with the
symmetric permittivity approach [78]

For continuous systems, the electric permittivity is gen-
erally given as an expansion of the wave vector, including
the magnetic field, etc., providing a general dispersive be-
havior that may respect or not the reciprocity. Nonreciprocity
is associated with interesting scenarios, such as the Faraday
effect in magnetized plasmas, in such a way reciprocity or
nonreciprocity can be stated in terms of the natural activity
or magnetic optical activity of the medium [79], respectively.
Nonreciprocity can be also achieved in nonlinear systems
[80], metamaterials [81], space-time modulated structures

1These relations in electromagnetic systems are also known as
Onsager-Casimir relations [75], being derived for the electro-
magnetic constitutive tensors considering the concept of reaction
introduced by Rumsey [77].
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[82], moving media [83], non-Hermitian electromagnetic re-
sponse [84], and time-reversal symmetry [85].

In accordance with the Onsager relation (26), dielectric
media endowed with the magnetic conductivity examined in
this work manifest nonreciprocity in terms of the off-diagonal
components of the conductivity tensor σ B

i j . Indeed, the per-
mittivities written for the off-diagonal magnetic conductivity
break the symmetry of the Onsager relation and are non-
Hermitian, yielding absorption factors that appear in terms of
the imaginary pieces of the corresponding refractive indices.

Aspects of nonreciprocal electromagnetic response in Weyl
semimetals (due to nonsymmetric permittivity) are a relevant
topic [86–90], with analog magnetoelectric properties to the
ones of this work. In the WSM electrodynamics, the consti-
tutive relation for the displacement vector [86] can be written
as

D = εD(ω)E + iλ e2

2π2h̄ω

(− k0
AFB + kAF × E

)
, (27)

with k0
AF and kAF being the components of the 4-vector that

appears in Lagrangian (1). Such a constitutive relation yields
the WSM modified permittivity [87]

εi j (ω) = εδi j + λe2

π h̄

i

ω
εi jl

[
(kAF)l − k0

AFkl

ω

]
, (28)

endowed with parity violation (term containing k0
AF) and time-

reversal violation (term containing kAF). It is worth to note
that the permittivity (23) is not symmetric (and does not re-
spect the Onsager relation), implying violation of reciprocity.
Thus, a WSM is a nonreciprocal medium endowed with op-
tical activity (birefringence) in the absence of an external
magnetic field [88]. One of the remarkable properties of the
WSM is the giant optical nonreciprocity [86,89], a property
measured in terms of the asymmetry of the permittivity tensor,
γ = |εi j − ε ji|/|εi j + ε ji|, since the reciprocity is associated
with the permittivity symmetry. Here, | . . . | designates the
matrix norm. The γ factor, in its numerator, captures the
contribution of the ε asymmetric terms. These developments
reported in the literature state that the nonreciprocity is a
reality for the WSM ruled by the axion electrodynamics.
Nonreciprocal repercussions are known in some scenarios.
In fact, in photonics it is used to examine the violation of
Kirchhoff’s law of the thermal radiation in the absence of an
external magnetic field, including conditions to maximize the
nonreciprocal permittivity coefficients [89]. The attainment
of nonreciprocal plasmon surface modes in WSM was also
accomplished in connection with technological applications
in nanoplasmonics [90]. In this work, in analogy to the WSM
electrodynamics, we verify that the nonreciprocity is also a
reality for the dielectric permittivity (23).

The components of the tensor σ B
i j may also be related to

the symmetries of the known crystal systems, in principle re-
produced by the permittivity tensor of the dielectric endowed
with magnetic conductivity, given in Eq. (23). Further, it is
well stated that the crystal symmetries imply specific permit-
tivity tensor structures [91,92], which characterize the type of
optical symmetry (cubic, uniaxial, or biaxial) associated. In
this sense, considering the crystal symmetries on the effective
permittivity (23), one can achieve some restrictions on the

components of the tensor σ B
i j . In principle, the cubic structure

is compatible with until seven non-null components for σ B
i j

(in the principal axes optical system); for uniaxial materials,
the tensor σ B

i j can have until eight non-null components; for
biaxial crystals, the tensor σ B

i j can have until nine non-null
components. Details about it are discussed in the Appendix.

A. Isotropic diagonal chiral conductivity

As a first situation, we review the case of an isotropic
magnetic conductivity, that is, σ B

i j = � δi j , where � is a real
parameter, which replaced in Eq. (23) yields

ε̄i j (ω) = ε δi j − i�

ω2
εi jb kb, (29)

which constitutes a Hermitian permittivity, entailing the ab-
sence of dissipation, as seen in the refractive indices to be
obtained below.

Considering the behavior of the general constitutive rela-
tion Ji = σ B

i j B
j under the inversion transformation, one finds

that σ B
i j is odd under parity [22,44]. Therefore, the conductiv-

ity � should be a pseudoscalar for ensuring the permittivity
(29) parity invariant.

For this case, the matrix Mi j (24), using n = k/ω, reads as

[Mi j] = N +

⎛⎜⎜⎝
0 iμn3

�
ω

−iμn2
�
ω

−iμ n3�
ω

0 iμn1
�
ω

iμn2
�
ω

−iμn1
�
ω

0

⎞⎟⎟⎠, (30)

where

N =

⎛⎜⎜⎝
n2

2 + n2
3 − με −n1n2 −n1n3

−n1n2 n2
1 + n2

3 − με −n2n3

−n1n3 −n2n3 n2
1 + n2

2 − με

⎞⎟⎟⎠.

(31)

Requiring the null determinant, we obtain

n2
± = με + 2

(
μ�

2ω

)2

± μ�

ω

√
με +

(
μ�

2ω

)2

, (32)

so that the refractive indices are

n± =
√

με +
(

μ�

2ω

)2

± μ�

2ω
, (33a)

ñ± = −
√

με +
(

μ�

2ω

)2

± μ�

2ω
, (33b)

corresponding to four distinct real refractive indices. The two
positive ones, n±, were already examined in Ref. [44] and
define a dispersive nonabsorbing medium compatible with the
birefringence. We also note that there is no absorption (the
indices are real), so the chiral conductivity does not imply a
conducting behavior for the dielectric medium. The conduct-
ing behavior is ensured only when it is defined simultaneously
with the Ohmic conductivity (σ �= 0, σ B �= 0). The propaga-
tion modes for the indices (33a), obtained from the relation
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Mi jE j = 0 [44], are

E± = 1

n
√

2
(
n2

1 + n2
3

)
⎛⎜⎜⎝

nn3 ∓ in1n2

±i
(
n2

1 + n2
3

)
∓in2n3 − nn1

⎞⎟⎟⎠. (34)

We can write the modes for some propagation directions. As
an initial case, we take a wave propagating at the Z axis, n =
(0, 0, n3), for which Eq. (34) yields

E± = 1√
2

⎛⎝ 1
±i
0

⎞⎠, (35)

representing the left-handed (L) and right-handed (R) polar-
ized electromagnetic waves, corresponding to E+ and E−,
respectively. As already mentioned, a known consequence
of the optical activity of a medium is linear birefringence,
occurring when two circularly polarized modes of opposite
chiralities, with refractive indices n+ and n−, respectively,
have different phase velocities c/n+ and c/n−. This property
implies a rotation of the polarization plane of a linearly po-
larized wave. It is quantified by the specific rotatory power δ,
defined as

δ = −ω

2
[Re(n+) − Re(n−)], (36)

which measures the rotation of the oscillation plane of linearly
polarized light per unit traversed length in the medium. Here,
n+ and n− are associated with left- and right-handed circularly
polarized waves, respectively. For the refractive indices (33a)
and (33b), the rotatory power is frequency independent, de-
pending only on the chiral magnetic conductivity �, namely,

δ = −μ�

2
. (37)

For the wave propagation on the Z direction, the permittivity
tensor (29) is set by the matrix

[ε̄] =

⎛⎜⎜⎝
ε − ikz

ω
� 0

ikz

ω
� ε 0

0 0 ε

⎞⎟⎟⎠, (38)

which exhibits three distinct eigenvalues: ε, ε± = ε ± �kz/ω,
playing the role of the principal permittivity values. This
result shows that the material with permittivity (38) may
behave like a biaxial crystal (see Ref. [92]) after reduced to
its principal axes system. Biaxial systems, such as the one
described in Eq. (38), can also be recovered in chiral matter
with anomalous Hall effect [27] described by the spacelike
Maxwell-Carroll-Field-Jackiw electrodynamics [32].

For a general propagation direction, n = (k1, k2, k3)/ω, the
permittivity tensor (29) reads as

[ε̄i j] =

⎛⎜⎜⎝
ε i�

ω2 k3 − i�
ω2 k2

− i�
ω2 k3 ε i�

ω2 k1

i�
ω2 k2 − i�

ω2 k1 ε

⎞⎟⎟⎠, (39)

also yielding three distinct principal values: ε, ε+ = ε + �
ω2 k,

ε− = ε − �
ω2 k, where k =

√
k2. Thus, such a tensor recovers

the behavior of biaxial crystals (embracing triclinic, mono-
clinic, and orthorhombic systems).

B. Nondiagonal antisymmetric conductivity

The magnetic conductivity tensor may be antisymmetric,
σ B

i j = −σ B
ji , being parametrized as

σ B
i j = εi jk bk, (40)

where bk = (b1, b2, b3) is a constant three-vector, and εi jk is
the Levi-Civita symbol. In this case, the permittivity (23),

ε̄i j (ω) =
[
ε − i(k · b)

ω2

]
δi j + i

ω2
ki b j, (41)

implies nonreciprocity since εi j (ω, k) �= ε ji(ω,−k), and in
conformity with the nonsymmetric behavior of ε̄i j [78,86].
Note this property is also shared by the WSM permittivity
(27), as pointed out in Refs. [86–89]. Under the parity inver-
sion k → −k, the permittivity tensor (41) is kept invariant if
b is a vector, i.e., it transforms as b → −b (under parity).

By replacing Eq. (41) in the matrix (24), we obtain

[Mi j] = N − i
μ

ω

×

⎛⎜⎜⎝
−(n2b2 + n3b3) n1b2 n1b3

n2b1 −(n1b1 + n3b3) n2b3

n3b1 n3b2 −(n1b1 + n2b2)

⎞⎟⎟⎠,

(42)

where

N =

⎛⎜⎜⎝
n2

2 + n2
3 − με −n1n2 −n1n3

−n1n2 n2
1 + n2

3 − με −n2n3

−n1n3 −n2n3 n2
1 + n2

2 − με

⎞⎟⎟⎠.

(43)

For det[Mi j] = 0, one obtains a doubly degenerate dispersion
equation in n, [

n2 + i
μ

ω
(b · n) − με

]2
= 0, (44)

which provides the solution for the refractive index,

n± = ±
√

με −
( μ

2ω
b cos θ

)2
− i

μ

2ω
b cos θ, (45)

where b · n = bn cos θ with b = |b|. For με �
(μb cos θ/2ω)2 and με � (μb cos θ/2ω)2, the refractive
index is complex and a pure imaginary, respectively. The
imaginary piece implies an anisotropic and dispersive
absorption, ruled by a direction-dependent absorption
coefficient, given by α̃ = μb cos θ . The real piece, when
negative, corresponds to the negative refraction, that is usual
in metamaterials.

The propagation modes are found for n along the z axis and
the vector b written as

n = (0, 0, n), b = b(0, sin θ, cos θ ) ≡ (0, b2, b3), (46)
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where θ is the angle between n and b. The matrix (42) is

[Mi j] =

⎛⎜⎜⎝
n2 − με + n iμ

ω
b3 0 0

0 n2 − με + n iμ
ω

b3 0

0 −n iμ
ω

b2 −με

⎞⎟⎟⎠,

(47)

with n · b = nb3. For the condition με � (μb3/2ω)2, the
indices (45) possess a real piece. For the index n+, the condi-
tion Mi jE j = 0 provides two mutually orthogonal propagation
modes

E(1)
± = 1√

2(1 + Q2)

⎛⎝±
√

1 + Q2

−1
iQeiα

⎞⎠, (48)

while the index n− has associated

E(2)
± = 1√

2(1 + Q2)

⎛⎝±
√

1 + Q2

1
−iQe−iα

⎞⎠ (49)

that fulfill the relations E(1)∗
+ · E(1)

− = 0, E(2)∗
+ · E(2)

− = 0, with
Q = b2N/εω. Here, we parametrized the complex refractive
index as n = Neiα , with N = √

n∗n = √
με, and

tan α = μb3/2ω√
με − (μ/2ωb3)2

. (50)

The fields (48) set nonorthogonal modes associated with n+,
while (49) stands for nonorthogonal modes associated with
n−. If birefringence originates from two linearly polarized
modes having different phase velocities, this property is not
suitably characterized in terms of the usual rotatory power
given by Eq. (36) since the latter is based on a decomposition
of a linearly polarized mode into two circularly polarized ones
of different chirality. For the case b2 = 0, the solutions (48)
and (49) reduce to linearly polarized orthogonal modes

E(1)
± = 1√

2

⎛⎝±1
−1
0

⎞⎠, E(2)
± = 1√

2

⎛⎝±1
1
0

⎞⎠. (51)

In this case, the birefringence is measured in terms of the
phase shift developed between the propagating modes [see
Eq. (8.32) in [93]]:

�

l
= 2π

λ0
[ Re(n+) − Re(n−) ], (52)

where λ0 is the wavelength of the electromagnetic radiation in
vacuo, and l is the distance in which the wave travels in the
birefringent medium. Considering the refractive indices (45),

the phase shift per unit length is

�

l
= 2π

λ0

√
με −

(
μ

2ωb3

)2

, (53)

also written as

�

l
= ω

√
με −

(
μ

2ωb3

)2

. (54)

As the refractive indices (45) possess an imaginary piece,
there is absorption for both modes (in equal magnitude),
measured by an absorption coefficient [47], given by γ =
2ω Im(n), that is,

γ = μ b3. (55)

In this case, by definition, there is no dichroism.
The permittivity tensor (41) for the propagation on Z direc-

tion ki = (0, 0, k), and bi = (0, b2, b3) is given by the matrix

[ε] =

⎛⎜⎜⎝
ε − ik b3

ω2 0 0

0 ε − ik b3
ω2 0

0 ik b2
ω2 ε

⎞⎟⎟⎠, (56)

whose diagonalization yields two equal principal values:
ε, ε± = ε − ikb3/ω. At this form, the permittivity tensor (56)
recovers the behavior of an uniaxial crystal [92], belonging
to the tetragonal, hexagonal, or trigonal systems. For a gen-
eral propagation direction, n = (k1, k2, k3)/ω, and b vector,
the permittivity (41) also yields two different eigenvalues,
ε, ε − i

ω2 (k · b), a scenario compatible with uniaxial materials
as well [91,92]. See the Appendix for more details.

C. Nondiagonal symmetric conductivity tensor

Now we examine the case in which the magnetic conduc-
tivity is given by a traceless symmetric tensor, in accordance
with the following parametrization:

σ B
i j = 1

2 (ai c j + a j ci ), (57)

where ai and ci are the components of two orthogonal back-
ground vectors a and c, i.e., a · c = 0, such that σ B

ii = 0.
Inserting Eq. (57) in the permittivity tensor (23), one obtains

ε̄i j = ε δi j + i

2ω2
(ai cn + an ci )εnb j kb, (58)

which also manifests nonreciprocity, ε̄i j (ω, k) �= ε̄ ji(ω,−k),
and in accordance with Refs. [86–89]. Taking into account
that the tensor (57) is P odd, the permittivity (58) preserves
the parity symmetry in two situations: (i) when a transforms
as a pseudovector (a → a) and c as a vector; (ii) when a is a
vector and c a pseudovector.

The tensor (24) is explicitly represented by the following
matrix:

[Mi j] = N − i
μ

2ω

⎛⎜⎜⎝
ε11 n1(a1c3 + a3c1) − 2n3a1c1 −n1(a1c2 + a2c1) + 2n2a1c1

−n2(a2c3 + a3c2) + 2n3a2c2 ε22 n2(a2c1 + a1c2) − 2n1a2c2

n3(a3c2 + a2c3) − 2n2a3c3 −n3(a3c1 + a1c3) + 2n1a3c3 ε33

⎞⎟⎟⎠, (59)
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where N is given by Eq. (43), and

ε11 = (a1c2 + a2c1)n3 − (a1c3 + a3c1)n2, (60a)

ε22 = (a2c3 + a3c2)n1 − (a1c2 + a2c1)n3, (60b)

ε33 = (a3c1 + a1c3)n2 − (a3c2 + a2c3)n1. (60c)

The evaluation of det[Mi j] = 0 yields the forthcoming dis-
persion equation:[

n2 − με + i
μ

2ω
n · (a × c)

]
×
[
n2 − με − i

μ

2ω
n · (a × c)

]
= 0. (61)

Using that n · (a × c) = n|a||c| cos ϕ, Eq. (61) yields the so-
lutions

n± =
√

με −
( μ

4ω
|a||c| cos ϕ

)2
± i

μ

4ω
|a||c| cos ϕ. (62)

The structure of the two refractive indices present dependence
on the angle between k and a three-vector (b for the antisym-
metric case and a × c for the current scenario).

In order to examine the propagating modes, we set the
magnetic conductivity vectors of the symmetric case as a =
(a1, 0, a3), c = (0, c2, 0), such that one obtains

a × c = (−a3c2, 0, a1c2). (63)

For propagation along the Z axis, n = (0, 0, n), the matrix
Mi j [Eq. (59)] is

[Mi j] =

⎛⎜⎜⎝
n2 − με − i μ

2ω
a1c2n 0 0

0 n2 − με + i μ

2ω
a1c2 0

−i μ

2ω
a3c2n 0 −με

⎞⎟⎟⎠,

(64)

where ε is the complex electric permittivity. Evaluating
det[Mi j] = 0, one finds the following dispersion relations:

n2 − με = ±i
μ

2ω
a1 c2 n, (65)

which is compatible with Eq. (61).
We then write now the electric field polarizations satisfying

Mi jE j = 0 associated with n2
+ and n2

−, respectively,

Ê+ = 1√
1 + |A|2

⎛⎝ 1
0

−iA

⎞⎠, Ê− =
⎛⎝0

1
0

⎞⎠, (66)

where A = a3c2n/(2ωε). We observe that Ê± represent the
linearly polarized vectors, with Ê+ endowed with a longi-
tudinal component. In the case we set a3 = 0, the linearly
polarized propagating modes become orthogonal, that is,

Ê+ =
⎛⎝1

0
0

⎞⎠, Ê− =
⎛⎝0

1
0

⎞⎠. (67)

If we consider refractive indices from (61) with the positive
real piece, the propagation turns out free of birefringence.
However, since the imaginary pieces are different, the prop-
agating modes are absorbed in different degrees, which can

be measured by the absorption difference per unit length,

�d

l
= 2π

λ0
[ Im(n+) − Im(n−) ], (68)

which for the indices (62) and propagation along the x axis
yields

�d

l
= μa1 c2

2
. (69)

In the particular case of a = (a1, 0, a3), c = (0, c2, 0), with
the wave propagation along the Z axis, the diagonalization of
the permittivity matrix (58) yields three distinct eigenvalues:
ε, ε ± ia1c2k/(2ω2), which is compatible with the behavior of
a biaxial crystal [91,92]. For the general case of σ B

i j = (aic j +
a jci )/2, the three distinct eigenvalues are ε, and

ε± = ε ± i

2ω2

√
[(a × c) · k]2. (70)

As already known, such a scenario is of biaxial materials
[91,92], belonging to triclinic, monoclinic, and orthorhombic
systems.

III. ENERGY PROPAGATION

In this section, we will discuss some aspects regarding
the energy velocity and group velocity considering the three
scenarios endowed with magnetic conductivity σ B

i j already
discussed.

A. Isotropic magnetic conductivity

Let us begin with the isotropic magnetic conductivity,
σ B

i j = � δi j , where � is a real and positive constant, that
represents 1

3 of the trace of the σ B
i j matrix. Substituting this

tensor in Eq. (23), the determinant condition (25) yields the
k-polynomial equation

[k2 − με(ω) ω2]2 − μ2 �2 k2 = 0. (71)

Remembering that ε(ω) = ε′(ω) + iε′′(ω), the solutions of
Eq. (71) are

k± = ω(I+ + i I−) ± μ�

2
, (72a)

k̃± = −ω(I+ + i I−) ± μ�

2
, (72b)

with

I± = Î±√
2

√
με′ +

(
μ�

2ω

)2

, (72c)

Î± =

√√√√√
1 +

(
με′′

με′ + μ2�2/(4ω2)

)2

± 1. (72d)

Implementing n = k/ω in Eq. (72), one obtains the follow-
ing associated refractive indices:

n± = (I+ + i I−) ± μ�

2ω
, (73a)

ñ± = −(I+ + i I−) ± μ�

2ω
, (73b)
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FIG. 1. Refractive indices of Eq. (73) in terms of ω. The solid
blue (red) line illustrates Re[n±], while the dashed black line depicts
Im[n±]. The solid orange (magenta) line illustrates Re[ñ±], while the
dashed gray line depicts Im[ñ±]. Here we have used μ = 1, ε ′ = 2,
σ = 0.8 s−1, � = 0.5 s−1.

where ñ± is associated with negative refraction. The behavior
of n± as a function of the frequency ω is plotted in Fig. 1,
where for illustration, we have considered ε′′ = i(σ/ω), with
σ being the Ohmic conductivity. Figure 1 also reveals a kind
of mirror symmetry between the refractive indices ñ± and n±,
ascribed to ñ± = −n∓. In the following, we use natural units.2

In the presence of absorption terms, the group velocity is
not a real quantity, no longer representing the energy propaga-
tion velocity. As illustration, we take the dispersion relations
(72a) and (72b), and derive the group velocity vg = (∂ω/∂k)
associated with them, obtaining the expressions

v±
g =

k′
±

μω
∓ �

2ω
+ i ωε′′

2k′±

(
1 ∓ μ�

2k′±

)−1

ε′ + ω
2

∂ε′
∂ω

+ i
(
ε′′ + ω

2
∂ε′′
∂ω

) , (74)

ṽ±
g =

k̃′
±

μω
∓ �

2ω
+ i ωε′′

2k̃′±

(
1 ∓ μ�

2k̃′±

)−1

ε′ + ω
2

∂ε′
∂ω

+ i
(
ε′′ + ω

2
∂ε′′
∂ω

) , (75)

which are complex, as it usually occurs in an absorbing and
active media [70]. In this case, to analyze the propagation of

2In this paper, we consider natural units. Let us see an example of
how to convert from SI units to natural units. The electric permittivity
ε is measured in farad per meter, i.e., (F m−1) in SI units. Thus, in
natural units where [ε] = [μ] = 1, we have

[ε] = 1 → F m−1 = 1 → F = m.

Also, in SI units, the conductivity is measured as

[σ ] = �−1 m−1 = F s−1 m−1.

Then, by using the previous expressions, we find, in natural units,

[σ ] = �−1 m−1 = F s−1 m−1 → [σ ](n.u.) = s−1,

where the subscript (n.u.) means “natural units.” For the magnetic
conductivity, it analogously holds

[σ B] = �−1 s−1 = F s−1 s−1 → [σ B](n.u.) = s−1.

FIG. 2. Energy velocity in terms of ω. The solid blue (red) line
illustrates V ±

E and Ṽ ±
E , while the horizontal dashed black lines depict

the asymptotic limits ±1/
√

με ′. Here we have used μ = 1, ε ′ = 2,
σ = 0.8 s−1, � = 0.5 s−1.

energy carried by the wave through the medium, we evaluate
the energy velocity instead of the group velocity. Such veloc-
ity is obtained using Eqs. (72a) and (72b) in Eq. (16), for the
propagating modes described by k± and k̃±, namely,

V ±
E = 2ωI+ ± μ�

2ωU I±
, Ṽ ±

E = −2ωI+ ± μ�

2ωU I∓
, (76)

with

U I
± = με′

2
+ μω

2

∂ε′

∂ω
+ 1

2
(I2

+ + I2
−) + μ2�2

8ω2
± μ�I+

2ω
.

(77)

Clearly, the energy velocity (76) is different from the group
velocity (74), V ±

E �= v±
g . Such an energy velocity is plotted as

a function of the frequency in Fig. 2, with the values of μ = 1,
ε′ = 2, σ = 0.8 s−1, and � = 0.5 s−1. For the high-frequency
limit ω → ∞, the energy velocity goes as vE = ± 1/

√
με,

with the plus sign holding for the propagating modes as-
sociated with k±, and the minus sign being related to k̃±.
Notice that when there is no magnetic conductivity (� = 0),
the group velocity (74) recovers the same result obtained in
Ref. [70].

For nonabsorbing dielectrics (ε′′ = 0), the group and en-
ergy velocities are usually equal, vE = vg [47,55,58,70]. Such
equality seems to fail, however, in the presence of mag-
netic conductivity, � �= 0. Indeed, for ε′′ = 0, one finds I− =
k′′
± = 0, I+ =

√
με′ + μ2�2/(4ω2), and k′

± = ωI+ ± μ�/2,
in which the group velocity (74) and the energy velocity (76),
respectively, read as

v±
g |ε′′=0 = 2k′

± ∓ μ�

2μω
(
ε′ + ω

2
∂ε′
∂ω

) , (78a)

V ±
E |ε′′=0 = k′

±
μω
(
ε′ + ω

2
∂ε′
∂ω

± �
2ω2 k′±

) , (78b)

constituting distinct expressions, vE �= vg, even when the di-
electric substrate is deprived of absorption (ε′′ = 0). This is
an entire consequence of the isotropic magnetic conductivity,
which can not be encoded in the medium permittivity. Note
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that by setting � = 0, Eqs. (78a) and (78b) reduce to the same
expression,

VE = Vg = k′
±

μω
[
ε′ + 1

2ω(∂ε′/∂ω)
] . (79)

This is a curious result in some respects. In fact, on the
one hand, it seems to indicate that the magnetic conductivity
implies absorption. On the other hand, Eqs. (33a) and (33b)
reveal that the � conductivity does not engender an imaginary
contribution for the refractive indices, holding the absence of
absorption (for ε′′ = 0 and � �= 0). Therefore, it here appears
a novelty: a nonabsorptive medium (real refractive index)
where the energy velocity and group velocity are unequal.
This surprising behavior is due to the presence of the isotropic
magnetic current, which renders these velocities extremely
discrepant at low frequencies, as seen below.

Concerning the negative refraction modes associated with
k̃±, given in Eq. (72b), for ε′′ = 0, one writes the velocities

ṽ±
g |ε′′=0 = 2k̃′

± ∓ μ�

2μω
(
ε′ + ω

2
∂ε′
∂ω

) , (80a)

Ṽ ±
E |ε′′=0 = k̃′

±
μω
(
ε′ + ω

2
∂ε′
∂ω

± �
2ω2 k̃′±

) . (80b)

For the group velocities (78a) and (80a), it holds that
v+

g = v−
g and ṽ+

g = ṽ−
g . This happens due to the presence of

the factor ∓μ�/2 in the numerator of these relations and the
factor ±μ�/2 contained inside k′

± and k̃′
± [see Eqs. (72a) and

(72b), respectively], yielding a cancellation, so that the group
velocities are

v±
g |ε′′=0 =

√
με′ + μ2�2/(4ω2)

με′ + μω

2
∂ε′
∂ω

, (81a)

ṽ±
g |ε′′=0 = −

√
με′ + μ2�2/(4ω2)

με′ + μω

2
∂ε′
∂ω

. (81b)

Moreover, from Eqs. (78b) and (80b) one also finds

V +
E − V −

E = 2ω2�

F

∂ε′

∂ω
, Ṽ +

E − Ṽ −
E = 2ω2�

F

∂ε′

∂ω
, (82a)

where

F = 4ε2ω2 + με�2 + ω4

(
∂ε′

∂ω

)2

+ ω
∂ε′

∂ω
(μ�2 + 4εω2).

(82b)

Hence, with ε′ constant, it holds V +
E = V −

E and Ṽ +
E = Ṽ −

E .
The behavior of the velocities v±

g , V ±
E , ṽ±

g , and Ṽ ±
E , for ε′ =

cte and ε′′ = 0, is depicted in Fig. 3. In such a plot, one notices
the extreme distinction between group velocity vg and energy
velocity VE at low frequencies. The group velocity tends to
infinity at the origin, being superluminal at a certain frequency
range. At large frequencies, the group velocity approaches
the energy velocity. Despite its real character, the behavior of
the group velocity for low frequencies is an illustration of its
limitations in representing the propagation of energy or signal
in scenarios with strong anomalous dispersion.

FIG. 3. Group velocities of Eqs. (81a) and (81b). Energy veloc-
ities of Eqs. (78b) and (80b). Solid lines indicate v±

E (blue) and ṽ±
E

(red). Dashed-dotted curves represent v±
g (blue) and ṽ±

g (red). Here,
we have used μ = 1, ε ′ = 2, ε ′′ = 0, � = 0.5 s−1.

B. Antisymmetric magnetic conductivity

In this case, the antisymmetric conductivity tensor is
parametrized in terms of a constant background vector b, as
previously mentioned, that is, σ B

i j = εi jk bk . Substituting this
antisymmetric tensor in (23), the determinant (25) yields the
dispersion relation

k2 + i μ (b · k) − με(ω) ω2 = 0, (83)

whose solutions are

k± = − i μ

2
(k̂ · b) ±

√
με(ω) ω2 − μ2

4
(k̂ · b)2, (84)

or, equivalently,

k± = − i μ

2
(k̂ · b) ± ω(A+ + i A−), (85a)

with

A± = 1√
2

√√√√√| f (ω)|
⎛⎝√1 + μ2ε′′2

f (ω)2 ± sgn[ f (ω)]

⎞⎠, (85b)

where

f (ω) = με′ − μ2(k̂ · b)2

4ω2
. (85c)

The refractive indices n± associated with k± can be ob-
tained by using n = k/ω, providing two indices

n± = −i
μ(k̂ · b)

2ω
± (A+ + iA−), (86)

being Re[n+] > 0 and Re[n−] < 0 (negative refraction). Us-
ing (k̂ · b) = b cos θ and ε(ω) = ε′ + i(σ/ω), we illustrate
the general behavior of the refractive index n± in terms of
the frequency in Fig. 4 for the following cases: (i) parallel
(θ = 0) and (ii) antiparallel (θ = π ) configurations. We use
μ = 1, ε = 2, |b| = 0.3 s−1, and σ = 0.8 s−1 in these plots.
Notice that, when b is perpendicular to k̂ direction, the results
do not depend on the magnitude of the b vector.

184439-9



SILVA, NEVES, AND FERREIRA JR. PHYSICAL REVIEW B 109, 184439 (2024)

FIG. 4. Refractive indices n± of Eq. (86). Solid (dotted) lines
represent Re[n±] (Im[n±]). For n+, we have considered θ = 0 (blue)
and θ = π (cyan), and for n−, θ = 0 (red) and θ = π (magenta).
Here we have used μ = 1, ε ′ = 2, σ = 0.8 s−1, b = 0.3 s−1. The
solid blue and cyan lines lie on top of each other, the same occurring
for the solid red and magenta lines.

We point out that Re[n±]|θ=0 = Re[n±]|θ=π , explaining
the reason by which solid blue and cyan curves for Re[n+]
and magenta and red curves for Re[n−] appear superim-
posed in Fig. 4. Furthermore, one notices that Im[n−]|θ=0 =
−Im[n+]|θ=π and Im[n−]|θ=π = −Im[n+]|θ=0, which in-
dicates an interchange in the absorptive behavior for b
parallel and antiparallel configurations. The correspondence
Re[n±] = −Re[n∓] holds for any propagation configuration.
In the high-frequency limit, n± → ±√

με′, which also in-
dicates that the absorption effects reduce drastically in this
special limit.

To evaluate the energy velocity associated with k±, one
uses the dispersion relations (85a) in Eq. (16), yielding

V ±
E = ±A+

U A±
, (87)

with

U A
± = με′

2
+ μω

2

∂ε′

∂ω
+ 1

2
(A2

+ + A2
−) + μ2(k̂ · b)2

8ω2

∓ μ(k̂ · b)A−
2ω

, (88)

which are plotted in Fig. 5.
We show the behavior of the energy velocity V ±

E as a
function of the frequency in Fig. 5, for two cases θ = 0 and
θ = π , which fulfill the mode orthogonality conditions given
in Eqs. (12a) and (12b).

Taking the differential operation in relation to ki compo-
nent in (83), the correspondent group velocity is

vg = ∂ω

∂k
=

k
μω

+ i b
2ω(

ε′ + ω
2

∂ε′
∂ω

)+ i
(
ε′′ + ω

2
∂ε′′
∂ω

) , (89)

which is valid for all frequency ranges and for both solutions
k±. Let us now write the ki components as ki = k′i + i k′′i, so
that the group velocity (after an algebraic development) can

FIG. 5. Energy velocity V ±
E of Eq. (87). The particular cases

considered are θ = 0 (red) and θ = π (blue). Solid lines indicate V +
E ,

while the dashed curves represent V −
E . Here we have used μ = 1,

ε ′ = 2, σ = 0.8 s−1, b3 = 0.3 s−1

be rewritten as

vg =
k′
μω

+ i ωε′′ k̂
2k′(

ε′ + ω
2

∂ε′
∂ω

)+ i
(
ε′′ + ω

2
∂ε′′
∂ω

) . (90)

Therefore, the group velocity is in the k direction since the
contribution of the b-vector conductivity is canceled.

Differently from the isotropic conductivity case, where the
absorption effect occurs only for ε′′ �= 0, in the antisymmetric
scenario, the absorption effect can be observed by means of
the dispersion relation (83), from which one finds that the
absorption occurs for the three subcases:

(i) ε′′ = 0 and b cos θ = 0 (absence of absorption);
(ii) ε′′ = 0 and b cos θ �= 0 (magnetically induced absorp-

tion effect);
(iii) ε′′ �= 0 and b cos θ �= 0 (usual and magnetically in-

duced absorption), for which group and energy velocities are
different, as revealed by Eqs. (87) and (90).

In order to analyze the energy velocity and its possible
connection with the group velocity, we now consider the two
particular cases with potential novelties, that is, the ones with
no dielectric absorption, ε′′ = 0.

For the case (i), ε′′ = 0 and b cos θ = 0, the complex group
velocity of (90) and the energy velocity (87) are equivalent:

v±
g = V ±

E = k′
±/μω

ε′ + ω
2

∂ε′
∂ω

, (91)

with

k′
± = ωA+, k′′

± = 0, A+ =
√

με′, A− = 0. (92)

This is an expected result, considering the real refractive index
n = √

με′ that stems from Eq. (45).
For the case (ii), ε′′ = 0 and b cos θ �= 0, the group velocity

becomes real and equal to the energy velocity as

v±
g = V ±

E = k′
±/μω

ε′ + ω
2

∂ε′
∂ω

, (93)

where, in this case,

k′
± = ωA+, k′′

± = −μ

2
(k̂ · b) ± ωA−, (94a)
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FIG. 6. Energy velocity V ±
E of Eq. (95) for ε ′′ = 0. Solid red line

indicates V +
E for θ = (0, π ), while the dashed red curve represents

V −
E for θ = (0, π ). Here we have used μ = 1, ε ′ = 2, b = 0.3 s−1.

The vertical dashed line indicates the frequency ω′ of Eq. (99).

A± = 1√
2

√
| f (ω)|{1 ± sgn[ f (ω)]}, (94b)

so that

v±
g = V ±

E =
√| f (ω)|{1 + sgn[ f (ω)]}

μ
√

2
(
ε′ + ω

2
∂ε′
∂ω

) , (95)

with f (ω) given by Eq. (85c). Differently from the isotropic
conductivity section, the group velocity and energy veloc-
ity remain equal even when the anisotropic conductivity is
non-null. It is interesting to observe that when ε′′ = 0 and
b cos θ �= 0, there is absorption since the refractive index (45),

n± = ±
√

με′ −
( μ

2ω
b cos θ

)2
+ i

μ

2ω
b cos θ, (96)

possesses an imaginary piece. Surprisingly, however, the
group velocity and energy velocity turn out equivalent in this
special absorbing scenario. Therefore, the equality vg = VE

holds for the magnetically induced absorption, stemming from
the antisymmetric magnetic conductivity tensor.

Here, we need to be careful due to the sign function in
Eq. (95), as highlighted below:

(i) For f (ω) > 0, one has sgn[ f (ω)] = 1, such that

v±
g = V ±

E =
√| f (ω)|

μ
(
ε′ + ω

2
∂ε′
∂ω

) . (97)

(ii) For f (ω) < 0, one has sgn[ f (ω)] = −1, then one
finds

v±
g = V ±

E = 0, (98)

which is a consequence of having the wave vector (84) com-
pletely imaginary (for this condition).

Such behavior is plotted in Fig. 6, that depicts the energy
velocity V ±

E considering ε′′ = 0 for the parallel and antiparal-
lel configurations. For 0 < ω < ω′, with

ω′ =
√

μ(k̂ · b)2

4ε′ , (99)

it holds f (ω) < 0 and energy velocity is null, indicating that,
in this particular situation, there is no propagation. For ω >

ω′, one has f (ω) > 0 and the velocities (97).

C. Symmetric magnetic conductivity

The magnetic conductivity tensor in the symmetric form is
parametrized by σ B

i j = (ai c j + a j ci )/2, where ai and c j are
components of the two background vectors a and c, respec-
tively. In this case, the permittivity tensor (23) is

εi j (ω) = ε(ω) δi j + i

2ω
[ ai(c × n) j + ci(a × n) j ]. (100)

The null determinant in (25) yields the k-polynomial equation

k2 ± i μ

2
(a × c) · k − με(ω) ω2 = 0, (101)

whose four solutions are

k± = ± iμ(a × c) · k̂
4

+ ω(S+ + iS−), (102a)

k̃± = ± iμ(a × c) · k̂
4

− ω(S+ + iS−), (102b)

with

S± = 1√
2

√√√√√|g(ω)|
⎛⎝√1 + μ2ε′′2

g(ω)2
± sgn[g(ω)]

⎞⎠, (102c)

g(ω) = με′ − μ2

16ω2
[(a × c) · k̂]2. (102d)

Using (a × c) · k̂ = |a × c| cos ϕ, there appear four refrac-
tive indices,

n± = ± iμ|a × c|
4ω

cos ϕ + (S+ + iS−), (103a)

ñ± = ± iμ|a × c|
4ω

cos ϕ − (S+ + iS−), (103b)

where ñ± are related with negative refraction.
Figure 7 illustrates the general behavior of the refractive

indices n± and ñ± as functions of the frequency for parallel
(ϕ = 0) and antiparallel (ϕ = π ) configurations, which are the
ones compatible with the orthogonality conditions (12a) and
(12b).

From Eq. (103a), one observes that Re[n+] = Re[n−]
for all ϕ. Also, Im[n−]|ϕ=π = Im[n+]|ϕ=0 and Im[n−]|ϕ=0 =
Im[n+]|ϕ=π , which indicates that the absorbing terms in n+
for the parallel configuration are mapped in absorbing terms
in n− for the antiparallel configuration. This kind of analysis
allows us to infer the behavior of n− without plotting it.

Comparing the refractive indices n± and ñ±, one notices
that Re[ñ±] = −S+ = −Re[n±]. On the other hand,

−Im[ñ±] = S− ∓ i
μ

4ω
|a × c| cos ϕ, (104a)

Im[n±] = S− ± i
μ

4ω
|a × c| cos ϕ, (104b)

which implies

Im[ñ±]|ϕ = −Im[n±]|π−ϕ. (105)
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FIG. 7. Refractive indices n+ of Eq. (103a) and ñ+ of Eq. (103b).
Solid (dashed) lines represent Re[n+, ñ+] (Im[n+, ñ+]). For n+, we
have considered θ = 0 (blue) and θ = π (cyan), and for ñ+, θ = 0
(red) and θ = π (magenta). Here, we have used μ = 1, ε ′ = 2, σ =
0.8 s−1, |a × c| = 0.3 s−1. The solid red and magenta lines lie on top
of each other, and solid blue and cyan curves are coincident since
cos2 π = cos2 0.

For the solutions k± of Eq. (103a) and k̃± of Eq. (103b),
we choose a3 = 0, which provides transversal propagating
modes [see the modes (67)] so that the correspondent energy
velocities are given by

V ±
E = S+

U S±
, Ṽ ±

E = −S+
U S∓

, (106a)

with

U S
± = με′

2
+ μω

2

∂ε′

∂ω
+ 1

2
(S2

+ + S2
−)

+ μ2|a × c|2
32ω2

cos2 ϕ ± μS−|a × c|
4ω

cos ϕ. (106b)

The general behavior of the energy velocity is depicted in
Fig. 8 for V +

E and Ṽ +
E and in Fig. 9 for V −

E and Ṽ −
E . We observe

a kind of mirror symmetry between the energy velocities re-

FIG. 8. Energy velocity V +
E and Ṽ +

E of Eq. (106a). The partic-
ular cases considered here are θ = 0 (red) and θ = π (blue). Solid
(dashed) lines indicate V +

E (Ṽ +
E ), respectively. Here, we have used

μ = 1, ε ′ = 2, σ = 0.8 s−1, |a × c| = 0.3 s−1.

FIG. 9. Energy velocity V −
E and Ṽ −

E of Eq. (106a). The particular
cases considered are θ = 0 (red) and θ = π (blue). Solid (dashed)
curves represent V −

E (Ṽ −
E ). Here we have used μ = 1, ε ′ = 2, σ =

0.8 s−1, |a × c| = 0.3 s−1.

lated to the propagating modes of n± and the modes associated
with ñ± (negative refraction) when ϕ = 0, π . In fact, one
notices that V ±

E |ϕ=0 = V ∓
E |ϕ=π and Ṽ ±

E |ϕ=0 = Ṽ ∓
E |ϕ=π

Notice that if a is parallel (or antiparallel) to c, the contri-
bution of the magnetic conductivity tensor is null in the result
(101). Furthermore, the dispersion relation (101) is equivalent
to the dispersion equation (83) of the antisymmetric case
by replacing ±(a × c)/2 → b, which ensures similarity of
results with the ones of the previous section.

By calculating the differential in relation to the ki compo-
nent in Eq. (101), the corresponding group velocity is

v±
g = ∂ω

∂k
=

k
μω

± i (a×c)
4ω(

ε′ + ω
2

∂ε′
∂ω

)+ i
(
ε′′ + ω

2
∂ε′′
∂ω

) , (107)

which is valid for all frequency ranges, and for both solutions
k± and k̃±. Let us now write the ki components as ki = k′i +
ik′′i, then the group velocity can be rewritten as

v±
g =

k′
μω

+ i ωε′′ k̂
2k′(

ε′ + ω
2

∂ε′
∂ω

)+ i
(
ε′′ + ω

2
∂ε′′
∂ω

) . (108)

Similarly to the antisymmetric case of Sec. III B, we observe
that for a nonabsorbing scenario ε′′ = 0 and |a × c| cos ϕ = 0,
one has V ±

E = v±
g .

Furthermore, in the case of the magnetically induced ab-
sorption ε′′ = 0 and |a × c| cos ϕ �= 0, one also finds

v±
g = V ±

E = k′
±/μω

ε′ + ω
2

∂ε′
∂ω

, (109)

where, in this case,

k′
± = ωS+, S± = 1√

2

√
|g(ω)|{1 ± sgn[g(ω)]}, (110)

such that

v±
g = V ±

E =
√|g(ω)|{1 + sgn[g(ω)]}

μ
√

2
(
ε′ + ω

2
∂ε′
∂ω

) . (111)

Again, we observe the following:
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FIG. 10. Energy velocity V ±
E of Eq. (106a) for ε ′′ = 0. Solid

red line indicates V ±
E for θ = 0, π , while the dashed red curve

represents Ṽ ±
E for θ = 0, π . Here we have used μ = 1, ε ′ = 2,

|a × c| = 0.3 s−1. The vertical dashed line indicates the frequency
ω′′ of Eq. (113).

(i) For g(ω) > 0, one has sgn[g(ω)] = 1, which yields

v±
g = V ±

E =
√|g(ω)|

μ
(
ε′ + ω

2
∂ε′
∂ω

) . (112)

(ii) For g(ω) < 0, which occurs for 0 < ω < ω′′, with

ω′′ =
√

μ|a × c|2 cos2 ϕ

16ε′ , (113)

there occurs sgn[g(ω)] = −1, leading to S+ = 0, and

v±
g = V ±

E = 0. (114)

This same analysis also holds for the energy velocity Ṽ ±
E

associated with k̃± since k̃′
± = −ωS+. We illustrate the behav-

ior of the energy velocities for ε′′ = 0 and |a × c| cos ϕ �= 0
in Fig. 10, considering the parallel and antiparallel configura-
tions.

IV. FINAL REMARKS

In this work, we have investigated a dielectric medium en-
dowed with magnetic conductivity, concerning optical effects
and electromagnetic signal propagation. Considering special
cases for the magnetic conductivity, we have obtained the po-
larization of the collective electromagnetic propagating modes
and their related refractive indices. We also have presented
the solutions that describe negative refraction in each case.
Furthermore, analyses of optical properties were carried out.
For the isotropic magnetic conductivity of Sec. II A, we deter-
mined the rotatory power, while the phase shift and absorption

coefficients for the antisymmetric conductivity were found in
Sec. II B. Finally, the symmetric conductivity was addressed
in Sec. II C, where the phase shift and absorption difference
(per unit length) between propagating modes were achieved.

The influence of crystal symmetries on the general mag-
netic conductivity tensor σ B

i j was also addressed and is
summarized in Table I, where one finds the maximal number
of independent components it may have considering the re-
strictions brought about by the optical symmetry and related
crystal system. The number of independent components of
σ B

i j for each particular configuration (isotropic, antisymmetric,
and symmetric) is in agreement with the expected number
of components of general σ B

i j when the crystal symmetries’
restrictions are taken into account. Further details about the
restrictions on the conductivity tensor are presented in the
Appendix.

In Sec. III, we have investigated aspects regarding the
propagation of electromagnetic energy. In doing so, we have
obtained the energy velocity of the modes (related to positive
and negative refraction). As expected, the energy velocity is
negative for the negative refraction propagating modes. In this
context, we have obtained some peculiar and surprising out-
comes when comparing energy velocity and group velocity.
For general nonabsorbing media, it is known in the litera-
ture that energy velocity and group velocity are equivalent,
whereas for absorbing media such equivalence is lost. How-
ever, our results revealed that, when the dispersive dielectric
is endowed with magnetic conductivity, the latter statements
are no longer valid. Indeed, for the isotropic conductivity of
Sec. III A, in the absence of absorption (ε′′ = 0, � �= 0), one
finds that vg �= vE , suggesting the breaking of the equivalence
between energy and group velocities for a real refractive in-
dex medium. Such a situation is represented in the first line,
second column of Table II.

For the anisotropic and nondiagonal conductivities,
namely, the antisymmetric and symmetric cases of Secs. III B
and III C, respectively, the permittivity is nonreciprocal and
also non-Hermitian, there occurring magnetically induced ab-
sorption, that is, the refractive indices become complex, even
when ε′′ = 0, due to the non-null magnetic conductivity, as
we can see in Eqs. (86) and (103). For both cases, it holds
vg = VE in spite of the associated complex refractive indices.
In such cases, only when ε′′ �= 0 the energy velocity will be
different from the group velocity. These cases are represented
in the second and third lines of the second column of Table II.

These bold and surprising distinctions indicate that disper-
sive media endowed with magnetic conductivity have specific
energy propagation properties, which seem to be not described
by the usual formalism. All results regarding the group ve-
locity and energy velocity in dispersive media endowed with
magnetic conductivity are displayed in Table II.

TABLE I. Symmetry restriction on arbitrary general magnetic conductivity tensor.

Crystal system Number of components of σ B
i j Optical symmetry

Cubic Up to 7 in general; up to 5 when σ B
i j is symmetric, and up to 2 when σ B

i j is antisymmetric Isotropic
Trigonal, tetragonal, hexagonal Up to 8 in general; up to 5 when it is symmetric, and up to 3 when it is antisymmetric Uniaxial
Orthorhombic, monoclinic, triclinic Up to 9 in general Biaxial
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TABLE II. Comparison of group and energy velocities in the cases of isotropic, antisymmetric, and symmetric magnetic conductivity
tensors. Note that the unexpected results are the ones in the second column, with (ε′′ = 0, σ B

i j �= 0).

(
ε ′′ �= 0, σ B

i j �= 0
) (

ε ′′ = 0, σ B
i j �= 0

) (
ε ′′ = 0, σ B

i j = 0
)

σ B
i j = � δi j vg �= VE | n ∈ C vg �= VE | n ∈ R vg = VE | n ∈ R

σ B
i j = εi jk bk vg �= VE | n ∈ C vg = VE | n ∈ C vg = VE | n ∈ R

σ B
i j = (ai c j + aj ci )/2 vg �= VE | n ∈ C vg = VE | n ∈ C vg = VE | n ∈ R

As a research possibility, we point that in the Weyl
semimetals, the CME constitutive relation takes on the form
Ji = σ CME

i j E j , where σ CME
i j = e2/(2π2)ᾱBiB j , being propor-

tional to B2 for parallel electric and magnetic fields. This
constitutive relation structure motivates investigations on
dielectrics endowed with general nonlinear magnetic conduc-
tivities, as

σ B
i j = �i j + αi jkEk + ηi jkBk + βi jmnEmBn

+ γi jmnEmEn + δi jmnBmBn + · · · , (115)

where the tensors of rank 3 and 4 parametrize the nonlinear
response of the medium. Such scenarios, in which the permit-
tivity and refractive indices depend on the fields, may be an
interesting object of investigation in the future.

Furthermore, we highlight that the general formalism
adopted in this work can be adapted to address bidimensional
phenomena, such as the wave propagation in a surface, which
is especially interesting in connection with plasmon and po-
lariton excitations [94] in the interface separation between
two semi-infinite dielectric distinct media. Surface plasmon-
polaritons can rise up as TM (transverse magnetic) modes
when the permittivities of the two media are real and opposed
in sign, that is, ε1 > 0, ε2 < 0, so that ε1ε2 < 0. For an in-
terface located in the plane z = 0, the electric and magnetic
fields may be written as

Ea = (Eax, 0, Eaz ) exp[i(kaxx + kazz − ωt )], (116)

Ha = (0, Hay, 0) exp[i(kaxx + kazz − ωt )], (117)

where a = 1, 2 designate the two semi-infinite media. Match-
ing the boundary conditions one obtains a superficial wave
propagating along the x axis ruled by the dispersion
relation

kx = ω

c

√
ε1ε2

ε1 + ε2
, kaz = ω

c

√
ε2

a

ε1 + ε2
. (118)

It is easy to show that ε1 > 0, ε2 < 0, with |ε2| > ε1 leads to
a wave confined in the plane z = 0 with undamped propaga-
tion, that is, k1z = iαω, k2z = −iβω, kx = γω, being α, β, γ

positive real numbers. In the case one of the media has absorp-
tion, the correspondent permittivity becomes complex and the
wave propagation undergoes attenuation at the x axis. Such
a development is well known in the literature [95–100]. Sur-
face plasmon-polaritons constitute an active line of research,
having been recently considered in chiral and anomalous ma-
terial [101] and in a strained slab of a Weyl semimetal with
broken time-reversal symmetry [102]. Further, as a proper

continuation of this work, we can examine the propaga-
tion of plasmon-polariton waves in the interface separating
a usual dielectric medium ε1 > 0 and an exotic dielectric
endowed magnetic conductivity, whose permittivity εi j (ω),
given in Eq. (23), can be diagonalized providing the principal
values ε11, ε22, ε33, depending on the magnetic conductivity
parameters. The framework to address such an anisotropic
system [95–100] is already applied for WSM [90] and can
be also adapted from the general procedure developed in this
work.

As already mentioned, a dielectric medium with magnetic
current behaves as uniaxial or biaxial anisotropic matter (see
the Appendix for more details). However, the question of
comparing the present theoretical results with some experi-
mental data is challenging since, so far, experimental works
involving an exotic dielectric medium in the presence of
magnetic conductivity σ B

i j , considered as a property of the
material, have not been reported. The absence of experimental
works on this specific topic makes it difficult to perform
some possible comparisons between our theoretical results
and experimental data. Despite that, the order of magnitude
of the magnetic conductivity σ B may be estimated approxi-
mately based on another investigation about magnetic currents
[see Eq. (3) of [20]], which is similar to our antisymmet-
ric case σ B

i j = εi jk bk . The authors found that, for a class of
Weyl semimetals of TaAs materials, currents of intensities of
0.75 μA (for type-I Weyl semimetal), and 2.5 μA (for type-II
Weyl semimetal) are expected to occur when considering the
numerical parameters in Table 1 on page 4 of Ref. [20]. Taking
into consideration that our magnetic conductivity has the same
order of magnitude as the conductivity expected in the trans-
verse photocurrents in Weyl semimetals, we estimate the order
of magnitude of σ B as follows. We write i = J A = σ B B A,
which yields

σ B  i

B
(m−2), (119)

where we are determining an approximate value for σ B per
unit area A. Then, considering the numerical values used
in Ref. [20], we find σ B = 1.5 × 10−6 A T−1 m−2 for type-I
Weyl semimetal, and σ B = 5 × 10−6 A T−1 m−2 for type-
II Weyl semimetal. These values seem to indicate that the
magnetic conductivity considered in Ref. [20] has an or-
der of magnitude 10−6 A T−1 m−2 or, equivalently, σ B ∼
10−6 �−1 s−1. Such an order of magnitude may be useful for
experimental investigations.

As a final comment, we point out the additional pos-
sibility of addressing the relevant excitations of condensed
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matter realistic dielectric systems, described by the Drude
frequency-dependent permittivities. These are much more in-
volved functions in comparison with the simple choices for
ε′ and ε′′ adopted in this work. This kind of study may
be interesting for the optics of chiral dispersive dielectrics
supporting magnetic conductivity and is being considered in a
forthcoming investigation.
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APPENDIX: CRYSTAL-SYMMETRY RESTRICTIONS
ON THE MAGNETIC CONDUCTIVITY TENSOR

In this Appendix, we examine possible implications of
certain crystal symmetries on the components of general mag-
netic conductivity tensor, supposing it general in principle.
Afterward, we will consider the specific parametrizations for
σ B

i j addressed in this work and the constraints on the crystal
types.

1. Material symmetry constraints on arbitrary
and general tensor σB

i j

The permittivity effective tensor of the medium endowed
with the magnetic conductivity σ B

i j is given in Eq. (23),

ε̄i j = εδi j − i

ω2
σ B

iaεab jkb, (A1)

entirely written in the following matrix form:

[ε̄i j] =

⎡⎢⎢⎢⎢⎣
ε − i

ω2

(
σ B

12k3 − σ B
13k2

) − i
ω2

(−σ B
11k3 + σ B

13k1
) − i

ω2

(
σ B

11k2 − σ B
12k1

)
− i

ω2

(
σ B

22k3 − σ B
23k2

)
ε − i

ω2

(−σ B
21k3 + σ B

23k1
) − i

ω2

(
σ B

21k2 − σ B
22k1

)
− i

ω2

(
σ B

32k3 − σ B
33k2

) − i
ω2

(−σ B
31k3 + σ B

33k1
)

ε − i
ω2

(
σ B

31k2 − σ B
32k1

)

⎤⎥⎥⎥⎥⎦. (A2)

This matrix has three eigenvalues: ε and ε±, given below

ε± = ε − i

2ω2
(k1g1 + k2g2 + k3g3) ± 1

2ω2

× [−k2
3 f33 − k2

2 f22 − k2
1 f11 + 2H

]1/2
, (A3a)

with

g1 = σ B
23 − σ B

32, (A3b)

g2 = σ B
31 − σ B

13, (A3c)

g3 = σ B
12 − σ B

21, (A3d)

H = k1k2 f12 + k1k3 f13 + k2k3 f23, (A3e)

f11 = (
σ B

23 + σ B
32

)2 − 4σ B
22σ

B
33, (A3f)

f22 = (
σ B

31 + σ B
13

)2 − 4σ B
11σ

B
33, (A3g)

f33 = (
σ B

12 + σ B
21

)2 − 4σ B
11σ

B
22, (A3h)

f12 = (
σ B

13 + σ B
31

)(
σ B

23 + σ B
32

)− 2σ B
33

(
σ B

12 + σ B
21

)
, (A3i)

f13 = (
σ B

12 + σ B
21

)(
σ B

23 + σ B
32

)− 2σ B
22

(
σ B

13 + σ31
)
, (A3j)

f23 = (
σ B

12 + σ B
21

)(
σ B

13 + σ B
31

)− 2σ B
11

(
σ B

23 + σ B
32

)
(A3k)

having the diagonalized form,⎡⎣ε+ 0 0
0 ε− 0
0 0 ε

⎤⎦. (A4)

In order to seek possible restrictions that certain crystal sym-
metries may impose on the general components of σ B

i j , let us
consider, without loss of generality, propagation along the z

axis. In this case, the three permittivity eigenvalues are ε and

ε± = ε − i

2ω2
k3
(
σ B

12 − σ B
21

)
± i

2ω2
k3

√(
σ B

12 + σ B
21

)2 − 4σ B
11σ

B
22. (A5)

In the following, we compare the effective diagonal permit-
tivity (A4) of our dielectric supporting magnetic current with
the one of cubic, uniaxial, and biaxial crystals. At a second
moment, we try to associate it with the known crystal systems.

a. Cubic crystals

In a cubic crystal, the permittivity tensor is totally
isotropic, corresponding to three equal eigenvalues, that is,

[ε]cubic =
⎛⎝a 0 0

0 a 0
0 0 a

⎞⎠. (A6)

By requiring full correspondence between such a cubic crystal
and the diagonalized permittivity (A4), it should hold ε =
ε+ = ε−, providing the following relations:

σ B
12 − σ B

21 = 0, (A7)(
σ B

12 + σ B
21

)2 − 4σ B
11σ

B
22 = 0. (A8)
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Hence, the cubic crystal structure implies two restrictions on
the components of the tensor σ B

i j , which is written as

[
σ B

i j

] =

⎛⎜⎜⎜⎝
σ B

11

√
σ B

11σ
B
22 σ B

13√
σ B

11σ
B
22 σ B

22 σ B
23

σ B
31 σ B

32 σ B
33

⎞⎟⎟⎟⎠, (A9)

where we have used Eqs. (A7) and (A8) to obtain σ B
12 =√

σ B
11σ

B
22. Notice that no constraints were obtained for the

components σ B
13, σ

B
23, σ

B
31, σ

B
32, and σ B

33. Thus, the magnetic
conductivity tensor σ B

i j can have, in principle, until seven
non-null components [in the principal axes optical system in
which the permittivity (A2) is diagonal]. A similar analysis
proceeds in the case the propagation occurs along the x axis,
k = kx̂. In this case, the eigenvalues of Eq. (A1) are ε and

εx
± = ε − i

2ω2
k1
(
σ B

23 − σ B
32

)
± i

2ω2
k1

√(
σ B

23 + σ B
32

)2 − 4σ B
22σ

B
33. (A10)

Requiring that the effective permittivity (A4) be cubic, that is,
ε = εx

+ = εx
−, one obtains

σ B
23 − σ B

32 = 0, (A11)(
σ B

23 + σ B
32

)2 − 4σ B
22σ

B
33 = 0. (A12)

In such a way the conductivity tensor σ B
i j takes on the form

[
σ B

i j

]
x
=

⎛⎜⎜⎜⎝
σ B

11 σ B
12 σ B

13

σ B
21 σ B

22

√
σ B

22σ
B
33

σ B
31

√
σ B

22σ
B
33 σ B

33

⎞⎟⎟⎟⎠. (A13)

Again, one notes that the cubic structure is compatible with
until seven non-null components for σ B

i j , indicating that the
elimination of two components does not depend on the prop-
agation direction (in the principal axes system). Furthermore,
starting from the cubic compatible conductivity tensor (A13),
the following holds:

(i) In the case the conductivity is symmetric, up to five
components may remain.

(ii) In the case the conductivity is antisymmetric, up to two
components may remain.

b. Uniaxial crystals

Uniaxial materials (tetragonal, hexagonal, and trigonal
crystal systems) have the permittivity tensor with two equal
eigenvalues [91], that is

[ε]uniaxial =
⎛⎝a 0 0

0 a 0
0 0 b

⎞⎠. (A14)

In this case, by requiring its correspondence with the effective
diagonal permittivity (A4), it imposes that the eigenvalues ε±

of Eq. (A5) satisfy ε+ = ε−, that is,(
σ B

12 + σ B
21

)2 − 4σ B
11σ

B
22 = 0, (A15)

which implies

[
σ B

i j

] =

⎛⎜⎜⎝
σ B

11 σ B
12 σ B

13

2
√

σ B
11σ

B
22 − σ B

12 σ B
22 σ B

23

σ B
31 σ B

32 σ B
33

⎞⎟⎟⎠. (A16)

Thus, the uniaxial optical structure imposes compulsorily only
one restriction on the components of the tensor σ B

i j (having
in mind the axis frame in which the effective permittivity
becomes diagonal). Therefore, in this case, the magnetic con-
ductivity tensor σ B

i j can have, in principle, until eight non-null
components (in the principal axes system). Further, consider-
ing the uniaxial compatible conductivity tensor (A16), one has
the following:

(i) In the case the conductivity is symmetric, up to five
components remain independent.

(ii) In the case the conductivity is antisymmetric, up to
three components remain independent.

c. Biaxial crystals

Biaxial materials (triclinic, monoclinic, and orthorhombic
crystal systems) possess the permittivity tensor with three
distinct eigenvalues [91]. Comparing such a scenario with the
eigenvalues of Eq. (A5) (for k = kẑ), we notice that there is
no compulsory restriction on the components of σ B

i j . Thus, in
principle, the tensor σ B

i j can have until nine non-null compo-
nents in the proper axis frame.

2. Specific cases of magnetic conductivity and relations
to crystal systems

We now examine the three distinct particular cases of
magnetic conductivity examined in this work (isotropic, sym-
metric, and antisymmetric), tracing connections with crystal
systems and optical symmetries.

a. Isotropic case

Considering the particular case where the magnetic con-
ductivity is isotropic, σ B

i j = �δi j , the effective permittivity of
Eq. (A1) becomes

ε̄i j = εδi j − i�

ω2
εib jkb, (A17)

whose matrix form is

[ε̄i j] =

⎛⎜⎜⎝
ε i�

ω2 k3 − i�
ω2 k2

− i�
ω2 k3 ε i�

ω2 k1

i�
ω2 k2 − i�

ω2 k1 ε

⎞⎟⎟⎠, (A18)

with eigenvalues given by ε and ε± = ε ± �
ω2 k, where k =√

k2. In this case, one finds three distinct eigenvalues, being
compatible with biaxial materials. Therefore, the isotropic
conductivity can describe biaxial materials (triclinic, mono-
clinic, and orthorhombic crystal systems).
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b. Antisymmetric conductivity case

In this scenario, the magnetic conductivity is parametrized by σ B
i j = εi jkbk , yielding the effective permittivity

ε̄i j =
[
ε − i

ω2
(k · b)

]
δi j + i

ω2
kib j, (A19)

whose matrix form is

[ε̄i j] =

⎛⎜⎜⎝
ε − i

ω2 (k · b) + i
ω2 k1b1

i
ω2 k1b2

i
ω2 k1b3

i
ω2 k2b1 ε − i

ω2 (k · b) + i
ω2 k2b2

i
ω2 k2b3

i
ω2 k3b1

i
ω2 k3b2 ε − i

ω2 (k · b) + i
ω2 k3b3

⎞⎟⎟⎠. (A20)

The matrix (A18) has two distinct eigenvalues ε and ε − i
ω2 (k · b), which are compatible with uniaxial materials (embracing

tetragonal, hexagonal, and trigonal crystal systems). It is also worthy to impose the skew symmetry σ B
i j = −σ B

ji in the previous
generic eigenvalues of (A5), implying

ε± = ε − i

ω2
k3σ

B
12 (A21)

since σ B
12 = −σ B

22 and σ B
11 = σ B

22 = σ B
33 = 0. In this case, by comparing the conductivity σ B

i j = εi jkbk with the components of the
maximal uniaxial form of Eq. (A16), one obtains

σ B
11 = σ B

22 = σ B
33 = 0, (A22)

σ B
12 = −σ B

21 = b3, (A23)

σ B
13 = −σ B

31 = −b2, (A24)

σ B
23 = −σ B

32 = b1. (A25)

In such a way the conductivity tensor presents only three non-null components, consistent with the maximal uniaxial matrix
form (A16).

c. Nondiagonal symmetric case

For the particular case where the magnetic conductivity is given by

σ B
i j = 1

2 (aic j + a jci ), (A26)

the effective permittivity becomes

ε̄i j = εδi j + i

ω2
(aicn + anci )εnb jkb, (A27)

whose matrix representation is

[
ε̄i j
] =

⎛⎜⎜⎝
ε + i[k2(a3c1+a1c3 )−k3(a2c1+a1c2 )]

2ω2 + i
2ω

[2a1c1k3 − k1(a3c1 + a1c3)] + i
2ω2 [k1(a2c1 + a1c2) − 2a1c1k2]

+ i
2ω2 [k2(a3c2 + a2c3) − 2a2c2k3] ε + i[k3(a2c1+a1c2 )−k1(a3c2+a2c3 )]

2ω2 + i
2ω2 [2a2c2k1 − k2(a2c1 + a1c2)]

+ i
2ω2 [2a3c3k2 − k3(a3c2 + a2c3)] + i

2ω2 [k3(a3c1 + a1c3) − 2a3c3k1] ε + i[k1(a3c2+a2c3 )−k2(a3c1+a1c3 )]
2ω

⎞⎟⎟⎠.

(A28)

In this case, there are three distinct eigenvalues for Eq. (A28), namely, ε and also

ε± = ε ± i

2ω2

√
[(a × c) · k]2. (A29)

Therefore, the nondiagonal symmetric conductivity (A26) can represent biaxial materials (monoclinic, triclinic, and orthorhom-
bic crystal systems). One also mentions that imposing the particular choice σ B

i j = σ B
ji in our previous Eq. (A5) (for propagation

along the z axis) yields

ε± = ε ± i

ω2
k3

√(
σ B

12

)2 − σ B
11σ

B
22. (A30)

Now, by replacing parametrization (A26) in Eq. (A30), one finds

ε± = ε ± i

2ω2

√
k2

3 (a1c2 − a2c1)2, (A31)
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TABLE III. Optical symmetry of systems endowed with special cases of magnetic conductivity tensor.

σ B
i j parametrization Number of independent components Optical symmetry Crystal system

σ B
i j = � δi j 1 Biaxial Orthorhombic, triclinic, monoclic

σ B
i j = εi jk bk 3 Uniaxial Trigonal, tetragonal, hexagonal

σ B
i j = (ai c j + aj ci )/2 6 Biaxial Orthorhombic, triclinic, monoclic

which is the same result stemming from (A29). This clearly illustrates that the isotropic and nondiagonal symmetric cases of σ B
i j

are compatible with biaxial materials.
Table III summarizes the correspondence between the conductivity tensor (isotropic, symmetric, and antisymmetric) with the

optical symmetry and the possible crystal system.
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