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Topological magnon polarons in honeycomb antiferromagnets with spin-flop transition
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We theoretically investigate the thermal Hall transport of magnon-polarons in a two-dimensional honeycomb
antiferromagnetic insulator under the influence of a perpendicular magnetic field, varying in strength. The appli-
cation of a perpendicular magnetic field induces a magnetic phase transition from the collinear antiferromagnetic
phase to the spin-flop phase, leading to a significant alteration in Hall transport across the transition point. In
this paper, our focus is on the intrinsic contribution to thermal Hall transport arising from the magnetoelastic
interaction. To facilitate experimental verification of our theoretical results, we present the dependence of thermal
Hall conductivity on magnetic field strength and temperature.
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I. INTRODUCTION

In recent years, intrinsic magnetism in two-dimensional
(2D) insulators has been discovered, attracting growing at-
tention, driven by its fundamental interest and technological
applications in reduced dimensions [1-12]. Within mag-
netic insulators, magnetic excitations (magnons) and lattice
vibrations (phonons) serve as carriers of energy and infor-
mation. The exploration of these collective, charge-neutral,
low-energy excitations has attracted considerable interest
due to their potential for innovative approaches to manip-
ulate and control thermal energy and information [13,14].
A particular focus lies on the topological Hall transport of
collective excitations resulting from Berry curvature. Previ-
ous research has demonstrated the magnon Hall effect in
chiral magnetic systems with chiral spin texture [15-19],
or Dzyaloshinskii-Moriya interaction [20-28]. Additionally,
studies have explored the phonon Hall effect arising from
the interaction between phonons and static magnetization
[29-31], or scattering from the impurities [32—-34]. Beyond
individual magnons and phonons, their hybrid excitations
known as magnon-polarons potentially exhibit topological
properties through the long-range dipolar interaction [35],
the Dzyaloshinskii-Moriya interaction [36-39], and strain-
dependent magnetic anisotropy [40—45].

The strain-dependent magnetic anisotropy is a well-known
mechanism of magnetoelastic interaction and magnetostric-
tion [46—48], ubiquitous in magnetic materials. Recent exper-
iments have revealed its role in opening band gaps between
magnon and phonon modes [49,50] and inducing the topolog-
ical transport of the quasiparticles [38,51,52]. Most theoretical
investigations into the magnetoelastic interaction-induced
topological magnon-polaron have focused on collinear mag-
netic systems, where the magnetic order aligns in the uniform
direction. Consequently, they are not directly applicable
to certain antiferromagnetic (AFM) systems, including the
spin-flop ground state. In the spin-flop phase of bipartite
antiferromagnets, two spins on the two sublattices tilt at an
angle 64 = 6 (Fig. 1). In the tilted ground state, magnons
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couple not only with out-of-plane phonons but also with in-
plane phonons [42]. However, a theoretical investigation of
topological magnon-polaron bands, including both in-plane
and out-of-plane phonon modes in the AFM spin-flop state,
is currently lacking.

In this paper, we investigate the topological properties of
the magnon-polarons in a two-dimensional honeycomb an-
tiferromagnet subjected to a variable magnetic field induced
by the magnetoelastic interaction. More specifically, we com-
pute the band structures and topological properties of the
magnon-polarons in both collinear AFM and spin-flop states.
To facilitate further comparison with experimental studies, we
calculate the magnetic field dependence of the thermal Hall
conductivity at different temperatures.

The remaining sections of this paper are organized as fol-
lows. In Sec. II, we present model Hamiltonians for magnons,
phonons, and magnetoelastic interaction in both collinear
AFM and spin-flop states. In Sec. III, we calculate the band
structures and Berry curvatures of the magnon-polaron bands.
In Sec. IV, we compute the the thermal Hall conductivity of
the magnon-polarons. In Sec. V, we conclude by providing a
brief summary and discussion.

II. MODEL HAMILTONIAN
A. Magnon part

Here, we consider the spin Hamiltonian for a 2D honey-
comb AFM system, given by

Hy=J) Si-8;=K) (5 =b) S (D
(i.J) i i

where the first and second term are the antiferromagnetic ex-
change interaction (J > 0) and the easy-axis anisotropy (K >
0), respectively. For simplicity, in the analytic calculation
within this section, we exclusively focus on nearest-neighbor
exchange. In the numerical analysis (Secs. III and IV), we in-
tegrate the second- and third-nearest-neighbor exchanges (J>
and J3) to properly capture the magnon dynamics [25,53,54].

©2024 American Physical Society
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FIG. 1. Schematic illustration of the honeycomb lattice (left).
Equilibrium spin configurations depending on external magnetic
field (right).

The parameter b(= gupB) in the last term represents the exter-
nal magnetic field along z direction, where g is the the g factor,
and pup is the Bohr magneton. The nearest-neighbor vec-
tors are a; = a(l,0), a; = 5(—1, V3), and a5 = —35(1, V3).
The next-nearest-neighbor vector are defined as b; = a; — a3,
b, = a, — a;, and b; = a3 — a; (see Fig. 1).

A sufficiently strong magnetic field B destabilizes the
collinear AFM order, leading to a spin-flop phase transi-
tion, which is a first-order reorientation transition [55]. For
B < By, where

28/ — K)X
By = M’ 2)

8B
the equilibrium spin configuration forms a collinear AFM
state along the z axis. In the spin-flop phase (B > By), the
spin directions of the two sublattices are canted along the field
direction (see Fig. 1). Below, we compute the magnon spectra
for these two distinct equilibrium spin configurations.

1. Magnon Hamiltonian in a collinear AFM state

In the collinear AFM state with the spin configura-
tion Sjcx = SZ and S;cp = —SZ, we perform the Holstein-
Primakoff transformation and take the Fourier transformation,
leading to the magnon Hamiltonian,

1 T
Hy =3 ; U Hon (K Ym k 3)

where ¥, x = (ak, bx, a";k, bik )T is the basis function and the
momentum space Hamiltonian is given by

3 + IC+ 0 O fk
m_ 0 3+k- e 0
i 0 0 3+
where ks = 2K £b/5)/J and fi = ) ¢™*. To diagonal-

ize the Bogoliubov Hamiltonian, we find the paraunitary
matrix Uy satisfying Ex = Ulj HyxUx = diag(ek, €_x). Follow-
ing the notation used in Ref. [28], we write the eigenvalue
equations

H K = _n f s
03 k|un’k) € ,k|u ,k) (5)

(Mﬁ,k|037'lk = En,k(uiki,

where o3 = diag(1, 1, —1,—1) is the Pauli matrix act-
ing on the particle-hole space. Here (u} | = (uy o3 and
qu,k) = U,k are the left and right eigenvectors of the
pseudo-Hermitian Hamiltonian o3Hy, respectively. The or-
thonormal relation of the eigenvectors reads (uﬁ’k|u§1’k) =
(f los|ufl ) = (03)um and the pseudo-eigenvalue satisfies
€nkx = (03€x)nn. By solving Eq. (5), we determine the energy
eigenvalues of the magnon bands,

eAME - ISV B+ i) — |2 £b, ©6)

where k = 2K /J . The two magnonic states, denoted as—and
+, carry opposite spin angular momenta, with S, = —1 and
S, = +1, respectively.

2. Magnon Hamiltonian in a spin-flop state

In the spin-flop phase, the
configuration is

equilibrium  spin

Sa = S(—cos0,0,sinh),

. (N
Sz = S(cos b, 0,sin ),

where 6 = sin’l(ﬁ) is the canted angle. Here we as-
sume the equilibrium spin profile lies in the xz plane, for
simplicity. To investigate the spin-wave dynamics in the
canted AFM phase, we introduce the sublattice dependent
coordinate system (S',) where the equilibrium spin direction
is along the z axis [56]

sin @ 0 (—=D't'coso
Sa = O 1 0 S/Ots (8)
(—=1)"cos® O sin O

where v = 1, 2 is the sublattice index (A = 1, B = 2). By sub-
stituting the new spin variables into Eq. (1), and neglecting the
magnon-magnon interaction terms, we obtain the low-energy
Hamiltonian describing linear spin waves [26]

H=—J [cos20(S"}8" + §58%) — 875" ]

(i)

—KZ S’Z sin 9+(S”C cos? 0] bZS'“
The Holstein-Primakoff approach yields the Bogoliubov
Hamiltonian

Ix Fx Ko Pk
Fr 1, F; K
m 1.k K 2.k 0 ’ (10)
Ky PBx Ix Fg
Fz’fk Ky Fl’fk Ix
where
Ix = 3JScos20 + KS(2sin’ 0 — cos’>0) + bsin 6,
Fix =JSfisin?6, Fy = —JSficos’ 0,
Ky = —KScos?6. (11)

By solving the eigenvalue equation in the particle-hole space,
we obtain the magnon band dispersion

&S = U £ISIRDUL F TSIl cos20),  (12)
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where /, 1? = Ix £ K. It is noteworthy that the azimuthal angle
of the equilibrium state is arbitrarily chosen in the spin-flop
phase, leading to the breaking of U(1) spin-rotational sym-
metry. For k = 0, the low-energy magnonic mode G,ipk;o =0
is the gapless mode associated with spontaneous breaking
of the U(1) symmetry, while the high-energy mode SE ~

mk=0 "
~/b% — 12JKS? corresponds to the quasi-ferromagnetic reso-
nance mode [57,58].

B. Phonon part

The elastic Hamiltonian describing the lattice dynamics
can be written as

2
H, = 2"—1(4 +% 3 wronhul, (13)
i ij,a.p

where u; is the displacement vector of the ith ion from its
equilibrium position, p; is the conjugate momentum vector,
M is ion mass, and @?f}p is a force constant matrix. By using
the Fourier transformation, we obtain the momentum space
Hamiltonian

o o l
o aB . B
H,= ] [ M +§u,kcb(k) %] (14)

By introducing the dimensionless variables iy = ./ A%uﬁ and

= Jﬁj;iiw P> we rewrite the Hamiltonian (14) as
0

1 .
Hy= 5 VpHivpi (15)

Kk
where the momentum space Hamiltonian is

(k) 0
P—= [ Mawo . 16
Hk ( O Fla)()16><6 ( )

and the basis function is
Vpk = (i, L_‘le iy A s I’_tf,kf
X ﬁﬁk,ﬁi’,k, ﬁ;k’ﬁ;k’pik’ ﬁﬁk?pl;,k)T’ Vf;,k
= Vp k. a7

The momentum space representation of the force constant
matrix is expressed as

AA
d(k) = <CD (k)

(DBA (k) ’

d)BB (k)

where ®48(k) = ®B4(—K) represents the elastic interaction
between different sublattices from the nearest-neighbor cou-
plings. In the first- and second-neighbor approximation of the
2D honeycomb lattice, the in-plane and out-of-plane phonon
modes do not couple [59], and the momentum space force
constant matrix between the nearest-neighbors is given by

. - kya \/gkyd
CD?J-B(k) — q);ij(al)ezkxa + <I>?]B(az)e’( F+—5)

kea _ V3kya
2

+@f (ag)e T E T, (19)

where i and j represent phonon modes in cartesian coordi-
nates, i.e., {i, j} € (x,, z). The first component of the force

constant matrix in Eq. (19) is given by

K. 0 0
of@a)=0 K 0] (20)
0 0 Ky

The other components are obtained by the C; rotation around
z axis [59]

P (a,) = U, & (a) U, (m=2,3) 2D

where
cos 6,, sing,, O
U,=|—sin6, cosb, 0], 22)
0 0 1
with 6, = 27” and 03 = —27”. Therefore, we have
(k) k) 0
(k) = | PE(k)  DLE(k) o |. @3
0 0 d)?f (k)
where

. 1 ity 3
q)ﬁf(k) =K ™ + E(KL + 3Kr )e’AT cos (%l@),
Xy

3 iy 3
B (k) = PIF(k) = i“/T_(KT — Kp)e™ % sin (‘/T—k)),

i 1 iky 3
Cblﬁf(k) = Kre™ + E(SKL + KT)e’kT' cos <£k ),

2
@27 (K) = Kz fic (24)
The diagonal elements of the force constant matrices are
KL-2-KT O O
*M(k) = dPB(k)=3] 0 o |, 25
0 0 Kz

which ensures that the lowest energy of the acoustic phonon
modes remains zero.

C. Magnon-phonon interaction Hamiltonian

The general expression of the magnetoelastic interaction is
given by [46,47]

Hmp = — Z SITEZS, = — Z Z SiiEiUSu,i, (26)

v oiev
where v = 1, 2 is the sublattice index (A = 1,B = 2). The
coupling matrix is written in terms of the cartesian strain

tensor,
S W T | du o
€p==l—7—+-—)
P\ or, g

In the hexagonal systems, the magnetoelastic Hamiltonian in
Ref. [48] leads to

YeV 134
BY¢; B¢,
BYe) —B'e]

€ € € €
Bes Bfe;

€ €
Bfe;
€ €
Bfe]

EY = %
V3(Bey + BSes)

L

. (28)
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o __ f -
€ =€ teyte,, €= (ezn — 3 3 € =
1 y
(€ — €y), € =€y, € = ¢y, and €5 =€, are the
symmetrized strains in the hexagonal point group. In a

discrete system, the local strains can be written as [44,60]

where

3
€y — Eup=— Z AR (29)

. . A .B
where a,, is the nearest-neighbor vector (a;, = —a,,), and the

components of the strain tensor are

éi,i-&-am _ %[

ap ("‘ﬁ - “f}+a;;,) +ayP (uf — "‘?+a;;,)]’ (30)

ey » reduced

where n is a normalization constant that ensures €
to e‘iﬂ in the long-wavelength limit (in honeycomb lattice

n = —3a?/2). The explicit expression for the local strain com-
ponents is given by

LA _ " (_Hx X X
EXX - 3a ( 2“3,i+a1 + uB,i+az + uB,i+a3)’

, 1
~i,A y Y
€, = ——(—u g, T Up; )
yy B,i+a B,i+a3)>
P \/§a > 3
1
6a

giA — (-

— V3uy o, Y 3BUh )

Yy y Yy
2ug i g T Upita, T Upita,

A _ " (92 z Z
& =—¢ a( 2uy jya, U ay U iay)s

€z = _2\/§a (_”%,H-az + Mi?,i+a3)' 3D

Here, e(ix’g can be obtained by replacement B — A and a; —
—a;. The explicit expressions of the quadratic Hamilto-
nian describing the magnon-phonon interaction that includes
a magnon operator and a phonon operator are shown in
Appendix A.

III. BAND TOPOLOGY OF MAGNON-POLARONS

Here, we present the computational results for the band
structure of the magnon-polaron bands and the corresponding
topological transport properties of the magnon-polarons. In
the numerical calculation, we include the second- and the
third-nearest-neighbor exchanges (J, and J3) in addition to
the nearest-neighbor exchange (/) to accurately represent the
magnon dynamics. In this paper, we utilize the magnetic pa-
rameter of MnPSj as it is known to exhibit a field-induced
spin-flop transition at around 5.5 T [61]: J = 1.54 meV, J, =
0.14meV,J; = 0.36meV, S =5/2[53] and KS = 7.25 peV.
For the phonons, we use following parameters. The lattice
constant is a ~ 3.5 A [62], Mn ion mass is M = 55 u, and
the spring constants are taken in agreement with the phonon
spectrum of MnPSs: K; = 300 eV/nmz, K; =110 eV/nm2
and Ky =50eV/nm? [63]. For the magnetoelastic con-
stants, we use B¢ = B, = B}, = BY = —0.84meV, resulting
in B/V ~ —1.2 x 10" erg/cm?, which is comparable to Kit-
tel’s estimation for iron [46].

The magnon-polaron Hamiltonian in our model is ex-
pressed as

1
H=H,+H,+ Hy,, = 3 E Y Hi V., (32)
k

where Y = (Y., ¥p k). Due to the complexity of our model
Hamiltonian, which is a 16 x 16 matrix, analytical computa-
tion of the eigenvalue problem is challenging. In this context,
we present numerical results for the band structure and the
topological properties of the magnon-polarons.

The band topology is characterized by the Berry curvature
of the Bogoliubov Hamiltonian [28],

Q1K) = (03)(03) 3 oL ll) <’"'”2y'”)], (33)
(G — ) +8

where v; = ;‘(k is the velocity operator, |n) and € are the

nth right eigenvector and corresponding eigenvalue of the
Bogoliubov Hamiltonian, respectively. Here, we introduce a
level broadening parameter 4, set to be O in this section. We
consider finite level broadening in the thermal Hall transport
calculation in Sec. IV. In this section, we employ the numeri-
cal algorithm proposed by Fukui, Hatsugai, and Suzuki [64] to
efficiently compute the Chern number of the magnon-polaron
bands.

1. Band topology in a collinear AFM state

In the collinear AFM state, the magnon-phonon interaction
excludes the in-plane phonon amplitudes [41]. As the band
topology remains unaffected by these in-plane phonon modes,
we simplify the model by disregarding these modes. Conse-
quently, we consider an 8 x 8 Bogoliubov Hamiltonian that
includes two magnon modes (ax and by) and two out-of-plane
phonon modes (ﬁ?k and i ) for the particle and hole sectors,
respectively. ’ h

In Fig. 2, we depict the band structures for the collinear
AFM phase in the presence of a perpendicular magnetic
field (B = 5T), both with and without magnon-phonon inter-
action. With finite magnon-phonon interaction, anticrossing
band gaps emerge between magnon and phonon modes near
I' and K (K") points [highlighted as shaded circles in Figs. 2(d)
and 2(e)]. These gaps lead to the formation of topological
magnon-polarons with finite Berry curvature in Figs. 3(a)—
3(d).

We observe that under a sufficient magnetic field (B =
5T), the (lower) magnon band touches the acoustic phonon
band near the I' point [Fig. 2(c)], resulting in the anticrossing
gap [Fig. 2(e)] and finite Berry curvature [Figs. 3(a) and 3(b)]
around this point. At low temperatures, the Berry curvature of
the low-energy bands significantly contributes to the thermal
Hall transport, as discussed in Sec. IV. However, if the mag-
netic field is not sufficiently large, the magnon band does not
touch the phonon band, leading to negligible Berry curvature
around I" point (see Appendix B).

Additionally, the Berry curvatures remain finite in the
vicinity of the K(K") point [Figs. 3(a)-3(d)] due to the pres-
ence of the anticrossing gap in Fig. 2(d), contributing to
thermal Hall transport at high temperatures. It is notewor-
thy that the magnon-phonon interaction introduces a barely
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FIG. 2. Band structures of magnon and phonon modes in a collinear antiferromagnetic (AFM) state in the absence of magnon-phonon
interaction (a)—(c) and in the presence of magnon-phonon interaction (d)—(f). In (d) and (e), anticrossing gaps that affect the thermal Hall effect
at high and low temperatures are highlighted with blue and red shaded circles, respectively. A barely visible band gap between two phonon-like
modes is numerically confirmed in (f). Here, we use B¢ = —0.84 meV and B =5T.

visible band gap (about 0.2 ueV) between two phonon-like
bands at the K(K') point [Fig. 2(f)], inducing a large Berry
curvature at this point. However, if we consider the finite-level
broadening effect, the band topology at this slight anticrossing
gap is strongly suppressed by the level broadening and does
not affect the Hall transport.

2. Band topology in a spin-flop state

In the spin-flop state, the magnon-phonon interaction in-
volves both in-plane and out-of-plane phonon amplitudes. In
this case, we consider a 16 x 16 Bogoliubov Hamiltonian
including two magnon modes and six phonon modes for the
particle and hole sectors, respectively. In Fig. 4, we show
the low-energy band structures for the spin-flop phase under
the influence of a perpendicular magnetic field B = 10T, both
with and without magnon-phonon interaction.

Because b <« 6JS for B= 10T, the spin canted angle is
small (@ ~ 0.05), and there is also a small band gap be-
tween the two magnonic bands. Similar to the collinear AFM
case, the magnon-phonon interaction induces anticrossing
gaps between magnon and phonon modes. In the spin-flop
state, the gapless magnonic mode and the acoustic phonon
modes converge at k =0, and the magnon-polaron band
topology is not well-defined at this point. To establish a
well-defined band topology theoretically, we introduce a suf-
ficiently small easy-axis magnetic anisotropy along the bond
direction, which should be present due to the lattice struc-
ture, but is higher-order anisotropy than the other terms in

our magnetic Hamiltonian and therefore expected to induce
negligible physical effects. Close to the I' and K points, the
magnonic mode couples with the phonon modes, resulting
in the formation of anticrossing gaps [Figs. 4(c)—4(e) and
4(g)—-4(1)]. Also, we numerically confirm the barely visible
energy gaps (about 0.1 — 0.2 ueV) between two phonon-like
modes [Figs. 4(j)—4(1)], of which the Hall transport is strongly
suppressed by the finite-level broadening. Here, we omit the
in-plane optical phonon modes, because these high-energy
phonons do not couple with the magnons, displaying trivial
topology (C; = Cg = 0).

In Fig. 5, we present the Berry curvatures and correspond-
ing Chern numbers of the lowest six modes. Figures 4 and
5 illustrate one of our main findings: the exploration of the
topological characteristics of the magnon-polaron, incorpo-
rating both in-plane and out-of-plane phonon modes in the
AFM spin-flop state, which has not been addressed in previous
studies. It is noteworthy that, in contrast to the collinear AFM
case, the magnon-polaron gaps near the I" point are very small
(approximately 1 peV) [Figs. 4(m) and 4(n)]. This suggests
that the thermal Hall effect at low temperatures is negligi-
ble in the spin-flop phase. We note that the Berry curvature
effect in the spin-flop phase primarily originates from the
anticrossing gaps located far from the I'" point [highlighted
as shaded circles in Figs. 4(g) and 4(h)], which correspond to
high temperatures (10 meV 120 K). Therefore, we anticipate
that the thermal Hall effect will increase with temperature for
T < 120K.

, rQ)
@) P (b) . (c) (d) 7.5
S i e
4 " 0
C3 == 2 £ \ C4 = —1 {
\7/ A\ / '
-75

FIG. 3. Profiles of the log scale Berry curvature I'(€2) = sgn(€2)log(1 + |€2|) of the magnon-polaron bands (from low to high energies) in
the collinear AFM phase. C, (n = 1 — 4) denotes the corresponding Chern number of nth band. The hexagon represents the 1st Brillouin zone.

Here, we use B = —0.84meVand B=5T.
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FIG. 4. Band structures of magnon and phonon modes in the spin-flop state in the absence of magnon-phonon interaction (a)—(e) and in the
presence of magnon-phonon interaction (f)—(n). In (g), anticrossing gaps that affect the thermal Hall effect at high temperatures are highlighted
with blue shaded circles. Barely visible band gaps are numerically confirmed in (j-n). Here, we use B = B{, = B, = BY = —0.84 meV and

B=10T.

IV. THERMAL HALL EFFECT

The topology of magnon-phonon hybrid excitations gives
rise to the intrinsic thermal Hall effect. The Berry-curvature-
induced thermal Hall conductivity is given by [21,65]

KT

==Y lep) - 73R, (34
nk

where ¢;(p) = (14 p)In*[(1 + p)/p] — In*> p — 2Lix(—p),
ook = (eEn®/ksT _ 1)=1 i5 the Bose-Einstein distribution
function with a zero chemical potential, kp is the Boltzmann
constant, T is the temperature, and Li,(z) is the polylogarithm
function. Here, we use the same parameters used in the previ-
ous section except for a constant level broadening parameter
6 = 10 peV [66]. To convert two-dimensional conductivity to
bulk conductivity, we employ the relation k,, = Kff’ /d, with
d = 0.67 nm representing the monolayer thickness of MnPS3
[62,67]. In Fig. 6, a key outcome of our study, we illustrate
the magnetic field and temperature dependence of the thermal
Hall conductivity for magnon-polarons, considering both in-
plane and out-of-plane lattice dynamics.

In the collinear AFM phase, the thermal Hall conductivity
is positive and monotonically increases with the magnetic
field at T = 10 K. However, at T = 30 and 50 K, the thermal
Hall conductivity initially decreases with increasing B for
B < 5T, and subsequently increases with B for B > 5 T. For

a clearer understanding, we show the band structures (near
I' point) and the Berry curvature profiles in the collinear
AFM phase for different magnetic fields in the Appendix B.
Due to the Zeeman interaction E = gugBS,, the energy of
the lower magnon band decreases as the magnetic field is
increased. If the magnetic field is sufficiently large (B ~ 5T),
the (lower) magnon band touches the acoustic phonon band
as depicted in Fig. 2(c). In this case, the anticrossing effect at
the T" point is maximized [Figs. 3(a) and 3(b)], resulting in a
dominant contribution to the thermal Hall effect even at low
temperatures. However, if the magnetic field B is not suffi-
ciently large, the magnon band does not touch the phonon
band, leading to negligible Berry curvature at the I" point (see
Fig. 7). In this case, the dominant contribution to the thermal
Hall effect comes from the Berry curvature near the K(K')
points. As the energies corresponding to the K (K") points are
large (approximately, 10 meV ~120K), they contribute to
thermal Hall transport primarily at high temperatures. Due to
the opposite signs of Berry curvature at I' and K(K’) points,
the thermal Hall conductivity undergoes a sign change at
certain magnetic field and temperature values.

In the spin-flop phase, as discussed in Sec. III, the magnon-
polaron gaps near the I' point are very small, resulting in
negligible thermal Hall conductivity at low temperatures. Be-
cause the dominant contribution to the Berry curvature effect
primarily originates from the high-energy anticrossing gaps

g / A \ // A /N / \ / \ r@

@ X (b) - (©) - (d) ~N e/ (f) I7,5
K r = ¥ V| 1 \ - /N / \ /

r @) Il | 0
C 0 / \ \ . N \ |/ \ / N
X 1= C,=—-1_* s ci==1* Cr=) C=1 Co=—1
y -
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FIG. 5. Profiles of the log scale Berry curvature I'(€2) = sgn(€2)log(1 + |€2|) of the magnon-polaron bands (from low to high energies) in
the spin-flop phase. C, (n = 1 — 6) denotes the corresponding Chern number of nth band. The hexagon represents the 1st Brillouin zone. Here,

we use B¢ = Bf, =B, =B = —0.84meV and B=10T.
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FIG. 6. Thermal Hall conductivity as a function of (a) an external magnetic field and (b) temperature. Ty denotes the Néel temperature of
the MnPS;. Although strictly speaking, magnons are defined well only below the Néel temperature, The calculation result is shown also above
the Néel temperature to provide the qualitative temperature dependence of the thermal Hall conductivity for a broad range of temperatures.

located far from the I' point, the thermal Hall conductiv-
ity increases as temperature rises and the high-energy states
become occupied [see Fig. 6(b)]. Additionally, the external
magnetic field increases the spin canted angle and differenti-
ates the two magnon bands, leading to an increase in thermal
Hall conductivity with the magnetic field [see Fig. 6(a)].

V. DISCUSSION

In this study, we explore the topological properties
of magnon-polaron bands in a two-dimensional honey-
comb antiferromagnetic insulator by varying an external

magnetic field. We specifically investigate the impact of
strain-dependent magnetic anisotropy, a common feature in
magnetic materials, on the topological magnon-polarons.
The magnetic phase transition from the collinear antifer-
romagnetic phase to the spin-flop phase induces a notable
transformation in the magnon-polaron band structure and
its associated topological properties. Consequently, the ther-
mal Hall conductivity undergoes a change in sign and
amplitude at the phase transition point. Our findings pro-
vide insights for interpreting experimental data on ther-
mal Hall conductivity in two-dimensional antiferromagnetic
materials.
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FIG. 7. The band structures near I" point and the Berry curvature profiles in the collinear AFM phase for different magnetic fields.
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APPENDIX A: MAGNON-PHONON INTERACTION

1. Magnon-phonon interaction in collinear AFM state

In the collinear AFM state, off-diagonal components of the strain tensor involving out-of-plane phonon vibration only
contributes to the magnetoelastic interaction to linear order in magnon amplitude. Explicitly, we have

€

Hyp == 32 D Si(Siel + Sle). + eliS + €1, 83). (AD

v i€y

By using Eq. (31) and taking the Fourier transformation with the Holstein Primakoff approach, we obtain

i i T J
Ke «—-B ak+a_k «_B ak_a_k _A bk+b_ _A bk_b_k
H,, = — |:quz,k (—) + syl (—) + sill, (— —sil; | ——=—1]]|+Hec., (A2
2 & V2 V2i V2 V2i

where s, = (—2e* 1 4 ok 4 pkary g — (/3(—ek® 4 oK) (in the low-k limit, s, ~ —3ik,, s, ~ —3ik,) and K. =
Bg HS v 1‘;5)0 We note that the magnon-phonon interaction does not involve the in-plane phonon modes in the collinear AFM

state.

2. Magnon-phonon interaction in spin-flop state

In the spin-flop phase, the sub-lattice dependent spin transformation (8) leads to

Hyp = —S Z Z(—l)”“ cos 0 sinO[(Ey, — EL)S") + 8" (Ey, — EL)] + (=1)"*' cos O (E},S") + S"E))

vxy
v i€y

+ (sin® 6 — cos” O)(EL.S", + S Ey.) + sin 6 (S E), + E.S7). (A3)

v=yz

In this case, the magnon-phonon interaction includes full in-plane and out-of-plane phonon modes. In terms of dimensionless
operators, the momentum space representation of the magnon-phonon interaction is

i i
. ; ag +a_, ! ag +a’
H,,, = sin 20 Z |:/csju§’k (—) + ke sy (—)
” V2 V2
[+ [ty
— Kfsqu,fk T - K+syu;4’7k T
¥ i
Ky ag —a_y , bk - bfk
_ 9 *_ ¥ * X P _ Yy X P
DY {(S’““B"" " )( NG ) et )< N7 )}
g t
Ke ag +a_y bx + b
— —cos20 Syu —— |+ 5 | ———
oo (55) (5

¥ T
Ke . ag —a_yg bk - b,k
+ —sinf E sy, | —— )+ 5545 | ———— )| +H.ec, (A4)
2 k |:y " k( Vi ) o k( Vai >]

Y B.S .
where i, = &5 /5 and e = B22 /5= with B = 3(—2v/3B, + B, £ BY).

APPENDIX B: BAND STRUCTURES AND BERRY CURVATURES WITH VARIOUS MAGNETIC FIELDS
IN THE COLLINEAR AFM PHASE
In Fig. 7, we present the band structures near I point and Berry curvature profiles in the collinear AFM phase for different
magnetic fields.
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